
 Draft for Review

Intel® Platform Innovation Framework
for EFI

Pre-EFI Initialization
Core Interface Specification (PEI CIS)

A Foundation Specification

Draft for Review

Version 0.91

November 11, 2004

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

ii November 2004 Version 0.91

Information in this document is provided in connection with Intel. products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions
of Sale for such products, Intel assumes no liability whatsoever, and INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life
saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without
notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document as well as the software described in it is furnished under license and may only be used or copied in
accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Intel Corporation to update or revise the
information or document. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may
appear in this document or any software that may be provided in association with this document.

This document provides website addresses for certain third party websites. The referenced sites are not under the control of
Intel and Intel is not responsible for the content of any referenced site or any link contained in a referenced site. Intel does
not endorse companies or products for sites which it references. If you decide to access any of the third party sites
referenced in this document, you do this entirely at your own risk.

*Other names and brands may be claimed as the property of others.

Intel, the Intel logo, Itanium and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

Copyright ©2002-2005 Intel Corporation. All Rights Reserved.

 Draft for Review

Version 0.91 November 2004 iii

Revision History

Revision Revision History Date

0.9 First public release. 9/16/03

 Added "A Foundation Specification" line to the title page. No other
changes, so the revision number and date were not changed.

6/30/04

0.91 - Update revision, viz.,
#define
PEI_SPECIFICATION_MINOR_REVISION 91

- Add TE Image specification chapter.

- Remove Memory allocation type from the allocate page service.

- Add CPU and PCI IO PPI services into the PEI services table.
- Change the GUID’s of the CPU and PCI IO PPI services.
- Add language about how Status Code, Reset, CPU I/O, and PCI
I/O are installed into the service table by the PEI Modules.
- Clarify that the PEI service table is in either temporary memory or
permanent memory, not ROM. This allows for above-listed
platform-installed PPI’s.

11/11/04

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

iv November 2004 Version 0.91

 Draft for Review

Version 0.91 November 2004 v

Contents

1 Introduction .. 13
Overview ... 13
Organization of the PEI CIS .. 13
Conventions Used in This Document.. 14

Data Structure Descriptions ... 14
Procedure Descriptions.. 15
Instruction Descriptions.. 15
PPI Descriptions... 16
Pseudo-Code Conventions .. 16
Typographic Conventions... 17

2 Overview ... 19
Introduction ... 19
Design Goals... 20
Pre-EFI Initialization (PEI) Phase.. 20
PEI Services.. 22
PEI Foundation ... 23
PEI Dispatcher .. 23
Pre-EFI Initialization Modules (PEIMs) ... 23
PEIM-to-PEIM Interfaces (PPIs) ... 24
Firmware Volumes .. 24

3 PEI Services Table ... 25
Introduction ... 25
EFI Table Header.. 26

EFI_TABLE_HEADER ... 26
PEI Services Table.. 27

EFI_PEI_SERVICES.. 27

4 Services - PEI.. 33
Introduction ... 33
PPI Services.. 34

PPI Services... 34
InstallPpi() .. 35
ReinstallPpi() .. 36
LocatePpi() ... 37
NotifyPpi() .. 39
Boot Mode Services ... 40
GetBootMode()... 41
SetBootMode() ... 43
HOB Services... 44
GetHobList() ... 45
CreateHob().. 46
Firmware Volume Services .. 48

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

vi November 2004 Version 0.91

FfsFindNextVolume() ... 49
FfsFindNextFile().. 50
FfsFindSectionData() ... 52
PEI Memory Services... 53
InstallPeiMemory() ... 54
AllocatePages() .. 55
AllocatePool() ... 57
CopyMem()... 58
SetMem() ... 59
Status Code Service... 60
ReportStatusCode() ... 61
Reset Services ... 65
ResetSystem().. 66
I/O and PCI Services.. 66

5 PEI Foundation ... 67
Introduction ... 67

Prerequisites .. 67
Processor Execution Mode .. 68

Processor Execution Mode in IA-32 Intel® Architecture 68
Processor Execution Mode in Itanium® Processor Family 68
Access to the Boot Firmware Volume ... 68
Access to the Boot Firmware Volume in IA-32 Intel® Architecture 69
Access to the Boot Firmware Volume in Itanium® Processor Family 69

PEI Foundation Entry Point... 70
PEI Foundation Entry Point .. 70

6 PEI Dispatcher .. 73
Introduction ... 73
Ordering .. 73

Requirements ... 73
Requirement Representation and Notation .. 73
PEIM Dependency Expressions... 74
Types of Dependencies.. 74

Dependency Expressions ... 74
Introduction .. 74

Dependency Expression Instruction Set.. 75
PUSH... 77
AND... 78
OR ... 79
NOT... 80
TRUE... 81
FALSE ... 82
END... 83

Dependency Expression with No Dependencies ... 84
Empty Dependency Expressions ... 84
Dependency Expression Reverse Polish Notation (RPN).. 84

Dispatch Algorithm.. 85

 Draft for Review Contents

Version 0.91 November 2004 vii

Overview .. 85
Ordering Algorithm .. 85
Multiple Firmware Volume Support ... 85
Recovery Dispatching.. 85

Requirements ... 86
Requirements of a Dispatching Algorithm ... 86
Preserving Weak Ordering .. 86
Preventing Infinite Loops ... 86
Controlling Processor Register Resources.. 86
Preserving Proper Dispatch Order .. 86
Using Available Memory.. 86
Invoking the PEIM's Entry Point .. 87
Knowing When Dispatcher Tasks Are Finished .. 88

Example Dispatch Algorithm .. 88
Dispatching When Memory Exists.. 89

7 PEIMs... 91
Introduction ... 91
PEIM Structure.. 92

PEIM Structure Overview... 92
Relocation Information ... 93

Position-Dependent Code ... 93
Position-Independent Code ... 93
Relocation Information Format .. 93

Authentication Information.. 93
PEIM Invocation Entry Point ... 95

EFI_PEIM_ENTRY_POINT.. 95
PEIM Descriptors .. 97

PEIM Descriptors Overview ... 97
EFI_PEI_DESCRIPTOR .. 98
EFI_PEI_NOTIFY_DESCRIPTOR ... 99
EFI_PEI_PPI_DESCRIPTOR... 101

PEIM-to-PEIM Communication ... 103
Overview .. 103
Dynamic PPI Discovery.. 103

PPI Database .. 103
Invoking a PPI ... 103
Address Resolution ... 103

8 Architectural PPIs .. 105
Introduction ... 105
Required Architectural PPIs .. 106

Master Boot Mode PPI (Required) ... 106
EFI_PEI_MASTER_BOOT_MODE_PPI (Required) 106

DXE IPL PPI (Required)... 107
EFI_DXE_IPL_PPI (Required) .. 107
EFI_DXE_IPL_PPI.Entry()... 108

Memory Discovered PPI (Required)... 109

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

viii November 2004 Version 0.91

EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI (Required) 109
Optional Architectural PPIs ... 110

Boot in Recovery Mode PPI (Optional) .. 110
EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI (Optional) 110

Section Extraction PPI (Optional)... 111
EFI_PEI_SECTION_EXTRACTION_PPI (Optional) 111
EFI_PEI_SECTION_EXTRACTION_PPI.GetSection() 112

End of PEI Phase PPI (Optional) ... 116
EFI_PEI_END_OF_PEI_PHASE_PPI (Optional) .. 116

Find FV PPI (Optional) ... 117
EFI_PEI_FIND_FV_PPI (Optional).. 117
EFI_PEI_FIND_FV_PPI.FindFv() .. 118

Load File PPI (Optional) ... 120
EFI_PEI_FV_FILE_LOADER_PPI (Optional).. 120
EFI_PEI_FV_FILE_LOADER_PPI.FvLoadFile() ... 121

PEI Reset PPI .. 123
EFI_PEI_RESET_PPI (Optional)... 123

Status Code PPI (Optional) .. 124
EFI_PEI_PROGRESS_CODE_PPI (Optional).. 124

Security PPI (Optional)... 125
EFI_PEI_SECURITY_PPI (Optional) .. 125
EFI_PEI_SECURITY_PPI.AuthenticationState()... 126

9 Additional PPIs ... 129
Introduction ... 129
Required Additional PPIs .. 130

CPU I/O PPI (Required) ... 130
EFI_PEI_CPU_IO_PPI (Required) .. 130
EFI_PEI_CPU_IO_PPI.Mem()... 133
EFI_PEI_CPU_IO_PPI.Io().. 135
EFI_PEI_CPU_IO_PPI.IoRead8() ... 136
EFI_PEI_CPU_IO_PPI.IoRead16() ... 137
EFI_PEI_CPU_IO_PPI.IoRead16() ... 137
EFI_PEI_CPU_IO_PPI.IoRead32() ... 138
EFI_PEI_CPU_IO_PPI.IoRead64() ... 139
EFI_PEI_CPU_IO_PPI.IoRead64() ... 139
EFI_PEI_CPU_IO_PPI.IoWrite8() ... 140
EFI_PEI_CPU_IO_PPI.IoWrite16() ... 141
EFI_PEI_CPU_IO_PPI.IoWrite16() ... 141
EFI_PEI_CPU_IO_PPI.IoWrite32() ... 142
EFI_PEI_CPU_IO_PPI.IoWrite64() ... 143
EFI_PEI_CPU_IO_PPI.IoWrite64() ... 143
EFI_PEI_CPU_IO_PPI.MemRead8() .. 144
EFI_PEI_CPU_IO_PPI.MemRead8() .. 144
EFI_PEI_CPU_IO_PPI.MemRead16() .. 145
EFI_PEI_CPU_IO_PPI.MemRead16() .. 145
EFI_PEI_CPU_IO_PPI.MemRead32() .. 146
EFI_PEI_CPU_IO_PPI.MemRead32() .. 146

 Draft for Review Contents

Version 0.91 November 2004 ix

EFI_PEI_CPU_IO_PPI.MemRead64() .. 147
EFI_PEI_CPU_IO_PPI.MemRead64() .. 147
EFI_PEI_CPU_IO_PPI.MemWrite8() .. 148
EFI_PEI_CPU_IO_PPI.MemWrite8() .. 148
EFI_PEI_CPU_IO_PPI.MemWrite16() .. 149
EFI_PEI_CPU_IO_PPI.MemWrite16() .. 149
EFI_PEI_CPU_IO_PPI.MemWrite32() .. 150
EFI_PEI_CPU_IO_PPI.MemWrite64() .. 151
EFI_PEI_CPU_IO_PPI.MemWrite64() .. 151

PCI Configuration PPI (Required) .. 152
EFI_PEI_PCI_CFG_PPI (Required).. 152
EFI_PEI_PCI_CFG_PPI.Read().. 153
EFI_PEI_PCI_CFG_PPI.Write() .. 156
EFI_PEI_PCI_CFG_PPI.Modify().. 157

Stall PPI (Required).. 158
EFI_PEI_STALL_PPI (Required) .. 158
EFI_PEI_STALL_PPI.Stall() .. 159

Variable Services PPI (Required)... 160
EFI_PEI_READ_ONLY_VARIABLE_PPI (Required) 160
EFI_PEI_READ_ONLY_VARIABLE_PPI.GetVariable().............................. 161
EFI_PEI_READ_ONLY_VARIABLE_PPI.NextVariableName() 163

Optional Additional PPIs ... 165
SEC Platform Information PPI (Optional) ... 165

EFI_SEC_PLATFORM_INFORMATION_PPI (Optional) 165
EFI_SEC_PLATFORM_INFORMATION_PPI.PlatformInformation() 166

10 PEI to DXE Handoff .. 169
Introduction ... 169
Discovery and Dispatch of the DXE Foundation ... 169
Passing the Hand-Off Block (HOB) List .. 169
Handoff Processor State to the DXE IPL PPI ... 170

11 Boot Paths .. 171
Introduction ... 171
Defined Boot Modes.. 171
Priority of Boot Paths .. 171
Assumptions.. 172
Architectural Boot Mode PPIs ... 173
Recovery... 173

Scope ... 173
Discovery ... 174
General Recovery Architecture .. 174

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

x November 2004 Version 0.91

12 PEI Physical Memory Usage ... 177
Introduction ... 177
Before Permanent Memory Is Installed... 177

Discovering Physical Memory .. 177
Using Physical Memory.. 178

After Permanent Memory Is Installed.. 178
Allocating Physical Memory ... 178
Allocating Memory Using GUID Extension HOBs .. 178
Allocating Memory within PEI Memory... 178
Allocating Memory outside of PEI Memory .. 179
Allocating Memory Using PEI Service.. 179

13 Special Paths Unique to the Itanium® Processor Family....................... 181
Introduction ... 181
Unique Boot Paths for Itanium® Architecture.. 181
Min-State Save Area... 183
EFI_PEI_MIN_STATE_DATA... 184
Dispatching Itanium® Processor Family PEIMs .. 186

14 Security (SEC) Phase Information.. 189
Introduction ... 189
Responsibilities ... 189

Handling All Platform Restart Events ... 189
Creating a Temporary Memory Store... 189
Serving As the Root of Trust in the System ... 189
Passing Handoff Information to the PEI Foundation .. 190

SEC Platform Information PPI... 190
Health Flag Bit Format .. 190

Health Flag Bit Format ... 190
Self-Test State Parameter.. 192

Processor-Specific Details .. 193
SEC Phase in IA-32 Intel® Architecture ... 193
SEC Phase in the Itanium® Processor Family ... 193

15 Returned Status Codes.. 195
Returned Status Codes... 195
EFI_STATUS Codes Ranges.. 195
EFI_STATUS Success Codes (High Bit Clear)... 196
EFI_STATUS Error Codes (High Bit Set).. 196
EFI_STATUS Warning Codes (High Bit Clear) ... 198

16 Dependency Expression Grammar... 199
Dependency Expression Grammar ... 199

Example Dependency Expression BNF Grammar ... 199
Sample Dependency Expressions ... 199

 Draft for Review Contents

Version 0.91 November 2004 xi

17 TE Image ... 201
Introduction ... 201
PE32 Headers... 201
TE Header... 202

18 TE Image Creation.. 205
Introduction ... 205
TE Image Utility Requirements ... 205
TE Image Relocations... 205

19 TE Image Loading .. 207
Introduction ... 207
XIP Images.. 207
Relocated Images ... 207

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

xii November 2004 Version 0.91

Figures
2-1. PEI Operations Diagram ... 21
5-1. Handoff from SEC to PEI for IA-32/Itanium® Processor Family................................ 70
7-1. PEIM Layout in a Firmware File .. 92
13-1. Itanium Processor Boot Path (INIT and MCHK).. 182
13-2. Min-State Buffer Organization ... 183
13-3. Boot Path in Itanium Processors ... 187
14-1. Health Flag Bit Format .. 191
14-2. PEI Initialization Steps in IA-32 ... 193
14-3. Security (SEC) Phase in the Itanium Processor Family .. 194

Tables
1-1. Organization of the PEI CIS .. 13
4-1. Boot Mode Register... 42
6-1. Dependency Expression Opcode Summary ... 76
6-2. PUSH Instruction Encoding... 77
6-3. AND Instruction Encoding ... 78
6-4. OR Instruction Encoding ... 79
6-5. NOT Instruction Encoding ... 80
6-6. TRUE Instruction Encoding ... 81
6-7. FALSE Instruction Encoding ... 82
6-8. END Instruction Encoding ... 83
6-9. Example Dispatch Map ... 88
8-1. AuthenticationStatus Bit Definitions .. 114
10-1. Required HOB Types in the HOB List ... 169
10-2. Handoff Processor State to the DXE IPL PPI.. 170
11-1. Boot Path Assumptions ... 172
11-2. Architectural Boot Mode PPIs ... 173
14-1. Health Flag Bit Description.. 191
14-2. Self-Test State Bit Values ... 192
15-1. EFI_STATUS Codes Ranges.. 195
15-2. EFI_STATUS Success Codes (High Bit Clear) ... 196
15-3. EFI_STATUS Error Codes (High Bit Set).. 196
15-4. EFI_STATUS Warning Codes (High Bit Clear) ... 198
17-1. COFF Header Fields Required for TE Images .. 201
17-2. Optional Header Fields Required for TE Images .. 202

 Draft for Review

Version 0.91 November 2004 13

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
Pre-EFI Initialization (PEI) phase of the Intel® Platform Innovation Framework for EFI (hereafter
referred to as the "Framework"). This PEI Core Interface Specification (CIS) does the following:

• Describes the basic components of the PEI phase
• Provides code definitions for services and functions that are architecturally required by the

Intel® Platform Innovation Framework for EFI Architecture Specification
• Describes the machine preparation that is required for subsequent phases of firmware execution
• Discusses state variables that describe the system restart type

See Organization of the PEI CIS for more information.

Organization of the PEI CIS
This PEI Core Interface Specification (CIS) is organized as listed below. Because the PEI
Foundation is just one component of a Framework-based firmware solution, there are a number of
additional specifications that are referred to throughout this document:

• For references to other Framework specifications, click on the hyperlink in the page or navigate
through the table of contents (TOC) in the left navigation pane to view the referenced
specification.

• For references to non-Framework specifications, see References in the Interoperability and
Component Specifications help system.

Table 1-1. Organization of the PEI CIS

Book Description

Overview Describes the major components of PEI, including the PEI Services,
boot mode, PEI Dispatcher, and PEIMs.

PEI Services Table Describes the data structure that maintains the PEI Services.

Services - PEI Details each of the functions that comprise the PEI Services.

PEI Foundation Describes the PEI Foundation and its methods of operation.

PEI Dispatcher Describes the PEI Dispatcher and its associated dependency
expression grammar.

PEIMs Describes the format and use of the Pre-EFI Initialization Module
(PEIM).

Architectural PPIs Contains PEIM-to-PEIM Interfaces (PPIs) that are used by the PEI
Foundation.

Additional PPIs Contains PPIs that can exist on a platform.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

14 November 2004 Version 0.91

Book Description

PEI to DXE handoff

Describes the state of the machine and memory when the PEI
phase invokes the DXE phase.

Boot Paths Describes the restart modalities and behavior supported in the PEI
phase.

PEI Physical Memory Usage Describes the memory map and memory usage during the PEI
phase.

Special Paths Unique to the
Itanium® Processor Family

Contains flow during PEI that is unique to the Itanium® processor
family.

Security (SEC) Phase Information Contains an overview of the phase of execution that occurs prior to
PEI.

Returned Status Codes Lists success, error, and warning codes returned by PEI and EFI
interfaces.

Dependency Expression Grammar Describes the BNF grammar for a tool that can convert a text file
containing a dependency expression into a dependency section of a
PEIM stored in a firmware volume.

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

 Draft for Review Introduction

Version 0.91 November 2004 15

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

Instruction Descriptions
A dependency expression instruction description generally has the following format:

InstructionName The formal name of the instruction.

SYNTAX: A brief description of the instruction.

DESCRIPTION: A description of the functionality provided by the
instruction accompanied by a table that details the
instruction encoding.

OPERATION: Details the operations performed on operands.

BEHAVIORS AND RESTRICTIONS:
An item-by-item description of the behavior of each
operand involved in the instruction and any restrictions
that apply to the operands or the instruction.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

16 November 2004 Version 0.91

PPI Descriptions
A PEIM-to-PEIM Interface (PPI) description generally has the following format:

PPI Name: The formal name of the PPI.

Summary: A brief description of the PPI.

GUID: The 128-bit Globally Unique Identifier (GUID) for the PPI.

PPI Interface Structure: A “C-style” procedure template defining the PPI calling
structure.

Parameters: A brief description of each field in the PPI structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller
should be aware.

Related Definitions: The type declarations and constants that are used only by
this interface.

Status Codes Returned: A description of any codes returned by the interface. The PPI
is required to implement any status codes listed in this table.
Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

 Draft for Review Introduction

Version 0.91 November 2004 17

Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
 Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the
following URL:

http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

18 November 2004 Version 0.91

 Draft for Review

Version 0.91 November 2004 19

2
Overview

Introduction
The Pre-EFI Initialization (PEI) phase of the Intel® Platform Innovation Framework for EFI
(hereafter referred to as the "Framework") is invoked quite early in the boot flow. Specifically,
after some preliminary processing in the Security (SEC) phase, any machine restart event will
invoke the PEI phase.

The PEI phase will initially operate with the platform in a nascent state, leveraging only on-
processor resources, such as the processor cache as a call stack, to dispatch Pre-EFI Initialization
Modules (PEIMs). These PEIMs are responsible for the following:

• Initializing some permanent memory complement
• Describing the memory in Hand-Off Blocks (HOBs)
• Describing the firmware volume locations in HOBs
• Passing control into the Driver Execution Environment (DXE) phase

Philosophically, the PEI phase is intended to be the thinnest amount of code to achieve the ends
listed above. As such, any more sophisticated algorithms or processing should be deferred to the
DXE phase of execution.

The PEI phase is also responsible for crisis recovery and resuming from the S3 sleep state. For
crisis recovery, the PEI phase should reside in some small, fault-tolerant block of the firmware
store. As a result, it is imperative to keep the footprint of the PEI phase as small as possible. In
addition, for a successful S3 resume, the speed of the resume is of utmost importance, so the code
path through the firmware should be minimized. These two boot flows also speak to the need to
keep the processing and code paths in the PEI phase to a minimum.

The implementation of the PEI phase is more dependent on the processor architecture than any
other phase. In particular, the more resources the processor provides at its initial or near initial
state, the richer the interface between the PEI Foundation and PEIMs. As such, there are several
parts of the following discussion that note requirements on the architecture but are otherwise left
architecturally dependent.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

20 November 2004 Version 0.91

Design Goals
The Framework requires the PEI phase to configure a system to meet the minimum prerequisites
for the Driver Execution Environment (DXE) phase of the Framework architecture. In general, the
PEI phase is required to initialize a linear array of RAM large enough for the successful execution
of the DXE phase elements.

The PEI phase provides a framework to allow vendors to supply separate initialization modules for
each functionally distinct piece of system hardware that must be initialized prior to the DXE phase
of execution in the Framework. The PEI phase provides a common framework through which the
separate initialization modules can be independently designed, developed, and updated. The PEI
phase was developed to meet the following goals in the Framework architecture:

• Enable maintenance of the “chain of trust.” This includes protection against unauthorized
updates to the PEI phase or its modules, as well as a form of authentication of the PEI
Foundation and its modules during the PEI phase.

• Provide a core PEI module (the PEI Foundation) that will remain more or less constant for a
particular processor architecture but that will support add-in modules from various vendors,
particular for processors, chipsets, RAM initialization, and so on.

• Allow independent development of early initialization modules.

Pre-EFI Initialization (PEI) Phase
The design for the Pre-EFI Initialization (PEI) phase of a Framework boot is as an essentially
miniature version of the DXE phase of the Framework and addresses many of the same issues. The
PEI phase is designed to be developed in several parts. The PEI phase consists of the following:

• Some core code known as the PEI Foundation
• Specialized plug-ins known as Pre-EFI Initialization Modules (PEIMs)

Unlike DXE, the PEI phase cannot assume the availability of reasonable amounts of RAM, so the
richness of the features in DXE does not exist in PEI. The PEI phase limits its support to the
following actions:

• Locating, validating, and dispatching PEIMs
• Facilitating communication between PEIMs
• Providing handoff data to subsequent phases

The figure below shows a diagram of the process completed during the PEI phase.

 Draft for Review Overview

Version 0.91 November 2004 21

Figure 2-1. PEI Operations Diagram

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

22 November 2004 Version 0.91

PEI Services
The PEI Foundation establishes a system table named the PEI Services Table that is visible to all
Pre-EFI Initialization Modules (PEIMs) in the system. A PEI Service is defined as a function,
command, or other capability manifested by the PEI Foundation when that service’s initialization
requirements are met. Because the PEI phase has no permanent memory available until nearly the
end of the phase, the range of services created during the PEI phase cannot be as rich as those
created during later phases. Because the location of the PEI Foundation and its temporary RAM is
not known at build time, a pointer to the PEI Services Table is passed into each PEIM’s entry point
and also to part of each PEIM-to-PEIM Interface (PPI).

The PEI Foundation provides the following classes of services.

PPI Services: Manages PPIs to facilitate intermodule calls between PEIMs.
 Interfaces are installed and tracked on a database maintained
in temporary RAM.

Boot Mode Services: Manages the boot mode (S3, S5, normal boot, diagnostics,
etc.) of the system.

HOB Services: Creates data structures called Hand-Off Blocks (HOBs) that
are used to pass information to the next phase of the
Framework.

Firmware Volume
Services:

Walks the Firmware File System (FFS) in firmware volumes
to find PEIMs and other firmware files in the flash device.

PEI Memory Services: Provides a collection of memory management services for use
both before and after permanent memory has been discovered.

Status Code Services: Provides common progress and error code reporting services
(for example, port 080h or a serial port for simple text output
for debug).

Reset Services: Provides a common means by which to initiate a warm or cold
restart of the system.

 Draft for Review Overview

Version 0.91 November 2004 23

PEI Foundation
The PEI Foundation is the entity that is responsible for the following:

• Successfully dispatching Pre-EFI Initialization Modules (PEIMs)
• Maintaining the boot mode
• Initializing permanent memory
• Invoking the Driver Execution Environment (DXE) loader

The PEI Foundation is written to be portable across all platforms of a given instruction-set
architecture. As such, a binary for 32-bit Intel® architecture (IA-32) should work across all
Pentium® processors, from the Pentium II processor with MMX™ technology through the latest
Pentium 4 processors. Similarly, the PEI Foundation binary for the Itanium® processor family
should work across all Itanium processors.

Regardless of the processor microarchitecture, the set of services exposed by the PEI Foundation
should be the same. This uniform surface area around the PEI Foundation allows PEIMs to be
written in the C programming language and compiled across any microarchitecture.

PEI Dispatcher
The PEI Dispatcher is essentially a state machine that is implemented in the PEI Foundation. The
PEI Dispatcher evaluates the dependency expressions in Pre-EFI Initialization Modules (PEIMs)
that are in the firmware volume(s) being examined.

The dependency expressions are logical combinations of PEIM-to-PEIM Interfaces (PPIs). These
expressions describe the PPIs that must be available before a given PEIM can be invoked. To
evaluate the dependency expression for the PEIM, the PEI Dispatcher references the PPI database
in the PEI Foundation to determine which PPIs have been installed. If the PPI has been installed,
the dependency expression will evaluate to TRUE, which tells the PEI Dispatcher it can run the
PEIM. At this point, the PEI Foundation passes control to the PEIM with a true dependency
expression.

Once the PEI Dispatcher has evaluated all of the PEIMs in all of the exposed firmware volumes and
no more PEIMs can be dispatched (i.e., the dependency expressions do not evaluate from FALSE to
TRUE), the PEI Dispatcher will exit. It is at this point that the PEI Dispatcher cannot invoke any
additional PEIMs. The PEI Foundation then reassumes control from the PEI Dispatcher and
invokes the DXE IPL PPI to pass control to the DXE phase of execution.

Pre-EFI Initialization Modules (PEIMs)
Pre-EFI Initialization Modules (PEIMs) are specialized drivers that personalize the PEI Foundation
to the platform. They are analogous to DXE drivers and generally correspond to the components
being initialized. It is the responsibility of the PEI Foundation code to dispatch the PEIMs in a
sequenced order and provide basic services. The PEIMs are intended to mirror the components
being initialized.

Communication between PEIMs is not easy in a “memory poor” environment. Nonetheless, PEIMs
cannot be coded without some interaction between one another and, even if they could, it would be
inefficient to do so. The PEI phase provides mechanisms for PEIMs to locate and invoke interfaces
from other PEIMs.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

24 November 2004 Version 0.91

Because the PEI phase exists in an environment where minimal hardware resources are available
and execution is performed from the boot firmware device, it is strongly recommended that PEIMs
do the minimum necessary work to initialize the system to a state that meets the prerequisites of the
DXE phase.

It is expected that, in the future, common practice will be that the vendor of a software or hardware
component will provide the PEIM (possibly in source form) so the customer can debug integration
problems quickly.

PEIM-to-PEIM Interfaces (PPIs)
PEIMs communicate with each other using a structure called a PEIM-to-PEIM Interface (PPI).
 PPIs are contained in a EFI_PEI_PPI_DESCRIPTOR data structure, which is composed of a
GUID/pointer pair. The GUID "names" the interface and the associated pointer provides the
associated data structure and/or service set for that PPI. A consumer of a PPI must use the PEI
Service LocatePpi() to discover the PPI of interest. The producer of a PPI publishes the
available PPIs in its PEIM using the PEI Services InstallPpi() or ReinstallPpi().

All PEIMs are registered and located in the same fashion, namely through the PEI Services listed
above. Within this name space of PPIs, there are two classes of PPIs:

• Architectural PPIs
• Additional PPIs

An architectural PPI is a PPI whose GUID is described in the PEI CIS and is a GUID known to the
PEI Foundation. These architectural PPIs typically provide a common interface to the PEI
Foundation of a service that has a platform-specific implementation, such as the PEI Service
ReportStatusCode().

Additional PPIs are PPIs that are important for interoperability but are not depended upon by the
PEI Foundation. They can be classified as mandatory or optional. Specifically, to have a large class
of interoperable PEIMs, it would be good to signal that the final boot mode was installed in some
standard fashion so that PEIMs could use this PPI in their dependency expressions. The alternative
to defining these additional PPIs in the PEI CIS would be to have a proliferation of similar services
under different names.

Firmware Volumes
Pre-EFI Initialization Modules (PEIMs) reside in firmware volumes (FVs). The PEI Foundation,
defined here, must reside in the Boot Firmware Volume (BFV). While it is expected that, in most
applications, all PEIMs will reside in the BFV, the PEI phase supports the ability for PEIMs to
reside in multiple FVs as long as the PEI Foundation is provided with a standard mechanism for
locating these other FVs.

 Draft for Review

Version 0.91 November 2004 25

3
PEI Services Table

Introduction
The PEI Foundation establishes a system table named the PEI Services Table that is visible to all
Pre-EFI Initialization Modules (PEIMs) in the system. A PEI Service is defined as a function,
command, or other capability manifested by the PEI Foundation when that service’s initialization
requirements are met. Because the PEI phase has no permanent memory available until nearly the
end of the phase, the range of services created during the PEI phase cannot be as rich as those
created during later phases. Because the location of the PEI Foundation and its temporary RAM is
not known at build time, a pointer to the PEI Services Table is passed into each PEIM's entry point
and also to part of each PEIM-to-PEIM Interface (PPI).

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

26 November 2004 Version 0.91

EFI Table Header

EFI_TABLE_HEADER

Summary
Data structure that precedes all of the PEI Services.

Prototype
typedef struct {
 UINT64 Signature;
 UINT32 Revision;
 UINT32 HeaderSize;
 UINT32 CRC32;
 UINT32 Reserved;
} EFI_TABLE_HEADER;

Parameters
Signature

A 64-bit signature that identifies the type of table that follows.

Revision

The revision of the PEI Specification to which this table conforms. The upper 16 bits
of this field contain the major revision value, and the lower 16 bits contain the minor
revision value. The minor revision values are limited to the range of 00..99. Note
that these revision fields are not encoded in Binary Coded Decimal (BCD) format but
instead are stored in normal binary format

HeaderSize

The size in bytes of the entire table including the EFI_TABLE_HEADER.

CRC32

The 32-bit CRC for the entire table. This value is computed by setting this field to 0,
and computing the 32 bit CRC for HeaderSize bytes. This value is ignorable for
PEI and should be set to zero.

Reserved

Reserved field that must be set to 0.

Description
The data type EFI_TABLE_HEADER is the data structure that precedes all of the standard EFI
table types. It includes a signature that is unique for each table type, a revision of the table that may
be updated as extensions are added to the EFI table types, and a 32-bit CRC so a consumer of an
EFI table type can validate the contents of the EFI table.

 Draft for Review PEI Services Table

Version 0.91 November 2004 27

PEI Services Table

EFI_PEI_SERVICES

Summary
The PEI Services Table includes a list of function pointers in a table. The table is located in the
temporary or permanent memory, depending upon the capabilities and phase of execution of PEI.
The functions in this table are defined in Services - PEI.

Related Definitions
//
// PEI Specification Revision information
//
#define PEI_SPECIFICATION_MAJOR_REVISION 0
#define PEI_SPECIFICATION_MINOR_REVISION 91

//
// EFI PEI Services Table
//
#define PEI_SERVICES_SIGNATURE 0x5652455320494550
#define PEI_SERVICES_REVISION
 (PEI_SPECIFICATION_MAJOR_REVISION<<16) |
(PEI_SPECIFICATION_MINOR_REVISION)

typedef struct _EFI_PEI_SERVICES {
 EFI_TABLE_HEADER Hdr;

 //
 // PPI Functions
 //
 EFI_PEI_INSTALL_PPI InstallPpi;
 EFI_PEI_REINSTALL_PPI ReInstallPpi;
 EFI_PEI_LOCATE_PPI LocatePpi;
 EFI_PEI_NOTIFY_PPI NotifyPpi;

 //
 // Boot Mode Functions
 //
 EFI_PEI_GET_BOOT_MODE GetBootMode;
 EFI_PEI_SET_BOOT_MODE SetBootMode;

 //
 // HOB Functions
 //
 EFI_PEI_GET_HOB_LIST GetHobList;
 EFI_PEI_CREATE_HOB CreateHob;

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

28 November 2004 Version 0.91

 //
 // Firmware Volume Functions
 //
 EFI_PEI_FFS_FIND_NEXT_VOLUME FfsFindNextVolume;
 EFI_PEI_FFS_FIND_NEXT_FILE FfsFindNextFile;
 EFI_PEI_FFS_FIND_SECTION_DATA FfsFindSectionData;

 //
 // PEI Memory Functions
 //
 EFI_PEI_INSTALL_PEI_MEMORY InstallPeiMemory;
 EFI_PEI_ALLOCATE_PAGES AllocatePages;
 EFI_PEI_ALLOCATE_POOL AllocatePool;
 EFI_PEI_COPY_MEM CopyMem;
 EFI_PEI_SET_MEM SetMem;

 //
 // Status Code
 // (the following interfaces are installed by publishing PEIM)
 //
 EFI_PEI_REPORT_STATUS_CODE ReportStatusCode;

 //
 // Reset
 //
 EFI_PEI_RESET_SYSTEM ResetSystem;

 //
 // I/O Abstractions
 //
 EFI_PEI_CPU_IO_PPI CpuIo;
 EFI_PEI_PCI_CFG_PPI PciCfg;

 //
 // Future Installed Services
 //

} EFI_PEI_SERVICES;

Parameters
Hdr

The table header for the PEI Services Table. This header contains the
PEI_SERVICES_SIGNATURE and PEI_SERVICES_REVISION values along
with the size of the EFI_PEI_SERVICES structure and a 32-bit CRC to verify that
the contents of the PEI Foundation Services Table are valid.

 Draft for Review PEI Services Table

Version 0.91 November 2004 29

InstallPpi

Installs an interface in the PEI PEIM-to-PEIM Interface (PPI) database by GUID.
 See the InstallPpi() function description in this document.

ReInstallPpi

Reinstalls an interface in the PEI PPI database by GUID. See the
ReinstallPpi() function description in this document.

LocatePpi

Locates an interface in the PEI PPI database by GUID. See the LocatePpi()
function description in this document.

NotifyPpi

Installs the notification service to be called back upon the installation or reinstallation
of a given interface. See the NotifyPpi() function description in this document.

GetBootMode

Returns the present value of the boot mode. See the GetBootMode() function
description in this document.

SetBootMode

Sets the value of the boot mode. See the SetBootMode() function description in
this document.

GetHobList

Returns the pointer to the list of Hand-Off Blocks (HOBs) in memory. See the
GetHobList() function description in this document.

CreateHob

Abstracts the creation of HOB headers. See the CreateHob() function description
in this document.

FfsFindNextVolume

Discovers instances of firmware volumes in the system. See the
FfsFindNextVolume() function description in this document.

FfsFindNextFile

Discovers instances of firmware files in the system. See the
FfsFindNextFile() function description in this document.

FfsFindSectionData

Searches for the next matching file in the Firmware File System (FFS) volume. See
the FfsFindSectionData() function description in this document.

InstallPeiMemory

Registers the found memory configuration with the PEI Foundation. See the
InstallPeiMemory() function description in this document.

AllocatePages

Allocates memory ranges that are managed by the PEI Foundation. See the
AllocatePages() function description in this document.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

30 November 2004 Version 0.91

AllocatePool

Frees memory ranges that are managed by the PEI Foundation. See the
AllocatePool() function description in this document.

CopyMem

Copies the contents of one buffer to another buffer. See the CopyMem() function
description in this document.

SetMem

Fills a buffer with a specified value. See the SetMem() function description in this
document.

ReportStatusCode

Provides an interface that a PEIM can call to report a status code. See the
ReportStatusCode() function description in this document. This is installed by
provider PEIM by copying the interface into the PEI Service table.

ResetSystem

Resets the entire platform. See the ResetSystem() function description in this
document. This is installed by provider PEIM by copying the interface into the PEI
Service table.

CpuIo

Provides an interface that a PEIM can call to execute an I/O transaction. This
interface is installed by provider PEIM by copying the interface into the PEI Service
table.

PciCfg

Provides an interface that a PEIM can call to execute PCI Configuration transactions.
This interface is installed by provider PEIM by copying the interface into the
EFI_PEI_SERVICES table.

Description
EFI_PEI_SERVICES is a collection of functions whose implementation is provided by the PEI
Foundation. These services fall into various classes, including the following:

• Managing the boot mode
• Allocating both early and permanent memory
• Supporting the Firmware File System (FFS)
• Abstracting the PPI database abstraction
• Creating Hand-Off Blocks (HOBs)

A pointer to the EFI_PEI_SERVICES table is passed into each PEIM when the PEIM is invoked
by the PEI Foundation. As such, every PEIM has access to these services. Unlike the EFI Boot
Services (see the EFI 1.10 Specification), the PEI Services have no calling restrictions, such as the
EFI 1.10 Task Priority Level (TPL) limitations. Specifically, a service can be called from a PEIM
or notification service.

 Draft for Review PEI Services Table

Version 0.91 November 2004 31

Some of the services are also a proxy to platform-provided services, such as the Reset Services,
Status Code Services, and I/O abstractions. This partitioning has been designed to provide a
consistent interface to all PEIMs without encumbering a PEI Foundation implementation with
platform-specific knowledge. Any callable services beyond the set in this table should be invoked
using a PPI. The latter PEIM-installed services will return EFI_NOT_AVAILABLE_YET until a
PEIM copies an instance of the interface into the EFI_PEI_SERVICES table.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

32 November 2004 Version 0.91

 Draft for Review

Version 0.91 November 2004 33

4
Services - PEI

Introduction
A PEI Service is defined as a function, command, or other capability created by the PEI Foundation
during a phase that remains available after the phase is complete. Because the PEI phase has no
permanent memory available until nearly the end of the phase, the range of PEI Foundation
Services created during the PEI phase cannot be as rich as those created during later phases.

The following are PEI Services, which are described in this section:

PPI Services: Manages PEIM-to-PEIM Interface (PPIs) to facilitate
intermodule calls between PEIMs. Interfaces are installed and
tracked on a database maintained in temporary RAM.

Boot Mode Services: Manages the boot mode (S3, S5, normal boot, diagnostics,
etc.) of the system.

HOB Services: Creates data structures called Hand-Off Blocks (HOBs) that
are used to pass information to the next phase of the
Framework.

Firmware Volume
Services:

Walks the Firmware File System (FFS) in firmware volumes
to find PEIMs and other firmware files in the flash device.

PEI Memory Services: Provides a collection of memory management services for use
both before and after permanent memory has been discovered.

Status Code Services: Provides common progress and error code reporting services
(for example, port 080h or a serial port for simple text output
for debug).

Reset Services: Provides a common means by which to initiate a warm or cold
restart of the system.

The calling convention for PEI Services is similar to PPIs. See PEIM-to-PEIM Communication for
more details on PPIs.

The means by which to bind a service call into a service involves a dispatch table,
EFI_PEI_SERVICES. A pointer to the table is passed into the PEIM entry point.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

34 November 2004 Version 0.91

PPI Services

PPI Services
The following services provide the interface set for abstracting the PPI database:

• InstallPpi()
• ReinstallPpi()
• LocatePpi()
• NotifyPpi()

 Draft for Review Services - PEI

Version 0.91 November 2004 35

InstallPpi()

Summary
This service is the first one provided by the PEI Foundation. This function installs an interface in
the PEI PPI database by GUID. The purpose of the service is to publish an interface that other
parties can use to call additional PEIMs.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_INSTALL_PPI) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_PPI_DESCRIPTOR *PpiList
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

PpiList

A pointer to the list of interfaces that the caller shall install. Type
EFI_PEI_PPI_DESCRIPTOR is defined in PEIM Descriptors.

Description
This service enables a given PEIM to register an interface into the PEI Foundation. The interface
takes a pointer to a list of records that adhere to the format of a EFI_PEI_PPI_DESCRIPTOR.
The list is embedded into the image of a PEIM. The length of the list of described by the
EFI_PEI_PPI_DESCRIPTOR that has the
EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST flag set in its Flags field. There shall be
at least one EFI_PEI_PPI_DESCRIPTOR in the list.

There are two types of EFI_PEI_PPI_DESCRIPTORs that can be installed, including the
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH and
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK.

Status Codes Returned
EFI_SUCCESS The interface was successfully installed.

EFI_INVALID_PARAMETER The PpiList pointer is NULL.

EFI_INVALID_PARAMETER Any of the PEI PPI descriptors in the list do not have
the EFI_PEI_PPI_DESCRIPTOR_PPI bit set
in the Flags field.

EFI_OUT_OF_RESOURCES There is no additional space in the PPI database.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

36 November 2004 Version 0.91

ReinstallPpi()

Summary
This function reinstalls an interface in the PEI PPI database by GUID. The purpose of the service
is to publish an interface that other parties can use to replace a same-named interface in the protocol
database with a different interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_REINSTALL_PPI) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_PPI_DESCRIPTOR *OldPpi,
 IN EFI_PEI_PPI_DESCRIPTOR *NewPpi
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

OldPpi

A pointer to the former PPI in the database. Type EFI_PEI_PPI_DESCRIPTOR is
defined in PEIM Descriptors.

NewPpi

A pointer to the new interfaces that the caller shall install.

Description
This service enables PEIMs to replace an entry in the PPI database with an alternate entry. This
service is similar to the EFI 1.0 Boot Service ReinstallProtocolInterface(). The use of
this service is similar inasmuch as a PEIM might wish to multiplex several services that are already
installed, such as a console splitter.

ReinstallPpi() will only reinstall a single PPI instance. EFI_PEI_PPI_DESCRIPTORs
can be concatenated to install a series of PPIs.

Status Codes Returned
EFI_SUCCESS The interface was successfully installed.

EFI_INVALID_PARAMETER The PpiList pointer is NULL.

EFI_INVALID_PARAMETER Any of the PEI PPI descriptors in the list do not have
the EFI_PEI_PPI_DESCRIPTOR_PPI bit set
in the Flags field.

EFI_OUT_OF_RESOURCES There is no additional space in the PPI database.

EFI_NOT_FOUND The PPI for which the reinstallation was requested
has not been installed.

 Draft for Review Services - PEI

Version 0.91 November 2004 37

LocatePpi()

Summary
This function locates an interface in the PEI PPI database by GUID.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_LOCATE_PPI) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN EFI_GUID *Guid,
 IN UINTN Instance,
 IN OUT EFI_PEI_PPI_DESCRIPTOR **PpiDescriptor,
 IN OUT VOID **Ppi
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES published by the PEI Foundation.

Guid

A pointer to the GUID whose corresponding interface needs to be found.

Instance

The N-th instance of the interface that is required.

PpiDescriptor

A pointer to instance of the EFI_PEI_PPI_DESCRIPTOR.

Ppi

A pointer to the instance of the interface.

Description
This service enables PEIMs to discover a given instance of an interface. This interface differs from
the interface discovery mechanism in the EFI 1.0 Specification, namely HandleProtocol(), in
that the PEI PPI database does not expose the handle's name space. Instead, PEI manages the
interface set by maintaining a partial order on the interfaces such that the Instance of the
interface, among others, can be traversed.

LocatePpi() provides the ability to traverse all of the installed instances of a given GUID-
named PPI. For example, there can be multiple instances of a PPI named Foo in the PPI database.
 An Instance value of 0 will provide the first instance of the PPI that is installed.
 Correspondingly, an Instance value of 2 will provide the second, 3 the third, and so on. The
Instance value designates when a PPI was installed. For an implementation that must reference
all possible manifestations of a given GUID-named PPI, the code should invoke LocatePpi()
with a monotonically increasing Instance number until EFI_NOT_FOUND is returned.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

38 November 2004 Version 0.91

Status Codes Returned
EFI_SUCCESS The interface was successfully returned.

EFI_NOT_FOUND The PPI descriptor is not found in the database.

 Draft for Review Services - PEI

Version 0.91 November 2004 39

NotifyPpi()

Summary
This function installs a notification service to be called back when a given interface is installed or
reinstalled. The purpose of the service is to publish an interface that other parties can use to call
additional PPIs that may materialize later.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_NOTIFY_PPI) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyList
););

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

NotifyList

A pointer to the list of notification interfaces that the caller shall install. Type
EFI_PEI_NOTIFY_DESCRIPTOR is defined in PEIM Descriptors.

Description
This service enables PEIMs to register a given service to be invoked when another service is
installed or reinstalled. This service is similar to the EFI 1.0 RegisterProtocolNotify().
The semantics of this event are slightly different than that of EFI 1.0 in that the callback is only
invoked one time per installation of the notify service. EFI_PEI_NOTIFY_DESCRIPTOR is
defined in PEIM Descriptors.

In addition, the PPI pointer is passed back to the agent that registered for the notification so that it
can deference private data, if so needed.

Status Codes Returned
EFI_SUCCESS The interface was successfully installed.

EFI_INVALID_PARAMETER The NotifyList pointer is NULL.

EFI_INVALID_PARAMETER Any of the PEI notify descriptors in the list do not have the
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_TYPES
bit set in the Flags field.

EFI_OUT_OF_RESOURCES There is no additional space in the PPI database.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

40 November 2004 Version 0.91

Boot Mode Services
These services provide abstraction for ascertaining and updating the boot mode:

• GetBootMode()
• SetBootMode()

See Boot Paths for additional information on the boot mode.

 Draft for Review Services - PEI

Version 0.91 November 2004 41

GetBootMode()

Summary
This function returns the present value of the boot mode.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_BOOT_MODE) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 OUT EFI_BOOT_MODE *BootMode
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

BootMode

A pointer to contain the value of the boot mode. Type EFI_BOOT_MODE is defined
in "Related Definitions" below.

Description
This service enables PEIMs to ascertain the present value of the boot mode. The list of possible
boot modes is described in "Related Definitions" below.

Related Definitions
//**
// EFI_BOOT_MODE
//**
typedef UINT32 EFI_BOOT_MODE;

#define BOOT_WITH_FULL_CONFIGURATION 0x00
#define BOOT_WITH_MINIMAL_CONFIGURATION 0x01
#define BOOT_ASSUMING_NO_CONFIGURATION_CHANGES 0x02
#define BOOT_WITH_FULL_CONFIGURATION_PLUS_DIAGNOSTICS 0x03
#define BOOT_WITH_DEFAULT_SETTINGS 0x04
#define BOOT_ON_S4_RESUME 0x05
#define BOOT_ON_S5_RESUME 0x06
#define BOOT_ON_S2_RESUME 0x10
#define BOOT_ON_S3_RESUME 0x11
#define BOOT_ON_FLASH_UPDATE 0x12
#define BOOT_IN_RECOVERY_MODE 0x20
0x21 – 0xF..F Reserved Encodings

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

42 November 2004 Version 0.91

The following table describes the bit values in the Boot Mode Register.

Table 4-1. Boot Mode Register

REGISTER BIT(S) VALUES DESCRIPTIONS

000000b Boot with full configuration

000001b Boot with minimal configuration

000010b Boot assuming no configuration changes from last boot

000011b Boot with full configuration plus diagnostics

000100b Boot with default settings

000101b Boot on S4 resume

000110b Boot in S5 resume

000111b-001111b Reserved for boot paths that configure memory

010000b Boot on S2 resume

010001b Boot on S3 resume

010010b Boot on flash update restart

010011b-011111b Reserved for boot paths that preserve memory context

100000b Boot in recovery mode

100001b-111111b Reserved for special boots

MSBit-0

Status Codes Returned
EFI_SUCCESS The boot mode was returned successfully.

 Draft for Review Services - PEI

Version 0.91 November 2004 43

SetBootMode()

Summary
This function sets the value of the boot mode.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SET_BOOT_MODE) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN EFI_BOOT_MODE BootMode
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

BootMode

The value of the boot mode to set. Type EFI_BOOT_MODE is defined in
GetBootMode().

Description
This service enables PEIMs to update the boot mode variable. This would be used by either the
boot mode PPIs described in Architectural PPIs or by a PEIM that needs to engender a recovery
condition.

Status Codes Returned
EFI_SUCCESS The value was successfully updated.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

44 November 2004 Version 0.91

HOB Services
The following services describe the capabilities in the PEI Foundation for providing Hand-Off
Block (HOB) manipulation:

• GetHobList()
• CreateHob()

The purpose of the abstraction is to automate the common case of HOB creation and manipulation.
See the Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification for
details on HOBs and their type definitions.

 Draft for Review Services - PEI

Version 0.91 November 2004 45

GetHobList()

Summary
This function returns the pointer to the list of Hand-Off Blocks (HOBs) in memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_HOB_LIST) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN OUT VOID **HobList
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

HobList

A pointer to the list of HOBs that the PEI Foundation will initialize.

Description
This service enables a PEIM to ascertain the address of the list of HOBs in memory. This service
should not be required by many modules in that the creation of HOBs is provided by the PEI
Service CreateHob().

Status Codes Returned
EFI_SUCCESS The list was successfully returned.

EFI_NOT_AVAILABLE_YET The HOB list is not yet published.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

46 November 2004 Version 0.91

CreateHob()

Summary
This service published by the PEI Foundation abstracts the creation of a Hand-Off Block's (HOB’s)
headers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CREATE_HOB) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN UINT16 Type,
 IN UINT16 Length,
 IN OUT VOID **Hob
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Type

The type of HOB to be installed. See the Intel® Platform Innovation Framework for
EFI Hand-Off Block (HOB) Specification for a definition of this type.

Length

The length of the HOB to be added. See the Intel® Platform Innovation Framework
for EFI Hand-Off Block (HOB) Specification for a definition of this type.

Hob

The address of a pointer that will contain the HOB header.

Description
This service enables PEIMs to create various types of HOBs. This service handles the common
work of allocating memory on the HOB list, filling in the type and length fields, and building the
end of the HOB list. The final aspect of this service is to return a pointer to the newly allocated
HOB. At this point, the caller can fill in the type-specific data. This service is always available
because the HOBs can also be created on temporary memory.

There will be no error checking on the Length input argument. Instead, the Framework
implementation of this service will round up the allocation size that is specified in the Length
field to be a multiple of 8 bytes in length. This rounding is consistent with the requirement that all
of the HOBs, including the PHIT HOB, begin on an 8-byte boundary. See the PHIT HOB definition
in the Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification for
more information.

 Draft for Review Services - PEI

Version 0.91 November 2004 47

Status Codes Returned
EFI_SUCCESS The HOB was successfully created.

EFI_OUT_OF_RESOURCES There is no additional space for HOB creation.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

48 November 2004 Version 0.91

Firmware Volume Services
The following services abstract traversing the Firmware File System (FFS):

• FfsFindNextVolume()
• FfsFindNextFile()
• FfsFindSectionData()

The description of the FFS can be found in the Intel® Platform Innovation Framework for EFI
Firmware Volume Specification and Intel® Platform Innovation Framework for EFI Firmware File
System Specification.

 Draft for Review Services - PEI

Version 0.91 November 2004 49

FfsFindNextVolume()

Summary
The purpose of the service is to abstract the capability of the PEI Foundation to discover instances
of firmware volumes in the system. Given the input file pointer, this service searches for the next
matching file in the Firmware File System (FFS) volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_FIND_NEXT_VOLUME) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN UINTN Instance,
 IN OUT EFI_FIRMWARE_VOLUME_HEADER **FwVolHeader
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Instance

This instance of the firmware volume to find. The value 0 is the Boot Firmware
Volume (BFV).

FwVolHeader

Pointer to the firmware volume header of the volume to return. Type
EFI_FIRMWARE_VOLUME_HEADER is defined in the Intel® Platform Innovation
Framework for EFI Firmware Volume Block Specification.

Description
This service enables PEIMs to discover additional firmware volumes. This capability might be
employed by the DXE IPL PPI to discover the DXE Foundation FFS file, for example, or for a
PEIM to inspect all available volumes.

The PEI Foundation publishes this service to abstract the location of various firmware volumes.
These volumes can include the boot firmware volume and any additional volumes exposed by the
EFI_FIND_FV_PPI instances, if the latter are available.

Status Codes Returned
EFI_SUCCESS The volume was found.

EFI_NOT_FOUND The volume was not found.

EFI_INVALID_PARAMETER FwVolHeader is NULL

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

50 November 2004 Version 0.91

FfsFindNextFile()

Summary
The purpose of the service is to abstract the capability of the PEI Foundation to discover instances
of firmware files in the system. Given the input file pointer, this service searches for the next
matching file in the Firmware File System (FFS) volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_FIND_NEXT_FILE) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN EFI_FV_FILETYPE SearchType,
 IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader,
 IN OUT EFI_FFS_FILE_HEADER **FileHeader
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

SearchType

A filter to find files only of this type. Type EFI_FV_FILETYPE is defined in the
Intel® Platform Innovation Framework for EFI Firmware Volume Specification.
Type EFI_FV_FILETYPE_ALL causes no filtering to be done.

FwVolHeader

Pointer to the firmware volume header of the volume to search. This parameter must
point to a valid FFS volume. Type EFI_FIRMWARE_VOLUME_HEADER is defined
in the Intel® Platform Innovation Framework for EFI Firmware Volume Block
Specification.

FileHeader

Pointer to the current file from which to begin searching. This pointer will be
updated upon return to reflect the file found. Type EFI_FFS_FILE_HEADER is
defined in the Intel® Platform Innovation Framework for EFI Firmware File System
Specification.

Description
This service enables PEIMs to discover additional firmware files. This capability might be
employed by the DXE IPL PPI to discover the DXE Foundation FFS file, for example. To find the
first instance of a firmware file, pass a FileHeader value of NULL into the service.

For integrity checking of the file, only the header checksum is calculated. No other FFS integrity
values are checked by this service.

 Draft for Review Services - PEI

Version 0.91 November 2004 51

Status Codes Returned
EFI_SUCCESS The file was found.

EFI_NOT_FOUND The file was not found.

EFI_NOT_FOUND The header checksum was not zero.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

52 November 2004 Version 0.91

FfsFindSectionData()

Summary
Given the input file pointer, this service searches for the next matching file in the Firmware File
System (FFS) volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_FIND_SECTION_DATA) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN EFI_SECTION_TYPE SectionType,
 IN EFI_FFS_FILE_HEADER *FfsFileHeader,
 IN OUT VOID **SectionData
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

SectionType

The value of the section type to find. Type EFI_SECTION_TYPE is defined in the
Intel® Platform Innovation Framework for EFI Firmware Volume Specification.

FfsFileHeader

A pointer to the file header that contains the set of sections to be searched. Type
EFI_FFS_FILE_HEADER is defined in the Intel® Platform Innovation Framework
for EFI Firmware File System Specification.

SectionData

A pointer to the discovered section, if successful.

Description
This service enables PEIMs to discover sections of a given type within a valid FFS file. The
semantics of this interface are precise in that there can be only one instance of a given section type
within a file, versus FfsFindNextFile(), which needs to be iteratively invoked.

Status Codes Returned
EFI_SUCCESS The section was found.

EFI_NOT_FOUND The section was not found.

 Draft for Review Services - PEI

Version 0.91 November 2004 53

PEI Memory Services
The following services are a collection of memory management services for use both before and
after permanent memory has been discovered:

• InstallPeiMemory()
• AllocatePages()
• AllocatePool()
• CopyMem()
• SetMem()

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

54 November 2004 Version 0.91

InstallPeiMemory()

Summary
This function registers the found memory configuration with the PEI Foundation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_INSTALL_PEI_MEMORY) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN EFI_PHYSICAL_ADDRESS MemoryBegin,
 IN UINT64 MemoryLength
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

MemoryBegin

The value of a region of installed memory.

MemoryLength

The corresponding length of a region of installed memory.

Description
This service enables PEIMs to register the permanent memory configuration that has been
initialized with the PEI Foundation. The result of this call-set is the creation of the appropriate
Hand-Off Block (HOB) describing the physical memory.

The usage model is that the PEIM that discovers the permanent memory shall invoke this service.
The memory reported is a single contiguous run. It should be enough to allocate a PEI stack and
some HOB list. The full memory map will be reported using the appropriate memory HOBs. The
PEI Foundation will follow up with an installation of
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI.

Status Codes Returned
EFI_SUCCESS The region was successfully installed in a HOB.

EFI_INVALID_PARAMETER MemoryBegin and MemoryLength are illegal

for this system.

EFI_OUT_OF_RESOURCES There is no additional space for HOB creation.

 Draft for Review Services - PEI

Version 0.91 November 2004 55

AllocatePages()

Summary
The purpose of the service is to publish an interface that allows PEIMs to allocate memory ranges
that are managed by the PEI Foundation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_ALLOCATE_PAGES) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN EFI_MEMORY_TYPE MemoryType,
 IN UINTN Pages,
 OUT EFI_PHYSICAL_ADDRESS *Memory,
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

MemoryType

The type of memory to allocate. The only types allowed are EfiLoaderCode,
EfiLoaderData, EfiRuntimeServicesCode,
EfiRuntimeServicesData, EfiBootServicesCode,
EfiBootServicesData, EfiACPIReclaimMemory, and
EfiACPIMemoryNVS. Normal allocations (that is, allocations by any EFI
application) are of type EfiLoaderData. Type EFI_MEMORY_TYPE is defined in
the EFI 1.10 Specification.

Pages

The number of contiguous 4 KB pages to allocate. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the EFI 1.10
Specification.

Memory

Pointer to a physical address. On output, the address is set to the base of the page
range that was allocated.

Description
This service enables PEIMs to allocate memory after the permanent memory has been installed by a
PEIM. The purpose of this service is to allow more state-ful, later PEIMs to have a single set of
memory allocation services upon which to rely. This is especially of interest for services like the
recovery PEIMs that might have to allocate large buffers for disk transactions and file system
metadata. The memory regions that the memory allocation primitives manage will be described in

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

56 November 2004 Version 0.91

the appropriate HOB type from the Intel® Platform Innovation Framework for EFI Hand-Off Block
(HOB) Specification.

This service is not usable prior to the installation of main memory. There is no free memory.

The expectation is that the implementation of this service will automate the creation of the Memory
Allocation HOB types. As such, this is in the same spirit as the PEI Services to create the FV
HOB, for example.
As opposed to the EFI memory allocation service, there is no allocate “type” field; this field
dictates location information in EFI (i.e., allocate below a given address, at a given address, etc).
Instead, PEI will allocate pages within the region of memory provided by PeiInstallMemory()
service in a best-effort fashion. Location-specific allocations are not managed by the PEI
foundation code.

The service also supports the creation of Memory Allocation HOBs that describe the stack, boot-
strap processor (BSP) BSPStore (“Backing Store Pointer Store”), and the DXE Foundation
allocation. This additional information is conveyed through the final two arguments in this API and
the description of the appropriate HOB types can be founding the Intel® Platform Innovation
Framework for EFI Hand-Off Block (HOB) Specification.

Status Codes Returned
EFI_SUCCESS The memory range was successfully allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Type is not equal to AllocateAnyPages.

 Draft for Review Services - PEI

Version 0.91 November 2004 57

AllocatePool()

Summary
The purpose of this service is to publish an interface that allows PEIMs to allocate memory ranges
that are managed by the PEI Foundation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_ALLOCATE_POOL) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN UINTN Size,
 OUT VOID **Buffer
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Size

The number of bytes to allocate from the pool.

Buffer

If the call succeeds, a pointer to a pointer to the allocated buffer; undefined
otherwise.

Description
This service allocates memory from the Hand-Off Block (HOB) heap. Because HOBs can be
allocated from either temporary or permanent memory, this service is available throughout the
entire PEI phase.

This service allocates memory in multiples of eight bytes to maintain the required HOB alignment.
 The early allocations from temporary memory will be migrated to permanent memory when
permanent main memory is installed; this migration shall occur when the HOB list is migrated to
permanent memory.

Status Codes Returned
EFI_SUCCESS The allocation was successful.

EFI_OUT_OF_RESOURCES There is not enough heap to allocate the requested
size.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

58 November 2004 Version 0.91

CopyMem()

Summary
This service copies the contents of one buffer to another buffer.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_COPY_MEM) (
 IN VOID *Destination,
 IN VOID *Source,
 IN UINTN Length
);

Parameters
Destination

Pointer to the destination buffer of the memory copy.

Source

Pointer to the source buffer of the memory copy.

Length

Number of bytes to copy from Source to Destination.

Description
This function copies Length bytes from the buffer Source to the buffer Destination.

Status Codes Returned
None.

 Draft for Review Services - PEI

Version 0.91 November 2004 59

SetMem()

Summary
The service fills a buffer with a specified value.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_SET_MEM) (
 IN VOID *Buffer,
 IN UINTN Size,
 IN UINT8 Value
);

Parameters
Buffer

Pointer to the buffer to fill.

Size

Number of bytes in Buffer to fill.

Value

Value to fill Buffer with.

Description
This function fills Size bytes of Buffer with Value.

Status Codes Returned
None.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

60 November 2004 Version 0.91

Status Code Service
The PEI Foundation publishes the following status code service:

• ReportStatusCode()

This service will report EFI_NOT_AVAILABLE_YET until a PEIM publishes the services for
other modules. For the GUID of the PPI, see EFI_PEI_PROGRESS_CODE_PPI.

 Draft for Review Services - PEI

Version 0.91 November 2004 61

ReportStatusCode()

Summary
This service publishes an interface that allows PEIMs to report status codes.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_REPORT_STATUS_CODE) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN EFI_STATUS_CODE_TYPE Type,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN EFI_GUID *CallerId OPTIONAL,
 IN EFI_STATUS_CODE_DATA *Data OPTIONAL
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Type

Indicates the type of status code being reported. The type
EFI_STATUS_CODE_TYPE is defined in "Related Definitions" below.

Value

Describes the current status of a hardware or software entity. This includes
information about the class and subclass that is used to classify the entity as well as
an operation. For progress codes, the operation is the current activity. For error
codes, it is the exception. For debug codes, it is not defined at this time. Type
EFI_STATUS_CODE_VALUE is defined in “Related Definitions” below. Specific
values are discussed in the Intel® Platform Innovation Framework for EFI Status
Code Specification.

Instance

The enumeration of a hardware or software entity within the system. A system may
contain multiple entities that match a class/subclass pairing. The instance
differentiates between them. An instance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance numbers start with 1.

CallerId

This optional parameter may be used to identify the caller. This parameter allows the
status code driver to apply different rules to different callers.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

62 November 2004 Version 0.91

Data

This optional parameter may be used to pass additional data. Type
EFI_STATUS_CODE_DATA is defined in "Related Definitions" below. The
contents of this data type may have additional GUID-specific data. The standard
GUIDs and their associated data structures are defined in the Intel® Platform
Innovation Framework for EFI Status Codes Specification.

Description
ReportStatusCode() is called by PEIMs that wish to report status information on their
progress. The principal use model is for a PEIM to emit one of the standard 32-bit error codes that
are defined in the Intel® Platform Innovation Framework for EFI Status Code Specification. This
will allow a platform owner to ascertain the state of the system, especially under conditions where
the full consoles might not have been installed.

This is the entry point that PEIMs shall use. This service can use all platform PEI Services, and
when main memory is available, it can even construct a GUIDed HOB that conveys the pre-DXE
data as an input to the data hub. This service can also publish an interface that is usable only from
the DXE phase. This entry point should not be the same as that published to the PEIMs, and the
implementation of this code path should not do the following:

• Use any PEI Services or PPIs from other modules.
• Make any presumptions about global memory allocation.

It can only operate on its local stack activation frame and must be careful about using I/O and
memory-mapped I/O resources. These concerns, including the latter warning, arise because this
service could be used during the “blackout” period between the termination of PEI and the
beginning of DXE, prior to the loading of the DXE progress code driver. As such, the ownership of
the memory map and platform resource allocation is indeterminate at this point in the platform
evolution.

Related Definitions
//
// Status Code Type Definition
//
typedef UINT32 EFI_STATUS_CODE_TYPE;

//
// A Status Code Type is made up of the code type and severity
// All values masked by EFI_STATUS_CODE_RESERVED_MASK are
// reserved for use by this specification.
//
#define EFI_STATUS_CODE_TYPE_MASK 0x000000FF
#define EFI_STATUS_CODE_SEVERITY_MASK 0xFF000000
#define EFI_STATUS_CODE_RESERVED_MASK 0x00FFFF00

//
// Definition of code types, all other values masked by
// EFI_STATUS_CODE_TYPE_MASK are reserved for use by

 Draft for Review Services - PEI

Version 0.91 November 2004 63

// this specification.
//
#define EFI_PROGRESS_CODE 0x00000001
#define EFI_ERROR_CODE 0x00000002
#define EFI_DEBUG_CODE 0x00000003

//
// Definitions of severities, all other values masked by
// EFI_STATUS_CODE_SEVERITY_MASK are reserved for use by
// this specification.
// Uncontained errors are major errors that could not contained
// to the specific component that is reporting the error
// For example, if a memory error was not detected early enough,
// the bad data could be consumed by other drivers.
//
#define EFI_ERROR_MINOR 0x40000000
#define EFI_ERROR_MAJOR 0x80000000
#define EFI_ERROR_UNRECOVERED 0x90000000
#define EFI_ERROR_UNCONTAINED 0xa0000000

//
// Status Code Value Definition
//
typedef UINT32 EFI_STATUS_CODE_VALUE;

//
// A Status Code Value is made up of the class, subclass, and
// an operation.
//
#define EFI_STATUS_CODE_CLASS_MASK 0xFF000000
#define EFI_STATUS_CODE_SUBCLASS_MASK 0x00FF0000
#define EFI_STATUS_CODE_OPERATION_MASK 0x0000FFFF

//
// Definition of Status Code extended data header.
// The data will follow HeaderSize bytes from the beginning of
// the structure and is Size bytes long.
//
typedef struct {
 UINT16 HeaderSize;
 UINT16 Size;
 EFI_GUID Type;
} EFI_STATUS_CODE_DATA;

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

64 November 2004 Version 0.91

HeaderSize

The size of the structure. This is specified to enable future expansion.

Size

The size of the data in bytes. This does not include the size of the header structure.

Type

The GUID defining the type of the data. The standard GUIDs and their associated
data structures are defined in the Intel® Platform Innovation Framework for EFI
Status Codes Specification.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_AVAILABLE_YET No progress code provider has installed an interface
in the system.

 Draft for Review Services - PEI

Version 0.91 November 2004 65

Reset Services
The PEI Foundation publishes the following reset service:

• ResetSystem()

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

66 November 2004 Version 0.91

ResetSystem()

Summary
Resets the entire platform.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_RESET_SYSTEM) (
 IN struct _EFI_PEI_SERVICES **PeiServices
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Description
This service resets the entire platform, including all processors and devices, and reboots the
system. It is important to have a standard variant of this function for cases such as the following:

• Resetting the processor to change frequency settings
• Restarting hardware to complete chipset initialization
• Responding to exceptions from a catastrophic error

Returned Status Codes
EFI_SUCCESS The function completed successfully.

EFI_NOT_AVAILABLE_YET The service has not been installed yet.

I/O and PCI Services
• The PEI Foundation publishes CPU I/O and PCI Configuration services.

 Draft for Review

Version 0.91 November 2004 67

5
PEI Foundation

Introduction
The PEI Foundation centers around the PEI Dispatcher. The dispatcher’s job is to hand control to
the PEIMs in an orderly manner. The PEI Foundation also assists in PEIM-to-PEIM
communication. The central resource for the module-to-module communication involves the PPI.
The marshalling of references to PPIs can occur using the installable or notification interface.

The PEI Foundation is constructed as an autonomous binary image that is of file type
EFI_FV_FILETYPE_PEI_CORE and is composed of the following:

• An authentication section
• A code image that is possibly PE32+

See the Intel® Platform Innovation Framework for EFI Firmware Volume Specification for
information on section and file types. If the code that comprises the PEI Foundation is not a PE32+
image, then it is a raw binary whose lowest address is the entry point to the PEI Foundation. The
PEI Foundation is discovered and authenticated by the Security (SEC) phase.

Prerequisites
The PEI phase is handed control from the Security (SEC) phase of the Framework boot process.
The PEI phase must satisfy the following minimum prerequisites before it can begin execution:

• Processor execution mode
• Access to the Boot Firmware Volume (BFV) that contains the PEI Foundation

It is expected that the SEC infrastructure code and PEI Foundation are not linked together as a
single ROMable executable image. The entry point from SEC into PEI is not architecturally fixed
but is instead dependent on the PEI Foundation location within FV0, or the Boot Firmware
Volume.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

68 November 2004 Version 0.91

Processor Execution Mode

Processor Execution Mode in IA-32 Intel® Architecture
In IA-32 Intel® architecture, the Security (SEC) phase of the Framework is responsible for placing
the processor in a native linear address mode by which the full address range of the processor is
accessible for code, data, and stack. For example, “flat 32” is the IA-32 processor generation mode
in which the PEI phase will execute. The processor must be in its most privileged "ring 0” mode,
or equivalent, and be able to access all memory and I/O space.

This prerequisite is strictly dependent on the processor generation architecture.

Processor Execution Mode in Itanium® Processor Family
The PEI Foundation will begin executing after the Security (SEC) phase has completed. The SEC
phase subsumed the System Abstraction Layer entry point (SALE_ENTRY) in Itanium®
architecture. In addition, the SEC phase makes the appropriate Processor Abstraction Layer (PAL)
calls or platform services to enable the temporary memory store. The SEC passes its handoff state
to the PEI Foundation in physical mode with some configured memory stack, such as the processor
cache configured as memory.

Access to the Boot Firmware Volume
The program that the Security (SEC) phase hands control to is known as the PEI Foundation. The
firmware volume (FV) in which the PEI Foundation resides is known as the Boot Firmware
Volume (BFV). PEIMs may reside in the BFV or other FVs. A "special" PEIM must be resident in
the BFV to provide information about the location of the other FVs.

Each file contained in the BFV that is required to boot must be able to be discovered and validated
by the PEI phase. This allows the PEI phase to determine if the FV has been corrupted.

The PEI Foundation and the PEIMs are expected to be stored in some reasonably tamper-proof
(albeit not necessarily in the strict security-based definition of the term) nonvolatile storage (NVS).
The storage is expected to be fairly analogous to a flat file system with the unique IDs substituting
for names. Rules for using the particular NVS might affect certain storage considerations, but a
standard data-only mechanism for locating PEIMs by ID is required. Framework architecture uses
the EFI firmware volume and firmware file system, with the GUID convention of naming files in
NVS. These standards are architectural for PEI inasmuch as the PEI phase needs to directly
support this file system.

The PEI Foundation and some PEIMs required for recovery must be either locked into a
nonupdateable BFV or must be able to be updated via a "fault-tolerant" mechanism. The fault-
tolerant mechanism is designed such that, if the system halts at any point, either the old (preupdate)
PEIM or the newly updated PEIM is entirely valid and that the PEI phase can determine which is
valid.

 Draft for Review PEI Foundation

Version 0.91 November 2004 69

Access to the Boot Firmware Volume in IA-32 Intel® Architecture
In IA-32 Intel® architecture, the Security (SEC) file is at the top of the Boot Firmware Volume
(BFV). This SEC file will have the 16-byte entry point for IA-32 and restarts at address
0xFFFFFFF0.

Access to the Boot Firmware Volume in Itanium® Processor Family
In the Itanium® processor family, the microcode starts up the Processor Abstraction Layer A (PAL-
A) code, which is the first layer of PAL code and is provided by the processor vendor, that resides
in the Boot Firmware Volume (BFV). This code minimally initializes the processor and then finds
and authenticates the second layer of PAL code, called PAL-B. The location of both PAL-A and
PAL-B can be found by consulting either of the following:

• The architected pointers in the ROM (near the 4 GB region)
• The Firmware Interface Table (FIT) pointer in the ROM

The PAL layer communicates with the OEM boot firmware using a single entry point called the
System Abstraction Layer entry point (SALE_ENTRY). The PEI Foundation will be located at the
SALE_ENTRY point on the boot firmware device for an Itanium-based system. The Itanium
processor family PEIMs, like other PEIMs, may reside in the BFV or other firmware volumes. A
"special" PEIM must be resident in the BFV to provide information about the location of the other
firmware volumes; this will be described in the context of the EFI_PEI_FIND_FV_PPI
description. It must also be noted that in an Itanium-based system, all the processors in each node
start up and execute the PAL code and subsequently enter the PEI Foundation. The BFV of a
particular node must be accessible by all the processors running in that node. This also means that
some of the PEIMs in the Itanium® architecture boot path will be multiprocessor (MP) aware.

In an Itanium-based system, it is also imperative that the organization of firmware modules in the
BFV must be such that at least the PAL-A is contained in the fault-tolerant regions. This processor-
specific PAL-A code authenticates the PAL-B code, which is usually contained in the non-fault-
tolerant regions of the firmware system. The PAL-A and PAL-B binary components are always
visible to all the processors in a node at the time of power-on; the system fabric should not need to
be initialized.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

70 November 2004 Version 0.91

PEI Foundation Entry Point

PEI Foundation Entry Point
The Security (SEC) phase must hand the following key data to the PEI Foundation:

• A set of PPIs
• Information on the Boot Firmware Volume (BFV)
• Size of the cache-as-RAM

The SEC phase hands this data to the PEI Foundation using the data on the stack listed below.

This PPI list is a collection of data structures that contain PPIs that abstract several things. The
most important data is the base of the BFV and other state information known by the SEC phase.
Another PPI can include the service used to corroborate the integrity of the PEI Foundation, if the
foundation is wrapped in a GUIDed section type. This latter function allows for root-of-trust
maintenance from the SEC component into the PEI phase. The SEC Platform Information PPI is
the mandatory component.

The figure below depicts the data that is passed to the PEI Foundation from the SEC phase.

Boot Firmware Volume Base

Size of the Temporary RAM

*PEI < EFI_PEI_PPI_DESCRIPTOR

Stack

ESP + 8/Out2

ESP + 4/Out1

ESP / Out0

Location

Figure 5-1. Handoff from SEC to PEI for IA-32/Itanium® Processor Family

 Draft for Review PEI Foundation

Version 0.91 November 2004 71

Boot Firmware Volume Base

Informs the PEI Foundation where to find the Boot Firmware Volume (BFV) and to
commence discovery and dispatch of PEIMs.

Size of the Temporary RAM

Describes the extent of unoccupied cache-as-RAM. The PEI Foundation will
apportion this region for use as private data, stack, and heap.

Dispatch Table Pointer

A pointer to a possibly NULL list of PEI PPI descriptors. These descriptors describe
services that are resident in SEC but can be used by either the PEI Foundation or
other PEIMs. Type EFI_PEI_PPI_DESCRIPTOR is defined in PEIM Descriptors.

The information from SEC is a mandatory information that is placed on the stack by the SEC
phase to invoke the PEI Foundation.

The SEC phase provides the required processor and/or platform initialization such that there is a
temporary RAM region available to the PEI phase. This temporary RAM could be a particular
configuration of the processor cache, SRAM, or other source. What is important with respect to
this handoff is that the PEI ascertain the available amount of cache as RAM from this data
structure. SizeOfCacheAsRam does not describe total temporary memory, just the available
amount of temporary memory. The stack pointer value upon entry to the PEI Foundation minus the
SizeOfCacheAsRam field describes the lowest usable address for the PEI Foundation.

Similarly, the PEI Foundation needs to receive a priori information about where to commence the
dispatch of PEIMs. A platform can have various size BFVs. As such, the
BootFirmwareVolume value tells the PEI Foundation where it can expect to discover a
firmware volume header data structure, EFI_FIRMWARE_VOLUME_HEADER, and it is this
firmware volume that contains the PEIMs necessary to perform the basic system initialization.
 Type EFI_FIRMWARE_VOLUME_HEADER is defined in the Intel® Platform Innovation
Framework for EFI Firmware Volume Block Specification.

Finally, later phases of platform evolution might need many of the features and data that the SEC
phase might possibly have. Health Flag Bit Format describes the health and self-test information
for certain processors. To support this, the SEC phase can construct a
EFI_PEI_PPI_DESCRIPTOR and pass its address into the PEI Foundation as the final
argument. The SEC can also pass an optional PPI, SEC_PLATFORM_INFORMATION_PPI, as
part of the PPI list that is included as the final argument of EFI_PEI_STARTUP_DESCRIPTOR.
 This PPI abstracts platform-specific information that the PEI Foundation needs to discover where
to begin dispatching PEIMs. Other possible values to pass into the PEI Foundation would include
any security or verification services, such as the Trusted Computing Group (TCG) access services,
because the SEC would constitute the Core Root-of-Trust Module (CRTM) in a TCG-conformant
system.

There is no limit to the number of additional PPIs that can be passed from SEC into the PEI
Foundation. As part of its initialization phase, the PEI Foundation will add these SEC-hosted PPIs
to its PPI database such that both the PEI Foundation and any modules can leverage the associated
service calls and/or code in these early PPIs.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

72 November 2004 Version 0.91

 Draft for Review

Version 0.91 November 2004 73

6
PEI Dispatcher

Introduction
The PEI Dispatcher’s job is to hand control to the PEIMs in an orderly manner. The PEI
Dispatcher consists of a single phase. It is during this phase that the PEI Foundation will examine
each file in the firmware volumes that contain files of type EFI_FV_FILETYPE_PEIM (see the
Intel® Platform Innovation Framework for EFI Firmware Volume Specification for file type
definitions). It will examine the dependency expression (depex) within each firmware file to decide
when a PEIM is eligible to be dispatched. The binary encoding of the depex will be the same as
that of a depex associated with a PEIM.

Ordering

Requirements
It is not reasonable to expect PEIMs to be executed in any order. A chipset initialization PEIM
usually requires processor initialization and a memory initialization PEIM usually requires chipset
initialization. On the other hand, the PEIMs that satisfy these requirements might have been
authored by different organizations and might reside in different FVs. The requirement is thus to,
without memory, create a mechanism to allow for the definition of ordering among the different
PEIMs so that, by the time a PEIM executes, all of the requirements for it to execute have been met.

Although the update and build processes assist in resolving ordering issues, they cannot be relied
upon completely. Consider a system with a removable processor card containing a processor and
firmware volume that plugs into a main system board. If the processor card is upgraded, it is
entirely reasonable that the user should expect the system to work even though no update program
was executed.

Requirement Representation and Notation
Requirements are represented by GUIDs, with each GUID representing a particular requirement.
The requirements are represented by two sets of data structures:

• The dependency expression (depex) of a given PEIM
• The installed set of PPIs maintained by the PEI Foundation in the PPI database

This mechanism provides for a "weak ordering" among PEIMs. If PEIMs A and B consume X
(written AcX and BcX), once a PEIM (C) that produces X (CpX) is executed, A and B can be
executed. There is no definition about the order in which A and B are executed.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

74 November 2004 Version 0.91

PEIM Dependency Expressions
The sequencing of PEIMs is determined by evaluating a dependency expression associated with
each PEIM. This expression describes the requirements necessary for that PEIM to run, which
imposes a weak ordering on the PEIMs. Within this weak ordering, the PEIMs may be initialized
in any order.

Types of Dependencies
The base unit of the dependency expression is a dependency. A representative syntax (used in this
document for descriptive purposes) for each dependency is shown in the following section. The
syntax is case-insensitive and mnemonics are used in place of non-human-readable data such as
GUIDs. White space is optional.

The operands are GUIDs of PPIs. The operand becomes “true” when a PPI with the GUID is
registered.

Dependency Expressions

Introduction
A PEIM is stored in a firmware volume as a file with one or more sections. One of the sections
must be a PE32+ image. If a PEIM has a dependency expression, then it is stored in a dependency
section. A PEIM may contain additional sections for compression and security wrappers. The PEI
Dispatcher can identify the PEIMs by their file type. In addition, the PEI Dispatcher can look up
the dependency expression for a PEIM by looking for a dependency section in a PEIM file. The
dependency section contains a section header followed by the actual dependency expression that is
composed of a packed byte stream of opcodes and operands.

Dependency expressions stored in dependency sections are designed to meet the following goals:

• Be small to conserve space.
• Be simple and quick to evaluate to reduce execution overhead.

These two goals are met by designing a small, stack-based instruction set to encode the dependency
expressions. The PEI Dispatcher must implement an interpreter for this instruction set to evaluate
dependency expressions. The instruction set is defined in the following topics.

See Dependency Expression Grammar for an example BNF grammar for a dependency expression
compiler. There are many possible methods of specifying the dependency expression for a PEIM.
This example grammar demonstrates one possible design for a tool that can be used to help build
PEIM images.

 Draft for Review PEI Dispatcher

Version 0.91 November 2004 75

Dependency Expression Instruction Set
The following topics describe each of the dependency expression (depex) opcodes in detail.
Information includes a description of the instruction functionality, binary encoding, and any
limitations or unique behaviors of the instruction.

Several of the opcodes require a GUID operand. The GUID operand is a 16-byte value that
matches the type EFI_GUID that is described in Chapter 2 of the EFI 1.10 Specification. These
GUIDs represent PPIs that are produced by PEIMs and the file names of PEIMs stored in firmware
volumes. A dependency expression is a packed byte stream of opcodes and operands. As a result,
some of the GUID operands will not be aligned on natural boundaries. Care must be taken on
processor architectures that do allow unaligned accesses.

The dependency expression is stored in a packed byte stream using postfix notation. As a
dependency expression is evaluated, the operands are pushed onto a stack. Operands are popped
off the stack to perform an operation. After the last operation is performed, the value on the top of
the stack represents the evaluation of the entire dependency expression. If a push operation causes
a stack overflow, then the entire dependency expression evaluates to FALSE. If a pop operation
causes a stack underflow, then the entire dependency expression evaluates to FALSE. Reasonable
implementations of a dependency expression evaluator should not make arbitrary assumptions
about the maximum stack size it will support. Instead, it should be designed to grow the
dependency expression stack as required. In addition, PEIMs that contain dependency expressions
should make an effort to keep their dependency expressions as small as possible to help reduce the
size of the PEIM.

All opcodes are 8-bit values, and if an invalid opcode is encountered, then the entire dependency
expression evaluates to FALSE.

If an END opcode is not present in a dependency expression, then the entire dependency expression
evaluates to FALSE.

The final evaluation of the dependency expression results in either a TRUE or FALSE result.

 NOTE
The PEI Foundation will only support the evaluation of dependency expressions that are less than
or equal to 256 terms.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

76 November 2004 Version 0.91

The table below is a summary of the opcodes that are used to build dependency expressions. The
following sections describe each of these instructions in detail.

Table 6-1. Dependency Expression Opcode Summary

Opcode Description

0x02 PUSH <PPI GUID>

0x03 AND

0x04 OR

0x05 NOT

0x06 TRUE

0x07 FALSE

0x08 END

 Draft for Review PEI Dispatcher

Version 0.91 November 2004 77

PUSH

SYNTAX:
PUSH <PPI GUID>

DESCRIPTION:
Pushes a Boolean value onto the stack. If the GUID is present in the handle database, then a TRUE
is pushed onto the stack. If the GUID is not present in the handle database, then a FALSE is pushed
onto the stack. The test for the GUID in the handle database may be performed with the Boot
Service LocatePpi().

OPERATION:
Status = (*PeiServices)->LocatePpi (PeiServices, GUID, 0, NULL,
&Interface);
if (EFI_ERROR (Status)) {
 PUSH FALSE;
} Else {
 PUSH TRUE;
}

The following table defines the PUSH instruction encoding.

Table 6-2. PUSH Instruction Encoding

BYTE DESCRIPTION

0 0x02

1..16 A 16-byte GUID that represents a protocol that is
produced by a different PEIM. The format is the
same at type EFI_GUID.

BEHAVIORS AND RESTRICTIONS:
None.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

78 November 2004 Version 0.91

AND

SYNTAX:
AND

DESCRIPTION:
Pops two Boolean operands off the stack, performs a Boolean AND operation between the two
operands, and pushes the result back onto the stack.

OPERATION:
Operand1 <= POP Boolean stack element

Operand2 <= POP Boolean stack element

Result <= Operand1 AND Operand2

PUSH Result

The following table defines the AND instruction encoding.

Table 6-3. AND Instruction Encoding

BYTE DESCRIPTION

0 0x03

BEHAVIORS AND RESTRICTIONS:
None.

 Draft for Review PEI Dispatcher

Version 0.91 November 2004 79

OR

SYNTAX:
OR

DESCRIPTION:
Pops two Boolean operands off the stack, performs a Boolean OR operation between the two
operands, and pushes the result back onto the stack.

OPERATION:
Operand1 <= POP Boolean stack element

Operand2 <= POP Boolean stack element

Result <= Operand1 OR Operand2

PUSH Result

The following table defines the OR instruction encoding.

Table 6-4. OR Instruction Encoding

BYTE DESCRIPTION

0 0x04

BEHAVIORS AND RESTRICTIONS:
None.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

80 November 2004 Version 0.91

NOT

SYNTAX:
NOT

DESCRIPTION:
Pops a Boolean operands off the stack, performs a Boolean NOT operation on the operand, and
pushes the result back onto the stack.

OPERATION:
Operand <= POP Boolean stack element

Result <= NOT Operand

PUSH Result

The following table defines the NOT instruction encoding.

Table 6-5. NOT Instruction Encoding

BYTE DESCRIPTION

0 0x05

BEHAVIORS AND RESTRICTIONS:
None.

 Draft for Review PEI Dispatcher

Version 0.91 November 2004 81

TRUE

SYNTAX:
TRUE

DESCRIPTION:
Pushes a Boolean TRUE onto the stack.

OPERATION:
PUSH TRUE

The following table defines the TRUE instruction encoding.

Table 6-6. TRUE Instruction Encoding

BYTE DESCRIPTION

0 0x06

BEHAVIORS AND RESTRICTIONS:
None.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

82 November 2004 Version 0.91

FALSE

SYNTAX:
FALSE

DESCRIPTION:
Pushes a Boolean FALSE onto the stack.

OPERATION:
PUSH FALSE

The following table defines the FALSE instruction encoding.

Table 6-7. FALSE Instruction Encoding

BYTE DESCRIPTION

0 0x07

BEHAVIORS AND RESTRICTIONS:
None.

 Draft for Review PEI Dispatcher

Version 0.91 November 2004 83

END

SYNTAX:
END

DESCRIPTION:
Pops the final result of the dependency expression evaluation off the stack and exits the dependency
expression evaluator.

OPERATION:
POP Result

RETURN Result

The following table defines the END instruction encoding.

Table 6-8. END Instruction Encoding

BYTE DESCRIPTION

0 0x08

BEHAVIORS AND RESTRICTIONS:
This opcode must be the last one in a dependency expression.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

84 November 2004 Version 0.91

Dependency Expression with No Dependencies
A PEIM that does not have any dependencies will have a dependency expression that evaluates to
TRUE with no dependencies on any PPI GUIDs.

Empty Dependency Expressions
If a PEIM file does not contain a dependency section, then the PEIM has an empty dependency
expression.

Dependency Expression Reverse Polish Notation (RPN)
The actual equations will be presented by the PEIM in a simple-to-evaluate form, namely postfix.

The following is a BNF encoding of this grammar. See Dependency Expression Instruction Set for
definitions of the dependency expressions.
<statement> ::= <expression> END

<expression> ::= PUSH <guid> |
 TRUE |
 FALSE |
 <expression> NOT |
 <expression> <expression> OR |
 <expression> <expression> AND

 Draft for Review PEI Dispatcher

Version 0.91 November 2004 85

Dispatch Algorithm

Overview

Ordering Algorithm
The dispatch algorithm repeatedly scans through the PEIMs to find those that have not been
dispatched. For each PEIM that is found, it scans through the PPI database of PPIs that have been
published, searching for elements in the yet-to-be-dispatched PEIM's depex. If all of the elements
in the depex are in the PEI Foundation's PPI database, the PEIM is dispatched. The phase
terminates when all PEIMs are scanned and none dispatched.

 NOTE
The PEIM may be dispatched without a search if its depex is NULL.

Multiple Firmware Volume Support
The scanning process is complicated by the requirement that multiple firmware volumes (FVs) be
supported. A special PPI, EFI_FIND_FV_PPI, is defined. This interface’s role is to describe to
the PEI Foundation where other FVs are located so that they can be searched for PEIMs.
EFI_FIND_FV_PPI may be published by several possible PEIMs.

Recovery Dispatching
Any PEIM or the PEI Foundation can engender a crisis recovery. This transition could occur
because of either of the following:

• A PEIM sets the boot mode to BOOT_IN_RECOVERY_MODE using the PEI Service
SetBootMode().

• The PEI Foundation detects that a PEIM failed to validate.

The PEI Dispatcher will attempt to dispatch all PEIMs again. The platform PEIM will install the
EFI_PEI_BOOT_IN_RECOVERY_MODE_PEIM_PPI so that modules that wish to be
dispatched only during a crisis recovery will be invoked.

The initial state of the boot mode variable is the key distinction from a dispatch that starts from a
cold reset and one engendered by a forced recovery. For a cold reset, the boot mode will not be
defined until the Master Boot Mode PPI has been installed, with the corresponding requirement that
the module that published this PPI also used the PEI Service SetBootMode() to initialize the
boot mode. For the recovery condition, the boot mode will have been received by a PEIM as being
updated to “Need to Recover” or reset to Recovery by the PEI Foundation based on same failure
condition (failure to authenticate a subsequent firmware volume, for example). In either of the
latter cases, the dispatch will restart with the boot mode set to BOOT_IN_RECOVERY_MODE.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

86 November 2004 Version 0.91

Requirements

Requirements of a Dispatching Algorithm
The dispatching algorithm must meet the following requirements:

1. Preserve the dispatch weak ordering.
2. Prevent an infinite loop.
3. Control processor resources.
4. Preserve proper dispatch order.
5. Make use of available memory.
6. Invoke each PEIM’s entry point.
7. Know when the PEI Dispatcher tasks are finished.

Preserving Weak Ordering
The algorithm must preserve the weak ordering implied by the depex.

Preventing Infinite Loops
It is illegal for AcXpY (A consumes X and produces Y) and BcYpX. This is known as a cycle and
is unresolvable even if memory is available. At a minimum, the dispatching algorithm must not end
up in an infinite loop in such a scenario. With the algorithm described above, neither PEIM would
be executed.

Controlling Processor Register Resources
The algorithm must require that a minimum of the processor's register resources be preserved while
PEIMs are dispatched.

Preserving Proper Dispatch Order
The algorithm must preserve proper dispatch order in cases such as the following:
 AcQpZ BcLpR CpL DcRpQ

The issue with the above scenario is that A and B are not obviously related until D is processed. If
A and B were in one firmware volume and C and D were in another, the ordering could not be
resolved until execution. The proper dispatch order in this case is CBDA. The algorithm must
resolve this type of case.

Using Available Memory
The PEI Foundation begins operation using a temporary memory store that contains the initial call
stack from the Security (SEC) phase. Upon this stack is information about the size of the initial
memory store. Based on the size of the initial memory handoff from SEC, the PEI Foundation will
divide this region into the following:

• PEI stack
• PEI heap

The PEI stack will be available for subsequent PEIM invocations, and the PEI heap will be used for
PEIM memory allocations and Hand-Off Block (HOB) creation.

 Draft for Review PEI Dispatcher

Version 0.91 November 2004 87

There can be no memory writes to the address space beyond this initial temporary memory until a
PEIM registers a permanent memory range using the PEI Service InstallPeiMemory().
 When permanent memory is installed, the PEI Foundation will copy the call stack that is located in
temporary memory into a segment of permanent memory. If necessary, the size of the call stack
can be expanded to 128 KB to support the subsequent transition into DXE.

In addition to the call stack, the PEI Foundation will copy the following from temporary to
permanent memory:

• PEI Foundation private data
• PEI Foundation heap
• HOB list

Any permanent memory consumed in this fashion by the PEI Foundation will be described in a
HOB, which the PEI Foundation will create.

In addition, if there were any EFI_PEI_PPI_DESCRIPTORs created in the temporary memory
heap, their respective locations have been translated by an offset equal to the difference between the
original heap location in temporary memory and the destination location in permanent memory. In
addition to this heap copy, the PEI Foundation will traverse the PEI PPI database. Any references
to EFI_PEI_PPI_DESCRIPTORs that are in temporary memory will be fixed up by the PEI
Foundation to reflect the location of the EFI_PEI_PPI_DESCRIPTORs destination in permanent
memory.

The PEI Foundation will invoke the DXE IPL PPI after dispatching all candidate PEIMs. The
DXE IPL PPI may have to allocate additional regions from permanent memory to be able to load
and relocate the DXE Foundation from its firmware store. The DXE IPL PPI will describe these
memory allocations in the appropriate HOB such that when control is passed to DXE, an accurate
record of the memory usage will be known to the DXE Foundation.

Invoking the PEIM's Entry Point
PEIMs are written using Microsoft* CDECL conventions, which detail how parameters are passed
on the stack. After assessing a PEIM's dependency expression to see if it can be invoked, the PEI
Foundation will pass control to the PEIM's entry point. This entry point is a value described in the
PEIM's image header. This header could be either of the following:

• Microsoft* PE/COFF image
• Terse Executable (TE) image format

The PEI Foundation will push an indirect pointer to the PEI Services Table and the address of the
firmware file onto the stack before it invokes the PEIM.

In the entry point of the PEIM, or what can be called its constructor, the PEIM has the opportunity
do the following:

• Locate other PPIs
• Install PPIs that reference services within the body of this PEIM
• Register for a notification

Once the PEIM has completed its constructor processing, it returns back to the PEI Foundation.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

88 November 2004 Version 0.91

See the Microsoft Portable Executable and Common Object File Format Specification for
information on PE/COFF images; see the Intel® Platform Innovation Framework for EFI
Architecture Specification for information on TE images.

Knowing When Dispatcher Tasks Are Finished
The PEI Dispatcher is finished with a pass when it has finished dispatching all the PEIMs that it
can. During a pass, some PEIMs might not have been dispatched if they had requirements that no
other PEIM has met.

However, with the weak ordering defined in previous requirements, system RAM could possibly be
initialized before all PEIMs are given a chance to run. This situation can occur because the system
RAM initialization PEIM is not required to consume all resources provided by all other PEIMs.
The PEI Dispatcher must recognize that its tasks are not complete until all PEIMs have been given
an opportunity to run.

Example Dispatch Algorithm
The following pseudo code is an example of an algorithm that uses few registers and implements
the requirements listed in the previous section. The pseudo code uses simple C-like statements but
more assembly-like flow-of-control primitives. Some error recovery paths, such as verification
failure, have been left out for clarity. PEIMs may designate themselves as “for recovery” and “for
nonrecovery.” This check has also been omitted for clarity.

The dispatch algorithm’s main data structure is the DispatchedBitMap as described in the following
table.

Table 6-9. Example Dispatch Map

PEIM# Item PEIM# Item

 FV0 4 FV1

 PEI Foundation <non PEIM>

 <non PEIM> <non PEIM>

0 PEIM <non PEIM>

1 PEIM 5 PEIM

2 Platform PEIM with
EFI_PEI_FIND_FV_PPI

 <non PEIM>

 <non PEIM> 6 PEIM

3 PEIM 7 PEIM

The table above is an example of a dispatch in a given set of firmware volumes (FVs). Following
are the steps in this dispatch:

1. If the dispatcher has not seen the FV before, it validates all of the PEIMs in that FV. For this
reason, the order that EFI_PEI_FIND_FV_PPI reports FVs must not change throughout the
first PEI pass.

2. The algorithm scans through the PEIMs that it knows about.

 Draft for Review PEI Dispatcher

Version 0.91 November 2004 89

3. When it comes to a PEIM that has not been dispatched, it invokes a routine known as
LocatePpi(), which finds PPIs that have been installed, to verify that all of the
requirements listed in the dependency expression (depex) are in the PPI database.

4. If all of the GUIDed interfaces listed in the depex are available, the PEIM is invoked.
5. When the routine completes a pass through an FV, it calls EFI_PEI_FIND_FV_PPI (if the

routine has found and dispatched it).
6. If EFI_PEI_FIND_FV_PPI reports a new FV, the dispatcher invokes the

EFI_PEI_SECURITY_PPI authentication routine to corroborate the integrity of the FV.
7. Iterations continue through all known PEIMs in all known FVs until a pass is made with no

PEIMs dispatched, thus signifying completion.
8. After the dispatch completes, the PEI Foundation locates and invokes the GUID for the DXE

IPL PPI, passing in the HOB address and a valid stack. Failing to discover the GUID for the
DXE IPL PPI shall be an error.

Dispatching When Memory Exists
The purpose of the PEI phase of execution is to discover and initialize main memory. As such, a
large number of the modules execute from the nonvolatile firmware store and cannot be shadowed.
However, there are several circumstances in which the shadowing of a PEIM and the relocation of
this image into memory are of interest. This can include but is not limited to compressing PEIMs,
such as the DXE IPL PPI, and those modules that are required for crisis recovery.

The PEI architecture shall not dictate what compression mechanism is to be used, but there will be
a Decompress service that is published by some PEIM that the PEI Foundation will discover and
use when it becomes available. In addition, loading images also requires a full image-relocation
service and the ability to flush the cache. The former will allow the PEIM that was relocated into
RAM to have its relocations adjust pursuant to the new load address. The latter service will be
invoked by the PEI Foundation so that this relocated code can be run, especially on Itanium-based
platforms that do not have a coherent data and code cache.

A compressed section shall have an implied dependency on permanent memory having been
installed. To speed up boot time, however, there can be an explicit annotation of this dependency.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

90 November 2004 Version 0.91

 Draft for Review

Version 0.91 November 2004 91

7
PEIMs

Introduction
A Pre-EFI Initialization Module (PEIM) represents a unit of code and/or data. It abstracts domain-
specific logic and is analogous to a DXE driver. As such, a given group of PEIMs for a platform
deployment might include a set of the following:

• Platform-specific PEIMs
• Processor-specific PEIMs
• Chipset-specific PEIMs
• PEI CIS–prescribed architectural PEIMs
• Miscellaneous PEIMs

The PEIM encapsulation allows for a platform builder to use services for a given hardware
technology without having to build the source of this technology or necessarily understand its
implementation. A PEIM-to-PEIM Interface (PPI) is the means by which to abstract hardware-
specific complexities to a platform builder's PEIM. As such, PEIMs can work in concert with other
PEIMs using PPIs.

In addition, PEIMs can ascertain a fixed set of services that are always available through the PEI
Services Table.

Finally, because the PEIM represents the basic unit of execution beyond the Security (SEC) phase
and the PEI Foundation, there will always be some non-zero-sized collection of PEIMs in a
platform.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

92 November 2004 Version 0.91

PEIM Structure

PEIM Structure Overview
Each Pre-EFI Initialization Module (PEIM) is stored in a file. It consists of the following:

• Standard header
• Execute-in-place code/data section
• Optional relocation information
• Authentication information, if present

The PEIM binary image can be executed in place from its location in the firmware volume (FV) or
from a compressed component that will be shadowed after permanent memory has been installed.
The executable section of the PEIM may be either position-dependent or position-independent
code. If the executable section of the PEIM is position-dependent code, relocation information
must be provided in the PEIM image to allow FV store software to relocate the image to a different
location than it is compiled.

The figure below depicts the basic layout of a PEIM. See the following specifications for the
indicated code definition:

• Firmware file header definition: Intel® Platform Innovation Framework for EFI Firmware File
System Specification

• Section type definitions: Intel® Platform Innovation Framework for EFI Firmware Volume
Specification

Figure 7-1. PEIM Layout in a Firmware File

 Draft for Review PEIMs

Version 0.91 November 2004 93

Relocation Information

Position-Dependent Code
PEIMs that are developed using position-dependent code require relocation information. When an
image in a firmware volume (FV) is updated, the update software will use the relocation
information to fix the code image according to the module’s location in the FV. The relocation is
done on the authenticated image; therefore, software verifying the integrity of the image must undo
the relocation during the verification process.

There is no explicit pointer to this data. Instead, the update and verification tool will know that the
image is actually stored as PE32 if the Pe32Image bit is set in the header
EFI_COMMON_SECTION_HEADER; type EFI_COMMON_SECTION_HEADER is defined in the
Intel® Platform Innovation Framework for EFI Firmware Volume Specification. The PE32
specification, in turn, will be used to ascertain the relocation records.

Position-Independent Code
If the PEIM is written in position-independent code, then its entry point shall be at the lowest
address in the section. This method is useful for creating PEIMs for the Itanium® processor family.

Relocation Information Format
The relocations will be contained in a PE32+ image. See the Microsoft Portable Executable and
Common Object File Format Specification for more information. The determination of whether the
image subscribes to the PE32 image format or is position-independent assembly language should be
provided by the firmware volume section type. The PEIM that is formatted as PE/COFF will
always be linked against a base address of zero. This allows for support of signature checking.

The section may also be compressed if there is a compression encapsulation section.

Authentication Information
The authentication information will be contained in a section of type
EFI_SECTION_GUID_DEFINED (see the Intel® Platform Innovation Framework for EFI
Firmware Volume Specification for more information on section types). The information contained
in this section could be one of the following:

• A cryptographic-quality hash computed across the PEIM image
• A simple checksum
• A CRC

The GUID defines the meaning of the associated encapsulated data. The relocation section is
needed to undo the fix-ups done on the image so the hash that was computed at build time can be
confirmed. In other words, the build of a PEIM image is linked against zero, but the update tool
will relocate the PEIM image for its execute-in-place address (at least for images that are not
position-independent code). Any signing information is calculated on the image after the image has
been linked against an address of zero. The relocations on the image will have to be “undone” to
determine if the image has been modified.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

94 November 2004 Version 0.91

The image must be linked against address zero by the PEIM provider. The build or update tool will
apply the appropriate relocations. The linkage against address zero is key because it allows a
subsequent undoing of the relocations.

 Draft for Review PEIMs

Version 0.91 November 2004 95

PEIM Invocation Entry Point

EFI_PEIM_ENTRY_POINT

Summary
The PEI Dispatcher will invoke each PEIM one time. During this pass, the PEI Dispatcher will
pass control to the PEIM at the AddressOfEntryPoint in the PE Header.
 AddressOfEntryPoint is defined in the Microsoft Portable Executable and Common Object
File Format Specification.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEIM_ENTRY_POINT) (
 IN EFI_FFS_FILE_HEADER *FfsHeader,
 IN struct _EFI_PEI_SERVICES **PeiServices
);

Parameters
FfsHeader

Pointer to the FFS file header. Type EFI_FFS_FILE_HEADER is defined in the
Intel® Platform Innovation Framework for EFI Firmware File System Specification.

PeiServices

Describes the list of possible PEI Services.

Description
This function is the entry point for a PEIM. EFI_IMAGE_ENTRY_POINT is the equivalent of
this state in the EFI/DXE environment; see the DXE CIS for its definition.

The motivation behind this definition is that the firmware file system has the provision to mark a
file as being both a PEIM and DXE driver. The result of this name would be that both the PEI
Dispatcher and the DXE Dispatcher would attempt to execute the module. In doing so, it is
incumbent upon the code in the entry point of the driver to decide what services are exposed,
namely whether to make boot service and runtime calls into the EFI System Table or to make calls
into the PEI Services Table. The means by which to make this decision entail examining the
second argument on entry, which is a pointer to the respective foundation's exported service-call
table. Both PEI and EFI/DXE have a common header, EFI_TABLE_HEADER, for the table. The
code in the PEIM or DXE driver will examine the Arg2->Hdr->Signature. If it is
EFI_SYSTEM_TABLE_SIGNATURE, the code will assume DXE driver behavior; if it is
PEI_SERVICES_SIGNATURE, the code will assume PEIM behavior.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

96 November 2004 Version 0.91

Status Codes Returned
EFI_SUCCESS The service completed successfully

< 0 There was an error

 Draft for Review PEIMs

Version 0.91 November 2004 97

PEIM Descriptors

PEIM Descriptors Overview
A PEIM descriptor is the data structure used by PEIMs to export service entry points and data. The
descriptor contains the following:

• Flags
• A pointer to a GUID
• A pointer to data

The latter data can include a list of pointers to functions and/or data. It is the function pointers that
are commonly referred to as PEIM-to-PEIM Interfaces (PPIs), and the PPI is the unit of software
across which PEIMs can invoke services from other PEIMs.

A PEIM also uses a PEIM descriptor to export a service to the PEI Foundation into which the PEI
Foundation will pass control in response to an event, namely "notifying" the callback when a PPI is
installed or reinstalled. As such, PEIM descriptors serve the dual role of exposing the following:

• A callable interface/data for other PEIMs
• A callback interface from the perspective of the PEI Foundation

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

98 November 2004 Version 0.91

EFI_PEI_DESCRIPTOR

Summary
This data structure is the means by which callable services are installed and notifications are
registered in the PEI phase.

Prototype
typedef union {
 EFI_PEI_NOTIFY_DESCRIPTOR Notify;
 EFI_PEI_PPI_DESCRIPTOR Ppi;
} EFI_PEI_DESCRIPTOR;

Parameters
Notify

The typedef structure of the notification descriptor. See the
EFI_PEI_NOTIFY_DESCRIPTOR type definition.

Ppi

The typedef structure of the PPI descriptor. See the EFI_PEI_PPI_DESCRIPTOR
type definition.

Description
EFI_PEI_DESCRIPTOR is a data structure that can be either a PPI descriptor or a notification
descriptor. A PPI descriptor is used to expose callable services to other PEIMs. A notification
descriptor is used to register for a notification or callback when a given PPI is installed.

 Draft for Review PEIMs

Version 0.91 November 2004 99

EFI_PEI_NOTIFY_DESCRIPTOR

Summary
The data structure in a given PEIM that tells the PEI Foundation where to invoke the notification
service.

Prototype
typedef struct _EFI_PEI_NOTIFY_DESCRIPTOR {
 UINTN Flags;
 EFI_GUID *Guid;
 EFI_PEIM_NOTIFY_ENTRY_POINT Notify;
} EFI_PEI_NOTIFY_DESCRIPTOR;

Parameters
Flags

Details if the type of notification is callback or dispatch.

Guid

The address of the EFI_GUID that names the interface.

Notify

Address of the notification callback function itself within the PEIM. Type
EFI_PEIM_NOTIFY_ENTRY_POINT is defined in "Related Definitions" below.

Description
EFI_PEI_NOTIFY_DESCRIPTOR is a data structure that is used by a PEIM that needs to be
called back when a PPI is installed or reinstalled. The notification is similar to the
RegisterProtocolNotify() function in the EFI 1.10 Specification. The use model is
complementary to the dependency expression (depex) and is as follows:

• A PEIM expresses the PPIs that it must have to execute in its depex list.
• A PEIM expresses any other PEIMs that it needs, perhaps at some later time, in

EFI_PEI_NOTIFY_DESCRIPTOR.

The latter data structure includes the GUID of the PPI for which the PEIM publishing the
notification would like to be reinvoked.

Following is an example of the notification use model for
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI. In this example, a PEIM called
SamplePeim executes early in the PEI phase before main memory is available. However,
SamplePeim also needs to create some large data structure later in the PEI phase. As such,
SamplePeim has a NULL depex, but after its entry point is processed, it needs to call
NotifyPpi() with a EFI_PEI_NOTIFY_DESCRIPTOR, where the notification descriptor
includes the following:

• A reference to EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI
• A reference to a function within this same PEIM called SampleCallback

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

100 November 2004 Version 0.91

When the PEI Foundation finally migrates the system from temporary to permanent memory and
installs the EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI, the PEI Foundation assesses if
there are any pending notifications on this PPI. After the PEI Foundation discovers the descriptor
from SamplePeim, the PEI Foundation invokes SampleCallback.

With respect to the Flags parameter, the difference between callback and dispatch mode is as
follows:

• Callback mode: Invokes all of the agents that are registered for notification immediately after
the PPI is installed.

• Dispatch mode: Calls the agents that are registered for notification only after the PEIM that
installs the PPI in question has returned to the PEI Foundation.

The callback mechanism will give a better quality of service, but it has the downside of possibly
deepening the use of the stack (i.e., the agent that installed the PPI that engenders the notification is
a PEIM itself that has used the stack already). The dispatcher mode, however, is better from a
stack-usage perspective in that when the PEI Foundation invokes the agents that want notification,
the stack has returned to the minimum stack usage of just the PEI Foundation.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEIM_NOTIFY_ENTRY_POINT) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDescriptor,
 IN VOID *Ppi
);

PeiServices

Indirect reference to the PEI Services Table.

NotifyDescriptor

Address of the notification descriptor data structure. Type
EFI_PEI_NOTIFY_DESCRIPTOR is defined above.

Ppi

Address of the PPI that was installed.

 Draft for Review PEIMs

Version 0.91 November 2004 101

EFI_PEI_PPI_DESCRIPTOR

Summary
The data structure through which a PEIM describes available services to the PEI Foundation.

Prototype
typedef struct _EFI_PEI_PPI_DESCRIPTOR {
 UINTN Flags;
 EFI_GUID *Guid;
 VOID *Ppi;
} EFI_PEI_PPI_DESCRIPTOR;

Parameters
Flags

This field is a set of flags describing the characteristics of this imported table entry.
 See "Related Definitions" below for possible flag values.

Guid

The address of the EFI_GUID that names the interface.

Ppi

A pointer to the PPI. It contains the information necessary to install a service.

Description
EFI_PEI_PPI_DESCRIPTOR is a data structure that is within the body of a PEIM or created by
a PEIM. It includes the following:

• Information about the nature of the service
• A reference to a GUID naming the service
• An associated pointer to either a function or data related to the service

There can be a catenation of one or more of these EFI_PEI_PPI_DESCRIPTORs. The final
descriptor will have the EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST flag set to indicate
to the PEI Foundation how many of the descriptors need to be added to the PPI database within the
PEI Foundation. The PEI Services that references this data structure include InstallPpi(),
ReinstallPpi(), and LocatePpi().

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

102 November 2004 Version 0.91

Related Definitions
//
// PEI PPI Services List Descriptors
//

#define EFI_PEI_PPI_DESCRIPTOR_PIC 0x00000001
#define EFI_PEI_PPI_DESCRIPTOR_PPI 0x00000010
#define EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK 0x00000020
#define EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH 0x00000040
#define EFI_PEI_PPI_DESCRIPTOR_NOTIFY_TYPES 0x00000060
#define EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST 0x80000000

Following is a description of the fields in the above definition:

EFI_PEI_PPI_DESCRIPTOR_PIC When set to 1, this designates that the PPI described
by the structure is position-independent code (PIC).

EFI_PEI_PPI_DESCRIPTOR_PPI When set to 1, this designates that the PPI described
by this structure is a normal PPI. As such, it should
be callable by the conventional PEI infrastructure.

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK When set to 1, this flag designates that the service
registered in the descriptor is to be invoked at
callback. This means that if the PPI is installed for
which the listener registers a notification, then the
callback routine will be immediately invoked. The
danger herein is that the callback will inherit whatever
depth had been traversed up to and including this
call.

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH When set to 1, this flag designates that the service
registered in the descriptor is to be invoked at
dispatch. This means that if the PPI is installed for
which the listener registers a notification, then the
callback routine will be deferred until the PEIM calling
context returns to the PEI Foundation. Prior to
invocation of the next PEIM, the notifications will be
dispatched. The advantage herein is that the
callback will have the maximum available stack depth
as any other PEIM.

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_TYPES When set to 1, this flag designates that this is a
notification-style PPI.

EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST This flag is set to 1 in the last structure entry in the list
of PEI PPI descriptors. This flag is used by the PEI
Foundation Services to know that there are no
additional interfaces to install.

 Draft for Review PEIMs

Version 0.91 November 2004 103

PEIM-to-PEIM Communication

Overview
PEIMs may invoke other PEIMs. The interfaces themselves are named using GUIDs. Because the
PEIMs may be authored by different organizations at different times and updated at different times,
references to these interfaces cannot be resolved during their execution by referring to the PEI PPI
database. The database is loaded and queried using PEI Services such as InstallPpi() and
LocatePpi().

Dynamic PPI Discovery

PPI Database
The PPI database is a data structure that PEIMs can use to discover what interfaces are available or
to manage a specific interface. The actual layout of the PPI database is opaque to a PEIM but its
contents can be queried and manipulated using the following PEI Services:

• InstallPpi()

• ReinstallPpi()

• LocatePpi()

• NotifyPpi()

Invoking a PPI
When the PEI Foundation examines a PEIM for dispatch eligibility, it examines the dependency
expression section of the firmware file. If there are non-NULL contents, the Reverse Polish
Notation (RPN) expression is evaluated. Any requested PPI GUIDs in this data structure are
queried in the PPI database. The existence in the database of the particular PUSH_GUID depex
opcode leads to this expression evaluating to true.

Address Resolution
When a PEIM needs to leverage a PPI, it uses the PEI Foundation Service LocatePpi() to
discover if an instance of the interface exists. The PEIM could do either of the following:

• Install the PPI in its depex to ensure that its entry point will not be invoked until the needed PPI
is already installed

• Have a very thin set of code in its entry point that simply registers a notification on the desired
PPI.

In the case of either the depex or the notification, the LocatePpi() call will then succeed and the
pointer returned on this call references the EFI_PEI_PPI_DESCRIPTOR. It is through this data
structure that the actual code entry point can be discovered. If this PEIM is being loaded before
permanent memory is available, it will not have resources to cache this discovered interface and
will have to search for this interface every time it needs to invoke the service.

It should also be noted that you cannot uninstall a PPI, so the services will be left in the database.
If a PPI needs to be shrouded, a version can be “reinstalled” that just returns failure.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

104 November 2004 Version 0.91

Also, there is peril in caching a PPI. For example, if you cache a PPI and the producer of the PPI
“reinstalls” it to be something else (i.e., shadows to memory), then you have the possibility that the
agent who cached the data will have “stale” or “illegal” data. For example, imagine the Stall PPI,
EFI_PEI_STALL_PPI, relocating itself to memory using the Load File PPI,
EFI_PEI_FV_FILE_LOADER_PPI, and reinstalling the interface for performance
considerations. A way to solve the latter issue, as a platform builder, is by having a different stall
PPI for the memory-based one versus that of the Execute In Place (XIP) one.

 Draft for Review

Version 0.91 November 2004 105

8
Architectural PPIs

Introduction
The PEI Foundation and PEI Dispatcher rely on the following PEIM-to-PEIM Interfaces (PPIs) to
perform its work. The abstraction provided by these interfaces allows dispatcher algorithms to be
improved over time or have some platform variability without affecting the rest of PEI.

The key to these PPIs is that they are architecturally defined interfaces consumed by the PEI
Foundation, but they do not necessarily get published by the PEI Foundation.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

106 November 2004 Version 0.91

Required Architectural PPIs

Master Boot Mode PPI (Required)

EFI_PEI_MASTER_BOOT_MODE_PPI (Required)

Summary
The Master Boot Mode PPI is installed by a PEIM to signal that a final boot has been determined
and set. This signal is useful in that PEIMs with boot-mode-specific behavior (for example, S3
versus normal) can put this PPI in their dependency expression.

GUID
#define EFI_PEI_MASTER_BOOT_MODE_PEIM_PPI \
{0x7408d748, 0xfc8c, 0x4ee6, 0x92, 0x88, 0xc4, 0xbe, 0xc0, 0x92,
0xa4, 0x10};

PPI Interface Structure
None.

Description
The Master Boot Mode PPI is a PPI GUID and must be in the dependency expression of every
PEIM that modifies the basic hardware. The dispatch, or entry point, of the module that installs the
Master Boot Mode PPI modifies the boot path value in the following ways:

• Directly, through the PEI Service SetBootMode()
• Indirectly through its optional subordinate boot path modules

The PEIM that publishes the Master Boot Mode PPI has a non-null dependency expression if there
are subsidiary modules that publish alternate boot path PPIs. The primary reason for this PPI is to
be the root of dependencies for any child boot mode provider PPIs.

Status Codes Returned
None.

 Draft for Review Architectural PPIs

Version 0.91 November 2004 107

DXE IPL PPI (Required)

EFI_DXE_IPL_PPI (Required)

Summary
Final service to be invoked by the PEI Foundation.

GUID
#define EFI_DXE_IPL_PPI_GUID \
{ 0xae8ce5d, 0xe448, 0x4437, 0xa8, 0xd7, 0xeb, 0xf5, 0xf1, 0x94,
0xf7, 0x31 }

PPI Interface Structure
typedef struct _EFI_DXE_IPL_PPI {
 EFI_DXE_IPL_ENTRY Entry;
} EFI_DXE_IPL_PPI;

Parameters
Entry

The entry point to the DXE IPL PPI. See the Entry() function description.

Description
After completing the dispatch of all available PEIMs, the PEI Foundation will invoke this PPI
through its entry point using the same handoff state used to invoke other PEIMs. This special
treatment by the PEI Foundation effectively makes the DXE IPL PPI the last PPI to execute during
PEI. When this PPI is invoked, the system state should be as follows:

• Single thread of execution
• Interrupts disabled
• Processor mode as defined for PEI

The DXE IPL PPI is responsible for locating and loading the DXE Foundation. The DXE IPL PPI
may use PEI services to locate and load the DXE Foundation. As long as the DXE IPL PPI is using
PEI Services, it must obey all PEI interoperability rules of memory allocation, HOB list usage, and
PEIM-to-PEIM communication mechanisms.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

108 November 2004 Version 0.91

EFI_DXE_IPL_PPI.Entry()

Summary
The architectural PPI that the PEI Foundation invokes when there are no additional PEIMs to
invoke.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DXE_IPL_ENTRY) (
 IN struct _EFI_DXE_IPL_PPI *This,
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_HOB_POINTERS HobList
);

Parameters
This

Pointer to the DXE IPL PPI instance.

PeiServices

Pointer to the PEI Services Table.

HobList

Pointer to the list of Hand-Off Block (HOB) entries.

Description
This function is invoked by the PEI Foundation. The PEI Foundation will invoke this service when
there are no additional PEIMs to invoke in the system. If this PPI does not exist, it is an error
condition and an ill-formed firmware set. The DXE IPL PPI should never return after having been
invoked by the PEI Foundation. The DXE IPL PPI can do many things internally, including the
following:

• Invoke the DXE entry point from a firmware volume.
• Invoke the recovery processing modules.
• Invoke the S3 resume modules.

Status Codes Returned
EFI_SUCCESS Upon this return code, the PEI Foundation should

enter some exception handling. Under normal
circumstances, the DXE IPL PPI should not return.

 Draft for Review Architectural PPIs

Version 0.91 November 2004 109

Memory Discovered PPI (Required)

EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI (Required)

Summary
This PPI is published by the PEI Foundation when the main memory is installed. It is essentially a
PPI with no associated interface. Its purpose is to be used as a signal for other PEIMs who can
register for a notification on its installation.

GUID
#define EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI \
{0xf894643d, 0xc449, 0x42d1, 0x8e, 0xa8, 0x85, 0xbd, 0xd8, 0xc6,
0x5b, 0xde};

PPI Interface Structure
None.

Description
This PPI is installed by the PEI Foundation at the point of system evolution when the permanent
memory size has been registered and waiting PEIMs can use the main memory store. Using this
GUID allows PEIMs to do the following:

• Be notified when this PPI is installed.
• Include this PPI's GUID in the EFI_DEPEX.

The expectation is that a compressed PEIM would depend on this PPI, for example. The PEI
Foundation will relocate the temporary cache to permanent memory prior to this installation.

Status Codes Returned
None.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

110 November 2004 Version 0.91

Optional Architectural PPIs

Boot in Recovery Mode PPI (Optional)

EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI (Optional)

Summary
This PPI is installed by the platform PEIM to designate that a recovery boot is in progress.

GUID
#define EFI_PEI_BOOT_IN_RECOVERY_MODE_PEIM_PPI \
{0x17ee496a, 0xd8e4, 0x4b9a, 0x94, 0xd1, 0xce, 0x82, 0x72, 0x30,
0x8, 0x50}

PPI Interface Structure
None.

Description
This optional PPI is installed by the platform PEIM to designate that a recovery boot is in progress.
 Its purpose is to allow certain PEIMs that wish to be dispatched only during a recovery boot to
include this PPI in their dependency expression (depex). Including this PPI in the depex allows the
PEI Dispatcher to skip recovery-specific PEIMs during normal restarts and thus save on boot time.
 This PEIM has no associated PPI and is used only to designate the system state as being "in a crisis
recovery dispatch."

Status Codes Returned
None.

 Draft for Review Architectural PPIs

Version 0.91 November 2004 111

Section Extraction PPI (Optional)

EFI_PEI_SECTION_EXTRACTION_PPI (Optional)

Summary
This PPI supports encapsulating sections, such as GUIDed sections used to authenticate the file
encapsulation of other domain-specific wrapping.

GUID
#define EFI_PEI_SECTION_EXTRACTION_PPI_GUID \
 { 0x4F89E208, 0xE144, 0x4804, 0x9EC8, 0x0F894F7E36D7 }

PPI Interface Structure
typedef struct _EFI_PEI_SECTION_EXTRACTION_PPI {
 EFI_PEI_GET_SECTION GetSection;
} EFI_PEI_SECTION_EXTRACTION_PPI;

Parameters
GetSection

Retrieves a section from within a section file. See the GetSection() function
description.

Description
This PPI is used to retrieve a section from within a section file. The section file is akin to the
stream paradigm defined in DXE except that there can only be one stream, or encapsulated set of
sections; as a result, the stream concept will be omitted.
 EFI_PEI_SECTION_EXTRACTION_PPI.GetSection() will retrieve both encapsulation
sections and leaf sections in their entirety, exclusive of the section header.

Because the requested section may be contained within compression and/or GUIDed
encapsulations, the implementation must be capable of processing these encapsulations to produce
the requested section. While decompression of an encapsulating compression section is completely
transparent, the results of all encapsulating GUIDed sections used for authentication must be
exposed to the caller so the caller can make appropriate policy decisions.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

112 November 2004 Version 0.91

EFI_PEI_SECTION_EXTRACTION_PPI.GetSection()

Summary
Retrieves a section from within a section file.

Prototype
EFI_STATUS
(EFIAPI *EFI_PEI_GET_SECTION)(
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_SECTION_EXTRACTION_PPI *This,
 IN EFI_SECTION_TYPE *SectionType,
 IN EFI_GUID *SectionDefinitionGuid,
 OPTIONAL
 IN UINTN SectionInstance,
 IN VOID **Buffer,
 IN OUT UINT32 *BufferSize,
 OUT UINT32 *AuthenticationStatus
);

Parameters
PeiServices

Pointer to the PEI Services Table.

This

Indicates the calling context.

SectionType

Pointer to an EFI_SECTION_TYPE. If SectionType == NULL, the contents of
the entire section are returned in Buffer. If SectionType is not NULL, only the
requested section is returned. Type EFI_SECTION_TYPE is defined in the Intel®
Platform Innovation Framework for EFI Firmware Volume Specification.

SectionDefinitionGuid

Pointer to an EFI_GUID. If SectionType ==
EFI_SECTION_GUID_DEFINED, SectionDefinitionGuid indicates for
which section GUID to search. If SectionType !=
EFI_SECTION_GUID_DEFINED, SectionDefinitionGuid is unused and is
ignored. See Intel® Platform Innovation Framework for EFI Firmware Volume
Specification for details about GUID-defined sections.

 Draft for Review Architectural PPIs

Version 0.91 November 2004 113

SectionInstance

If SectionType is not NULL, indicates which instance of the requested section
type to return. The file’s section layout can be thought of as a tree that is built
recursively left to right. SectionInstance is zero-based and calculated using a
left-to-right depth-first search algorithm of the file’s section layout. See the Intel®
Platform Innovation Framework for EFI Firmware Volume Specification for more
details. If SectionType is NULL, then SectionInstance is ignored.

Buffer

Pointer to a pointer to a buffer in which the section contents are returned. See
"Description" below for more details on using the Buffer parameter.

BufferSize

A pointer to a caller-allocated UINT32. On input, *BufferSize indicates the size
in bytes of the memory region pointed to by Buffer. On output, *BufferSize
contains the number of bytes required to read the section.

AuthenticationStatus

A pointer to a caller-allocated UINT32 in which any metadata from encapsulating
GUID-defined sections is returned. See the Intel® Platform Innovation Framework
for EFI Firmware Volume Specification for more information regarding GUID-
defined sections. All individual AuthenticationStatus values from each
layer of GUID defined section are bitwise OR-ed together to form an aggregate
result. See "Related Definitions" below for possible bit values for
AuthenticationStatus.

Description
The GetSection() function is used to retrieve a section from within a section file. It will
retrieve both encapsulation sections and leaf sections in their entirety, exclusive of the section
header.

The authentication results are passed back in the AuthenticationStatus output variable. If
there are multiple layers of encapsulation, the AuthenticationStatus values from each layer
are bitwise OR-ed together to produce the final output.

The output buffer is specified by a double indirection of the parameter Buffer. The input value
of *Buffer is used to determine whether or not the output buffer is caller allocated or is
dynamically allocated by GetSection().

If the input value of *Buffer!=NULL, it indicates that the output buffer is caller allocated. In
this case, the input value of *BufferSize indicates the size of the caller-allocated output buffer.
If the output buffer is not large enough to contain the entire requested output, it is filled up to the
point that the output buffer is exhausted, EFI_BUFFER_TOO_SMALL is returned,
and *BufferSize is returned with the size required to successfully complete the read. All other
output parameters are returned with valid values.

If the input value of *Buffer==NULL, it indicates the output buffer is to be allocated by
GetSection(). In this case, GetSection() will allocate an appropriately sized buffer from

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

114 November 2004 Version 0.91

boot services pool memory which will be returned in *Buffer. The size of the new buffer is
returned in *BufferSize and all other output parameters are returned with valid values.

Related Definitions
//**
// Bit values for AuthenticationStatus
//**
#define EFI_AUTH_STATUS_PLATFORM_OVERRIDE 0x01
#define EFI_AUTH_STATUS_IMAGE_SIGNED 0x02
#define EFI_AUTH_STATUS_NOT_TESTED 0x04
#define EFI_AUTH_STATUS_TEST_FAILED 0x08

// all other bits are reserved and must be 0

The bit definitions above lead to the following evaluations of AuthenticationStatus:

Table 8-1. AuthenticationStatus Bit Definitions

Bit Definition

xx00 Image was not signed.

xxx1 Platform security policy override. Assumes same meaning as 0010 (the image was
signed, the signature was tested, and the signature passed authentication test).

0010 Image was signed, the signature was tested, and the signature passed authentication test.

0110 Image was signed and the signature was not tested. This can occur if there is no GUIDed
Section Extraction Protocol available to process a GUID-defined section, but it was still
possible to retrieve the data from the GUID-defined section directly.

1010 Image was signed, the signature was tested, and the signature failed the authentication
test.

1110 To generate this code, there must be at least two layers of GUIDed encapsulations. In
one layer, the AuthenticationStatus was returned as 0110; in another layer, it

was returned as 1010. When these two results are OR-ed together, the aggregate result
is 1110.

 Draft for Review Architectural PPIs

Version 0.91 November 2004 115

Status Codes Returned
EFI_SUCCESS The section was successfully processed and the section

contents were returned in Buffer.

EFI_PROTOCOL_ERROR A GUID-defined section was encountered in the file with its
EFI_GUIDED_SECTION_PROCESSING_REQUIRED

bit set, but there was no corresponding GUIDed Section
Extraction Protocol in the handle database. *Buffer is
unmodified.

EFI_NOT_FOUND The requested section does not exist. *Buffer is
unmodified.

EFI_OUT_OF_RESOURCES The system has insufficient resources to process the request.

EFI_INVALID_PARAMETER The SectionStreamHandle does not exist.

EFI_WARN_TOO_SMALL The size of the input buffer is insufficient to contain the
requested section. The input buffer is filled and contents are
section contents are truncated.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

116 November 2004 Version 0.91

End of PEI Phase PPI (Optional)

EFI_PEI_END_OF_PEI_PHASE_PPI (Optional)

Summary
This PPI will be installed at the end of PEI for all boot paths, including normal, recovery, and S3.
It allows for PEIMs to possibly quiesce hardware, build handoff information for the next phase of
execution, or provide some terminal processing behavior.

GUID
#define EFI_PEI_END_OF_PEI_PHASE_PPI_GUID \
{0x605EA650, 0xC65C, 0x42e1, 0xBA, 0x80, 0x91, 0xA5, 0x2A,
0xB6,0x18, 0xC6}

PPI Interface Structure
None.

Description
This PPI is installed by the DXE IPL PPI to indicate the end of the PEI usage of memory and
ownership of memory allocation by the DXE phase.

The intended use model is for any agent that needs to do cleanup, such as memory services to
convert internal metadata for tracking memory allocation into HOBs, to have some distinguished
point in which to do so. The PEI Memory Services would register for a callback on the installation
of this PPI.

Status Codes Returned
None.

 Draft for Review Architectural PPIs

Version 0.91 November 2004 117

Find FV PPI (Optional)

EFI_PEI_FIND_FV_PPI (Optional)

Summary
Abstracts additional firmware volumes (FVs) to the PEI Foundation.

GUID
#define EFI_PEI_FIND_FV_PPI_GUID \
 { 0x36164812, 0xa023, 0x44e5, 0xbd85, 0x050bf3c7700aa }

PPI Interface Structure
typedef struct _EFI_PEI_FIND_FV_PPI {
 EFI_PEI_FIND_FV_FINDFV FindFv;
} EFI_PEI_FIND_FV_PPI;

Parameters
FindFv

Service that abstracts the location of additional firmware volumes. See the
FindFv() function description.

Description
Hardware mechanisms for locating FVs in a platform vary widely. EFI_PEI_FIND_FV_PPI
serves to abstract this variation so that the PEI Foundation can remain standard across a wide
variety of platforms. The Intel® Platform Innovation Framework for EFI Firmware Volume Block
Specification describes the FV header EFI_FIRMWARE_VOLUME_HEADER that prefixes a well-
formed volume. The PEI Foundation uses FfsFindNextVolume() to find new FVs, but this
function will call EFI_PEI_FIND_FV_PPI. FfsFindNextVolume() gives a common
interface and EFI_PEI_FIND_FV_PPI is dependent on vendor implementation.

The reason that this service is different from the PEI Service FfsFindNextVolume() is that the
information in EFI_PEI_FIND_FV_PPI is not complete; it cannot describe the base of the boot
firmware volume, for example.

There shall only be one instance of this PPI in the system.

Status Codes Returned
EFI_SUCCESS The firmware volume was found.

EFI_OUT_OF_RESOURCES There are no firmware volumes for the given
FvNumber.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

118 November 2004 Version 0.91

EFI_PEI_FIND_FV_PPI.FindFv()

Summary
This service is published by a platform agenda that abstracts the location of additional firmware
volumes.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FIND_FV_FINDFV) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_FIND_FV_PPI *This,
 IN UINT8 *FvNumber,
 IN OUT EFI_FIRMWARE_VOLUME_HEADER **FvAddress
);

Parameters
PeiServices

Pointer to the PEI Services Table.

This

Interface pointer that implements the Find FV service.

FvNumber

The index of the firmware volume to locate.

FvAddress

The address of the volume to discover. Type EFI_FIRMWARE_VOLUME_HEADER
is defined in the Intel® Platform Innovation Framework for EFI Firmware Volume
Block Specification.

Description
The function returns the base address of the firmware volume whose index was passed in
FvNumber. Once this function reports a firmware volume index/base address pair, that
index/address pairing must continue throughout PEI.

This interface is provided by some platform agent because, other than the location of the boot
firmware volume provided by the Security (SEC) phase, the location of additional firmware
volumes is under the control of the platform builder. Some PEIM with platform awareness will
publish an instance of the Find FV PPI if the following two conditions are met:

• There is at least one well-formed firmware volume beyond the Boot Firmware Volume (BFV).
• This latter firmware volume contains PEIMs that should be evaluated on the given boot mode.

The reason for this distinction is that there can be additional firmware volumes that are exposed to
the DXE IPL PPI and DXE Foundation using firmware volume HOBs, but these same volumes
may not contain additional PEIMs. In fact, it is unlikely to have a scenario where there are PEIMs

 Draft for Review Architectural PPIs

Version 0.91 November 2004 119

in firmware volumes beyond the boot firmware volume because of the time-space constraints of the
PEI phase of execution.

Status Codes Returned
EFI_SUCCESS An additional firmware volume was found.

EFI_OUT_OF_RESOURCES There are no firmware volumes for the given
FvNumber.

EFI_INVALID_PARAMETER *FvAddress is NULL.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

120 November 2004 Version 0.91

Load File PPI (Optional)

EFI_PEI_FV_FILE_LOADER_PPI (Optional)

Summary
This PPI is installed by a PEIM that supports the Load File PPI.

GUID
#define EFI_PEI_FV_FILE_LOADER_GUID \
{ 0x7e1f0d85, 0x4ff, 0x4bb2, 0x86, 0x6a, 0x31, 0xa2, 0x99, 0x6a, 0x48, 0xa8 }

PPI Interface Structure
typedef struct _EFI_PEI_FV_FILE_LOADER_PPI {
 EFI_PEI_FV_LOAD_FILE FvLoadFile;
} EFI_PEI_FV_FILE_LOADER_PPI;

Parameters
FvLoadFile

Loads a PEIM into memory for subsequent execution. See the FvLoadFile()
function description.

Description
This PPI is a pointer to the Load File service. This service will be published by a PEIM. The PEI
Foundation will use this service to launch the known non-XIP PE/COFF PEIM images. This
service may depend upon the presence of the
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI. This service does not accept a pointer to
the PEI Services Table because the service implementation can cache a module-global version of
the pointer on its entry point; for speed considerations, an implementation of this service will be
shadowed into memory using a self-shadowing technique.

 Draft for Review Architectural PPIs

Version 0.91 November 2004 121

EFI_PEI_FV_FILE_LOADER_PPI.FvLoadFile()

Summary
Loads a PEIM into memory for subsequent execution.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_LOAD_FILE) (
 IN struct _EFI_PEI_FV_FILE_LOADER_PPI *This,
 IN EFI_FFS_FILE_HEADER *FfsHeader,
 OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
 OUT UINT64 *ImageSize,
 OUT EFI_PHYSICAL_ADDRESS *EntryPoint
);

 Parameters
This

Interface pointer that implements the Load File PPI instance.

FfsHeader

Pointer to the FFS header of the file to load. Type EFI_FFS_FILE_HEADER is
defined in the Intel® Platform Innovation Framework for EFI Firmware File System
Specification.

ImageAddress

Pointer to the address of the loaded Image.

ImageSize

Pointer to the size of the loaded image.

EntryPoint

Pointer to the entry point of the image.

Description
This service is the single member function of EFI_PEI_FV_FILE_LOADER_PPI. This service
separates image loading and relocating from the PEI Foundation. For example, if there are
compressed images or images that need to be relocated into memory for performance reasons, this
service performs that transformation. This service is very similar to the LOAD_FILE protocol in
the EFI 1.10 Specification. The abstraction allows for an implementation of the FvLoadFile()
service to support different image types in the future. To conform with the PEI CIS, however, there
must be an FvLoadFile()instance that at least supports the PE/COFF and Terse Executable
(TE) image format.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

122 November 2004 Version 0.91

Status Codes Returned
EFI_SUCCESS The image was loaded successfully.

EFI_OUT_OF_RESOURCES There was not enough memory.

EFI_INVALID_PARAMETER The contents of the FFS file did not contain a valid
PE/COFF image that could be loaded.

 Draft for Review Architectural PPIs

Version 0.91 November 2004 123

PEI Reset PPI

EFI_PEI_RESET_PPI (Optional)

Summary
This PPI is installed by some platform- or chipset-specific PEIM that abstracts the Reset Service to
other agents.

GUID
#define EFI_PEI_RESET_PPI_GUID \
{0xef398d58, 0x9dfd, 0x4103, 0xbf, 0x94, 0x78, 0xc6, 0xf4, 0xfe, 0x71, 0x2f};

PPI Interface Structure
typedef struct _EFI_PEI_RESET_PPI {
 EFI_PEI_RESET_SYSTEM ResetSystem;
} EFI_PEI_RESET_PPI;

Parameters
ResetSystem

A service to reset the platform. See the ResetSystem() function description in
Services - PEI: Reset Services.

Description
These services provide a simple reset service. See the ResetSystem() function description for
a description of this service.

Related Definitions
//***
// EFI_PEI_RESET_TYPE
//***
typedef enum {
 EfiPeiResetCold,
 EfiPeiResetWarm,
} EFI_PEI_RESET_TYPE;

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

124 November 2004 Version 0.91

Status Code PPI (Optional)

EFI_PEI_PROGRESS_CODE_PPI (Optional)

Summary
This service is published by a PEIM. There can be only one instance of this service in the system.
If there are multiple variable access services, this PEIM must multiplex these alternate accessors
and provide this single, read-only service to the other PEIMs and the PEI Foundation. This
singleton nature is important because the PEI Foundation will notify when this service is installed.

GUID
#define EFI_PEI_REPORT_PROGRESS_CODE_PPI_GUID \
{0x229832d3, 0x7a30, 0x4b36, 0xb8, 0x27, 0xf4, 0xc, 0xb7, 0xd4, 0x54, 0x36);

PPI Interface Structure
typedef struct _EFI_PEI_PROGRESS_CODE_PPI {
 EFI_PEI_REPORT_STATUS_CODE ReportStatusCode;
} EFI_PEI_PROGRESS_CODE_PPI;

Parameters
ReportStatusCode

Service that allows PEIMs to report status codes. See the ReportStatusCode()
function description in Services - PEI: Status Code Services.

Description
See the ReportStatusCode() function description for a description of this service.

 Draft for Review Architectural PPIs

Version 0.91 November 2004 125

Security PPI (Optional)

EFI_PEI_SECURITY_PPI (Optional)

Summary
This PPI is installed by some platform PEIM that abstracts the security policy to the PEI
Foundation, namely the case of a PEIM’s authentication state being returned during the PEI section
extraction process.

GUID
#define EFI_PEI_SECURITY_PPI_GUID \
{0x1388066e, 0x3a57, 0x4efa, 0x98, 0xf3, 0xc1, 0x2f, 0x3a, 0x95, 0x8a, 0x29}

PPI Interface Structure
typedef struct _EFI_PEI_SECURITY_PPI {
 EFI_PEI_SECURITY_AUTHENTICATION_STATE AuthenticationState;
} EFI_PEI_SECURITY_PPI;

Parameters
AuthenticationState

Allows the platform builder to implement a security policy in response to varying file
authentication states. See the AuthenticationState() function description.

Description
This PPI is a means by which the platform builder can indicate a response to a PEIM's
authentication state. This can be in the form of a requirement for the PEI Foundation to skip a
module using the DeferExecution Boolean output in the AuthenticationState()
member function. Alternately, the Security PPI can invoke something like a cryptographic PPI that
hashes the PEIM contents to log attestations, for which the FfsFileHeader parameter in
AuthenticationState() will be useful. If this PPI does not exist, PEIMs will be considered
trusted.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

126 November 2004 Version 0.91

EFI_PEI_SECURITY_PPI.AuthenticationState()

Summary
Allows the platform builder to implement a security policy in response to varying file
authentication states.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SECURITY_AUTHENTICATION_STATE) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_SECURITY_PPI *This,
 IN UINT32 AuthenticationStatus,
 IN EFI_FFS_FILE_HEADER *FfsFileHeader,
 IN OUT BOOLEAN *DeferExecution
);

Parameters
PeiServices

Pointer to the PEI Services Table.

This

Interface pointer that implements the particular EFI_PEI_SECURITY_PPI
instance.

AuthenticationStatus

Status returned by the verification service as part of section extraction.

FfsFileHeader

Pointer to the file under review. Type EFI_FFS_FILE_HEADER is defined in the
Intel® Platform Innovation Framework for EFI Firmware File System Specification.

DeferExecution

Pointer to a variable that alerts the PEI Foundation to defer execution of a PEIM.

Description
This service is published by some platform PEIM. The purpose of this service is to expose a given
platform's policy-based response to the PEI Foundation. For example, if there is a PEIM in a
GUIDed encapsulation section and the extraction of the PEI file section yields an authentication
failure, there is no a priori policy in the PEI Foundation. Specifically, this situation leads to the
question whether PEIMs that are either not in GUIDed sections or are in sections whose
authentication fails should still be executed.

In fact, it is the responsibility of the platform builder to make this decision. This platform-scoped
policy is a result that a desktop system might not be able to skip or not execute PEIMs because the
skipped PEIM could be the agent that initializes main memory. Alternately, a system may require

 Draft for Review Architectural PPIs

Version 0.91 November 2004 127

that unsigned PEIMs not be executed under any circumstances. In either case, the PEI Foundation
simply multiplexes access to the Section Extraction PPI and the Security PPI. The Section
Extraction PPI determines the contents of a section, and the Security PPI tells the PEI Foundation
whether or not to invoke the PEIM.

The PEIM that publishes the AuthenticationState() service uses its parameters in the
following ways:

• AuthenticationStatus conveys the source information upon which the PEIM acts.

• The DeferExecution value tells the PEI Foundation whether or not to dispatch the PEIM.

In addition, between receiving the AuthenticationState() from the PEI Foundation and
returning with the DeferExecution value, the PEIM that publishes
AuthenticationState() can do the following:

• Log the file state.
• Lock the firmware hubs in response to an unsigned PEIM being discovered.

These latter behaviors are platform- and market-specific and thus outside the scope of the PEI CIS.

Status Codes Returned
EFI_SUCCESS The service performed its action successfully.

EFI_SECURITY_VIOLATION The object cannot be trusted

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

128 November 2004 Version 0.91

 Draft for Review

Version 0.91 November 2004 129

9
Additional PPIs

Introduction
Architectural PPIs described a collection of architecturally required PPIs. These were interfaces
consumed by the PEI Foundation and are not intended to be consumed by other PEIMs.

In addition to these architectural PPIs, however, there is another name space of PPIs that are
optional or mandatory for a given platform. This section describes these additional PPIs:

• Required PPIs:

⎯ CPU I/O PPI

⎯ PCI Configuration PPI

⎯ Stall PPI

⎯ PEI Variable Services
• Optional PPIs:

⎯ Security (SEC) Platform Information PPI

These shall be referred to as first-class PEIMs in some contexts.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

130 November 2004 Version 0.91

Required Additional PPIs

CPU I/O PPI (Required)

EFI_PEI_CPU_IO_PPI (Required)

Summary
This PPI is installed by some platform or chipset-specific PEIM that abstracts the processor-visible
I/O operations.

GUID
#define EFI_PEI_CPU_IO_PPI_INSTALLED_GUID \
{0xe6af1f7b, 0xfc3f, 0x46da, 0xa8, 0x28, 0xa3, 0xb4, 0x57, 0xa4, 0x42, 0x82}

This is an indicator GUID without any data. It represents the fact that a PEIM
has written the address of the EFI_PEI_CPU_IO_PPI into the EFI_PEI_SERVICES
table.

PPI Interface Structure
typedef
struct _EFI_PEI_CPU_IO_PPI {
 EFI_PEI_CPU_IO_PPI_ACCESS Mem;
 EFI_PEI_CPU_IO_PPI_ACCESS Io;
 EFI_PEI_CPU_IO_PPI_IO_READ8 IoRead8;
 EFI_PEI_CPU_IO_PPI_IO_READ16 IoRead16;
 EFI_PEI_CPU_IO_PPI_IO_READ32 IoRead32;
 EFI_PEI_CPU_IO_PPI_IO_READ64 IoRead64;
 EFI_PEI_CPU_IO_PPI_IO_WRITE8 IoWrite8;
 EFI_PEI_CPU_IO_PPI_IO_WRITE16 IoWrite16;
 EFI_PEI_CPU_IO_PPI_IO_WRITE32 IoWrite32;
 EFI_PEI_CPU_IO_PPI_IO_WRITE64 IoWrite64;
 EFI_PEI_CPU_IO_PPI_MEM_READ8 MemRead8;
 EFI_PEI_CPU_IO_PPI_MEM_READ16 MemRead16;
 EFI_PEI_CPU_IO_PPI_MEM_READ32 MemRead32;
 EFI_PEI_CPU_IO_PPI_MEM_READ64 MemRead64;
 EFI_PEI_CPU_IO_PPI_MEM_WRITE8 MemWrite8;
 EFI_PEI_CPU_IO_PPI_MEM_WRITE16 MemWrite16;
 EFI_PEI_CPU_IO_PPI_MEM_WRITE32 MemWrite32;
 EFI_PEI_CPU_IO_PPI_MEM_WRITE64 MemWrite64;
} EFI_PEI_CPU_IO_PPI;

Parameters
Mem

Collection of memory-access services. See the Mem() function description. Type
EFI_PEI_CPU_IO_PPI_ACCESS is defined in "Related Definitions" below.

 Draft for Review Additional PPIs

Version 0.91 November 2004 131

Io

Collection of I/O-access services. See the Io() function description. Type
EFI_PEI_CPU_IO_PPI_ACCESS is defined in "Related Definitions" below.

IoRead8

8-bit read service. See the IoRead8() function description.

IoRead16

16-bit read service. See the IoRead16() function description.

IoRead32

32-bit read service. See the IoRead32() function description.

IoRead64

64-bit read service. See the IoRead64() function description.

IoWrite8

8-bit write service. See the IoWrite8() function description.

IoWrite16

16-bit write service. See the IoWrite16() function description.

IoWrite32

32-bit write service. See the IoWrite32() function description.

IoWrite64

64-bit write service. See the IoWrite64() function description.

MemRead8

8-bit read service. See the MemRead8() function description.

MemRead16

16-bit read service. See the MemRead16() function description.

MemRead32

32-bit read service. See the MemRead32() function description.

MemRead64

64-bit read service. See the MemRead64() function description.

MemWrite8

8-bit write service. See the MemWrite8() function description.

MemWrite16

16-bit write service. See the MemWrite16() function description.

MemWrite32

32-bit write service. See the MemWrite32() function description.

MemWrite64

64-bit write service. See the MemWrite64() function description.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

132 November 2004 Version 0.91

Description
This PPI provides a set of memory- and I/O-based services. The perspective of the services is that
of the processor, not the bus or system.

Related Definitions
//***
// EFI_PEI_CPU_IO_PPI_ACCESS
//***

typedef
struct {
 EFI_PEI_CPU_IO_PPI_IO_MEM Read;
 EFI_PEI_CPU_IO_PPI_IO_MEM Write;
} EFI_PEI_CPU_IO_PPI_ACCESS;

Read

This service provides the various modalities of memory and I/O read. It is similar to
the EFI_CPU_IO_PROTOCOL service of the same name in the EFI 1.10
Specification.

Write

This service provides the various modalities of memory and I/O write. It is similar to
the EFI_CPU_IO_PROTOCOL service of the same name in the EFI 1.10
Specification.

 Draft for Review Additional PPIs

Version 0.91 November 2004 133

EFI_PEI_CPU_IO_PPI.Mem()

Summary
Memory-based access services.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_CPU_IO_PPI_WIDTH is defined in "Related Definitions" below.

Address

The physical address of the access.

Count

The number of accesses to perform.

Buffer

A pointer to the buffer of data.

Description
The Mem() function provides a list of memory-based accesses.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

134 November 2004 Version 0.91

Related Definitions
//***
// EFI_PEI_CPU_IO_PPI_WIDTH
//***

typedef enum {
 EfiPeiCpuIoWidthUint8,
 EfiPeiCpuIoWidthUint16,
 EfiPeiCpuIoWidthUint32,
 EfiPeiCpuIoWidthUint64,
 EfiPeiCpuIoWidthFifoUint8,
 EfiPeiCpuIoWidthFifoUint16,
 EfiPeiCpuIoWidthFifoUint32,
 EfiPeiCpuIoWidthFifoUint64,
 EfiPeiCpuIoWidthFillUint8,
 EfiPeiCpuIoWidthFillUint16,
 EfiPeiCpuIoWidthFillUint32,
 EfiPeiCpuIoWidthFillUint64,
 EfiPeiCpuIoWidthMaximum
} EFI_PEI_CPU_IO_PPI_WIDTH;

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_YET_AVAILABLE The service has not been installed.

 Draft for Review Additional PPIs

Version 0.91 November 2004 135

EFI_PEI_CPU_IO_PPI.Io()

Summary
I/O-based access services.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_CPU_IO_PPI_WIDTH is defined in Mem().

Address

The physical address of the access.

Count

The number of accesses to perform.

Buffer

A pointer to the buffer of data.

Description
The Io() function provides a list of I/O-based accesses. Input or output data can be found in the
last argument.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_YET_AVAILABLE The service has not been installed.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

136 November 2004 Version 0.91

EFI_PEI_CPU_IO_PPI.IoRead8()

Summary
8-bit I/O read operations.

Prototype
typedef
UINT8
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_READ8) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The IoRead8() function returns an 8-bit value from the I/O space.

 Draft for Review Additional PPIs

Version 0.91 November 2004 137

EFI_PEI_CPU_IO_PPI.IoRead16()

Summary
16-bit I/O read operations.

Prototype
typedef
UINT16
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_READ16) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The IoRead16() function returns a 16-bit value from the I/O space.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

138 November 2004 Version 0.91

EFI_PEI_CPU_IO_PPI.IoRead32()

Summary
32-bit I/O read operations.

Prototype
typedef
UINT32
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_READ32) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The IoRead32() function returns a 32-bit value from the I/O space.

 Draft for Review Additional PPIs

Version 0.91 November 2004 139

EFI_PEI_CPU_IO_PPI.IoRead64()

Summary
64-bit I/O read operations.

Prototype
typedef
UINT64
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_READ64) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The IoRead64() function returns a 64-bit value from the I/O space.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

140 November 2004 Version 0.91

EFI_PEI_CPU_IO_PPI.IoWrite8()

Summary
8-bit I/O write operations.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE8) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT8 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The IoWrite8() function writes an 8-bit value to the I/O space.

 Draft for Review Additional PPIs

Version 0.91 November 2004 141

EFI_PEI_CPU_IO_PPI.IoWrite16()

Summary
16-bit I/O write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE16) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT16 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The IoWrite16() function writes a 16-bit value to the I/O space.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

142 November 2004 Version 0.91

EFI_PEI_CPU_IO_PPI.IoWrite32()

Summary
32-bit I/O write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE32) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT32 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The IoWrite32() function writes a 32-bit value to the I/O space.

 Draft for Review Additional PPIs

Version 0.91 November 2004 143

EFI_PEI_CPU_IO_PPI.IoWrite64()

Summary
64-bit I/O write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE64) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT64 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The IoWrite64() function writes a 64-bit value to the I/O space.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

144 November 2004 Version 0.91

EFI_PEI_CPU_IO_PPI.MemRead8()

Summary
8-bit memory read operations.

Prototype
typedef
UINT8
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_READ8) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The MemRead8() function returns an 8-bit value from the memory space.

 Draft for Review Additional PPIs

Version 0.91 November 2004 145

EFI_PEI_CPU_IO_PPI.MemRead16()

Summary
16-bit memory read operations.

Prototype
typedef
UINT16
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_READ16) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The MemRead16() function returns a 16-bit value from the memory space.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

146 November 2004 Version 0.91

EFI_PEI_CPU_IO_PPI.MemRead32()

Summary
32-bit memory read operations.

Prototype
typedef
UINT32
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_READ32) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The MemRead32() function returns a 32-bit value from the memory space.

 Draft for Review Additional PPIs

Version 0.91 November 2004 147

EFI_PEI_CPU_IO_PPI.MemRead64()

Summary
64-bit memory read operations.

Prototype
typedef
UINT64
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_READ64) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The MemRead64() function returns a 64-bit value from the memory space.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

148 November 2004 Version 0.91

EFI_PEI_CPU_IO_PPI.MemWrite8()

Summary
8-bit memory write operations.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_WRITE8) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT8 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The MemWrite8() function writes an 8-bit value to the memory space.

 Draft for Review Additional PPIs

Version 0.91 November 2004 149

EFI_PEI_CPU_IO_PPI.MemWrite16()

Summary
16-bit memory write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_WRITE16) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT16 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The MemWrite16() function writes a 16-bit value to the memory space.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

150 November 2004 Version 0.91

EFI_PEI_CPU_IO_PPI.MemWrite32()

Summary
32-bit memory write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_WRITE32) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT32 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The MemWrite32() function writes a 32-bit value to the memory space.

 Draft for Review Additional PPIs

Version 0.91 November 2004 151

EFI_PEI_CPU_IO_PPI.MemWrite64()

Summary
64-bit memory write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE64) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT64 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The MemWrite64() function writes a 64-bit value to the memory space.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

152 November 2004 Version 0.91

PCI Configuration PPI (Required)

EFI_PEI_PCI_CFG_PPI (Required)

Summary
This PPI is installed by some platform or chipset-specific PEIM that abstracts the PCI operations
service to other agents.

GUID
#define EFI_PEI_PCI_CFG_PPI_INSTALLED_GUID \

{0xe1f2eba0, 0xf7b9, 0x4a26, 0x86, 0x20, 0x13, 0x12, 0x21, 0x64, 0x2a, 0x90}

This is an indicator GUID without any data. It represents the fact that a PEIM
has written the address of the EFI_PEI_PCI_CFG_PPI into the EFI_PEI_SERVICES
table.

PPI Interface Structure
typedef struct _EFI_PEI_PCI_CFG_PPI {
 EFI_PEI_PCI_CFG_PPI_IO Read;
 EFI_PEI_PCI_CFG_PPI_IO Write;
 EFI_PEI_PCI_CFG_PPI_RW Modify;
} EFI_PEI_PCI_CFG_PPI;

Parameters
Read

PCI read services. See the Read() function description.

Write

PCI write services. See the Write() function description.

Modify

PCI read-modify-write services. See the Modify() function description.

Description
The EFI_PEI_PCI_CFG_PPI interfaces are used to abstract accesses to PCI controllers behind a
PCI root bridge controller. The rationale for this abstraction is that the programmatic sequence for
configuration space reads and writes is not standardized. As such, this interface provides a
common surface area against which to code initialization PEIMs. The Modify() service allows
for space-efficient implementation of the following common operations:

• Reading a register
• Changing some bit fields within the register
• Writing the register value back into the hardware

The Modify() service is a composite of the Read() and Write() services.

 Draft for Review Additional PPIs

Version 0.91 November 2004 153

EFI_PEI_PCI_CFG_PPI.Read()

Summary
PCI read operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCI_CFG_PPI_IO) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_PCI_CFG_PPI *This,
 IN EFI_PEI_PCI_CFG_PPI_WIDTH Width,
 IN UINT64 Address,
 IN OUT VOID *Buffer
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_PCI_CFG_PPI_WIDTH is defined in "Related Definitions" below.

Address

The physical address of the access.

Buffer

A pointer to the buffer of data.

Description
The Read() function reads from a given location in the PCI configuration space.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

154 November 2004 Version 0.91

Related Definitions
//**
// EFI_PEI_PCI_CFG_PPI_WIDTH
//**
typedef enum {
 EfiPeiPciCfgWidthUint8 = 0,
 EfiPeiPciCfgWidthUint16 = 1,
 EfiPeiPciCfgWidthUint32 = 2,
 EfiPeiPciCfgWidthUint64 = 3,
 EfiPeiPciCfgWidthMaximum
} EFI_PEI_PCI_CFG_PPI_WIDTH;

//**
// EFI_PEI_PCI_CFG_PPI_PCI_ADDRESS
//**
typedef struct {
 UINT8 Register;
 UINT8 Function;
 UINT8 Device;
 UINT8 Bus;
 UINT8 Reserved[4];
} EFI_PEI_PCI_CFG_PPI_PCI_ADDRESS;

Register

8-bit register offset within the PCI configuration space for a given device's function
space.

Function

Only the 3 least-significant bits are used to encode one of 8 possible functions within
a given device.

Device

Only the 5 least-significant bits are used to encode one of 32 possible devices.

Bus

8-bit value to encode between 0 and 255 buses.

Reserved

These fields should not be read or written.

#define EFI_PEI_PCI_CFG_ADDRESS(bus,dev,func,reg) \
((UINT64) ((((UINTN)bus) << 24) + (((UINTN)dev) << 16) +
(((UINTN)func) << 8) + ((UINTN)reg)))& 0x00000000ffffffff

 Draft for Review Additional PPIs

Version 0.91 November 2004 155

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_YET_AVAILABLE The service has not been installed.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

156 November 2004 Version 0.91

EFI_PEI_PCI_CFG_PPI.Write()

Summary
PCI write operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCI_CFG_PPI_IO) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_PCI_CFG_PPI *This,
 IN EFI_PEI_PCI_CFG_PPI_WIDTH Width,
 IN UINT64 Address,
 IN OUT VOID *Buffer
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_PCI_CFG_PPI_WIDTH is defined in Read().

Address

The physical address of the access.

Buffer

A pointer to the buffer of data.

Description
The Write() function writes to a given location in the PCI configuration space.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_YET_AVAILABLE The service has not been installed.

 Draft for Review Additional PPIs

Version 0.91 November 2004 157

EFI_PEI_PCI_CFG_PPI.Modify()

Summary
PCI read-modify-write operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCI_CFG_PPI_RW) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_PCI_CFG_PPI *This,
 IN EFI_PEI_PCI_CFG_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN SetBits,
 IN UINTN ClearBits
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_PCI_CFG_PPI_WIDTH is defined in Read().

Address

The physical address of the access.

SetBits

Value of the bits to set.

ClearBits

Value of the bits to clear.

Description
The Modify() function performs a read-modify-write operation on the contents from a given
location in the PCI configuration space.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

158 November 2004 Version 0.91

Stall PPI (Required)

EFI_PEI_STALL_PPI (Required)

Summary
This PPI is installed by some platform or chipset-specific PEIM that abstracts the blocking stall
service to other agents.

GUID
#define EFI_PEI_STALL_PPI_GUID \
{ 0x1f4c6f90, 0xb06b, 0x48d8, 0xa2, 0x01, 0xba, 0xe5, 0xf1, 0xcd, 0x7d, 0x56 }

PPI Interface Structure
typedef
struct _EFI_PEI_STALL_PPI {
 UINTN Resolution;
 EFI_PEI_STALL Stall;
} EFI_PEI_STALL_PPI;

Parameters
Resolution

The resolution in microseconds of the stall services.

Stall

The actual stall procedure call. See the Stall() function description.

Description
This service provides a simple, blocking stall with platform-specific resolution.

 Draft for Review Additional PPIs

Version 0.91 November 2004 159

EFI_PEI_STALL_PPI.Stall()

Summary
Blocking stall.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_STALL) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_STALL_PPI *This,
 IN UINTN Microseconds
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to the local data for the interface.

Microseconds

Number of microseconds for which to stall.

Description
The Stall() function provides a blocking stall for at least the number of microseconds stipulated
in the final argument of the API.

Status Codes Returned
EFI_SUCCESS The service provided at least the required delay.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

160 November 2004 Version 0.91

Variable Services PPI (Required)

EFI_PEI_READ_ONLY_VARIABLE_PPI (Required)

Summary
The following is a list of read-only variable services. These services will report
EFI_NOT_AVAILABLE_YET until a PEIM publishes the services for other modules.

GUID
#define EFI_PEI_READ_ONLY_VARIABLE_ACCESS_PPI_GUID \
{0x3cdc90c6, 0x13fb, 0x4a75, 0x9e, 0x79, 0x59, 0xe9, 0xdd, 0x78, 0xb9, 0xfa};

PPI Interface Structure
typedef struct _EFI_PEI_READ_ONLY_VARIABLE_PPI {
 EFI_PEI_GET_VARIABLE GetVariable;
 EFI_PEI_GET_NEXT_VARIABLE_NAME GetNextVariableName;
 } EFI_PEI_READ_ONLY_VARIABLE_PPI;

Parameters
GetVariable

A service to ascertain a given variable name. See the GetVariable() function
description.

GetNextVariableName

A service to ascertain a variable based upon a given, known variable. See the
GetNextVariableName() function description.

Description
These services provide a lightweight, read-only variant of the full EFI variable services. The
reason that these services are read-only is to reduce the complexity of flash management. Also,
some implementation of the PEI may use the same physical flash part for variable and PEIM
storage; as such, a write command to certain technologies would alter the contents of the entire part,
thus making the in situ PEIM execution not follow the required flow.

 Draft for Review Additional PPIs

Version 0.91 November 2004 161

EFI_PEI_READ_ONLY_VARIABLE_PPI.GetVariable()

Summary
The purpose of the service is to publish an interface that allows PEIMs to free memory ranges that
are managed by the PEI Foundation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_VARIABLE) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,
 OUT UINT32 *Attributes OPTIONAL,
 IN OUT UINTN *DataSize,
 OUT VOID *Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

VariableName

A NULL-terminated Unicode string that is the name of the vendor’s variable.

VendorGuid

A unique identifier for the vendor.

Attributes

If not NULL, a pointer to the memory location to return the attributes bitmask for the
variable. See "Related Definitions” below for possible attribute values.

DataSize

On input, the size in bytes of the return Data buffer. On output, the size of data
returned in Data.

Data

The buffer to return the contents of the variable.

Description
Each vendor may create and manage its own variables without the risk of name conflicts by using a
unique VendorGuid. When a variable is set its Attributes are supplied to indicate how the
data variable should be stored and maintained by the system. The attributes affect when the
variable may be accessed and volatility of the data. Any attempts to access a variable that does not
have the attribute set for runtime access will yield the EFI_NOT_FOUND error.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

162 November 2004 Version 0.91

If the Data buffer is too small to hold the contents of the variable, the error
EFI_BUFFER_TOO_SMALL is returned and DataSize is set to the required buffer size to obtain
the data.

Related Definitions
// Variable attributes
#define EFI_VARIABLE_NON_VOLATILE 0x00000001
#define EFI_VARIABLE_BOOTSERVICE_ACCESS 0x00000002
#define EFI_VARIABLE_RUNTIME_ACCESS 0x00000004

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The variable was not found.

EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result.
BufferSize has been updated with the size
needed to complete the request.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_DEVICE_ERROR The variable could not be retrieved due to a hardware
error.

 Draft for Review Additional PPIs

Version 0.91 November 2004 163

EFI_PEI_READ_ONLY_VARIABLE_PPI.NextVariableName()

Summary
The purpose of the service is to publish an interface that allows PEIMs to free memory ranges that
are managed by the PEI Foundation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_NEXT_VARIABLE_NAME) (
 IN struct _EFI_PEI_SERVICES **PeiServices,
 IN OUT UINTN *VariableNameSize,
 IN OUT CHAR16 *VariableName,
 IN OUT EFI_GUID *VendorGuid
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

VariableNameSize

The size of the VariableName buffer.

VariableName

On input, supplies the last VariableName that was returned by
GetNextVariableName(). On output, returns the Null-terminated Unicode
string of the current variable.

VendorGuid

On input, supplies the last VendorGuid that was returned by
GetNextVariableName(). On output, returns the VendorGuid of the current
variable.

Description
GetNextVariableName() is called multiple times to retrieve the VariableName and
VendorGuid of all variables currently available in the system. On each call to
GetNextVariableName() the previous results are passed into the interface, and on output the
interface returns the next variable name data. When the entire variable list has been returned, the
error EFI_NOT_FOUND is returned.

Note that if EFI_BUFFER_TOO_SMALL is returned, the VariableName buffer was too small
for the next variable. When such an error occurs, the VariableNameSize is updated to reflect
the size of buffer needed. In all cases when calling GetNextVariableName() the
VariableNameSize must not exceed the actual buffer size that was allocated for
VariableName.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

164 November 2004 Version 0.91

To start the search, a Null-terminated string is passed in VariableName; that is,
VariableName is a pointer to a Null Unicode character. This is always done on the initial call to
GetNextVariableName(). When VariableName is a pointer to a Null Unicode character,
VendorGuid is ignored. GetNextVariableName() cannot be used as a filter to return
variable names with a specific GUID. Instead, the entire list of variables must be retrieved, and the
caller may act as a filter if it chooses.

Once ExitBootServices() is performed, variables that are only visible during boot services
will no longer be returned. To obtain the data contents or attribute for a variable returned by
GetNextVariableName(), the GetVariable() interface is used.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The next variable was not found.

EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the
result. VariableNameSize has been updated

with the size needed to complete the request.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_DEVICE_ERROR The variable name could not be retrieved due to a
hardware error.

 Draft for Review Additional PPIs

Version 0.91 November 2004 165

Optional Additional PPIs

SEC Platform Information PPI (Optional)

EFI_SEC_PLATFORM_INFORMATION_PPI (Optional)

Summary
This service is the primary handoff state into the PEI Foundation. The Security (SEC) component
creates the early, transitory memory environment and also encapsulates knowledge of at least the
location of the Boot Firmware Volume (BFV).

GUID
#define EFI_SEC_PLATFORM_INFORMATION_GUID \

{0x6f8c2b35, 0xfef4, 0x448d, 0x82, 0x56, 0xe1, 0x1b, 0x19, 0xd6, 0x10, 0x77};

Prototype
typedef struct _EFI_SEC_PLATFORM_INFORMATION_PPI {
 EFI_SEC_PLATFORM_INFORMATION PlatformInformation;
} EFI_SEC_PLATFORM_INFORMATION_PPI;

Parameters
PlatformInformation

Conveys state information out of the SEC phase into PEI. See the
PlatformInformation() function description.

Description
This service abstracts platform-specific information. It is necessary to convey this information to
the PEI Foundation so that it can discover where to begin dispatching PEIMs. In addition, if the
PEI Foundation wishes to move the stack, it can discover the maximum stack capabilities of this
platform.

This same information will be placed in a GUIDed HOB with the PPI GUID as the HOB GUID.
This allows agents, such as the DXE multiprocessor (MP) driver, to get health information for the
boot-strap processor (BSP).

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

166 November 2004 Version 0.91

EFI_SEC_PLATFORM_INFORMATION_PPI.PlatformInformation()

Summary
This service is the single member of the EFI_SEC_PLATFORM_INFORMATION_PPI that
conveys state information out of the Security (SEC) phase into PEI.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SEC_PLATFORM_INFORMATION) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN OUT UINT64 *StructureSize,
 OUT EFI_SEC_PLATFORM_INFORMATION_RECORD
 *PlatformInformationRecord
);

Parameters
PeiServices

Pointer to the PEI Services Table.

StructureSize

Pointer to the variable describing size of the input buffer.

PlatformInformationRecord

Pointer to the EFI_SEC_PLATFORM_INFORMATION_RECORD. Type
EFI_SEC_PLATFORM_INFORMATION_RECORD is defined in "Related
Definitions" below.

Description
This service is published by the SEC phase. The SEC phase handoff has an optional
EFI_PEI_PPI_DESCRIPTOR list as its final argument when control is passed from SEC into the
PEI Foundation. As such, if the platform supports the built-in self test (BIST) on IA-32 Intel®
architecture or the PAL-A handoff state for Itanium® architecture, this information is encapsulated
into the data structure abstracted by this service. This information is collected for the boot-strap
processor (BSP) on IA-32, and for Itanium architecture, it is available on all processors that execute
the PEI Foundation.

The motivation for this service is that a specific processor register contains this information for
each microarchitecture, but the PEI CIS avoids using specific processor registers. Instead, the PEI
CIS describes callable interfaces across which data is conveyed. As such, this processor state
information that is collected at the reset of the machine is mapped into a common interface. The
expectation is that a manageability agent, such as a platform PEIM that logs information for the
platform, would use this interface to determine the viability of the BSP and possibly select an
alternate BSP if there are significant errors.

 Draft for Review Additional PPIs

Version 0.91 November 2004 167

Related Definitions
//**
// EFI_SEC_PLATFORM_INFORMATION_RECORD
//**
typedef struct {
 EFI_HEALTH_FLAGS HealthFlags;
} EFI_SEC_PLATFORM_INFORMATION_RECORD;

HealthFlags

Contains information generated by microcode, hardware, and/or the Itanium®
processor PAL code about the state of the processor upon reset. Type
EFI_HEALTH_FLAGS is defined below.

//**
// EFI_HEALTH_FLAGS
//**
typedef union {
 struct {
 UINT32 Status : 2;
 UINT32 Tested : 1;
 UINT32 Reserved1 :13;
 UINT32 VirtualMemoryUnavailable : 1;
 UINT32 Ia32ExecutionUnavailable : 1;
 UINT32 FloatingPointUnavailable : 1;
 UINT32 MiscFeaturesUnavailable : 1;
 UINT32 Reserved2 :12;
 } Bits;
 UINT32 Uint32;
} EFI_HEALTH_FLAGS;

Tested is the only common bit between IA-32 and Itanium architecture. IA-32 has the BIST but
none of the other capabilities and ignores all bits except Tested. See Health Flag Bit Format for
more information on EFI_HEALTH_FLAGS.

Status Codes Returned
EFI_SUCCESS The data was successfully returned.

EFI_BUFFER_TOO_SMALL The buffer was too small.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

168 November 2004 Version 0.91

 Draft for Review

Version 0.91 November 2004 169

10
PEI to DXE Handoff

Introduction
The PEI phase of the system firmware boot process performs rudimentary initialization of the
system to meet specific minimum system state requirements of the DXE Foundation. The PEI
Foundation must have a mechanism of locating and passing off control of the system to the DXE
Foundation. PEI must also provide a mechanism for components of DXE and the DXE Foundation
to discover the state of the system when the DXE Foundation is invoked. Certain aspects of the
system state at handoff are architectural, while other system state information may vary and hence
must be described to DXE components.

Discovery and Dispatch of the DXE Foundation
The PEI Foundation uses a special PPI named the DXE Initial Program Load (IPL) PPI to discover
and dispatch the DXE Foundation and components that are needed to run the DXE Foundation

The final action of the PEI Foundation is to locate and pass control to the DXE IPL PPI. To
accomplish this, the PEI Foundation scans all PPIs by GUID for the GUID matching the DXE IPL
PPI. The GUID for this PPI is defined in EFI_DXE_IPL_PPI.

Passing the Hand-Off Block (HOB) List
The DXE IPL PPI passes the Hand-Off Block (HOB) list from PEI to the DXE Foundation when it
invokes the DXE Foundation. The handoff state is described in the form of HOBs in the HOB
list. The HOB list must contain at least the HOBs listed in the following table.

Table 10-1. Required HOB Types in the HOB List

Required HOB Type Usage
Phase Handoff Information Table (PHIT) HOB This HOB is required.
One or more Resource Descriptor HOB(s) describing
physical system memory

The DXE Foundation will use this physical system
memory for DXE.

Boot-strap processor (BSP) Stack HOB The DXE Foundation needs to know the current stack
location so that it can move it if necessary, based
upon its desired memory address map. This HOB will
be of type EfiConventionalMemory

BSP BSPStore (“Backing Store Pointer Store”) HOB
Note: Itanium® processor family only

The DXE Foundation needs to know the current store
location so that it can move it if necessary, based
upon its desired memory address map.

One or more Resource Descriptor HOB(s) describing
firmware devices

The DXE Foundation will place this into the GCD.

One or more Firmware Volume HOB(s) The DXE Foundation needs this information to begin
loading other drivers in the platform.

A Memory Allocation Module HOB This HOB tells the DXE Foundation where it is when
allocating memory into the initial system address
map.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

170 November 2004 Version 0.91

The above HOB types are defined in the Intel® Platform Innovation Framework for EFI Hand-Off
Block (HOB) Specification.

Handoff Processor State to the DXE IPL PPI
The table below defines the state that processors must be in at handoff to the DXE IPL PPI, for the
following processors:

• IA-32 processors
• Itanium® processor family
• Intel® processors using Intel® XScale™ technology

Table 10-2. Handoff Processor State to the DXE IPL PPI

Processor State at Handoff

IA-32 In 32-bit flat mode

Itanium In Itanium processor family physical mode

Intel XScale In SuperVisor Mode with a one-to-one virtual-to-physical
mapping if there is a memory management unit (MMU) in the
system

 Draft for Review

Version 0.91 November 2004 171

11
Boot Paths

Introduction
The PEI Foundation is unaware of the boot path required by the system. It relies on the PEIMs to
determine the boot mode (e.g. R0, R1, S3, etc.) and take appropriate action depending on the
mode.

To implement this, each PEIM has the ability to manipulate the boot mode using the PEI Service
SetBootMode() described in Services - PEI.

The PEIM does not change the order in which PEIMs are dispatched depending on the boot mode.

Defined Boot Modes
The list of possible boot modes is described in the GetBootMode() function description.
Framework architecture specifically does not define an upgrade path if new boot modes are
defined. This is necessary as the nature of those additional boot modes may work in conjunction
with or may conflict with the previously defined boot modes.

Priority of Boot Paths
Within a given PEIM, the priority ordering of the sources of boot mode should be as follows (from
highest priority to lowest):
1. BOOT_IN_RECOVERY_MODE
2. BOOT_ON_FLASH_UPDATE
3. BOOT_ON_S3_RESUME
4. BOOT_WITH_MINIMAL_CONFIGURATION
5. BOOT_WITH_FULL_CONFIGURATION
6. BOOT_ASSUMING_NO_CONFIGURATION_CHANGES
7. BOOT_WITH_FULL_CONFIGURATION_PLUS_DIAGNOSTICS
8. BOOT_WITH_DEFAULT_SETTINGS
9. BOOT_ON_S4_RESUME
10. BOOT_ON_S5_RESUME
11. BOOT_ON_S2_RESUME

The boot modes listed above are defined in the PEI Service SetBootMode().

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

172 November 2004 Version 0.91

Assumptions
The following table lists the assumptions that can be made about the system for each sleep state.

Table 11-1. Boot Path Assumptions

System State Description Assumptions

R0 Cold Boot Cannot assume that the previously stored
configuration data is valid.

R1 Warm Boot May assume that the previously stored
configuration data is valid.

S3 ACPI Save to RAM Resume The previously stored configuration data is
valid and RAM is valid. RAM configuration
must be restored from nonvolatile storage
(NVS) before RAM may be used. The
firmware may only modify previously
reserved RAM. There are two types of
reserved memory. One is the equivalent of
the BIOS INT15h, E820 type-4 memory and
indicates that the RAM is reserved for use by
the firmware. The suggestion is to add
another type of memory that allows the OS to
corrupt the memory during runtime but that
may be overwritten during resume.

S4,
S5

Save to Disk Resume,
“Soft Off”

S4 and S5 are identical from a PEIM's point
of view. The two are distinguished to support
follow-on phases. The entire system must be
reinitialized but the PEIMs may assume that
the previous configuration is still valid.

Boot on Flash Update This boot mode can be either an INIT, S3, or
other means by which to restart the
machine. If it is an S3, for example, the flash
update cause will supersede the S3 restart.
It is incumbent upon platform code, such as
the Memory Initialization PEIM, to determine
the exact cause and perform correct
behavior (i.e., S3 state restoration versus
INIT behavior).

 Draft for Review Boot Paths

Version 0.91 November 2004 173

Architectural Boot Mode PPIs
There is a possible hierarchy of boot mode PPIs that abstracts the various producers of this
variable. It is a hierarchy in that there should be an order of precedence in which each mode can be
set. The PPIs and their respective GUIDs are described in Required Architectural PPIs and
Optional Architectural PPIs. The hierarchy includes the master PPI, which publishes a PPI that will
be depended upon by the appropriate PEIMs, and some subsidiary PPI. For PEIMs that require that
the boot mode is finally known, the Master Boot Mode PPI can be used as a dependency.

The following table lists the architectural boot mode PPIs.

Table 11-2. Architectural Boot Mode PPIs

PPI Name Required or Optional? PPI Definition in Section...

Master Boot Mode PPI Required Architectural PPIs: Required
Architectural PPIs

Boot in Recovery Mode PPI Optional Architectural PPIs: Optional
Architectural PPIs

Recovery

Scope
Recovery is the process of reconstituting a system’s firmware devices when they have become
corrupted. The corruption can be caused by various mechanisms. Most firmware volumes (FVs) in
nonvolatile storage (NVS) devices (flash or disk, for example) are managed as blocks. If the
system loses power while a block, or semantically bound blocks, are being updated, the storage
might become invalid. On the other hand, an errant program or hardware could corrupt the device.
The system designers must determine the level of support for recovery based on their perceptions of
the probabilities of these events occurring and the consequences.

The designers of a system may choose not to support recovery for the following reasons:

• A system’s FV storage media might not support modification after being manufactured. It
might be the functional equivalent of a ROM.

• Most mechanisms of implementing recovery require additional FV space that might be too
expensive for a particular application.

• A system may have enough FV space and hardware features that the FV can be made
sufficiently fault tolerant to make recovery unnecessary.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

174 November 2004 Version 0.91

Discovery
Discovering that recovery is required may be done using a PEIM (for example, by checking a
“force recovery” jumper) or the PEI Foundation itself. The PEI Foundation might discover that a
particular PEIM has not validated correctly or that an entire firmware has become corrupted.

General Recovery Architecture
The concept behind recovery is to preserve enough of the system firmware so that the system can
boot to a point where it can do the following:

• Read a copy of the data that was lost from chosen peripherals.
• Reprogram the firmware volume (FV) with that data.

Preserving the recovery firmware is a function of the way the FV store is managed, which is
generally beyond the scope of this document. For the purpose of this description, it is expected that
the PEIMs and other contents of the FVs that are required for recovery will be marked. The FV
store architecture must then preserve marked items, either by making them unalterable (possibly
with hardware support) or protect them using a fault-tolerant update process. Note that a PEIM is
required to be in a fault-tolerant area if it indicates it is required for recovery or if a PEIM that is
required for recovery depends on it. This architecture also assumes that it is fairly easy to
determine that FVs have become corrupted.

The PEI Dispatcher then proceeds as normal. If it encounters PEIMs that have been corrupted (for
example, by receiving an incorrect hash value), it must change the boot mode to “recovery.” Once
set to recovery, other PEIMs must not change it to one of the other states. After the PEI Dispatcher
has discovered the system is in recovery mode, it will restart itself and dispatch only those PEIMs
that are required for recovery.

A PEIM can also detect a catastrophic condition or a forced-recovery event and inform the PEI
Dispatcher that it needs to proceed with a recovery dispatch. A PEIM can alert the PEI Foundation
to start recovery by setting the present boot mode to recovery. The PEI Foundation will then reset
the boot mode to BOOT_IN_RECOVERY_MODE and start the dispatch from the beginning with
BOOT_IN_RECOVERY_MODE as the sole value for the mode.

 NOTE
At this point a physical reset of the system has not occurred. The PEI Dispatcher has only cleared
all state information and restarted itself.

It is possible that a PEIM could be built to handle the portion of the recovery that would initialize
the recovery peripherals (and the buses they reside on) and then to read the new images from the
peripherals and update the FVs.

It is considered far more likely that the PEI will transition to DXE because DXE is designed to
handle access to peripherals. This has the additional benefit that, if DXE then discovers that a
device has become corrupted, it may institute recovery without transferring control back to the PEI.

 Draft for Review Boot Paths

Version 0.91 November 2004 175

Since the PEI Foundation does not have a list of what to dispatch, how does it know if an area of
invalid space in an FV should have contained a PEIM or not? The PEI Foundation should discover
most corruption as an incidental result of its search for PEIMs. In this case, if the PEI Foundation
completes its dispatch process without discovering enough static system memory to start DXE, then
it should go into recovery mode.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

176 November 2004 Version 0.91

 Draft for Review

Version 0.91 November 2004 177

12
PEI Physical Memory Usage

Introduction
This section describes how physical system memory is used during PEI. The rules for using
physical system memory are different before and after permanent memory registration within the
PEI execution.

Before Permanent Memory Is Installed

Discovering Physical Memory
Before permanent memory is installed, the minimum exit condition for the PEI phase is that it has
enough physical system memory to run PEIMs and the DXE IPL PPI that require permanent
memory. These memory-aware PEIMs may discover and initialize additional system memory, but
in doing so they must not cause loss of data in the physical system memory initialized during the
earlier phase. The required amount of memory initialized and tested by PEIMs in these two phases
is platform dependent.

Before permanent memory is installed, a PEIM may not assume any area of physical memory is
present and initialized. During this early phase, a PEIM—usually one specific to the chipset
memory controller—will initialize and test physical memory. When this PEIM has initialized and
tested the physical memory, it will register the memory using the PEI Memory Service
InstallPeiMemory(), which in turn will cause the PEI Foundation to create an initial Hand-
Off Block (HOB) list and describe the memory. The memory that is present, initialized, and tested
will reside in resource descriptor HOBs in the initial HOB list (see the Intel® Platform Innovation
Framework for EFI Hand-Off Block (HOB) Specification for more information). This memory
allocation PEIM may also choose to allocate some of this physical memory by doing the following:

• Creating memory allocation HOBs, as described in After Permanent Memory Is Installed:
Within PEI Memory

• Using the memory allocation services AllocatePages() and AllocatePool()

Once permanent memory has been installed, the resources described in the HOB list are considered
permanent system memory.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

178 November 2004 Version 0.91

Using Physical Memory
A PEIM that requires permanent, fixed memory allocation must schedule itself to run after
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI is installed. To schedule itself, the PEIM
can do one of the following:

• Put this PPI's GUID into the depex of the PEIM.
• Register for a notification.

The PEIM can then allocate Hand-Off Blocks (HOBs) and other memory using the same
mechanisms described in Allocating Physical Memory.

The AllocatePool() service can be invoked at any time during the boot phase to discover
temporary memory that will have its location translated, even before permanent memory is
installed.

After Permanent Memory Is Installed

Allocating Physical Memory
After permanent memory is installed, PEIMs may allocate memory in four ways:

• Using a GUID Extension HOB
• Within the PEI free memory space
• Outside of PEI memory
• Using the PEI Service AllocatePages()

Allocating Memory Using GUID Extension HOBs
A PEIM may allocate memory for its private use by constructing a GUID Extension HOB and
using the private data area defined by the GUIDed name of the HOB for private data storage.

See the Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification for
HOB construction rules.

Allocating Memory within PEI Memory
A PEIM may allocate memory from PEI free memory space, from the top of the memory range
between PHIT->EfiFreeMemoryTop and PHIT->EfiFreeMemoryBottom. To do so, the
PEIM must create a memory allocation HOB that describes the allocated memory range. The
allocated memory is assumed to be fixed by DXE and will not be moved unless explicitly directed
to do so by a PEIM.

Perform the following steps to allocate memory within PEI memory:

1. Determine NewHobSize, where NewHobSize is the size in bytes of the memory allocation
HOB to be created.

2. Determine MemoryAllocationSize, where MemoryAllocationSize is the size in
bytes of the memory allocation range.

3. Check free memory to ensure there is enough free memory available. This is performed by
checking that (NewHobSize + MemoryAllocationSize) <= PHIT-
>EfiFreeMemoryTop - PHIT->EfiFreeMemoryBottom).

 Draft for Review PEI Physical Memory Usage

Version 0.91 November 2004 179

4. Construct the memory allocation HOB at PHIT->EfiFreeMemoryBottom.
5. Set PHIT->EfiFreeMemoryTop = PHIT->EfiFreeMemoryTop -

MemoryAllocationSize.
6. Set PHIT->EfiFreeMemoryBottom = PHIT->EfiFreeMemoryBottom +

NewHobSize.

Allocating Memory outside of PEI Memory
Although it is discouraged, a PEIM can allocate memory outside the memory declared for use in
PEI, between PHIT->EfiMemoryTop and PHIT->EfiMemoryBottom, by creating a
memory allocation HOB.

Perform the following steps to allocate memory outside of PEI memory:

1. Determine NewHobSize, where NewHobSize is the size in bytes of the memory allocation
HOB to be created.

2. Determine MemoryAllocationSize, where MemoryAllocationSize is the size in
bytes of the memory allocation range.

3. Check free memory to ensure that there is enough free memory available. To do so, check that
(NewHobSize <= PHIT->EfiFreeMemoryTop - PHIT-
>EfiFreeMemoryBottom).

4. Scan the HobList for the next resource descriptor that describes memory outside of PEI
memory whose size is greater than or equal to MemoryAllocationSize. The memory in
the physical resource descriptor must be present, initialized, and tested.

5. Scan the HobList for memory allocation HOBs that overlap the selected memory range found
in step 3. If no free memory is found, return to step 3.

6. Construct the memory allocation HOB at PHIT->EfiFreeMemoryBottom.
7. Set PHIT->EfiFreeMemoryBottom = PHIT->EfiFreeMemoryBottom +

NewHobSize.

Allocating Memory Using PEI Service
A PEIM may allocate memory using the PEI Service AllocatePages(). Use the
EFI_MEMORY_TYPE values to specify the type of memory to allocate; type EFI_MEMORY_TYPE
is defined is defined in AllocatePages() in the EFI 1.10 Specification.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

180 November 2004 Version 0.91

 Draft for Review

Version 0.91 November 2004 181

13
Special Paths Unique to the

Itanium® Processor Family

Introduction
The Itanium® processor family supports the full complement of boot modes listed in the PEI CIS.
 In addition, however, Itanium® architecture requires an augmented flow. This flow includes a
"recovery check call" in which all processors execute the PEI Foundation when an Itanium platform
restarts. Each processor has its own version of temporary memory such that there are as many
concurrent instances of PEI execution as there are Itanium processors.

There is a point in the multiprocessor flow, however, when all processors have to call back into the
Processor Abstraction Layer A (PAL-A) component to assess whether the processor revisions and
PAL-B binaries are compatible. This callback into the PAL-A does not preserve the state of the
temporary memory, however. When the PAL-A returns control back to the various processors, the
PEI Foundation and its associated data structures have to be reinstantiated.

At this point, however, the flow of the PEI phase is the same as for IA-32 Intel® architecture in that
all processors make forward progress up through invoking the DXE IPL PPI.

Unique Boot Paths for Itanium® Architecture
Intel® Itanium® processors possess two unique boot paths that also invoke the dispatcher located at
the System Abstraction Layer entry point (SALE_ENTRY):

• Processor INIT
• Machine Check (MCHK)

INIT and MCHK are two asynchronous events that start up the Security (SEC) code/dispatcher in
an Itanium®-based system. The Framework security module is transparent during all the code paths
except for the recovery check call that happens during a cold boot. The PEIMs that handle these
events are architecture aware and do not return control to the PEI Dispatcher. They call their
respective architectural handlers in the operating system.

The figure below shows the boot path for INIT and MCHK events.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

182 November 2004 Version 0.91

Figure 13-1. Itanium Processor Boot Path (INIT and MCHK)

 Draft for Review Special Paths Unique to
the Itanium® Processor Family

Version 0.91 November 2004 183

Min-State Save Area
When the Processor Abstraction Layer (PAL) hands control to the dispatcher, it will supply the
following:

• Unique handoff state in the registers
• A pointer, called the min-state pointer, to the minimum-state saved buffer area

This buffer is a unique per-processor save area that is registered to each processor during the
normal OS boot path. The Framework architecture defines a unique, Framework-specific data
pointer, EFI_PEI_MIN_STATE_DATA, that is attached to this min-state pointer. This data
structure is defined in the next topic.

The figure below shows a typical organization of a min-state buffer. The EFI Data Pointer
references EFI_PEI_MIN_STATE_DATA.

Figure 13-2. Min-State Buffer Organization

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

184 November 2004 Version 0.91

EFI_PEI_MIN_STATE_DATA

 NOTE
This data structure is for the Itanium® processor family only.

Summary
A structure that encapsulates the Processor Abstraction Layer (PAL) min-state data structure for
purposes of firmware state storage and reference.

Prototype
typedef struct {
 UINT64 OsInitHandlerPointer;
 UINT64 OsInitHandlerGP;
 UINT64 OsInitHandlerChecksum;
 UINT64 OSMchkHandlerPointer;
 UINT64 OSMchkHandlerGP;
 UINT64 OSMchkHandlerChecksum;
 UINT64 PeimInitHandlerPointer;
 UINT64 PeimInitHandlerGP;
 UINT64 PeimInitHandlerChecksum;
 UINT64 PeimMchkHandlerPointer;
 UINT64 PeimMchkHandlerGP;
 UINT64 PeimMckhHandlerChecksum;
 UINT64 TypeOfOSBooted;
 UINT8 MinStateReserved[0x400];
 UINT8 OEMReserved[0x400];
} EFI_PEI_MIN_STATE_DATA;

Parameters
OsInitHandlerPointer

The address of the operating system's INIT handler. The INIT is a restart type for the
Itanium processor family.

OsInitHandlerGP

The value of the operating system's INIT handler's General Purpose (GP) register.
 Per the calling conventions for the Itanium processor family, the GP must be set
before invoking the function.

OsInitHandlerChecksum

A 64-bit checksum across the contents of the operating system's INIT handler. This
can be used by the EFI firmware to corroborate the integrity of the INIT handler prior
to invocation.

OSMchkHandlerPointer

The address of the operating system's Machine Check (MCHK) handler. MCHK is a
restart type for the Itanium processor family.

 Draft for Review Special Paths Unique to
the Itanium® Processor Family

Version 0.91 November 2004 185

OSMchkHandlerGP

The value of the operating system's MCHK handler's GP register. Per the calling
conventions for the Itanium processor family, the GP must be set before invoking the
function.

OSMchkHandlerChecksum

A 64-bit checksum across the contents of the operating system's MCHK handler.
This can be used by the EFI firmware to corroborate the integrity of the MCHK
handler prior to invocation.

PeimInitHandlerPointer

The address of the PEIM's INIT handler.

PeimInitHandlerGP

The value of the PEIM's INIT handler's GP register. Per the calling conventions for
the Itanium processor family, the GP must be set before invoking the function.

PeimInitHandlerChecksum

A 64-bit checksum across the contents of the PEIM's INIT handler. This can be used
by the EFI firmware to corroborate the integrity of the INIT handler prior to
invocation.

PeimMchkHandlerPointer

The address of the PEIM's MCHK handler.

PeimMchkHandlerGP

The value of the PEIM's MCHK handler's GP register. Per the calling conventions
for the Itanium processor family, the GP must be set before invoking the function.

PeimMckhHandlerChecksum

A 64-bit checksum across the contents of the PEIM's MCHK handler. This can be
used by the EFI firmware to corroborate the integrity of the MCHK handler prior to
invocation.

TypeOfOSBooted

Details the type of operating system that was originally booted. This allows for
different preliminary processing in firmware based upon the target OS.

MinStateReserved

Reserved bytes that must not be interpreted by OEM firmware. Future versions of
EFI may choose to expand in this range.

OEMReserved

Reserved bytes for the OEM. EFI core components should not attempt to interpret
the contents of this region.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

186 November 2004 Version 0.91

Description
A 64-bit EFI data pointer is defined at the beginning of the Itanium processor family min-state data
structure. This data pointer references an EFI_PEI_MIN_STATE_DATA structure that is defined
above. This latter structure contains the entry points of INIT and MCHK code blocks. The pointers
are defined such that the INIT and MCHK code can be either written as ROM-based PEIMs or as
DXE drivers. The distinction between PEIM and DXE driver are at the OEM's discretion.

In Itanium® architecture, the EFI firmware must register a min-state with the PAL. This min-state
is memory when the PAL code can deposit processor-specific information upon various restart
events (INIT, RESET, Machine Check). Upon receipt of INIT or MCHK, the EFI firmware shall
first invoke the PEIM INIT or MCHK handlers, respectively, and then the OS INIT or MCHK
handler. The min-state data structure is a natural location from which to reference the EFI data
structure that contains these latter entry points.

Dispatching Itanium® Processor Family PEIMs
The Itanium® processor family dispatcher starts dispatching all the PEIMs as it resolves the
dependency grammar contained within their headers. Because all Itanium processors enter into
SALE_ENTRY for a recovery check, some of the PEIMs will contain multiprocessor (MP) code
and will work on all processors. The behavior of a particular PEIM that is dispatched depends on
the following:

• Handoff state given by the Processor Abstraction Layer (PAL)
• The boot mode flag

Once the processor runs some code and one of the recovery check PEIM determines that the
firmware needs to be recovered, it flips the boot flag to recovery and invokes the dispatcher again
in recovery mode.

If it is a nonrecovery situation (normal boot), then the recovery check PEIM wakes up all the
processors and returns them to PAL-A for further initialization. Note that when control for a normal
boot returns back to the PAL to run PAL-B code, all of the register contents are lost. When control
returns to the dispatcher, the PEIMs gain control in the dispatched order and can determine the
memory topology (if needed in a platform implementation) by reading the memory controller
registers of the chipset. The PEIMs can then build Hand-Off Blocks (HOBs).

When the first phase is done, there will be coherent memory on the system that all the node
processors can see. The system then begins to execute the dispatcher in a second phase, during
which it builds HOBs. On a multinode system with many processors, the configuration of memory
may take several steps and therefore quite a bit of code.

When the second phase is done, the last PEIM will build DXE as described in PEI to DXE Handoff
and hand control to the Framework DXE phase for further initialization of the platform.

The figure below depicts the initial flow between PAL-A , PAL-B, and the PEI Foundation located
at SALE_ENTRY point.

 Draft for Review Special Paths Unique to
the Itanium® Processor Family

Version 0.91 November 2004 187

Figure 13-3. Boot Path in Itanium Processors

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

188 November 2004 Version 0.91

 Draft for Review

Version 0.91 November 2004 189

14
Security (SEC) Phase Information

Introduction
The Security (SEC) phase is the first phase in the Framework architecture and is responsible for the
following:

• Handling all platform restart events
• Creating a temporary memory store
• Serving as the root of trust in the system
• Passing handoff information to the PEI Foundation

In addition to the minimum architecturally required handoff information, the SEC phase can pass
optional information to the PEI Foundation, such as the SEC Platform Information PPI or
information about the health of the processor.

The tasks listed above are common to all processor microarchitectures. However, there are some
additions or differences between IA-32 and Itanium® processors, which are discussed in Processor-
Specific Details.

Responsibilities

Handling All Platform Restart Events
The Security (SEC) phase is the unit of processing that handles all platform restart events, including
the following:

• Applying power to the system from an unpowered state
• Restarting the system from an active state
• Receiving various exception conditions

The SEC phase is responsible for aggregating any state information so that some PEIM can deduce
the health of the processor upon the respective restart.

Creating a Temporary Memory Store
The Security (SEC) phase is also responsible for creating some temporary memory store. This
temporary memory store can include but is not limited to programming the processor cache to
behave as a linear store of memory. This cache behavior is referred to as "no evictions mode" in
that access to the cache should always represent a hit and not engender an eviction to the main
memory backing store; this "no eviction" is important in that during this early phase of platform
evolution, the main memory has not been configured and such as eviction could engender a
platform failure.

Serving As the Root of Trust in the System
Finally, the Security (SEC) phase represents the root of trust in the system. Any inductive security
design in which the integrity of the subsequent module to gain control is corroborated by the caller

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

190 November 2004 Version 0.91

must have a root, or "first," component. For any Framework deployment, the SEC phase represents
the initial code that takes control of the system. As such, a platform or technology deployment may
choose to authenticate the PEI Foundation from the SEC phase before invoking the PEI
Foundation.

Passing Handoff Information to the PEI Foundation
Regardless of the other responsibilities listed in this section, the Security (SEC) phase's final
responsibility is to convey the following handoff information to the PEI:

• State of the platform
• Location of the Boot Firmware Volume (BFV)
• Size of the temporary RAM

This handoff information listed above is passed to the PEI as arguments in the
EFI_PEI_STARTUP_DESCRIPTOR data structure. The SEC phase uses this data structure to
push the handoff information on the stack and invoke the PEI.

SEC Platform Information PPI
Handoff information is passed from the Security (SEC) phase to the PEI Foundation using the data
structure EFI_PEI_STARTUP_DESCRIPTOR. It is a mandatory data structure that provides the
minimum amount of information from the SEC phase that is required to initialize the PEI
Foundation and PEI operational environment.

In addition, however, an optional PPI, EFI_SEC_PLATFORM_INFORMATION_PPI, can be
used to pass handoff information from SEC to the PEI Foundation. This PPI abstracts platform-
specific information that the PEI Foundation needs to discover where to begin dispatching PEIMs.
 It can be part of the PPI list that is included as the final argument of the
EFI_PEI_STARTUP_DESCRIPTOR data structure.

Health Flag Bit Format

Health Flag Bit Format
The Health flag contains information that is generated by microcode, hardware, and/or the Itanium®
processor Processor Abstraction Layer (PAL) code about the state of the processor upon reset.
 Type EFI_HEALTH_FLAGS is defined in
SEC_PLATFORM_INFORMATION_PPI.PlatformInformation().

In an Itanium®-based system, the Health flag is passed from PAL-A after restarting. It is the
means by which the PAL conveys the state of the processor to the firmware, such as EFI. The
handoff state is separated between the PAL and EFI because the code is provided by different
vendors; Intel provides the PAL and various OEMs design the EFI firmware.

The Health flag is used by both IA-32 and Itanium® architectures, but Tested (Te) is the only
common bit. IA-32 has the built-in self-test (BIST), but none of the other capabilities.

 Draft for Review Security (SEC) Phase Information

Version 0.91 November 2004 191

The figure below depicts the bit format in the Health flag.

Figure 14-1. Health Flag Bit Format

The table below explains the bit fields in the Health flag. IA-32 ignores all bits except
Tested (Te).

Table 14-1. Health Flag Bit Description

Field
Parameter Name in
EFI_HEALTH_FLAGS Bit # Description

State Status 0:1 A 2-bit field indicating
self-test state after
reset. For more
information, see Self-
Test State Parameter.

Te Tested 2 A 1-bit field indicating
whether testing has
occurred. If this field is
zero, the processor
has not been tested,
and no further fields in
the self-test State
parameter are valid.

Vm VirtualMemoryUnavailable 16 A 1-bit field. If set to
1, indicates that virtual
memory features are
not available.

Ia Ia32ExecutionUnavailable 17 A 1-bit field. If set to
1, indicates that IA-32
execution is not
available.

Fp FloatingPointUnavailable 18 A 1-bit field. If set to
1, indicates that the
floating point unit is
not available.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

192 November 2004 Version 0.91

Field
Parameter Name in
EFI_HEALTH_FLAGS Bit # Description

Mf MiscFeaturesUnavailable 19 A 1-bit field. If set to
1, indicates
miscellaneous
functional failure other
than vm, ia, or fp. The
test status field
provides additional
information on test
failures when the State
field returns a value of
performance restricted
or functionally
restricted. The value
returned is
implementation
dependent.

Self-Test State Parameter
Self-test state parameters are defined in the same format for IA-32 Intel® processors and the Intel®
Itanium® processor family. Some of the test status bits may not be relevant to IA-32 processors. In
that case, these bits will read NULL on IA-32 processors.

The table below indicates the meanings for various values of the self-test State parameter (bits 0:1)
of the Health flag.

Table 14-2. Self-Test State Bit Values

State Value Description

Catastrophic Failure N/A Processor is not executing.

Healthy 00 No failure in functionality or
performance.

Performance Restricted 01 No failure in functionality but
performance is restricted.

Functionally Restricted 10 Some code may run but
functionality is restricted and
performance may also be affected.

If the state field indicates that the processor is functionally restricted, then the vm, ia, and fp fields
in the Health flag specify additional information about the functional failure. See the table in
Health Flag Bit Format for a description of these fields.

To further qualify “Functionally Restricted,” the following requirements will be met:

• The processor or PAL (for the Itanium processor family) has detected and isolated the failing
component so that it will not be used.

 Draft for Review Security (SEC) Phase Information

Version 0.91 November 2004 193

• The processor must have at least one functioning memory unit, arithmetic logic unit (ALU),
shifter, and branch unit.

• The floating-point unit may be disabled.
• For the Itanium processor family, the Register Stack Engine (RSE) is not required to work, but

register renaming logic must work properly.
• The paths between the processor-controlled caches and the register files must work during the

tests.
• Loads from the firmware address space must work correctly.

Processor-Specific Details

SEC Phase in IA-32 Intel® Architecture
In 32-bit Intel® architecture (IA-32), the Security (SEC) phase of the Framework is responsible for
several activities:

• Locating the PEI Foundation
• Passing control directly to PEI using an architecturally defined handoff state
• Initializing processor-controlled memory resources, such as the processor data cache, that can

be used as a linear extent of memory for a call stack (if supported)

The figure below shows the steps completed during PEI initialization for IA-32.

Figure 14-2. PEI Initialization Steps in IA-32

SEC Phase in the Itanium® Processor Family
Itanium® architecture contains enough hooks to authenticate the PAL-A and PAL-B code
distributed by the processor vendor.

The internal microcode on the processor silicon that starts up on a power-good reset finds the first
layer of processor abstraction code (called PAL-A) located in the Boot Firmware Volume (BFV)
using architecturally defined pointers in the BFV. It is the responsibility of this microcode to
authenticate that the PAL-A code layer from the processor vendor has not been tampered.

If the authentication of the PAL-A layer passes, then control passes on to the PAL-A layer. The
PAL-A layer then authenticates the next layer of processor abstraction code (called PAL-B) before
passing control to it.

In addition, the SEC phase of the Framework is also responsible for locating the PEI Foundation
and verifying its authenticity.

The figure below summarizes the SEC phase in the Itanium® processor family.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

194 November 2004 Version 0.91

Figure 14-3. Security (SEC) Phase in the Itanium Processor Family

 Draft for Review

Version 0.91 November 2004 195

15
Returned Status Codes

Returned Status Codes
EFI interfaces return an EFI_STATUS code. The topics in this section discuss the following:

• Ranges of EFI_STATUS codes
• Success codes
• Error codes
• Warning codes

Error codes also have their highest bit set, so all error codes have negative values. The range of
status codes that have the highest bit set and the next to highest bit clear are reserved for use by
EFI. The range of status codes that have both the highest bit set and the next to highest bit set are
reserved for use by OEMs.

Success and warning codes have their highest bit clear, so all success and warning codes have
positive values. The range of status codes that have both the highest bit clear and the next to
highest bit clear are reserved for use by EFI. The range of status code that have the highest bit clear
and the next to highest bit set are reserved for use by OEMs.

EFI_STATUS Codes Ranges
The following table lists the ranges of EFI_STATUS codes.

Table 15-1. EFI_STATUS Codes Ranges

IA-32 Range Itanium® Architecture Range Description
0x00000000–
0x3fffffff

0x0000000000000000–
0x3fffffffffffffff

Success and warning codes
reserved for use by EFI. See
EFI_STATUS Success Codes
(High Bit Clear) and EFI_STATUS
Warning Codes (High Bit Clear) for
valid values in this range.

0x40000000–
0x7fffffff

0x4000000000000000–
0x7fffffffffffffff

Success and warning codes
reserved for use by OEMs.

0x80000000–
0xbfffffff

0x8000000000000000–
0xbfffffffffffffff

Error codes reserved for use by
EFI. See EFI_STATUS Error
Codes (High Bit Set) for valid
values for this range.

0xc0000000–
0xffffffff

0xc000000000000000–
0xffffffffffffffff

Error codes reserved for use by
OEMs.

0x00000000–
0x3fffffff

0x0000000000000000–
0x3fffffffffffffff

Success and warning codes
reserved for use by EFI. See
EFI_STATUS Success Codes
(High Bit Clear) and EFI_STATUS
Warning Codes (High Bit Clear) for
valid values in this range.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

196 November 2004 Version 0.91

EFI_STATUS Success Codes (High Bit Clear)
The following table lists the success codes for EFI_STATUS.

Table 15-2. EFI_STATUS Success Codes (High Bit Clear)

Mnemonic Value Description

EFI_SUCCESS 0 The operation completed
successfully.

EFI_STATUS Error Codes (High Bit Set)
The following table lists the error codes for EFI_STATUS.

Table 15-3. EFI_STATUS Error Codes (High Bit Set)

Mnemonic Value Description

EFI_LOAD_ERROR 1 The image failed to load.

EFI_INVALID_PARAMETER 2 A parameter was incorrect.

EFI_UNSUPPORTED 3 The operation is not supported.

EFI_BAD_BUFFER_SIZE 4 The buffer was not the proper size
for the request.

EFI_BUFFER_TOO_SMALL 5 The buffer is not large enough to
hold the requested data. The
required buffer size is returned in
the appropriate parameter when
this error occurs.

EFI_NOT_READY 6 There is no data pending upon
return.

EFI_DEVICE_ERROR 7 The physical device reported an
error while attempting the
operation.

EFI_WRITE_PROTECTED 8 The device cannot be written to.

EFI_OUT_OF_RESOURCES 9 A resource has run out.

EFI_VOLUME_CORRUPTED 10 An inconstancy was detected on
the file system causing the
operating to fail.

EFI_VOLUME_FULL 11 There is no more space on the file
system.

EFI_NO_MEDIA 12 The device does not contain any
medium to perform the operation.

EFI_MEDIA_CHANGED 13 The medium in the device has
changed since the last access.

EFI_NOT_FOUND 14 The item was not found.

 Draft for Review Returned Status Codes

Version 0.91 November 2004 197

Mnemonic Value Description

EFI_ACCESS_DENIED 15 Access was denied.

EFI_NO_RESPONSE 16 The server was not found or did
not respond to the request.

EFI_NO_MAPPING 17 A mapping to a device does not
exist.

EFI_TIMEOUT 18 The timeout time expired.

EFI_NOT_STARTED 19 The protocol has not been started.

EFI_ALREADY_STARTED 20 The protocol has already been
started.

EFI_ABORTED 21 The operation was aborted.

EFI_ICMP_ERROR 22 An ICMP error occurred during the
network operation.

EFI_TFTP_ERROR 23 A TFTP error occurred during the
network operation.

EFI_PROTOCOL_ERROR 24 A protocol error occurred during
the network operation.

EFI_INCOMPATIBLE_VERSION 25 The function encountered an
internal version that was
incompatible with a version
requested by the caller.

EFI_SECURITY_VIOLATION 26 The function was not performed
due to a security violation.

EFI_CRC_ERROR 27 A CRC error was detected.

EFI_NOT_AVAILABLE_YET 28 The service is not available yet
because one of its dependencies
has not been satisfied yet.

EFI_UNLOAD_IMAGE 29 If this value is returned by an EFI
image, then the image should be
unloaded.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

198 November 2004 Version 0.91

EFI_STATUS Warning Codes (High Bit Clear)
The following table lists the warning codes for EFI_STATUS.

Table 15-4. EFI_STATUS Warning Codes (High Bit Clear)

Mnemonic Value Description

EFI_WARN_UNKOWN_GLYPH 1 The Unicode string contained one
or more characters that the device
could not render and were
skipped.

EFI_WARN_DELETE_FAILURE 2 The handle was closed, but the
file was not deleted.

EFI_WARN_WRITE_FAILURE 3 The handle was closed, but the
data to the file was not flushed
properly.

EFI_WARN_BUFFER_TOO_SMALL 4 The resulting buffer was too small,
and the data was truncated to the
buffer size.

 Draft for Review

Version 0.91 November 2004 199

16
Dependency Expression Grammar

Dependency Expression Grammar
This topic contains an example BNF grammar for a PEIM dependency expression compiler that
converts a dependency expression source file into a dependency section of a PEIM stored in a
firmware volume.

Example Dependency Expression BNF Grammar
 <depex> ::= <bool>
 <bool> ::= <bool> AND <term>
 | <bool> OR <term>
 | <term>
 <term> ::= NOT <factor>
 | <factor>
 <factor> ::= <bool>
 | TRUE
 | FALSE
 | GUID
 | END
 <guid> ::= ‘{‘ <hex32> ‘,’ <hex16> ‘,’ <hex16> ‘,’
 <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’
 <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’ <hex8> ’}’
 <hex32> ::= <hexprefix> <hexvalue>
 <hex16> ::= <hexprefix> <hexvalue>
 <hex8> ::= <hexprefix> <hexvalue>
 <hexprefix>::= ‘0’ ‘x’
 | ‘0’ ‘X’
 <hexvalue> ::= <hexdigit> <hexvalue>
 | <hexdigit>
 <hexdigit> ::= [0-9]
 | [a-f]
 | [A-F]

Sample Dependency Expressions
The following contains three examples of source statements using the BNF grammar from above
along with the opcodes, operands, and binary encoding that a dependency expression compiler
would generate from these source statements.

//
// Source
//
EFI_PEI_CPU_IO_PPI_GUID AND EFI_PEI_READ_ONLY_VARIABLE_ACCESS_PPI_GUID
END

//
// Opcodes, Operands, and Binary Encoding

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

200 November 2004 Version 0.91

//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 02 PUSH
0x01 : 26 25 73 b0 c8 38 40 4b EFI_PEI_CPU_IO_PPI_GUID
 88 77 61 c7 b0 6a ac 45
0x11 : 02 PUSH
0x12 : b1 cc ba 26 42 6f d4 11
EFI_PEI_READ_ONLY_VARIABLE_ACCESS_PPI_GUID
 bc e7 00 80 c7 3c 88 81
0x22 : 03 AND
0x23 : 08 END

 Draft for Review

Version 0.91 November 2004 201

17
TE Image

Introduction
The TE image format was created as a mechanism to reduce the overhead of the PE/COFF headers
in PE32/PE32+ images, resulting in a corresponding reduction of image sizes for executables
running in the Framework environment. Reducing image size provides an opportunity for use of a
smaller system flash part.

TE images, both drivers and applications, are created as PE32 (or PE32+) executables. PE32 is a
generic executable image format that is intended to support multiple target systems, processors, and
operating systems. As a result, the headers in the image contain information that is not necessarily
applicable to all target systems. In an effort to reduce image size, a new executable image header
(TE) was created that includes only those fields from the PE/COFF headers required for execution
under the Framework. Since this header contains the information required for execution of the
image, it can replace the PE/COFF headers from the original image. This specification defines the
TE header, the fields in the header, and how they are used in the Framework’s execution
environment.

PE32 Headers
A PE file header, as described in the Microsoft Portable Executable and Common Object File
Format Specification, contains an MS-DOS* stub, a PE signature, a COFF header, an optional
header, and section headers. For successful execution, PEIMs in the Framework require very little
of the data from these headers, and in fact the MS-DOS stub and PE signature are not required at
all.

See Table 17-1 and Table 17-2 for the necessary fields and their descriptions.

Table 17-1. COFF Header Fields Required for TE Images

COFF HEADER DESCRIPTION

Machine Target machine identifier. 2 bytes in both COFF header and TE header

NumberOfSections Number of sections/section headers. 2 bytes in COFF header, 1 byte in TE header

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

202 November 2004 Version 0.91

Table 17-2. Optional Header Fields Required for TE Images

OPTIONAL
HEADER

DESCRIPTION

AddressOfEntryPoint Address of entry point relative to image base. 4 bytes in both optional header and TE
header

BaseOfCode Offset from image base to the start of the code section. 4 bytes in both optional
header and TE header

ImageBase Image’s linked address. 4 bytes in OptionalHeader32, 8 bytes in OptionalHeader64,
and 8 bytes in TE header

Subsystem Subsystem required to run the image. 2 bytes in optional header, 1 byte in TE header

TE Header

Summary
To reduce the overhead of PE/COFF headers in the Framework's environment, a minimal (TE)
header can be defined that includes only those fields required for execution in the Framework. This
header can then be used to replace the original headers at the start of the original image.

Prototype
typedef struct {
 UINT16 Signature;
 UINT16 Machine;
 UINT8 NumberOfSections;
 UINT8 Subsystem;
 UINT16 StrippedSize;
 UINT32 AddressOfEntryPoint;
 UINT32 BaseOfCode;
 UINT64 ImageBase;
 EFI_IMAGE_DATA_DIRECTORY DataDirectory[2];
} EFI_TE_IMAGE_HEADER;

Parameters
Signature

TE image signature

Machine

Target machine, as specified in the original image’s file header

NumberOfSections

Number of sections, as specified in the original image’s file header

NumberOfSections

Target subsystem, as specified in the original optional header

Dependency Expression Grammar

Version 0.91 November 2004 203

StrippedSize

Number of bytes removed from the base of the original image

NumberOfSections

Address of the entry point to the driver, as specified in the original image’s optional
header

BaseOfCode

Base of the code, as specified in the original image’s optional header

ImageBase

Image base, as specified in the original image’s optional header (0-extended to
64-bits for PE32 images)

DataDirectory

Directory entries for base relocations and the debug directory from the original
image’s corresponding directory entries. See related definitions below.

Field Descriptions
In the EFI_TE_IMAGE HEADER, the Machine, NumberOfSections,
NumberOfSections, NumberOfSections, BaseOfCode, and ImageBase all come
directly from the original PE headers to enable partial reconstitution of the original headers if
necessary.

The 2-byte Signature should be set to EFI_TE_IMAGE_HEADER_SIGNATURE to designate
the image as TE, as opposed to the “MZ” signature at the start of standard PE/COFF images.

The StrippedSize should be set to the number of bytes removed from the start of the original
image, which will typically include the MS-DOS, COFF, and optional headers, as well as the
section headers. This size can be used by image loaders and tools to make appropriate adjustments
to the other fields in the TE image header. Note that StrippedSize does not take into account
the size of the TE image header that will be added to the image. That is to say, the delta in the total
image size when converted to TE is StrippedSize – sizeof (EFI_TE_IMAGE_HEADER).
This will typically need to be taken into account by tools using the fields in the TE header.

The DataDirectory array contents are copied directly from the base relocations and debug
directory entries in the original optional header data directories.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

204 November 2004 Version 0.91

Related Definitions
//***
//EFI_IMAGE_DATA_DIRECTORY
//***
typedef struct {
 UINT32 VirtualAddress;
 UINT32 Size;
} EFI_IMAGE_DATA_DIRECTORY;
#define EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC 0
#define EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG 1

#define EFI_TE_IMAGE_HEADER_SIGNATURE 0x5A56 // “VZ”

 Draft for Review

Version 0.91 November 2004 205

18
TE Image Creation

Introduction
This section describes the tool requirements to create a TE image.

TE Image Utility Requirements
A utility that creates TE images from standard PE/COFF images must be able to do the following:

• Create an EFI_TE_IMAGE_HEADER in memory

• Parse the PE/COFF headers in an existing image and extract the necessary fields to fill in the
EFI_TE_IMAGE_HEADER

• Fill in the signature and stripped size fields in the EFI_TE_IMAGE_HEADER

• Write out the EFI_TE_IMAGE_HEADER to a new binary file
• Write out the contents of the original image, less the stripped headers, to the output file

Since some fields from the PE/COFF headers have a smaller corresponding field in the TE image
header, the utility must be able to recognize if the original value from the PE/COFF header does not
fit in the TE header. In this case, the original image is not a candidate for conversion to TE image
format.

TE Image Relocations
Relocation fix ups in TE images are not modified by the TE image creation process. Therefore, if a
TE image is to be relocated, the loader/relocator must take into consideration the stripped size and
size of a TE image header when applying fix ups.

Pre-EFI Initialization Core Interface Draft for Review
Specification (PEI CIS)

206 November 2004 Version 0.91

 Draft for Review

Version 0.91 November 2004 207

19
TE Image Loading

Introduction
This section describes the use of the TE image and how embedded, execute-in-place
environments can invoke these images.

XIP Images
For execute-in-place (XIP) images that do not require relocations, loading a TE image simply
requires that the loader adjust the image’s entry point from the value specified in the
EFI_TE_IMAGE_HEADER. For example, if the image (and thus the TE header) resides at memory
location LoadedImageAddress, then the actual entry for the driver is computed as follows:

EntryPoint = LoadedImageAddress + sizeof (EFI_TE_IMAGE_HEADER)
+

 ((EFI_TE_IMAGE_HEADER *)LoadedImageAddress)–>

 AddressOfEntryPoint – ((EFI_TE_IMAGE_HEADER *)

 LoadedImageAddress)–>StrippedSize;

Relocated Images
To successfully load and relocate a TE image requires the same operations as required for XIP
code. However, for images that can be relocated, the image loader must make adjustments for all
the relocation fix ups performed. Details on this operation are beyond the scope of this document,
but suffice it to say that the adjustments will be computed in a manner similar to the EntryPoint
adjustment made in XIP Images.

	Intel® Platform Innovation Framework for EFI Pre-EFI Initialization Core Interface Specification (PEI CIS)
	Disclaimer
	Revision History
	Contents
	1 Introduction
	Overview
	Organization of the PEI CIS
	Conventions Used in This Document
	Data Structure Descriptions
	Procedure Descriptions
	Instruction Descriptions
	PPI Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2 Overview
	Introduction
	Design Goals
	Pre-EFI Initialization (PEI) Phase
	PEI Services
	PEI Foundation
	PEI Dispatcher
	Pre-EFI Initialization Modules (PEIMs)
	PEIM-to-PEIM Interfaces (PPIs)
	Firmware Volumes

	3 PEI Services Table
	Introduction
	EFI Table Header
	EFI_TABLE_HEADER

	PEI Services Table
	EFI_PEI_SERVICES

	4 Services - PEI
	Introduction
	PPI Services
	PPI Services
	InstallPpi()
	ReinstallPpi()
	LocatePpi()
	NotifyPpi()
	Boot Mode Services
	GetBootMode()
	SetBootMode()
	HOB Services
	GetHobList()
	CreateHob()
	Firmware Volume Services
	FfsFindNextVolume()
	FfsFindNextFile()
	FfsFindSectionData()
	PEI Memory Services
	InstallPeiMemory()
	AllocatePages()
	AllocatePool()
	CopyMem()
	SetMem()
	Status Code Service
	ReportStatusCode()
	Reset Services
	ResetSystem()
	I/O and PCI Services

	5 PEI Foundation
	Introduction
	Prerequisites
	Processor Execution Mode
	Processor Execution Mode in IA-32 Intel® Architecture
	Processor Execution Mode in Itanium® Processor Family
	Access to the Boot Firmware Volume
	Access to the Boot Firmware Volume in IA-32 Intel® Architecture
	Access to the Boot Firmware Volume in Itanium® Processor Family

	PEI Foundation Entry Point
	PEI Foundation Entry Point

	6 PEI Dispatcher
	Introduction
	Ordering
	Requirements
	Requirement Representation and Notation
	PEIM Dependency Expressions
	Types of Dependencies

	Dependency Expressions
	Introduction
	Dependency Expression Instruction Set
	PUSH
	AND
	OR
	NOT
	TRUE
	FALSE
	END

	Dependency Expression with No Dependencies
	Empty Dependency Expressions
	Dependency Expression Reverse Polish Notation (RPN)

	Dispatch Algorithm
	Overview
	Ordering Algorithm
	Multiple Firmware Volume Support
	Recovery Dispatching

	Requirements
	Requirements of a Dispatching Algorithm
	Preserving Weak Ordering
	Preventing Infinite Loops
	Controlling Processor Register Resources
	Preserving Proper Dispatch Order
	Using Available Memory
	Invoking the PEIM's Entry Point
	Knowing When Dispatcher Tasks Are Finished

	Example Dispatch Algorithm
	Dispatching When Memory Exists

	7 PEIMs
	Introduction
	PEIM Structure
	PEIM Structure Overview
	Relocation Information
	Position-Dependent Code
	Position-Independent Code
	Relocation Information Format

	Authentication Information

	PEIM Invocation Entry Point
	EFI_PEIM_ENTRY_POINT

	PEIM Descriptors
	PEIM Descriptors Overview
	EFI_PEI_DESCRIPTOR
	EFI_PEI_NOTIFY_DESCRIPTOR
	EFI_PEI_PPI_DESCRIPTOR

	PEIM-to-PEIM Communication
	Overview
	Dynamic PPI Discovery
	PPI Database
	Invoking a PPI
	Address Resolution

	8 Architectural PPIs
	Introduction
	Required Architectural PPIs
	Master Boot Mode PPI (Required)
	EFI_PEI_MASTER_BOOT_MODE_PPI (Required)

	DXE IPL PPI (Required)
	EFI_DXE_IPL_PPI (Required)
	EFI_DXE_IPL_PPI.Entry()

	Memory Discovered PPI (Required)
	EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI (Required)

	Optional Architectural PPIs
	Boot in Recovery Mode PPI (Optional)
	EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI (Optional)

	Section Extraction PPI (Optional)
	EFI_PEI_SECTION_EXTRACTION_PPI (Optional)
	EFI_PEI_SECTION_EXTRACTION_PPI.GetSection()

	End of PEI Phase PPI (Optional)
	EFI_PEI_END_OF_PEI_PHASE_PPI (Optional)

	Find FV PPI (Optional)
	EFI_PEI_FIND_FV_PPI (Optional)
	EFI_PEI_FIND_FV_PPI.FindFv()

	Load File PPI (Optional)
	EFI_PEI_FV_FILE_LOADER_PPI (Optional)
	EFI_PEI_FV_FILE_LOADER_PPI.FvLoadFile()

	PEI Reset PPI
	EFI_PEI_RESET_PPI (Optional)

	Status Code PPI (Optional)
	EFI_PEI_PROGRESS_CODE_PPI (Optional)

	Security PPI (Optional)
	EFI_PEI_SECURITY_PPI (Optional)
	EFI_PEI_SECURITY_PPI.AuthenticationState()

	9 Additional PPIs
	Introduction
	Required Additional PPIs
	CPU I/O PPI (Required)
	EFI_PEI_CPU_IO_PPI (Required)
	EFI_PEI_CPU_IO_PPI.Mem()
	EFI_PEI_CPU_IO_PPI.Io()
	EFI_PEI_CPU_IO_PPI.IoRead8()
	EFI_PEI_CPU_IO_PPI.IoRead16()
	EFI_PEI_CPU_IO_PPI.IoRead32()
	EFI_PEI_CPU_IO_PPI.IoRead64()
	EFI_PEI_CPU_IO_PPI.IoWrite8()
	EFI_PEI_CPU_IO_PPI.IoWrite16()
	EFI_PEI_CPU_IO_PPI.IoWrite32()
	EFI_PEI_CPU_IO_PPI.IoWrite64()
	EFI_PEI_CPU_IO_PPI.MemRead8()
	EFI_PEI_CPU_IO_PPI.MemRead16()
	EFI_PEI_CPU_IO_PPI.MemRead32()
	EFI_PEI_CPU_IO_PPI.MemRead64()
	EFI_PEI_CPU_IO_PPI.MemWrite8()
	EFI_PEI_CPU_IO_PPI.MemWrite16()
	EFI_PEI_CPU_IO_PPI.MemWrite32()
	EFI_PEI_CPU_IO_PPI.MemWrite64()

	PCI Configuration PPI (Required)
	EFI_PEI_PCI_CFG_PPI (Required)
	EFI_PEI_PCI_CFG_PPI.Read()
	EFI_PEI_PCI_CFG_PPI.Write()
	EFI_PEI_PCI_CFG_PPI.Modify()

	Stall PPI (Required)
	EFI_PEI_STALL_PPI (Required)
	EFI_PEI_STALL_PPI.Stall()

	Variable Services PPI (Required)
	EFI_PEI_READ_ONLY_VARIABLE_PPI (Required)
	EFI_PEI_READ_ONLY_VARIABLE_PPI.GetVariable()
	EFI_PEI_READ_ONLY_VARIABLE_PPI.NextVariableName()

	Optional Additional PPIs
	SEC Platform Information PPI (Optional)
	EFI_SEC_PLATFORM_INFORMATION_PPI (Optional)
	EFI_SEC_PLATFORM_INFORMATION_PPI.PlatformInformation()

	10 PEI to DXE Handoff
	Introduction
	Discovery and Dispatch of the DXE Foundation
	Passing the Hand-Off Block (HOB) List
	Handoff Processor State to the DXE IPL PPI

	11 Boot Paths
	Introduction
	Defined Boot Modes
	Priority of Boot Paths
	Assumptions
	Architectural Boot Mode PPIs
	Recovery
	Scope
	Discovery
	General Recovery Architecture

	12 PEI Physical Memory Usage
	Introduction
	Before Permanent Memory Is Installed
	Discovering Physical Memory
	Using Physical Memory

	After Permanent Memory Is Installed
	Allocating Physical Memory
	Allocating Memory Using GUID Extension HOBs
	Allocating Memory within PEI Memory
	Allocating Memory outside of PEI Memory
	Allocating Memory Using PEI Service

	13 Special Paths Unique to the Itanium® Processor Family
	Introduction
	Unique Boot Paths for Itanium Architecture
	Min-State Save Area
	EFI_PEI_MIN_STATE_DATA
	Dispatching Itanium® Processor Family PEIMs

	14 Security (SEC) Phase Information
	Introduction
	Responsibilities
	Handling All Platform Restart Events
	Creating a Temporary Memory Store
	Serving As the Root of Trust in the System
	Passing Handoff Information to the PEI Foundation

	SEC Platform Information PPI
	Health Flag Bit Format
	Health Flag Bit Format
	Self-Test State Parameter

	Processor-Specific Details
	SEC Phase in IA-32 Intel® Architecture
	SEC Phase in the Itanium® Processor Family

	15 Returned Status Codes
	Returned Status Codes
	EFI_STATUS Codes Ranges
	EFI_STATUS Success Codes (High Bit Clear)
	EFI_STATUS Error Codes (High Bit Set)
	EFI_STATUS Warning Codes (High Bit Clear)

	16 Dependency Expression Grammar
	Dependency Expression Grammar
	Example Dependency Expression BNF Grammar
	Sample Dependency Expressions

	17 TE Image
	Introduction
	PE32 Headers
	TE Header

	18 TE Image Creation
	Introduction
	TE Image Utility Requirements
	TE Image Relocations

	19 TE Image Loading
	Introduction
	XIP Images
	Relocated Images

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

