跳转至主要内容
英特尔标志 - 返回主页

登录

缺少用户名
缺少密码

您登录即表明您同意我们的服务条款。

忘记了您的英特尔用户名 或密码?

常见问题解答

您是否在英特尔工作? 在此登录.

没有英特尔帐户? 在此注册 基本帐户。

我的工具

选择您的地区

Asia Pacific

  • Asia Pacific (English)
  • Australia (English)
  • India (English)
  • Indonesia (Bahasa Indonesia)
  • Japan (日本語)
  • Korea (한국어)
  • Mainland China (简体中文)
  • Taiwan (繁體中文)
  • Thailand (ไทย)
  • Vietnam (Tiếng Việt)

Europe

  • France (Français)
  • Germany (Deutsch)
  • Ireland (English)
  • Italy (Italiano)
  • Poland (Polski)
  • Spain (Español)
  • Turkey (Türkçe)
  • United Kingdom (English)

Latin America

  • Argentina (Español)
  • Brazil (Português)
  • Chile (Español)
  • Colombia (Español)
  • Latin America (Español)
  • Mexico (Español)
  • Peru (Español)

Middle East/Africa

  • Israel (עברית)

North America

  • United States (English)
  • Canada (English)
  • Canada (Français)
登录 以访问受限制的内容

使用 Intel.com 搜索

您可以使用几种方式轻松搜索整个 Intel.com 网站。

  • 品牌名称: 酷睿 i9
  • 文件号: 123456
  • 代号: Alder Lake
  • 特殊操作符: “Ice Lake”、Ice AND Lake、Ice OR Lake、Ice*

快速链接

您也可以尝试使用以下快速链接查看最受欢迎搜索的结果。

  • 产品信息
  • 支持
  • 驱动程序和软件

最近搜索

登录 以访问受限制的内容

高级搜索

仅搜索

Sign in to access restricted content.

不建议将您正在使用的浏览器版本用于此网站。
请考虑点击以下链接之一升级到该浏览器的最新版本。

  • Safari
  • Chrome
  • Edge
  • Firefox

An important early step to data readiness is to establish the business use case it is intended to serve and align your infrastructure to help deliver this.

But how do enterprises achieve this goal without draining time and resources away from wider business functions?

Even within one organization, there will be multiple stakeholders with different ideas about how machine learning and deep learning can help their organization improve its market position.

Businesses Readying Their Data for AI Are Often Looking to:

1. Manage market disruption; 2. Enhance the customer experience; 3. Boost business efficiency; 4. Improve business insights

Upto

59%

of executives say big data at their company would be improved through the use of AI

Upto

59%

of executives say big data at their company would be improved through the use of AI

  • Case Study - Boosting the retail customer experience with data
  • Case Study - Meeting growing demands for food production

Boosting the Retail Customer Experience With Data

Retailers faced with industry disruption are drawing on as much of their data as possible to generate new business insights with machine learning.

Many retailers have focused their data readiness efforts on removing traditional barriers to data access, giving predictive models free reign to generate a wealth of actionable insight. This means customers can be segmented and more accurately targeted, creating tailored shopping experiences and improving customer satisfaction.

This organized data can also be used to better predict customer behavior, allowing for marketing and inventory choices that help retail locations meet demand and present the best possible products at the right times. AI can also track and process data from customer interactions via online portals to develop a better e-commerce strategy.

Read the full case study

Meeting Growing Demands for Food Production

Farmers are gathering new data to help them plan for the planet’s future food challenges. According to the United Nations, population growth means food production will need to increase by 50 percent by the middle of the century.

NatureFresh Farms grows vegetables on 185 acres of land in the United States and uses AI to mine previously untapped data sources. Robotic lenses to examine the flower of tomato seedlings and use this data to predict how long it will take for the blossom to become a ripe tomato ready for picking, packing and the produce section of a grocery store or supermarket.

This approach to farming requires considerable processing power, which is why NatureFresh Farms uses Intel® Xeon® processors to power its AI algorithms.

Read the full case study

Intel® Xeon® Scalable Processors: Your Data Foundation

From data ingestion and preparation to model tuning, Intel® Xeon® Scalable processors act as a flexible platform for all the analytics and AI requirements in the enterprise data center.

Able to handle scale-up applications with the largest in-memory requirements to the most massive data sets distributed across a myriad of clustered systems, they serve as an agile foundation for organizations ready to begin their AI journeys.

Take your next steps towards AI readiness with Intel® technologies.

  • Download the white paper

Or... Keep exploring AI data readiness:

  • You’re not AI-Ready Until Your Data Is
  • One Size Rarely Fits All in AI

References

  • https://www.pwc.lu/en/digital-services/docs/pwc-ai-predictions-2018-report.pdf
  • https://www.intel.com/content/www/us/en/big-data/article/agriculture-harvests-big-data.html

social icon twitter
@intelai
social icon twitter rounded
@intelairesearch
facebbok icon
@intelai
linkedin icon
intel-ai
github icon
intelai
Web icon
Intel Newsroom
Web icon
Intel® AI Builders
Calendar icon
intel ai events
  • 公司信息
  • 英特尔资本
  • 企业责任
  • 投资者关系
  • 联系我们
  • 新闻发布室
  • 网站地图
  • 招贤纳士 (英文)
  • © 英特尔公司
  • 沪 ICP 备 18006294 号-1
  • 使用条款
  • *商标
  • Cookie
  • 隐私条款
  • 请勿分享我的个人信息

英特尔技术可能需要支持的硬件、软件或服务激活。// 没有任何产品或组件能够做到绝对安全。// 您的成本和结果可能会有所不同。// 性能因用途、配置和其他因素而异。// 请参阅我们的完整法律声明和免责声明。// 英特尔致力于尊重人权,并避免成为侵犯人权行为的同谋。请参阅英特尔的《全球人权原则》。英特尔产品和软件仅可用于不会导致或有助于任何国际公认的侵犯人权行为的应用。

英特尔页脚标志