跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的语言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以通过多种方式轻松搜索整个 Intel.com 站点。

  • 品牌: 酷睿 i9
  • 文件号: 123456
  • Code Name: Emerald Rapids
  • 特殊作符: “Ice Lake”, Ice AND Lake, Ice OR Lake, Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议本网站使用您正在使用的浏览器版本。
请考虑通过单击以下链接之一升级到最新版本的浏览器。

  • Safari
  • Chrome
  • Edge
  • Firefox

Intel® Extension for PyTorch*: New Features on CPUs and GPUs

Intel® Extension for PyTorch*: New Features on CPUs and GPUs

@IntelDevTools

Subscribe Now

Stay in the know on all things CODE. Updates are delivered to your inbox.

Sign Up

Overview

Intel® Extension for PyTorch* is a plug-in to PyTorch that provides further optimizations and features when run on Intel hardware, including CPUs and GPUs. Few code changes are needed to take full advantage of the available optimizations.

This session focuses on new and experimental features of Intel’s latest PyTorch extension, especially those supported in PyTorch 2.0 (released March 2023), which optimize models and runtime and further enable developers to take full advantage of Intel hardware capabilities.

Key topics covered:

  • New features that provide additional optimizations using the extension’s back end for torch.compile(), codeless optimization, and fast BERT
  • Graph capture to automatically generate a graph model from TorchScript trace and TorchDynamo
  • HyperTune for quantizing models that have high accuracy loss when quantized using other methods
  • New features in the extension’s launch script, including specifying numa nodes, use of P-cores only, and distributed training options
  • For GPUs, distributed training using distributed data parallel (DDP) and Horovod*

The session includes a demo.

Skill level: Intermediate

 

Featured Software

Get the stand-alone version of Intel Extension of PyTorch from GitHub* or as part of the AI Frameworks and Tools.

 

Download Code Samples

  • Get Started with Intel Extension for PyTorch
  • Optimize PyTorch Models: Quantization Sample
  • See All Code Samples

Jump to:


You May Also Like
 

   

You May Also Like

Related Articles & Blogs

Accelerated Image Segmentation Using PyTorch

Optimize PyTorch & TensorFlow* Models: Two On-Demand Trainings

Three Ways to Accelerate PyTorch Geometric on Intel CPUs

How to Build a Language Identification Solution Using PyTorch

Related Video & On-Demand Webinars

PyTorch 2.0: A Technical Exploration of What’s New and Its Deep Learning Compiler (June 28 Session)

Optimize PyTorch Performance on the Latest Intel CPUs and GPUs

  • 公司信息
  • 英特尔资本
  • 企业责任部
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息 California Consumer Privacy Act (CCPA) Opt-Out Icon

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。请访问 intel.cn/performanceindex 了解更多信息。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志