跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的语言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以通过多种方式轻松搜索整个 Intel.com 站点。

  • 品牌: 酷睿 i9
  • 文件号: 123456
  • Code Name: Emerald Rapids
  • 特殊作符: “Ice Lake”, Ice AND Lake, Ice OR Lake, Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议本网站使用您正在使用的浏览器版本。
请考虑通过单击以下链接之一升级到最新版本的浏览器。

  • Safari
  • Chrome
  • Edge
  • Firefox

Optimize Distributed Training and Inference for Intel® Data Center GPUs

@IntelDevTools

Subscribe Now

Stay in the know on all things CODE. Updates are delivered to your inbox.

Sign Up

Overview

The complexity of deep learning models is surging, which warrants enhanced training and inference in distributed compute environments. This session focuses on the essential techniques to use with Intel® Data Center GPUs to balance distributed AI workloads and meet data center challenges to improve advances in efficiency and performance.

Explore Intel® Extension for PyTorch*, which optimizes neural network operations on Intel® hardware, and learn how DeepSpeed* can be integrated to perform training operations at scale.

Included topics:

  • Tackle model scalability in a distributed environment skillfully, handling workloads efficiently across Intel Data Center GPUs.
  • Gain familiarity with essential Intel tools to simplify operations, including PyTorch Distributed Data Parallel (DDP), Intel® oneAPI Collective Communications Library (oneCCL), and the DeepSpeed library that streamlines network training at scale.
  • Deploy practical solutions that maximize hardware efficiency and perfect strategies that ensure top performance for AI development.
  • Sample code and see benchmarking milestones, using tools such as Intel Extension for PyTorch large language models (LLM) to illustrate performance achievements.

Skill level: Any

 

Featured Software

  • oneCCL
  • Intel Extension for PyTorch (GitHub*) or from the AI Frameworks and Tools Selector
  • Intel® Extension for DeepSpeed*

Jump to:


You May Also Like
 

   

You May Also Like

Related Articles

Intel® Gaudi® 2 AI Processor for Deep Learning Gets Even Better

PyTorch Optimizations from Intel

Trusted AI in Intel® Tiber™ Developer Cloud

Related Videos

Prototype and Deploy LLM Applications on Intel® NPUs

Intel® Extension for PyTorch*: New Features on CPUs and GPUs

  • 公司信息
  • 英特尔资本
  • 企业责任部
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息 California Consumer Privacy Act (CCPA) Opt-Out Icon

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。请访问 intel.cn/performanceindex 了解更多信息。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志