跳转至主要内容
英特尔标志 - 返回主页
我的工具

选择您的语言

  • Bahasa Indonesia
  • Deutsch
  • English
  • Español
  • Français
  • Português
  • Tiếng Việt
  • ไทย
  • 한국어
  • 日本語
  • 简体中文
  • 繁體中文
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以使用几种方式轻松搜索整个 Intel.com 网站。

  • 品牌名称: 酷睿 i9
  • 文件号: 123456
  • Code Name: Emerald Rapids
  • 特殊操作符: “Ice Lake”、Ice AND Lake、Ice OR Lake、Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议本网站使用您正在使用的浏览器版本。
请考虑通过单击以下链接之一升级到最新版本的浏览器。

  • Safari
  • Chrome
  • Edge
  • Firefox

Intel® oneAPI Math Kernel Library (oneMKL) Essentials

Learn how to create performant applications and speed up computations with low-level math routines using the oneAPI programming model.

Overview

The Intel® oneAPI Math Kernel Library enhances math routines such as vector and matrix operations from Basic Linear Algebra Subprograms (BLAS) and the Linear Algebra Package (LAPACK), fast Fourier transforms (FFT) and random number generator (RNG) functions. This toolkit extends heterogeneous computing functionality via the SYCL* and OpenMP* offload interfaces.

Use this learning path to get hands-on practice with Intel® oneMKL using a Jupyter* Notebook.

Objectives

Who is this for?

Developers who want to learn the basics of oneMKL for heterogeneous computing via SYCL and OpenMP offload interfaces.

 

What will I be able to do?

Practice the essential concepts and features of oneMKL.

Prerequisites

oneMKL simplifies the use of the oneAPI programming model and handles much of the work for you. To maximize your learning, complete these prerequisites:

Essentials of SYCL: Complete the first three modules.

  • Introduction to SYCL
  • SYCL Program Structure
  • SYCL Unified Shared Memory

OpenMP Offload Basics: Complete all the modules.

Modules

Introduction to JupyterLab and Jupyter* Notebook

Use a Jupyter Notebook to modify, compile, and run code as part of the learning exercises.

Note If you are already familiar with Jupyter Notebooks, you may skip this module.

To begin, open Introduction_to_Jupyter.ipnyb.

GEMM: Use SYCL and Buffer Model

  • Implement a GEMM matrix multiplication application with the buffer and accessor style of memory management.
  • Successfully compile and run the GEMM application using SYCL.

GEMM: Use SYCL* Unified Shared Memory (USM)

  • Set up the DPC++ components necessary to run the oneMKL GEMM operation using a unified shared memory model with implicit memory management.
  • Successfully compile and run the GEMM application using SYCL.

GEMM: Use OpenMP* Offload

  • Implement a oneMKL GEMM application using OpenMP Offload.
  • Learn the compiler directives needed to manage memory, dispatch oneMKL functions, and then select the offload devices using OpenMP for the GEMM operation.
  • Compile and run the GEMM application using the Intel® compiler with OpenMP Offload support, and then verify the results of the offloaded task.

Get Help

Your success is our success. Access the forum resources when you need assistance with the Intel oneAPI Math Kernel Library.

  • Intel oneAPI Math Kernel Library Forum
  • General oneAPI Support
  • Overview
  • Prerequisites
  • Modules
  • Help
  • 公司信息
  • 英特尔资本
  • 企业责任部
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息 California Consumer Privacy Act (CCPA) Opt-Out Icon

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。请访问 intel.cn/performanceindex 了解更多信息。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志