跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的语言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以通过多种方式轻松搜索整个 Intel.com 站点。

  • 品牌: 酷睿 i9
  • 文件号: 123456
  • Code Name: Emerald Rapids
  • 特殊作符: “Ice Lake”, Ice AND Lake, Ice OR Lake, Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议本网站使用您正在使用的浏览器版本。
请考虑通过单击以下链接之一升级到最新版本的浏览器。

  • Safari
  • Chrome
  • Edge
  • Firefox

Ignite Your AI Solutions on CPUs and GPUs

Ignite Your AI Solutions on CPUs and GPUs

@IntelDevTools

Subscribe Now

Stay in the know on all things CODE. Updates are delivered to your inbox.

Sign Up

Overview

scikit-learn* is among the most useful and robust libraries for machine learning. It provides a selection of tools for machine learning and statistical modeling via a consistent interface in Python*, including classification, regression, clustering, and dimensionality reduction.

In this session, data scientist and AI expert Bob Chesebrough showcases the Intel® Extension for Scikit-learn*. Learn how to use it to speed up many standard machine learning algorithms for scikit-learn (such as kmeans, dbscan, and pca) on CPUs with only a few lines of code. He also addresses how changing a few lines of code can target these same kernels for use on GPUs.

This video shows:

  • Where to get and how to install the extension, which is part of the AI Frameworks and Tools
  • An example scikit-learn algorithm sped up over stock scikit-learn
  • A demonstration of the single line of code that enumerates all Intel®-optimized scikit-learn functions
  • How to apply the functional patch to activate Intel Extension for Scikit-learn
  • How to apply the dpctl command to offload data and computation to an Intel® GPU
  • Upcoming hands-on workshops for in-depth information

Jump to:

Featured Software

You May Also Like
 


 

Featured Software

  • Download Intel Extension for Scikit-learn as part of the AI Frameworks and Tools—eight tools and frameworks to accelerate end-to-end data science and analytics pipelines.
  • Get the stand-alone Intel Extension for Scikit-learn on GitHub*.

 

   

You May Also Like

Related Articles

Accelerate Linear Regression Models for Machine Learning

Speed Up Databricks* Runtime for Machine Learning with Intel®-optimized Libraries

Software AI Accelerators: AI Performance Boost for Free

Scale Your pandas Workflow with Modin*—No Rewrite Required

Related Videos

Drive 2x Performance into Your scikit-learn Machine Learning Tasks

Machine Learning 101 with Python and daal4py

Fast, Scalable Data Analytics & Machine Learning with Python

  • 公司信息
  • 英特尔资本
  • 企业责任部
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息 California Consumer Privacy Act (CCPA) Opt-Out Icon

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。请访问 intel.cn/performanceindex 了解更多信息。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志