跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的语言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以通过多种方式轻松搜索整个 Intel.com 站点。

  • 品牌: 酷睿 i9
  • 文件号: 123456
  • Code Name: Emerald Rapids
  • 特殊作符: “Ice Lake”, Ice AND Lake, Ice OR Lake, Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议本网站使用您正在使用的浏览器版本。
请考虑通过单击以下链接之一升级到最新版本的浏览器。

  • Safari
  • Chrome
  • Edge
  • Firefox

Accelerate Python* with NumPy & Other Smarter oneAPI Equivalents

Accelerate Python* with NumPy & Other Smarter oneAPI Equivalents

@IntelDevTools

Subscribe Now

Stay in the know on all things CODE. Updates are delivered to your inbox.

Sign Up

Overview

Ignite performance of common Python* and pandas constructs by taking advantage of NumPy, SciPy, and pandas techniques powered by oneAPI.

This on-demand workshop details how to use key Intel® architecture innovations and libraries through a smart application of techniques that enable acceleration of 10x, 100x, or more, including:

  • Detailed information on NumPy aggregations, universal functions, broadcasting, and other techniques.
  • How to create outsized performance gains by replacing Python loop-centric or list-comprehensive applications with smarter equivalents that are more maintainable, efficient, and faster.

 

Highlights

0:00 Introductions

1:35 Learning objectives

2:14 AI Tools

5:40 Intel® Developer Cloud

7:12 How to get started with the Intel Developer Cloud

22:08 Next step: follow the README

28:35 Poll: Were you able to complete the Git clone step?

33:55 NumPy: powered by oneAPI

36:05 Python* is great and fast

37:23 Python is slow

38:02 NumPy vectorization

38:55 Vectorization is not just theory

39:39 Why are these speedups so dramatic?

41:20 Comparing to simple loops in Python

43:00 Effect of noncontiguous memory access

44:38 Cache is used ineffectively and a real-life example

47:32 About memory

48:37 How to move code patterns to NumPy

49:15 Demonstration on how to create NumPy arrays

1:03:00 Quick resolution to fix broken code

1:03:43 NumPy universal functions

1:14:00 NumPy aggregation

1:19:00 NumPy broadcasting

1:25:00 NumPy where clause

1:35:00 NumPy with pandas

1:43:05 NumPy with SciPy

1:55:00 NumPy matrix multiplier

1:58:45 Call to action

2:00:20 Q&A

Jump to:

You May Also Like
 

AI Tools

Accelerate data science and AI pipelines-from preprocessing through machine learning-and provide interoperability for efficient model development.

 

Get It Now

 

See All Tools

 

   

You May Also Like

Related Articles

The Fundamentals of Parallelism in Python Using Numba*

Introducing Modin*: A Step-by-Step Guide to Accelerating pandas

Build a Deep Learning Environment in Python with Intel & Anaconda*

Benchmarking How Fast the Intel® Extension for Scikit-learn* Is

Related Videos

Achieve Python Acceleration of 10x, 100x, or More with oneAPI

Tips for the Intel® Distribution for Python* Programming Language

  • 公司信息
  • 英特尔资本
  • 企业责任部
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息 California Consumer Privacy Act (CCPA) Opt-Out Icon

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。请访问 intel.cn/performanceindex 了解更多信息。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志