跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的语言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以使用几种方式轻松搜索整个 Intel.com 网站。

  • 品牌名称: 酷睿 i9
  • 文件号: 123456
  • Code Name: Emerald Rapids
  • 特殊操作符: “Ice Lake”、Ice AND Lake、Ice OR Lake、Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议本网站使用您正在使用的浏览器版本。
请考虑通过单击以下链接之一升级到最新版本的浏览器。

  • Safari
  • Chrome
  • Edge
  • Firefox

Essentials of SYCL*

Learn the fundamentals of this language designed for data parallel and heterogeneous computing through hands-on practice in this guided learning path.

Overview

SYCL* provides a consistent programming language across CPU, GPU, and AI accelerators in a heterogeneous framework where each architecture can be programmed and used either in isolation or together.

The language and API extensions in SYCL enable different development use cases, including development of new offload acceleration or heterogeneous compute applications, conversion of existing C or C++ code to code that's compatible with SYCL, and migrating from other accelerator languages or frameworks.

Use this learning path to get hands-on practice with the essentials of SYCL using a Jupyter* Notebook on Intel® Tiber™ AI Cloud.

Objectives

Who is this for?

Developers who want to learn the basics of SYCL for heterogeneous computing (CPU, GPU, and AI accelerators).

 

What will I be able to do?

Practice the essential concepts and features of SYCL with live sample code on Intel Tiber AI Cloud.

Start Learning SYCL

Get hands-on practice with code samples in a Jupyter Notebook running live on Intel Tiber AI Cloud.

Intel Tiber AI Cloud Sign Up Sign In

For People's Republic of China (PRC)-Based Developers

To get started:

  1. Sign in to Intel Tiber AI Cloud, select One Click Log In for JupyterLab, and then select Launch Server (if needed).
  2. Open the oneAPI_Essentials folder, and then select 00_Introduction_to_Jupyter to open the folder. 
  3. Select Introduction_to_Jupyter.ipynb.
  4. If you already have an Intel Tiber AI Cloud account, it may be necessary to update oneAPI_Essentials. To do this, scroll to the bottom of Introduction_to_Jupyter.ipynb and execute the last code cell.
  5. Refresh your browser.

Modules

Introduction to JupyterLab* and a Jupyter* Notebook

Use a Jupyter Notebook to modify and run code as part of learning exercises.

To begin, open Introduction_to_Jupyter.ipnyb.

Introduction to SYCL

  • Articulate how oneAPI can help to solve the challenges of programming in a heterogeneous world.
  • Use oneAPI solutions to enable your workflows.
  • Understand SYCL standards and features.
  • Become familiar with using Jupyter Notebooks for training throughout the course.

Program Structure

  • Articulate the SYCL fundamental classes.
  • Use device selection to offload kernel workloads.
  • Decide when to use basic parallel kernels and ND Range Kernels.
  • Create a host accessor.
  • Build a sample SYCL application through hands-on lab exercises.

Unified Shared Memory

  • Use new SYCL features like Unified Shared Memory (USM) to simplify programming.
  • Understand implicit and explicit ways of moving memory using USM.
  • Solve data dependency between kernel tasks in an optimal way.

Sub-Groups

  • Understand advantages of using Sub-groups in SYCL.
  • Take advantage of Sub-group collectives in ND-Range kernel implementation.
  • Use Sub-group Shuffle operations to avoid explicit memory operations.

Demonstration of Intel® Advisor

  • See how  Offload Advisor¹ identifies and ranks parallelization opportunities for offload.
  • Run Offload Advisor using command line syntax.
  • Use performance models and analyze generated reports.

¹Offload Advisor is a feature of Intel® Advisor installed as part of the Intel® oneAPI Base Toolkit (Base Kit).

Intel® VTune™ Profiler on Intel® Tiber™ AI Cloud

  • Profile a DPC++ application using Intel® VTune™ Profiler on Intel Tiber AI Cloud.
  • Understand the basics of command line options in Intel VTune Profiler to collect data and generate reports.

Introduction to oneDPL: A Set of oneDPC++ Libraries

  • Simplify SYCL programming using Intel® oneAPI DPC++ Library (oneDPL).
  • Use SYCL Library algorithms for heterogeneous computing.
  • Implement oneDPL algorithms using buffers and unified shared memory.

Reductions in SYCL

  • Understand how reductions can be performed with parallel kernels.
  • Take advantage of the reduce function to do reductions at the sub_group and work_group level.
  • Use the SYCL reduction extension to simplify reduction with parallel kernels.

Explore Buffers and Accessors in Depth

  • Explain Buffers and Accessors in depth.
  • Understand the Sub buffers and how to create and use Sub buffers
  • Explain buffers properties and when to use host_ptr, set_final_data, and set_write_data
  • Explain Accessors and the modes of accessor creation
  • Explain host accessors and the different use cases of host accessors

Migrate from CUDA* to C++ with SYCL

C++ and SYCL deliver a unified programming model, performance portability, and C++ alignment for applications using accelerators. Learn how to migrate your code to SYCL and see examples from other developers.

More Information

  • Overview
  • oneAPI Implementation of SYCL
  • Modules
  • 公司信息
  • 英特尔资本
  • 企业责任部
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息 California Consumer Privacy Act (CCPA) Opt-Out Icon

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。请访问 intel.cn/performanceindex 了解更多信息。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志