仅对英特尔可见 — GUID: rtm1486507322380
Ixiasoft
2.2.1. 选择和实例化PHY IP Core
2.2.2. PHY IP Core的配置
2.2.3. 生成PHY IP Core
2.2.4. PLL IP Core的选择
2.2.5. 配置PLL IP Core
2.2.6. PLL IP Core的生成
2.2.7. 复位控制器(Reset Controller)
2.2.8. 创建重配置逻辑
2.2.9. 将PHY IP连接到PLL IP Core和Reset Controller
2.2.10. 连接数据通路(Connect Datapath)
2.2.11. 模拟参数设置
2.2.12. 编译设计
2.2.13. 验证设计功能性
2.7.1. PIPE的收发器通道数据通路
2.7.2. 支持的PIPE特性
2.7.3. 如何连接PIPE Gen1和Gen2模式的TX PLL
2.7.4. 如何在 Cyclone® 10 GX收发器中实现PCI Express (PIPE)
2.7.5. PIPE的Native PHY IP参数设置
2.7.6. 用于PIPE的fPLL IP参数内核设置
2.7.7. 用于PIPE的ATX PLL IP参数设置
2.7.8. 用于PIPE的Native PHY IP端口
2.7.9. 用于PIPE的fPLL端口
2.7.10. 用于PIPE的ATX PLL端口
2.7.11. 如何对PIPE配置布局通道
2.9.1.1. 如何在 Cyclone® 10 GX收发器中实现基本(增强型PCS)收发器配置规则(Basic (Enhanced PCS) Transceiver Configuration Rules)
2.9.1.2. Basic (Enhanced PCS)的Native PHY IP参数设置
2.9.1.3. 如何在Basic Enhanced PCS中使能低延迟
2.9.1.4. 增强的PCS FIFO操作
2.9.1.5. TX数据比特滑移(TX Data Bitslip)
2.9.1.6. TX数据极性反转
2.9.1.7. RX数据比特滑移(RX Data Bitslip)
2.9.1.8. RX数据极性反转
2.9.2.1. 字对齐器手动模式(Word Aligner Manual Mode)
2.9.2.2. 字对齐器同步状态机模式
2.9.2.3. RX比特滑移(RX Bit Slip)
2.9.2.4. RX极性反转
2.9.2.5. RX比特反转(RX Bit Reversal)
2.9.2.6. RX字节反转(RX Byte Reversal)
2.9.2.7. 基本(单宽度)模式下的速率匹配FIFO
2.9.2.8. Rate Match FIFO Basic (Double Width)模式
2.9.2.9. 8B/10B编码器和解码器(8B/10B Encoder and Decoder)
2.9.2.10. 8B/10B TX差异控制
2.9.2.11. 如何在Basic模式下使能低延迟
2.9.2.12. TX比特滑移(TX Bit Slip)
2.9.2.13. TX极性反转
2.9.2.14. TX比特反转(TX Bit Reversal)
2.9.2.15. TX字节反转(TX Byte Reversal)
2.9.2.16. 如何在 Cyclone® 10 GX收发器中实现基本收发器配置规则和带速率匹配的基本收发器配置规则
2.9.2.17. Basic,速率匹配配置的Basic的Native PHY IP参数设置
6.1. 重新配置通道和PLL块
6.2. 与重配置接口进行交互
6.3. 配置文件
6.4. 多个重配置Profile
6.5. 嵌入式重配置Streamer
6.6. 仲裁
6.7. 动态重配置的建议
6.8. 执行动态重配置的步骤
6.9. 直接重配置流程
6.10. Native PHY IP或PLL IP核指导型重配置流程
6.11. 特殊情况的重配置流程
6.12. 更改PMA模拟参数
6.13. 端口和参数
6.14. 动态重配置接口跨多个IP块合并
6.15. 嵌入式调试功能
6.16. 使用数据码型生成器和检查器
6.17. 时序收敛建议
6.18. 不支持的功能
6.19. Cyclone® 10 GX收发器寄存器映射
8.7.1. XCVR_C10_TX_PRE_EMP_SIGN_PRE_TAP_1T
8.7.2. XCVR_C10_TX_PRE_EMP_SIGN_PRE_TAP_2T
8.7.3. XCVR_C10_TX_PRE_EMP_SIGN_1ST_POST_TAP
8.7.4. XCVR_C10_TX_PRE_EMP_SIGN_2ND_POST_TAP
8.7.5. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_1T
8.7.6. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_PRE_TAP_2T
8.7.7. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_1ST_POST_TAP
8.7.8. XCVR_C10_TX_PRE_EMP_SWITCHING_CTRL_2ND_POST_TAP
仅对英特尔可见 — GUID: rtm1486507322380
Ixiasoft
3.7. 接收器数据路径接口时钟
每通道的PMA中的CDR模块将串行时钟从输入数据恢复。CDR模块还会对已恢复的串行时钟进行分频,以生成恢复并行时钟。恢复串行和恢复并行时钟被解串器使用。接收器PCS基于接收器通道的配置可使用以下时钟:
- 来自PMA中CDR的已恢复并行时钟
- 来自时钟分频器且由该通道发送器PCS所使用的并行时钟
对于使用字节解串器模块的配置,字节解串器和RX相位补偿FIFO的写入侧使用以2或4分频的时钟。
图 128. 接收器标准PCS和PMA时钟
使用标准PCS通道的所有配置中接收器数据路径接口时钟和RX相位补偿FIFO读取侧的时钟间的相位差为0 ppm。
图 129. 接收器强化型PCS和PMA时钟
接收器PCS将下列时钟转发到FPGA架构:
- rx_clkout —未使用匹配器时用于每个接收器通道。
- rx_clkout —使用匹配器时用于每个接收器通道。
可使用下列方法之一对接收器数据路径接口提供时钟:
- Quartus Prime所选接收器数据通路接口时钟
- 用户所选接收器数据路径接口时钟
相关信息