Breakthrough Performance Expands Datasets, Eliminates Bottlenecks

Solve the most demanding storage and memory challenges with the Intel® Optane™ SSD DC P4800X/P4801X series.

Every day, the amount of data created across the world is exploding to new levels. Enterprises and cloud service providers thrive on this data to make critical decisions, gain new insights from the data, and differentiate services. But, today’s current storage technologies leave a gap in data storage tiers. DRAM is far too expensive to scale and while NAND has the capacity and cost structure to scale, it lacks sufficient performance to function in the memory space. To address the gap, a storage solution that behaves like system memory is needed.

Combines Attributes of Memory and Storage
The Intel® Optane™ SSD DC P4800X series is the first product to combine the attributes of memory and storage. With an industry-leading combination of high throughput, low latency, high QoS, and high endurance, this innovative solution is optimized to break through data access bottlenecks by providing a new data storage tier. The DC P4800X/ P4801X accelerates applications with fast caching and fast storage to increase scale per server and reduce transaction costs for latency sensitive workloads. In addition, the Intel® Optane™ DC P4800X enables data centers to deploy bigger and more affordable datasets to gain new insights from large memory pools.

High Throughput for Breakthrough Performance
Realize breakthrough application performance with the Intel® Optane™ DC P4800X/P4801X. It is designed to deliver up to 6x faster performance at low queue depth workloads,1 exhibiting extremely high throughput for single accesses and super low latency. Where NAND-based SSDs are often measured at a queue depth of 32 (SATA) or 128 (NVMe*) in order to showcase maximum throughput, the Intel® Optane™ DC P4800X/P4801X can reach as many as 550,000 IOPS at a queue depth of 16.2 This new technology is perfectly suited to accelerate enterprise applications to new, breakthrough levels of performance.

Low Latency: Responsive Under Load
With a new data storage tier created by Intel® Optane™ technology, data centers can consistently realize amazing response times under any workload. With NAND-based SSDs, random write operations require an immense amount of background media management. These tasks can add significant delay to the read operations. The Intel® Optane™ SSD DC P4800X/P4801X maintains consistent read response times regardless of the write throughput applied to the drive. Average read response times remain below <30μs while maintaining a 70/30 mixed read/write bandwidth of 2GB/s.2

Predictably Fast Service: QoS
In an environment of fast growing data and ever demanding needs, data centers must deploy solutions that enable predictably fast service. The Intel® Optane™ DC P4800X/ P4801X is ideal for critical applications with demanding latency requirements. Its 99% read response time is up to 63x better than that of a high-endurance NAND SSD under random write workload.3 Optimized to minimize delays in data access times, the Intel® Optane™ DC P4800X /P4801X results in faster time to insight for decision making. 

High Endurance
Endurance affects the life expectancy and costs of enterprise SSDs. The DC P4800X/P4801X is designed for high write environments, and can withstand intense write traffic that is typically demanded of memory. With its extremely high endurance, the life of the DC P4800X/P4801X is extended, making it suitable for write-intensive applications such as online transaction processing, high performance computing, write caching, boot, and logging.

Use Cases for Today’s Data Center
The Intel® Optane™ DC P4800X provides a new storage tier that breaks through the bottlenecks of traditional NAND storage to accelerate applications and enable more work to get done per server. This unique capability means data centers can explore three key use cases, including caching, fast storage, and extended memory. The DC P4801X can also provide fast logging, caching, boot, or extended memory. Caching and fast storage refer to the tiering and layering that support a better memory-to-storage hierarchy. The Intel® Optane™ SSD facilitates dynamic placement of data that enables fast access to both read and/or write data. In addition, this high performing SSD meets the requirement of an application to accelerate storage access.

An Intel® Optane™ SSD can also extend memory, offering bigger or more affordable memory by participating in a shared memory pool with DRAM at either the OS or application level. Bigger memory dramatically increases the size of ‘working sets’ to enable new insights from data in growing segments such as scientific computing, healthcare, and autonomous driving. More affordable memory means data centers can use Intel® Optane™ SSDs to displace some DRAM.

Intel® Optane™ SSD DC P4801X Series – Features & Specification

FEATURE

SPECIFICATION

Capacity per Form Factor

Half-height, Half-length (HHHL) Add-in-Card (AIC): 375GB, 750GB, 1.5TB

2.5” x15mm, Small Form Factor U.2: 375GB, 750GB, 1.5TB

P4801X: U.2: 100GB M.2: 100GB, 200GB, 375GB

Form Factor

Add-in-Card (AIC), Half-height, Half-length, Low-profile; U.2 2.5in, 15mm; M.2 110mm

Interface

PCIe* 3.0 x4, NVMe*

Latency (typical) R/W2

<10/12μs

Quality of Service (QoS): 99.999%2 4KB Random, Queue Depth 1, Read/Write: <60/100 μs; 4KB Random, Queue Depth 16, R/W: <150/200 μs
Throughput2 4KB Random, Queue Depth 16, Read/Write: up to 550/550k IOPS
4KB Random, Queue Depth 16, Mixed 70/30 Read/Write: up to 500k IOPS
Endurance (JESD219 workload)
Drive Writes per Day=DWPD; Petabytes Written=PBW
30 DWPD: 375GB - 20.5 PBW; 750GB - 41 PBW
60 DWPD: 100GB - 10.9 PBW; 200GB - 21.9 PBW; 375GB - 41.0 PBW; 750GB - 82.0 PBW; 1.5TB - 164 PBW
Power Enhanced power-loss data protection
P4800X: Active/Idle: Up to 18 W / 7 W
P4801X: Active/Idle: Up to 11 W / 3 W
For more up-to-date product specifications, visit ark.intel.com

Intel® SSD Data Center Family


产品和性能信息

1

来源 - 经英特尔测试:低队列深度下的 4K 70/30 RW 性能。通过 FIO 3.1 测得。通用配置:英特尔® 2U 服务器系统,操作系统:CentOS* 7.5,内核 4.17.6-1.el7.x86_64,CPU 2 x 英特尔® 至强® 金牌 6154 处理器(3.0GHz,18 核),RAM 256GB DDR4 (2666MHz)。配置:英特尔® 傲腾™ 固态盘 DC P4800X 375GB(对比英特尔® 固态盘 DC P4600 1.6TB)。英特尔微代码:0x2000043;系统 BIOS:00.01.0013;ME 固件:04.00.04.294;BMC 固件:1.43.91f76955;FRUSDR:1.43。由于进行了其他测试,因此基准性能测试结果可能需要进行修改。性能结果基于截至 2018 年 11 月 15 日的测试,并且可能无法反映所有公开的安全更新。有关详细信息,请参见配置信息披露。没有任何产品能保证绝对安全。

2

英特尔驱动器评估 - 英特尔® 傲腾™ 固态盘 DC P4800X 375GB。测试和系统配置:CPU:英特尔® 至强® 处理器 E5-2687W v4 3.0GHz 30MB 160W 12 核,CPU 插槽:2,RAM 容量:32GB,RAM 型号:DDR4 2133MHz,PCIe* 附接:CPU(非 PCH 通道附接),芯片组:英特尔® C610 芯片组,BIOS:SE5C610.86B.01.01.0024.021320181901,Switch/ReTimer 型号/供应商:英特尔 A2U44X25NVMEDK,操作系统:CentOS* 7.3.1611,内核:4.14.50,FIO 版本:3.5;NVMe* 驱动程序:内置驱动程序,C 状态:已禁用,超线程:已禁用,CPU 调控器(通过操作系统):性能模式;EIST(速度步进):已禁用,英特尔睿频模式:已禁用,P 状态 = 已禁用;IRQ 平衡服务 (OS) = 关闭;SMP Affinity,在操作系统中设置;QD1 使用 I/O 轮询模式。性能结果基于 2018 年 8 月 31 日的测试,并且可能无法反映所有公开的安全更新。有关详细信息,请参见配置信息披露。

3

来源 - 经英特尔测试:响应时间指使用 FIO 3.1 在 4K 随机写入工作负载期间,在队列深度 1 测得的平均读取延迟时间。请在上方脚注 1 中查看配置。