Putting More of Your Data to Work Is Now Easier Than Ever

Intel® Optane™ persistent memory 200 series delivers on average 25% more bandwidth1 with up to 4.5 TB total memory per socket.

Over 90% of enterprises are in the midst of their digital transformation journey2 to become data-centric businesses with requirements to capture, analyze, and secure increasing amounts of data. This is accelerating the demand for compute and driving the need for more data to be processed closer to the CPU. DRAM memory offers low latency but is limited in capacity, expensive, and volatile. Block storage is large, cheap, and persistent, but slow to access. Intel® Optane™ persistent memory (PMem) bridges the gap with an innovative memory technology that delivers a unique combination of affordable large capacity and support for data persistence.

Intel® Optane™ PMem 200 series is the second generation of a high performing persistent memory tier optimized for 3rd Gen Intel® Xeon® Scalable processors that helps turn data into actionable insights. Intel® Optane™ PMem 200 series delivers an average of 25% more memory bandwidth than the previous generation1, 12-15 watts of thermal design power (TDP) and is available in capacities up to 512 GB. Additionally, it is compatible with the software ecosystem already established for Intel® Optane™ persistent memory.

Intel® Optane™ Persistent Memory 200 Series

Intel® Optane™ PMem 200 series modules are supported on 3rd Gen Intel® Xeon®
Scalable processors and create a high performing, large-capacity persistent memory tier that helps turn more data into actionable insights. Intel® Optane™ PMem 200 series is available in 128 GB, 256 GB, and 512 GB modules and coexist with traditional DDR4 DIMMs, occupying the same motherboard slots side-by-side with DRAM. A platform optimized for these next-generation processors can support one Intel® Optane™ PMem 200 series module per channel (up to six on a single socket), providing up to 3 TB of PMem per socket and total memory capacity of 4.5 TB per socket. Intel® Optane™ PMem 200 series is compatible with the software ecosystem established for Intel® Optane™ persistent memory for workloads, such as databases, analytics, and virtualized infrastructure.

Data Persistence for Memory

Unlike DRAM, data remains in PMem after a planned or unplanned restart, avoiding time-consuming data reloads, which means less down time, fewer losses from system outages, and increased operational efficiency. Developers can utilize the industry standard persistent memory programming model to build simpler and more powerful applications to future-proof their data center investment.

Secure Data at Rest

The Intel® Optane™ PMem 200 series integrates strong, industry-standard hardware security encryption measures for data at rest. Application-transparent AES-256 encryption secures all data at rest in persistent memory with no software code changes and minimal impact on performance. 

Affordable Large Capacity

Intel® Optane™ PMem 200 series enables more value to be extracted from larger data sets and increases the utility of each server. In-memory databases can access more data at DRAM-like speeds, and workloads processing massive data sets, such as scientific or data warehousing and analytics, can work continuously without repeatedly loading and storing data locally. Additionally, Intel® Optane™ PMem can offer greater memory capacity per socket than DRAM for virtualized data center infrastructures, leaving more headroom for virtualizing future workloads requiring larger memory capacity rather than having to run those demanding workloads on bare metal. When deployed, Intel® Optane™ PMem 200 series can enable you to consolidate and reduce your server footprint, leading to lower software licensing costs, reduced power consumption, and other operational efficiencies.

Create a high performing, large-capacity persistent memory tier with Intel® Optane™ PMem 200 series to improve key data center metrics such as:

  • Increased CPU utilization and utility of each server
  • Increased application throughput with more memory capacity
  • Increased VM density or support more services and users
  • Support for larger in-memory databases without prohibitive price tags
  • Improve business resilience for systems with critical data
  • Consolidate server footprint, reduce software licensing costs, and maximize return on your enterprise investment

What Challenges Does Persistent Memory Address?

Figure 1. Intel® Optane™ PMem 200 series solves several key challenges in computing today.

Operational Modes

Intel® Optane™ PMem 200 series has multiple operating modes:
Memory Mode – Memory Mode delivers large memory capacity without application changes and with performance close to that of DRAM, depending on the workload. In Memory Mode, the CPU memory controller sees all of the Intel® Optane™ PMem 200 series as volatile system memory (without persistence), while using the DRAM as cache. In Memory Mode, data in the modules is protected with a single encryption key that is discarded upon power down, making the data inaccessible. Memory Mode’s large capacity enables more VMs and more memory per VM at a lower cost compared to DDR4 DIMMs. Workloads that are I/O bound can also benefit from using Intel® Optane™ PMem 200 series in Memory Mode, because the larger memory capacity supports bigger databases at a lower cost compared to DDR4 DIMMs. With increased capacity there is greater VM, container, and application density, which increases the utilization of 3rd Gen Intel® Xeon® Scalable processors.
App Direct Mode – App Direct Mode enables large memory capacity and data persistence for software to access DRAM and persistent memory as two tiers of memory.
In App Direct Mode, software and applications enabled for the industry standard NVM persistent memory programming model have the ability to talk directly to PMem, reducing the complexity in the stack and taking full advantage of byte- addressable persistent memory with cache coherence, which extends the usage of persistent memory outside the local node, and provides consistent low latency, supporting larger datasets.
App Direct Mode can also be used with standard file APIs to access the same persistent memory address space (called Storage over App Direct) without any modifications to the existing applications or the file systems that expect block storage devices. Storage over App Direct presents Intel® Optane™ PMem as high-performance block storage, without the latency of moving data to and from the I/O bus.
In App Direct Mode, data is encrypted using a key stored on the module in a security metadata region, which is only accessible by the Intel® Optane™ PMem 200 series controller. The modules are locked at power loss, and a passphrase is needed to unlock and access the data. If a module is repurposed or discarded, a secure cryptographic erase and DIMM over-write operation keeps data from being accessed.

Drive Application Innovation and Explore New Data-Intensive Use Case with this Best-in-Class Product

With Intel® Optane™ PMem 200 series, developers have direct load/store access to it and can drive new innovation and capabilities using the same persistent programming model introduced with the first generation of PMem. Rapid adoption is easy, and customers are able to take full advantage of its capabilities with a growing global ecosystem of ISVs, OSVs, virtualization providers, database and enterprise application vendors, data analytics vendors, open source solutions providers, Cloud Service Providers, hardware OEMs, and standards bodies, such as the Storage Network Industry Association (SNIA), ACPI, UEFI, and DMTF.

Intel® Optane™ Persistent Memory in the Data Center: Delivering Real Value Today

Figure 2. Intel® Optane™ PMem boosts performance across a wide range of enterprise applications.3 4 5 6 7 8

Programming Model

The software interface for using Intel® Optane™ persistent memory was designed in collaboration with dozens of companies to create a unified programming model for the technology. The Storage Network Industry Association (SNIA) formed a technical workgroup, which has published a specification of the model. This software interface is independent of any specific persistent memory technology and can be used with Intel® Optane™ PMem 200 series or any other persistent memory technology.

The model exposes three main capabilities:

  • The management path allows system administrators to configure persistent memory products and check their health.
  • The storage path supports the traditional storage APIs where existing applications and file systems need no change; they simply see the persistent memory as very fast storage.
  • The memory-mapped path exposes persistent memory through a persistent memory-aware file system so that applications have direct load/store access to the persistent memory. This direct access does not use the page cache like traditional file systems and has been named DAX by the operating system vendors.

The Persistent Memory Development Kit (PMDK – http://pmem.io) provides libraries meant to make PMem program- ming easier. Software developers only pull in the features they need, keeping their programs lean and fast on PMem. These libraries are fully validated and performance-tuned by Intel.
They are open source and product-neutral, working well on a variety of PMem products. The PMDK contains a collection of open source libraries, which build on the SNIA programming model. The PMDK is fully documented and includes code samples, tutorials, and blogs. Language support for the libraries exists in C and C++, with support for Java, Python, and other languages in progress.

Turn Data from a Burden to an Asset

Intel® Optane™ PMem 200 series is the next-generation of a groundbreaking technology innovation. Deployed with 3rd Gen Intel® Xeon® Scalable processors, this technology can transform critical data workloads—from cloud and databases to in-memory analytics and content delivery networks.

Intel® Optane™ Persistent Memory 200 Series Data Sheet

PRODUCT FAMILY Intel® Optane™ Persistent Memory 200 Series
3rd Gen Intel® Xeon® Scalable processors on 4-socket platforms
Persistent Memory Module
128 GB 256 GB 512 GB
USER CAPACITY+ 126.7 GB 253.7 GB 507.7 GB
MOQ 4 50 4 50 4 50
MM# 999HGR 999HGZ 999HH0 999HH1 999HH2 999HH3
TECHNOLOGY Intel® Optane™ Technology
AFR ≤ 0.44
ENDURANCE 100% WRITES 15W 256B 292 PBW 497 PBW 410 PBW
67% READ; 33% WRITE
15W 256B 
224 PBW 297 PBW 242 PBW
100% WRITE
15W 64B
73 PBW 125 PBW 103 PBW
67% READ; 33% WRITE
15W 64B
56 PBW 74 PBW
60 PBW
100% READ
15W 256B
7.45 GB/s 8.10 GB/s 7.45 GB/s
67% READ; 33% WRITE
15W 256B
4.25 GB/s 5.65 GB/s 4.60 GB/s
100% WRITE
15W 256B
2.25 GB/s 3.15 GB/s 2.60 GB/s
100% READ
15W 64B
1.86 GB/s 2.03 GB/s 1.86 GB/s
67% READ; 33% WRITE
15W 64B
1.06 GB/s 1.41 GB/s 1.15 GB/s
100% WRITE
15W 64B
0.56 GB/s 0.79 GB/s 0.65 GB/s
TEMPERATURE (TJMAX) ≤ 83°C (85°C shutdown, 83°C default) media temperature
TEMPERATURE (TAMBIENT) 48°C @ 2.4m/s for 12W
TEMPERATURE (TAMBIENT) 43°C @ 2.7m/s for 15W
+ GiB = 230; GB = 109; Bandwidths are +/- 3%

Intel® Optane™ Persistent Memory




基准:1 节点、1 个安装在搭载单个 PMem 模块配置(6x32GB DRAM;1 个 {128GB,256GB,512GB} 15 W 英特尔® 傲腾™ PMem 100 系列模块)的 Neon City 上的英特尔® 至强® 8280L 28C 2.7 GHz 处理器 ucode 版本:运行 Fedora 29 内核 5.1.18-200.fc29.x86_64 的 04002F00,和搭载 App-Direct 的 MLC 3.8 版本。来源:2020ww18_CPX_BPS_DI。英特尔于 2020 年 4 月 27 日进行了测试。新配置:1 节点、1 个安装在搭载单个 PMem 模块配置(6x32GB DRAM;1 个 {128GB,256GB,512GB} 15 W 英特尔® 傲腾™ PMem 200 系列模块)的 Cooper City 上的英特尔® 至强® 预生产 CPX6 28C 2.9GHz 处理器,运行 Fedora 29 内核 5.1.18-200.fc29.x86_64 的 04002F00 的预生产 ucode,和搭载 App-Direct 的 MLC 3.8 版本。来源:2020ww18_CPX_BPS_BG。英特尔于 2020 年 3 月 31 日进行了测试。
有关详细信息,请参见配置信息披露。没有任何产品或组件能够做到绝对安全。 性能因用途、配置和其他因素而异。请访问 www.Intel.cn/PerformanceIndex 了解更多信息。


来源:IDC 2020 MaturityScape 数字化转型。


运行时性能提高 2.4 倍:性能结果基于英特尔® IT 截至 2019 年 3 月 12 日的测试。基准:三节点(1 个主节点 + 2 个从节点)SAP HANA 2 扩展配置 每个节点:4 个英特尔® 至强® 处理器 E7-8880 v3(2.3 GHz,150 W,18 核),CPU 插槽:4 个;微码:0x400001c;RAM 容量:64 x 32 GB DIMM,RAM 型号:DDR4 2133 Mbps,存储:GPFS,每个节点接近 21.8 TB 格式化本地存储,SAN 存储仅作为备份空间;网络:用于存储和访问的冗余 10 千兆以太网 (GbE) ,用于节点到节点的冗余 10G 网络;操作系统:SUSE 12 SP2*,SAP HANA*:2.00.035,GPFS:。50 项单独测试查询(每个查询执行 30-50 次,总约 25,000 个步骤)的平均用时:2.81 秒。新配置,一个主节点 SAP HANA* 2 扩展配置:CPU:4 个第二代智能英特尔® 至强® Platinum 8260 处理器(2.2 GHz,165 W,24 核),CPU 插槽: 4 个;微码:0x400001c,RAM 容量:24 x 64 GB DIMM,RAM 型号:DDR4 2133 Mbps;英特尔® 傲腾™ 数据中心级持久内存:24 x 126 GB PMM;存储:XFS*,21 TB;网络:冗余 10 GbE 网络;操作系统:SUSE 15,SAP HANA*:2.00.035,英特尔 BKC:WW06。50 项单独测试查询(每个查询执行 30-50 次,总约 25,0000 个步骤)的平均用时:1.13 秒。


英特尔于 2019 年 2 月 24 日进行了测试。常见测试详细信息:2 个第二代智能英特尔® 至强® Platinum 8280M 处理器,8 个 HDD ST1000NX0313,BIOS:SE5C620.86B. 0D.01.0134.100420181737,操作系统:Fedora 版本 29,内核:4.20.6-200.fc29.x86_64,1 份 Hadoop 上的未压缩和纯编码数据副本,Spark:1 个驱动器 (5 B) + 2 个执行器(62 核,74 GB),spark.sql.oap.rowgroup.size=1MB,Oracle JDK 1.8.0_161,3TB 数据规模,9 I/O 密集查询,9 线程。基准内存配置:24 个 32 GB DDR4。搭载英特尔® 傲腾™ 持久内存的系统的内存配置:8 个 App Direct 模式 128 GB PMem + 12 个 16GB DDR4。


OracleDB - 来自 2019 甲骨文全球大会的 10 倍性能要求:通过开拓创新提供企业价值 https://www.oracle.com/openworld/on-demand.html?bcid=6089826187001


SAS Viya* 内存分析:
SAS Viya* 3.4 VDMML 应用程序。工作负载:3 个并行逻辑回归任务,每个任务都在 400 GB 数据集上运行。测试信息:由英特尔和 SAS 于 2019 年 2 月 15 日完成。用于比较的基准硬件:2S 英特尔® 至强® Platinum 8280 处理器,2.7 GHz,28 核,睿频和 HT 开启,BIOS SE5C620.86B.0D.01.0286.011120190816,1536 GB 总内存,24 个插槽 / 64 GB / 2666 MT/s / DDR4 LRDIMM,1 个 800 GB 英特尔® 固态盘数据中心 S3710 OS 驱动器 + 1 个用于 CAS_DISK_CACHE 的 1.5 TB 英特尔® 傲腾™ 固态盘数据中心 P4800X NVMe* 驱动器 + 1 个 1.5 TB 英特尔® 固态盘数据中心 P4610
用于应用程序数据的 NVMe* 驱动器,CentOS Linux* 7.6 内核 4.19.8。测试的新硬件:2S 英特尔® 至强® Platinum 8280 处理器,2.7 GHz,28 核,睿频和 HT 开启,BIOS SE5C620.86B.0D.01.0286.011120190816,1536 GB 英特尔® 傲腾™ 数据中心持久内存(采用内存模式 (8:1) 配置),12 个插槽 / 128GB / 2666 MT/s,192 GB DRAM,12 个插槽 / 16GB / 2666 MT/s DDR4 LRDIMM,1 个 800 GB 英特尔® 固态盘数据中心 S3710 OS 驱动器 + 1 个用于 CAS_DISK_CACHE 的 1.5 TB 英特尔® 傲腾™ 固态盘数据中心 P4800X NVMe* 驱动器 + 1 个用于应用程序数据的 1.5TB 英特尔® 固态盘数据中心 P4610 NVMe* 驱动器,CentOS Linux* 7.6 内核 4.19.8。


虚拟 SQL
性能结果基于 2019 年 2 月 1 日的测试,并且可能无法反映所有公开的安全更新。
基准配置 (DRAM):2 个第二代智能英特尔® 至强® Platinum 8276,每个插槽 28 核。内存:768 GB(24 个频率为 2666 MHz 的 32 GB DDR4)。网络:英特尔® X520 SR2 (10 Gbps)。
存储:8 个三星* PM963M.2 960 GB,4 个英特尔® 固态盘 S3600 (1.92 TB)。BIOS:WW02’19。操作系统/虚拟机:Windows* Server 2019。WL 版本:OLTP 云基准(内部私有客户保密工作负载)。数据集/实例或工作负载大小:1.1 TB。安全缓解措施:启用变体 1、2、3。22 SQL 虚拟机实例的性能。
性能结果基于截至配置中所示日期的测试,可能并不反映所有公开发布的安全更新。没有任何产品或组件能够做到绝对安全。 性能因用途、配置和其他因素而异。请访问 www.Intel.cn/PerformanceIndex 了解更多信息。

截至 2020 年 6 月 8 日的英特尔® 傲腾™ 持久内存定价和 DRAM 定价。计算总体拥有成本时引入的定价仅供指导和规划,不构成最终报价。定价指导可能会发生变更,并可能根据市场变化情况上调或下调。请与原始设备制造商/经销商联系,了解实际价格。
英特尔® 技术可能需要支持的硬件、软件或服务激活。