Philips Healthcare Accelerates Algorithms for MRI

Intel® Distribution of OpenVINO™ Toolkit accelerates compressed sensing image reconstruction algorithms.

Executive Overview
Compressed sensing (CS) is a signal processing technique that enables faster scan times in medical imaging. Philips Healthcare integrated CS methods into their magnetic resonance imaging (MR) scanners to reduce scan time by up to 50 percent for 2D and 3D sequences, compared to Philips scans without Compressed SENSE, with virtually equal image quality. Recently, deep learning methods have been explored for reconstructing MRI images, showing good results in terms of image quality and speed of reconstruction. Philips Healthcare and Intel report on two hybrid frequency-domain/image-domain encoder/decoder architectures that produce excellent results in MRI reconstruction.

We show how these two neural networks can be accelerated on Intel® hardware through use of the Intel® Distribution of OpenVINO™ Toolkit. The toolkit allows Philips Healthcare to speed up their deep learning inference by as much as 54x over standard, unoptimized TensorFlow 1.15, as tested in Philips’ proprietary Linux environment on Intel® Xeon® processors.1 We further describe how to leverage the Intel® DevCloud for the Edge, which allowed Philips Healthcare to compare performance of their deep learning models on Intel® Xeon® and Intel® Core™ processors, Intel® Movidius™ Vision Processing Units (VPUs), FPGAs, and integrated GPU hardware in order to design deep learning products of various performance, price, power, and form factors.

Read the white paper: Philips Healthcare Uses the Intel® Distribution of OpenVINO™ Toolkit and the Intel® DevCloud for the Edge to Accelerate Compressed Sensing Image Reconstruction Algorithms for MRI.


Intel® Xeon® Scalable Processors

Drive actionable insight, count on hardware-based security, and deploy dynamic service delivery with Intel® Xeon® Scalable processors.

Learn more

OpenVINO™ Toolkit

Build end-to-end computer vision solutions quickly and consistently on Intel® architecture and our deep learning framework.

Learn more

Intel® DevCloud

Develop, test, and run your workloads for free on a cluster of the latest Intel® hardware and software.

Learn more


英特尔® 技术的特性和优势取决于系统配置,并可能需要支持的硬件、软件或服务激活。实际性能可能因系统配置的不同而有所差异。没有任何计算机系统能够保证绝对安全。请咨询您的系统制造商或零售商,也可登录 获取更多信息。// 性能测试中使用的软件和工作负载仅在英特尔® 微处理器上针对性能进行了优化。SYSmark 和 MobileMark 等性能测试使用特定的计算机系统、组件、软件、操作和功能进行测量。上述任何要素的变动都有可能导致测试结果的变化。您应该查询其他信息和性能测试,以帮助您对正在考虑购买的产品作出全面的评估,包括该产品在与其他产品结合使用时的性能表现。如欲了解更多完整信息,请访问。// 性能结果基于配置中所规定日期的测试,可能无法反映所有公开的安全更新。有关详细信息,请参见配置信息披露。没有任何产品或组件能保证绝对安全。// 所描述的成本降低方案仅用作示例,表明某些基于英特尔® 的产品在特定环境和配置下会如何影响未来的成本,并节约成本。环境各不相同。英特尔不保证任何成本和成本的节约。// 英特尔并不控制或审核本文档引用的第三方基准资料或网站。您应访问引用的网站,确认参考资料准确无误。// 在某些测试案例中,结果以英特尔内部分析或架构模拟或建模为基础来评测或模拟,且仅供参考。您的系统硬件、软件或配置的任何不同均可能会影响实际性能。


1See backup for configuration details. For more complete information about performance and benchmark results, visit Refer to for more information regarding performance and optimization choices in Intel software products.