跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的地区

Asia Pacific

  • Asia Pacific (English)
  • Australia (English)
  • India (English)
  • Indonesia (Bahasa Indonesia)
  • Japan (日本語)
  • Korea (한국어)
  • Mainland China (简体中文)
  • Taiwan (繁體中文)
  • Thailand (ไทย)
  • Vietnam (Tiếng Việt)

Europe

  • France (Français)
  • Germany (Deutsch)
  • Ireland (English)
  • Italy (Italiano)
  • Poland (Polski)
  • Spain (Español)
  • Turkey (Türkçe)
  • United Kingdom (English)

Latin America

  • Argentina (Español)
  • Brazil (Português)
  • Chile (Español)
  • Colombia (Español)
  • Latin America (Español)
  • Mexico (Español)
  • Peru (Español)

Middle East/Africa

  • Israel (עברית)

North America

  • United States (English)
  • Canada (English)
  • Canada (Français)
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以使用几种方式轻松搜索整个 Intel.com 网站。

  • 品牌名称: 酷睿 i9
  • 文件号: 123456
  • 代号: Alder Lake
  • 特殊操作符: “Ice Lake”、Ice AND Lake、Ice OR Lake、Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议将您正在使用的浏览器版本用于此网站。
请考虑点击以下链接之一升级到该浏览器的最新版本。

  • Safari
  • Chrome
  • Edge
  • Firefox

AI Frameworks

Get performance gains ranging up to 10x to 100x for popular deep learning and machine learning frameworks through drop-in Intel® optimizations.

AI frameworks provide data scientists, AI developers, and researchers the building blocks to architect, train, validate, and deploy models, through a high-level programming interface. All major frameworks for deep learning and classical machine learning have been optimized by using oneAPI libraries that provide optimal performance across Intel® CPUs and XPUs. These Intel® software optimizations help deliver orders of magnitude performance gains over stock implementations of the same frameworks. As a framework user, you can reap all performance and productivity benefits through drop-in acceleration without the need to learn new APIs or low-level foundational libraries. 

 

AI Quick Start Guide  


Performance Gains

Deep Learning Frameworks

  

  

TensorFlow*

TensorFlow is used widely for production AI development and deployment. Its primary API is based on Python*, and it also offers APIs for a variety of languages such as C++, JavaScript*, and Java*. Intel collaborates with Google* to optimize TensorFlow for Intel processors. The newest optimizations and features are often released in Intel® Extension for TensorFlow* before they become available in open source TensorFlow.
 

Learn More


Get Started

  

PyTorch*

PyTorch is an AI and machine learning framework based on Python, and is popular for use in both research and production. Intel contributes optimizations to the PyTorch Foundation to accelerate PyTorch on Intel processors. The newest optimizations, as well as usability features, are first released in Intel® Extension for PyTorch* before they are incorporated into open source PyTorch. 

 

Learn More


Get Started

Apache MXNet*

This open source, deep learning framework is highly portable, lightweight, and designed to offer efficiency and flexibility through imperative and symbolic programming. MXNet* includes built-in support for Intel optimizations to achieve high performance on Intel® Xeon® Scalable processors.
 


Get Started

PaddlePaddle*

This open source, deep learning Python framework from Baidu* is known for user-friendly, scalable operations. Built using Intel® oneAPI Deep Neural Network Library (oneDNN), this popular framework provides fast performance on Intel Xeon Scalable processors and a large collection of tools to help AI developers.


Learn More


Get Started

Machine Learning Frameworks

  

  

scikit-learn*

scikit-learn* is one of the most widely used Python packages for data science and machine learning. Intel® Extension for Scikit-learn* provides a seamless way to speed up many scikit-learn algorithms on Intel CPUs and GPUs, both single- and multi-node.

 

Learn More


Get Started

XGBoost

XGBoost is an open source, gradient boosting, machine learning library that performs well across a variety of data and problem types. Intel contributes software accelerations powered by oneAPI directly to open source XGBoost, without requiring any code changes..

 

Learn More


Get Started

Explore Our Comprehensive Portfolio of End-to-End AI Tools

Get Access to Our Development Sandbox to Test and Run Workloads

Browse Our Production-Quality AI Containers and Solutions Catalog

显示更多 显示较少
  • Deep Learning Frameworks
  • Machine Learning Frameworks
  • 公司信息
  • 英特尔资本
  • 企业责任
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志