跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的语言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以使用几种方式轻松搜索整个 Intel.com 网站。

  • 品牌名称: 酷睿 i9
  • 文件号: 123456
  • Code Name: Emerald Rapids
  • 特殊操作符: “Ice Lake”、Ice AND Lake、Ice OR Lake、Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议本网站使用您正在使用的浏览器版本。
请考虑通过单击以下链接之一升级到最新版本的浏览器。

  • Safari
  • Chrome
  • Edge
  • Firefox

Anomaly Detection

Summary

Learn how to use statistics and machine learning to detect anomalies in data. As a fundamental part of data science and AI theory, the study and application of how to identify abnormal data can be applied to supervised learning, data analytics, financial prediction, and many more industries. Understanding the theory and intuition behind these methods is an essential part of the modern developer's and researcher’s tools and knowledge base.

This course provides you with practical knowledge of the following skills:

  • The theory and methods used for anomaly detection from beginning to advanced levels
  • Derive depth-based and proximity-based detection models
  • Use many types of data from real-time streaming to high-dimensional abstractions
  • Implement these types of models using a collection of Python* labs

The course is structured around eight weeks of lectures and exercises. Each week requires approximately two hours to complete.

Prerequisites

Python programming

Calculus

Linear algebra

Statistics

Week 1

Get started with understanding why and how to detect anomalies in data. 

  • Define various types of anomalies
  • Discuss the applications of anomaly detection
  • Explain the statistics and mathematics required
Download
Week 2

Learn how to build upon probability theory and geometry to identify anomalies. 

  • Describe probabilistic models for anomaly detection
  • Apply extreme value analysis and angle-based techniques
  • Use Python to perform anomaly detection on one- and two-dimensional data
Download
Week 3

See how to use linear models instead of probabilistic and geometric models. 

  • Apply linear regression models and principal component analysis
  • Use support vectors machines (SVMs) for anomaly detection
Download
Week 4

Explore how to use additional methods based on distance to identify abnormal data. 

  • Describe proximity-based methods and the local outlier factor (LOF)
  • Apply the k-nearest neighbors (KNN) algorithm and k-means clustering
Download
Week 5

Learn how to work with difficult problems that involve high-dimensional data. 

  • Understand the difficulties with high-dimensional problems
  • Apply the subspace method with feature bagging and the isolation forest algorithm
Download
Week 6

Find out how to use supervised learning models and how to work with classifications. 

  • Implement cost-sensitive learning algorithms
  • Apply adaptive resampling and boosting methods
Download
Week 7

Explore how to classify temporal and streaming data. 

  • Implement statistical process control 
  • Apply streaming anomaly detection using autoregressive models
Download
Week 8

Measure the performance of an anomaly detection system. 

  • Evaluate different techniques and types of anomaly detection
  • Perform analysis on a wide variety of data detection
Download
  • 公司信息
  • 英特尔资本
  • 企业责任部
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息 California Consumer Privacy Act (CCPA) Opt-Out Icon

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。请访问 intel.cn/performanceindex 了解更多信息。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志