跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的语言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以使用几种方式轻松搜索整个 Intel.com 网站。

  • 品牌名称: 酷睿 i9
  • 文件号: 123456
  • Code Name: Emerald Rapids
  • 特殊操作符: “Ice Lake”、Ice AND Lake、Ice OR Lake、Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议本网站使用您正在使用的浏览器版本。
请考虑通过单击以下链接之一升级到最新版本的浏览器。

  • Safari
  • Chrome
  • Edge
  • Firefox

Use Low-Precision Optimizations for High-Performance Deep Learning Inference Applications

Use Low-Precision Optimizations for High-Performance Deep Learning Inference Applications

@IntelDevTools

Subscribe Now

Stay in the know on all things CODE. Updates are delivered to your inbox.

Sign Up

Overview

With advances in hardware acceleration and support for low-precision, deep learning inference delivers higher throughput and lower latency. However, data scientists and AI developers often need to make a trade-off between accuracy and performance. There are also the deployment challenges due to high computational complexity of inference quantization. This webinar talks about the techniques and strategies, such as automatic accuracy-driven tuning for post-training quantization and quantization-aware training, to overcome these challenges.

Join us to learn about Intel’s new low-precision optimization tool and how it helped CERN openlab to reduce inference time while maintaining the same level of accuracy on convolutional Generative Adversarial Networks (GAN). The webinar gives insight about how to handle strict precision constraints that are inevitable while applying low-precision computing to generative models.

 

Sofia Vallecorsa
AI and quantum researcher, CERN openlab

Sofia is an accomplished physicist who specializes in scientific computing with commanding expertise in machine learning and deep learning architectures, frameworks, and methods for distributed training and hyper-parameters optimization. Joining CERN in 2015, she is responsible for several projects in machine learning and deep learning, quantum computing and quantum machine learning, and also supervises master and doctoral thesis students in these fields. Sofia holds a PhD in high-energy physics from University of Geneva.

 

Feng Tian
Senior deep learning engineer in the Machine Learning Performance team with Intel® architecture, Graphic, and Software (IAGS) group, Intel Corporation

Feng leads development of the Intel® Low Precision Optimization Tool and contributes on Intel®-optimized deep learning frameworks, such as TensorFlow* and PyTorch*. He has 14 years of experience working on software optimization and low-level driver development on Intel architecture platforms.

Jump to:

You May Also Like
 

AI Tools

Accelerate data science and AI pipelines-from preprocessing through machine learning-and provide interoperability for efficient model development.

 

Get It Now

 

See All Tools

 

   

You May Also Like

Related Webinar

AI Analytics Part 1: Optimize End-to-End Data Science and Machine Learning Acceleration

  • 公司信息
  • 英特尔资本
  • 企业责任部
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息 California Consumer Privacy Act (CCPA) Opt-Out Icon

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。请访问 intel.cn/performanceindex 了解更多信息。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志