跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的语言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以通过多种方式轻松搜索整个 Intel.com 站点。

  • 品牌: 酷睿 i9
  • 文件号: 123456
  • Code Name: Emerald Rapids
  • 特殊作符: “Ice Lake”, Ice AND Lake, Ice OR Lake, Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议本网站使用您正在使用的浏览器版本。
请考虑通过单击以下链接之一升级到最新版本的浏览器。

  • Safari
  • Chrome
  • Edge
  • Firefox

Why oneMKL? Accelerate Math Computation on the Latest Hardware

Why oneMKL? Accelerate Math Computation on the Latest Hardware

@IntelDevTools

Subscribe Now

Stay in the know on all things CODE. Updates are delivered to your inbox.

Sign Up

Overview

With 20 years of maturity under its belt, Intel® Math Kernel Library remains the fastest and most-used math library for Intel-based systems and continues to hold this distinction based on continual optimizations that result in best-in-class performance.

This session focuses on its most recent iteration: Intel® oneAPI Math Kernel Library (oneMKL), optimized for implementing fast math-processing routines targeting heterogeneous, multiarchitecture compute.

The session includes:

  • How to use oneMKL to take the best advantage of the latest built-in hardware acceleration engines such as Intel® Advanced Vector Extensions 512, Intel® Advanced Matrix Extensions, and the new bfloat16 data type commonly used for machine learning.
  • An illustration—with syntax specifics—of how function domains (Basic Linear Algebra Subprograms [BLAS], Linear Algebra Package [LAPACK], fast Fourier transform [FFT], Rnd, PARDISO) take advantage of the 4th gen Intel® Xeon® Scalable processor and Intel® Max Series product family.
  • How oneMKL supports the latest OpenMP* standard, expansion into SYCL*, and open-standards-based C++ cross-architectural compute framework.
  • Instruction and a demo of how to map CUDA* math library calls (for example, cuBLAS, cuFFT, and cuRAND libraries) to oneMKL

Skill level: Intermediate and expert

 

Featured Software

Download the stand-alone version of oneMKL or as part of the Intel® oneAPI Base Toolkit.

Code samples (GitHub*):

  • Fourier Correlation
  • cuBLAS Migration
  • Matrix Multiplication
  • All oneMKL Samples
  • [Bookmark] All oneAPI Code Samples

Jump to:

You May Also Like
 

Intel® oneAPI Math Kernel Library

Accelerate math processing routines and increase performance with advanced math routines and functions for science, engineering, or financial applications.

 

Get It Now

 

See All Tools

 

   

You May Also Like

Related Articles

Solve Linear Systems Using oneMKL and OpenMP Target Offloading

Accelerate Lower-Upper (LU) Factorization using Fortran, oneMKL, and OpenMP

Accelerate the 2D Fourier Correlation Algorithm

Related On-Demand Webinar

Speed Up Math Computations on GPUs with oneMKL

  • 公司信息
  • 英特尔资本
  • 企业责任部
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息 California Consumer Privacy Act (CCPA) Opt-Out Icon

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。请访问 intel.cn/performanceindex 了解更多信息。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志