跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的语言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以使用几种方式轻松搜索整个 Intel.com 网站。

  • 品牌名称: 酷睿 i9
  • 文件号: 123456
  • Code Name: Emerald Rapids
  • 特殊操作符: “Ice Lake”、Ice AND Lake、Ice OR Lake、Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议本网站使用您正在使用的浏览器版本。
请考虑通过单击以下链接之一升级到最新版本的浏览器。

  • Safari
  • Chrome
  • Edge
  • Firefox

Introducing a New Tool for Neural Network Profiling & Inference Experiments

@IntelDevTools


Subscribe Now

Stay in the know on all things CODE. Updates are delivered to your inbox.

Sign Up

Overview

If you use the Intel® Distribution of OpenVINO™ toolkit (even if you don’t yet), the latest release introduces a new profiler tool to more easily run and optimize deep learning models.

Deep Learning Workbench is a production-ready tool that enables developers to visualize key performance metrics such as latency, throughput, and performance counters for neural network topologies and their layers. It also streamlines configuration for inference experiments including int8 calibration, accuracy check, and automatic detection of optimal performance settings.

Join senior software engineer Shubha Ramani for an overview and demonstration of Deep Learning Workbench, where she covers:

  • How to download, install, and get started with the tool
  • Its new features, including model analysis, int8 and Winograd optimizations, accuracy, and benchmark data
  • How to run experiments with key parameters such as batch size, parallel streams, and more to determine the most optimal configuration for your application.

 

Get the Software

Download the latest version of the Intel® Distribution of OpenVINO™ toolkit.

 

Shubha Ramani
Senior software engineer, Intel Corporation

Shubha's specialties span all facets of deep learning and AI. In her current role, she focuses on the Intel Distribution of OpenVINO toolkit, including helping customers use its full capabilities and build complex deep learning prototypes. Additionally, she helps customers embrace world-class automotive driving SDKs and tools from Intel, and develops complex, real-world C++ samples using the Autonomous Driving Library for inclusion in automated driving solutions.

Shubha holds an master of science in electrical engineering degree in embedded systems software from the University of Colorado at Boulder, and a bachelor of science in electrical engineering degree from Texas A&M University in College Station.

 

Intel® Distribution of OpenVINO™ Toolkit

Optimize models trained using popular frameworks like TensorFlow*, PyTorch*, and Caffe*, and deploy across a mix of Intel® hardware and environments.

 

Get It Now

 

See All Tools

 

  • 公司信息
  • 英特尔资本
  • 企业责任部
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息 California Consumer Privacy Act (CCPA) Opt-Out Icon

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。请访问 intel.cn/performanceindex 了解更多信息。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志