跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的语言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以使用几种方式轻松搜索整个 Intel.com 网站。

  • 品牌名称: 酷睿 i9
  • 文件号: 123456
  • Code Name: Emerald Rapids
  • 特殊操作符: “Ice Lake”、Ice AND Lake、Ice OR Lake、Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议本网站使用您正在使用的浏览器版本。
请考虑通过单击以下链接之一升级到最新版本的浏览器。

  • Safari
  • Chrome
  • Edge
  • Firefox

AI on the Edge with Computer Vision

Summary

This course provides a complete introduction on how to use the Intel® Neural Compute Stick 2 (Intel® NCS2) for low-power deep learning inference on edge devices. Topics covered include:

  • How to install the Intel® Distribution of OpenVINO™ toolkit and configure the Intel NCS2
  • The basics of deep learning vision applications and model topologies
  • How to create computer vision applications in Python* using Intel NCS2 devices

By the end of this course, students will have practical knowledge of how to use the Intel NCS2 to:

  • Analyze model performance with the included performance tools
  • Deploy pretrained networks and custom networks on the Intel NCS2
  • Deploy an object detection model on a Raspberry Pi* board

The course is structured around seven weeks of lectures and exercises. Each week requires up to three hours to complete. The code examples are implemented in Python, so familiarity with the language is encouraged (you can learn along the way).

Prerequisites

Python programming

Calculus

Linear algebra

Hardware Required

Intel NCS2

Raspberry Pi 3 Model B board or newer

Week 1

Get an introduction to the Intel NCS2. Topics include:

  • A comparison of the differences between traditional computer vision and deep learning
  • A review of the Intel® AI Portfolio including hardware and tools
  • An overview of edge inference with Intel® Movidius™ technology
  • An introduction to the Intel Distribution of OpenVINO toolkit
Download
Week 2

See how to install the Intel NCS2. Topics include:  

  • Installation steps for the Intel Distribution of OpenVINO toolkit
  • An overview of existing pretrained models and samples that work with the toolkit
Download
Week 3

Learn how to deploy an image classifier model on the Intel NCS2. Topics include:

  • Define an image classification model and explore a few popular image classification topologies
  • A deeper look into the Intel Distribution of OpenVINO toolkit and learn to create and deploy your first image classifier
Download
Week 4

Learn how to deploy an object detection model on the Intel NCS2. Topics include:

  • Define an object detection model and explore a few popular object detection topologies
  • Convert and deploy a pretrained YOLO* v3 model on the Intel NCS2 using the Intel Distribution of OpenVINO toolkit
Download
Week 5

See how to profile deep learning models using the Deep Learning Workbench. Topics include:

  • Understand the capabilities of the Deep Learning Workbench
  • Learn to install the Deep Learning Workbench directly on your system or using Docker* software
  • Profile your first deep learning model using the Deep Learning Workbench
Download
Week 6

Learn how to deploy custom models on the Intel NCS2 using the Intel Distribution of OpenVINO toolkit. Topics include:

  • Understand what a custom model is and when to use one
  • Go through the end-to-end training and inference workflow for a custom model on the Intel NCS2
  • Implement your first custom layer using the toolkit
Download
Week 7

Review how to deploy an object detection model on a Raspberry Pi board. Topics include:

  • Reasons to use a low-powered embedded board
  • Compare development and deployment modes of the Intel Distribution of OpenVINO toolkit
  • Install the toolkit on a Raspberry Pi board and run an object detection model
Download
  • 公司信息
  • 英特尔资本
  • 企业责任部
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息 California Consumer Privacy Act (CCPA) Opt-Out Icon

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。请访问 intel.cn/performanceindex 了解更多信息。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志