
Draft for Review

Intel® Platform Innovation Framework
for EFI

Hand-Off Block (HOB) Specification

Draft for Review

Version 0.9

September 16, 2003

Hand-Off Block (HOB) Specification Draft for Review

ii September 2003 Version 0.9

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NOWARRANTIES WHATSOEVER, INCLUDING ANYWARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANYWARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright 2001–2003, Intel Corporation.

Intel order number xxxxxx-001

Draft for Review

Version 0.9 September 2003 iii

Revision History

Revision Revision History Date

0.9 First public release. 9/16/03

Hand-Off Block (HOB) Specification Draft for Review

iv September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 v

Contents

1 Introduction ..7
Overview..7
Conventions Used in This Document...7

Data Structure Descriptions ..7
Pseudo-Code Conventions ...8
Typographic Conventions ...8

2 Design Discussion...11
Explanation of HOB Terms ..11
HOB Overview...11
Example HOB Producer Phase Memory Map and Usage..12
HOB List ..13
Constructing the HOB List ...13

Constructing the Initial HOB List ...13
HOB Construction Rules ...14
Adding to the HOB List..14

3 Code Definitions...15
Introduction..15
HOB Generic Header...16

EFI_HOB_GENERIC_HEADER..16
PHIT HOB..18

EFI_HOB_HANDOFF_INFO_TABLE (PHIT HOB)..18
Memory Allocation HOB...20
Memory Allocation HOB...20

Memory Allocation HOB..20
EFI_HOB_MEMORY_ALLOCATION..20

Boot-Strap Processor (BSP) Stack Memory Allocation HOB.......................................23
EFI_HOB_MEMORY_ALLOCATION_STACK..23

Boot-Strap Processor (BSP) BSPSTORE Memory Allocation HOB25
EFI_HOB_MEMORY_ALLOCATION_BSP_STORE25

Memory Allocation Module HOB ...26
EFI_HOB_MEMORY_ALLOCATION_MODULE...26

Resource Descriptor HOB ...28
EFI_HOB_RESOURCE_DESCRIPTOR ...28

GUID Extension HOB ..33
EFI_HOB_GUID_TYPE ..33

Firmware Volume HOB..34
EFI_HOB_FIRMWARE_VOLUME ..34

CPU HOB ..35
EFI_HOB_CPU ...35

Memory Pool HOB...36
EFI_HOB_MEMORY_POOL...36

Capsule Volume HOB..37
EFI_HOB_CAPSULE_VOLUME ...37

Hand-Off Block (HOB) Specification Draft for Review

vi September 2003 Version 0.9

Unused HOB ...38
EFI_HOB_TYPE_UNUSED ..38

End of HOB List HOB ..39
EFI_HOB_TYPE_END_OF_HOB_LIST..39

Figures
Figure 2-1. Example HOB Producer Phase Memory Map and Usage..................................12

Tables
Table 2-1. Translation of HOB Specification Terminology..11
Table 3-1. HOB Producer Phase Resource Types...32

Draft for Review

Version 0.9 September 2003 7

1
Introduction

Overview
This specification defines the core code that is required for an implementation of Hand-Off Blocks
(HOBs) in the Intel® Platform Innovation Framework for EFI (hereafter referred to as the
“Framework”). A HOB is a binary data structure that passes system state information from the
HOB producer phase to the HOB consumer phase in the Framework architecture. This HOB
specification does the following:

• Describes the basic components of HOBs and the rules for constructing them
• Provides code definitions for the HOB data types and structures that are architecturally required

by the Intel® Platform Innovation Framework for EFI Architecture Specification

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®

processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Hand-Off Block (HOB) Specification Draft for Review

8 September 2003 Version 0.9

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

Draft for Review Introduction

Version 0.9 September 2003 9

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the
following URL:

http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

Hand-Off Block (HOB) Specification Draft for Review

10 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 11

2
Design Discussion

Explanation of HOB Terms
Because HOBs are the key architectural mechanism that is used to hand off system information in
the early preboot stages and because not all implementations of the Framework will use the Pre-EFI
Initialization (PEI) and Driver Execution Environment (DXE) phases, this specification refrains
from using the PEI and DXE nomenclature used in other Framework specifications.

Instead, this specification uses the following terms to refer to the phases that deal with HOBs:

• HOB producer phase
• HOB consumer phase

The HOB producer phase is the preboot phase in which HOBs and the HOB list are created. The
HOB consumer phase is the preboot phase to which the HOB list is passed and then consumed.

If the Framework implementation incorporates the PEI and DXE, the HOB producer phase is the
PEI phase and the HOB consumer phase is the DXE phase. The producer and consumer can
change, however, depending on the implementation.

The following table translates the terminology used in this specification with that used in other
Framework specifications.

Table 2-1. Translation of HOB Specification Terminology

Term Used in the HOB Specification Term Used in Other Framework Specifications

HOB producer phase PEI phase

HOB consumer phase DXE phase

executable content in the HOB producer
phase

Pre-EFI Initialization Module (PEIM)

hand-off into the HOB consumer phase DXE Initial Program Load (IPL) PEIM or
DXE IPL PEIM-to-PEIM Interface (PPI)

platform boot-policy phase Boot Device Selection (BDS) phase

HOB Overview
The HOB producer phase provides a simple mechanism to allocate memory for data storage during
the phase’s execution. The data store is architecturally defined and described by HOBs. This data
store is also passed to the HOB producer phase when it is invoked from the HOB producer phase.

The basic container of data storage is named a Hand-Off Block, or HOB. HOBs are allocated
sequentially in memory that is available to executable content in the HOB producer phase. There
are a series of services that facilitate HOB manipulation. The sequential list of HOBs in memory
will be referred to as the HOB list.

See Code Definitions for definitions of the various HOB types and the semantics for creating them.

Hand-Off Block (HOB) Specification Draft for Review

12 September 2003 Version 0.9

Example HOB Producer Phase Memory Map and Usage
The figure below shows an example of the HOB producer phase memory map and its usage. This
map is a possible means by which to subdivide the region.

Figure 2-1. Example HOB Producer Phase Memory Map and Usage

Draft for Review Design Discussion

Version 0.9 September 2003 13

HOB List
The first HOB in the HOB list must be the Phase Handoff Information Table (PHIT) HOB. The last
HOB in the HOB list must be the end of list HOB.

Only HOB producer phase components are allowed to make additions or changes to HOBs. Once
the HOB list is passed into the HOB consumer phase, it is effectively read only. The ramifications
of a read-only HOB list is that handoff information, such as boot mode, must be handled in a
distinguished fashion. For example, if the HOB consumer phase were to engender a recovery
condition, it would not update the boot mode but instead would implement the action using a
special type of reset call. The HOB list contains system state data at the time of HOB consumer–to–
HOB producer handoff and does not represent the current system state during the HOB
consumer phase.

Constructing the HOB List

Constructing the Initial HOB List
The HOB list is initially built by the HOB producer phase. The HOB list is created in memory that
is present, initialized, and tested. Once the initial HOB list has been created, the physical memory
cannot be remapped, interleaved, or otherwise moved by a subsequent software agent.

The HOB producer phase must build the following three HOBs in the initial HOB list before
exposing the list to other modules:

• The PHIT HOB
• A memory allocation HOB describing where the boot-strap processor (BSP) stack for

permanent memory is located

or

A memory allocation HOB describing where the BSP store for permanent memory is located
(Itanium® processor family only)

• A resource descriptor HOB that describes a physical memory range encompassing the HOB
producer phase memory range with its attributes set as present, initialized, and tested

The HOB list creator may build more HOBs into the initial HOB list, such as additional HOBs to
describe other physical memory ranges. There can also be additional modules, which might include
a HOB producer phase–specific HOB to record memory errors discovered during initialization.

When the HOB producer phase completes its list creation, it exposes a pointer to the PHIT HOB to
other modules.

Hand-Off Block (HOB) Specification Draft for Review

14 September 2003 Version 0.9

HOB Construction Rules
HOB construction must obey the following rules:

1. All HOBs must start with a HOB generic header. This requirement allows users to locate the
HOBs in which they are interested while skipping the rest. See the
EFI_HOB_GENERIC_HEADER definition.

2. HOBs may contain boot services data that is available during the HOB producer and consumer
phases only until the HOB consumer phase is terminated.

3. HOBs may be relocated in system memory by the HOB consumer phase. HOBs must not
contain pointers to other data in the HOB list, including that in other HOBs. The table must be
able to be copied without requiring internal pointer adjustment.

4. All HOBs must be multiples of 8 bytes in length. This requirement meets the alignment
restrictions of the Itanium® processor family.

5. The PHIT HOB must always begin on an 8-byte boundary. Due to this requirement and
requirement #4 in this list, all HOBs will begin on an 8-byte boundary.

6. HOBs are added to the end of the HOB list. HOBs can only be added to the HOB list during
the HOB producer phase, not the HOB consumer phase.

7. HOBs cannot be deleted. The generic HOB header of each HOB must describe the length of
the HOB so that the next HOB can be found. A private GUIDed HOB may provide a
mechanism to mark some or its entire contents invalid; however, this mechanism is beyond the
scope of this document.

NOTE
The HOB list must be valid (i.e., no HOBs “under construction”) when any HOB producer phase
service is invoked. Another HOB producer phase component’s function might walk the HOB list,
and if a HOB header contains invalid data, it might cause unreliable operation.

Adding to the HOB List
To add a HOB to the HOB list, HOB consumer phase software must obtain a pointer to the
PHIT HOB (start of the HOB list) and follow these steps:

1. Determine NewHobSize, where NewHobSize is the size in bytes of the HOB to be created.
2. Check free memory to ensure that there is enough free memory to allocate the new HOB. This

test is performed by checking that NewHobSize <= PHIT->EfiFreeMemoryTop -
PHIT->EfiFreeMemoryBottom).

3. Construct the HOB at PHIT->EfiFreeMemoryBottom.
4. Set PHIT->EfiFreeMemoryBottom = PHIT->EfiFreeMemoryBottom +

NewHobSize.

Draft for Review

Version 0.9 September 2003 15

3
Code Definitions

Introduction
This section contains the basic definitions of various HOBs. All HOBs consist of a generic header,
EFI_HOB_GENERIC_HEADER, that specifies the type and length of the HOB. Each HOB has
additional data beyond the generic header, according to the HOB type. The following data types
and structures are defined in this section:

• EFI_HOB_GENERIC_HEADER

• EFI_HOB_HANDOFF_INFO_TABLE

• EFI_HOB_MEMORY_ALLOCATION

• EFI_HOB_MEMORY_ALLOCATION_STACK

• EFI_HOB_MEMORY_ALLOCATION_BSP_STORE

• EFI_HOB_MEMORY_ALLOCATION_MODULE

• EFI_HOB_RESOURCE_DESCRIPTOR

• EFI_HOB_GUID_TYPE

• EFI_HOB_FIRMWARE_VOLUME

• EFI_HOB_CPU

• EFI_HOB_MEMORY_POOL

• EFI_HOB_CAPSULE_VOLUME

• EFI_HOB_TYPE_UNUSED

• EFI_HOB_TYPE_END_OF_HOB_LIST

This section also contains the definitions for additional data types and structures that are
subordinate to the structures in which they are called. The following types or structures can be
found in “Related Definitions” of the parent data structure definition:

• EFI_HOB_MEMORY_ALLOCATION_HEADER

• EFI_RESOURCE_TYPE

• EFI_RESOURCE_ATTRIBUTE_TYPE

Hand-Off Block (HOB) Specification Draft for Review

16 September 2003 Version 0.9

HOB Generic Header

EFI_HOB_GENERIC_HEADER

Summary
Describes the format and size of the data inside the HOB. All HOBs must contain this generic
HOB header.

Prototype
typedef struct _EFI_HOB_GENERIC_HEADER{

UINT16 HobType;
UINT16 HobLength;
UINT32 Reserved;

} EFI_HOB_GENERIC_HEADER;

Parameters
HobType

Identifies the HOB data structure type. See “Related Definitions” below for the HOB
types that are defined in this specification.

HobLength

The length in bytes of the HOB.

Reserved

For this version of the specification, this field must always be set to zero.

Description
All HOBs have a common header that is used for the following:

• Traversing to the next HOB
• Describing the format and size of the data inside the HOB

Draft for Review Code Definitions

Version 0.9 September 2003 17

Related Definitions
The following values for HobType are defined by this specification.
//**
// HobType values
//**

#define EFI_HOB_TYPE_HANDOFF 0x0001
#define EFI_HOB_TYPE_MEMORY_ALLOCATION 0x0002
#define EFI_HOB_TYPE_RESOURCE_DESCRIPTOR 0x0003
#define EFI_HOB_TYPE_GUID_EXTENSION 0x0004
#define EFI_HOB_TYPE_FV 0x0005
#define EFI_HOB_TYPE_CPU 0x0006
#define EFI_HOB_TYPE_MEMORY_POOL 0x0007
#define EFI_HOB_TYPE_CV 0x0008
#define EFI_HOB_TYPE_UNUSED 0xFFFE
#define EFI_HOB_TYPE_END_OF_HOB_LIST 0xffff

Other values for HobType are reserved for future use by this specification.

Hand-Off Block (HOB) Specification Draft for Review

18 September 2003 Version 0.9

PHIT HOB

EFI_HOB_HANDOFF_INFO_TABLE (PHIT HOB)

Summary
Contains general state information used by the HOB producer phase. This HOB must be the first
one in the HOB list.

Prototype
typedef struct _EFI_HOB_HANDOFF_INFO_TABLE {

EFI_HOB_GENERIC_HEADER Header;
UINT32 Version;
EFI_BOOT_MODE BootMode;
EFI_PHYSICAL_ADDRESS EfiMemoryTop;
EFI_PHYSICAL_ADDRESS EfiMemoryBottom;
EFI_PHYSICAL_ADDRESS EfiFreeMemoryTop;
EFI_PHYSICAL_ADDRESS EfiFreeMemoryBottom;
EFI_PHYSICAL_ADDRESS EfiEndOfHobList;

} EFI_HOB_HANDOFF_INFO_TABLE;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_HANDOFF.

Version

The version number pertaining to the PHIT HOB definition. See “Related
Definitions” below for the version number(s) defined by this specification. This
value is 4 bytes in length to provide an 8-byte aligned entry when it is combined
with the 4-byte BootMode.

BootMode

The system boot mode as determined during the HOB producer phase. Type
EFI_BOOT_MODE is a UINT32; if the Framework implementation incorporates the
PEI phase, the possible bit values are defined in the Intel® Platform Innovation
Framework for EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

EfiMemoryTop

The highest address location of memory that is allocated for use by the HOB
producer phase. This address must be 4 KB aligned to meet page restrictions of EFI.
Type EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the
EFI 1.10 Specification.

EfiMemoryBottom

The lowest address location of memory that is allocated for use by the HOB
producer phase.

Draft for Review Code Definitions

Version 0.9 September 2003 19

EfiFreeMemoryTop

The highest address location of free memory that is currently available for use
by the HOB producer phase. This address must be 4 KB aligned to meet page
restrictions of EFI.

EfiFreeMemoryBottom

The lowest address location of free memory that is available for use by the HOB
producer phase.

EfiEndOfHobList

The end of the HOB list.

Description
The Phase Handoff Information Table (PHIT) HOB must be the first one in the HOB list. A pointer
to this HOB is available to a HOB producer phase component through some service. This
specification commonly refers to this HOB as the PHIT HOB, or sometimes the handoff HOB.

The HOB consumer phase reads the PHIT HOB during its initialization.

Related Definitions
//***
// Version values
//***

#define EFI_HOB_HANDOFF_TABLE_VERSION 0x0009

Hand-Off Block (HOB) Specification Draft for Review

20 September 2003 Version 0.9

Memory Allocation HOB

Memory Allocation HOB

EFI_HOB_MEMORY_ALLOCATION

Summary
Describes all memory ranges used during the HOB producer phase that exist outside the HOB list.
This HOB type describes how memory is used, not the physical attributes of memory.

Prototype
typedef struct _EFI_HOB_MEMORY_ALLOCATION {

EFI_HOB_GENERIC_HEADER Header;
EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
//
// Additional data pertaining to the “Name” Guid memory
// may go here.
//

} EFI_HOB_MEMORY_ALLOCATION;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

AllocDescriptor

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the EFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in “Related Definitions”
below.

Description
The memory allocation HOB is used to describe memory usage outside the HOB list. The HOB
consumer phase does not make assumptions about the contents of the memory that is allocated by
the memory allocation HOB, and it will not move the data unless it has explicit knowledge of the
memory allocation HOB’s Name (EFI_GUID). Memory may be allocated in either the HOB
producer phase memory area or other areas of present and initialized system memory.

The HOB consumer phase reads all memory allocation HOBs and allocates memory into the system
memory map based on the following fields of EFI_HOB_MEMORY_ALLOCATION_HEADER of
each memory allocation HOB:

• MemoryBaseAddress

• MemoryLength

• MemoryType

Draft for Review Code Definitions

Version 0.9 September 2003 21

The HOB consumer phase does not parse the GUID-specific data identified by the Name field of
each memory allocation HOB, except for a specific set of memory allocation HOBs that defined by
this specification. A HOB consumer phase driver that corresponds to the specific Name GUIDed
memory allocation HOB can parse the HOB list to find the specifically named memory allocation
HOB and then manipulate the memory space as defined by the usage model for that GUID.

NOTE
Special design care should be taken to ensure that two HOB consumer phase components do not
modify memory space that is described by a memory allocation HOB, because unpredictable
behavior might result.

This specification defines a set of memory allocation HOBs that are architecturally used to allocate
memory used by the HOB producer and consumer phases. Additionally, the following memory
allocation HOBs are defined specifically for use by the final stage of the HOB producer phase to
describe the processor state prior to handoff into the HOB consumer phase:

• BSP stack memory allocation HOB
• BSP store memory allocation HOB
• Memory allocation module HOB

Related Definitions
//**
// EFI_HOB_MEMORY_ALLOCATION_HEADER
//**

typedef struct _EFI_HOB_MEMORY_ALLOCATION_HEADER {
EFI_GUID Name;
EFI_PHYSICAL_ADDRESS MemoryBaseAddress;
UINT64 MemoryLength;
EFI_MEMORY_TYPE MemoryType; // UINT32
UINT8 Reserved[4]; // Padding for Itanium®

// processor family
} EFI_HOB_MEMORY_ALLOCATION_HEADER;

Name

A GUID that defines the memory allocation region’s type and purpose, as well as
other fields within the memory allocation HOB. This GUID is used to define the
additional data within the HOB that may be present for the memory allocation HOB.
Type EFI_GUID is defined in InstallProtocolInterface() in the
EFI 1.10 Specification.

MemoryBaseAddress

The base address of memory allocated by this HOB. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the EFI 1.10
Specification.

MemoryLength

The length in bytes of memory allocated by this HOB.

Hand-Off Block (HOB) Specification Draft for Review

22 September 2003 Version 0.9

MemoryType

Defines the type of memory allocated by this HOB. The memory type definition
follows the EFI_MEMORY_TYPE definition. Type EFI_MEMORY_TYPE is defined
in AllocatePages() in the EFI 1.10 Specification.

Reserved

For this version of the specification, this field will always be set to zero.

NOTE
MemoryBaseAddress and MemoryLength must each have 4 KB granularity to meet the page
size requirements of EFI.

Draft for Review Code Definitions

Version 0.9 September 2003 23

Boot-Strap Processor (BSP) Stack Memory Allocation HOB

EFI_HOB_MEMORY_ALLOCATION_STACK

Summary
Describes the memory stack that is produced by the HOB producer phase and upon which all post-
memory-installed executable content in the HOB producer phase is executing.

GUID
#define EFI_HOB_MEMORY_ALLOC_STACK_GUID \
{0x4ed4bf27, 0x4092, 0x42e9, 0x80, 0x7d, 0x52, 0x7b, 0x1d, 0x0,
0xc9, 0xbd};

Prototype
typedef struct _EFI_HOB_MEMORY_ALLOCATION_STACK {

EFI_HOB_GENERIC_HEADER Header;
EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;

} EFI_HOB_MEMORY_ALLOCATION_STACK;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

AllocDescriptor

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the EFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in
EFI_HOB_MEMORY_ALLOCATION.

Description
This HOB describes the memory stack that is produced by the HOB producer phase and upon
which all post-memory-installed executable content in the HOB producer phase is executing. It is
necessary for the hand-off into the HOB consumer phase to know this information so that it can
appropriately map this stack into its own execution environment and describe it in any subsequent
memory maps.

The HOB consumer phase reads this HOB during its initialization. The HOB consumer phase may
elect to move or relocate the BSP’s stack to meet size and location requirements that are defined by
the HOB consumer phase’s implementation. Therefore, other HOB consumer phase components
cannot rely on the BSP stack memory allocation HOB to describe where the BSP stack is located
during execution of the HOB consumer phase.

Hand-Off Block (HOB) Specification Draft for Review

24 September 2003 Version 0.9

The BSP stack memory allocation HOB without any additional qualification describes either of the
following:

• The stack that is currently consumed by the BSP
• The processor that is currently executing the HOB producer phase and its executable content

The model for the Framework and the HOB producer phase is that of a single-threaded execution
environment, so it is this single, distinguished thread of control whose environment is described by
this HOB. The Itanium® processor family has the additional requirement of having to describe the
value of the BSPSTORE (AR18) (“Backing Store Pointer Store”) register, which holds the
successive location in memory where the Itanium processor family Register Stack Engine (RSE)
will spill its values.

In addition, Itanium®-based systems feature a system architecture where all processors come out of
reset and execute the reset path concurrently. As such, the stack resources that are consumed by
these alternate agents need to be described even though they are not responsible for executing the
main thread of control through the HOB producer and consumer phases.

Draft for Review Code Definitions

Version 0.9 September 2003 25

Boot-Strap Processor (BSP) BSPSTORE Memory Allocation HOB

EFI_HOB_MEMORY_ALLOCATION_BSP_STORE

NOTE
This HOB is valid for the Itanium® processor family only.

Summary
Defines the location of the boot-strap processor (BSP) BSPStore (“Backing Store Pointer Store”)
register overflow store.

GUID
#define EFI_HOB_MEMORY_ALLOC_BSP_STORE_GUID \
{0x564b33cd, 0xc92a, 0x4593, 0x90, 0xbf, 0x24, 0x73, 0xe4, 0x3c,
0x63, 0x22};

Prototype
typedef struct _EFI_HOB_MEMORY_ALLOCATION_BSP_STORE {

EFI_HOB_GENERIC_HEADER Header;
EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;

} EFI_HOB_MEMORY_ALLOCATION_BSP_STORE;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

AllocDescriptor

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the EFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in the HOB type
EFI_HOB_MEMORY_ALLOCATION.

Description
The HOB consumer phase reads this HOB during its initialization. The HOB consumer phase may
elect to move or relocate the BSP’s register store to meet size and location requirements that are
defined by the HOB consumer phase’s implementation. Therefore, other HOB consumer phase
components cannot rely on the BSP store memory allocation HOB to describe where the BSP store
is located during execution of the HOB consumer phase.

This HOB is valid for the Itanium processor family only.

Hand-Off Block (HOB) Specification Draft for Review

26 September 2003 Version 0.9

Memory Allocation Module HOB

EFI_HOB_MEMORY_ALLOCATION_MODULE

Summary
Defines the location and entry point of the HOB consumer phase.

GUID
#define EFI_HOB_MEMORY_ALLOC_MODULE_GUID \
{0xf8e21975, 0x899, 0x4f58, 0xa4, 0xbe, 0x55, 0x25, 0xa9, 0xc6,
0xd7, 0x7a}

Prototype
typedef struct {

EFI_HOB_GENERIC_HEADER Header;
EFI_HOB_MEMORY_ALLOCATION_HEADER MemoryAllocationHeader;
EFI_GUID ModuleName;
EFI_PHYSICAL_ADDRESS EntryPoint;

} EFI_HOB_MEMORY_ALLOCATION_MODULE;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

MemoryAllocationHeader

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the EFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in the HOB type
EFI_HOB_MEMORY_ALLOCATION.

ModuleName

The GUID specifying the values of the firmware file system name that contains the
HOB consumer phase component. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

EntryPoint

The address of the memory-mapped firmware volume that contains the HOB
consumer phase firmware file. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the EFI 1.10 Specification.

Draft for Review Code Definitions

Version 0.9 September 2003 27

Description
The HOB consumer phase reads the memory allocation module HOB during its initialization. This
HOB describes the memory location of the HOB consumer phase. The HOB consumer phase
should use the information to create the image handle for the HOB consumer phase.

Hand-Off Block (HOB) Specification Draft for Review

28 September 2003 Version 0.9

Resource Descriptor HOB

EFI_HOB_RESOURCE_DESCRIPTOR

Summary
Describes the resource properties of all fixed, nonrelocatable resource ranges found on the
processor host bus during the HOB producer phase.

Prototype
typedef struct _EFI_HOB_RESOURCE_DESCRIPTOR {

EFI_HOB_GENERIC_HEADER Header;
EFI_GUID Owner;
EFI_RESOURCE_TYPE ResourceType;
EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttribute;
EFI_PHYSICAL_ADDRESS PhysicalStart;
UINT64 ResourceLength;

} EFI_HOB_RESOURCE_DESCRIPTOR;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_RESOURCE_DESCRIPTOR.

Owner

A GUID representing the owner of the resource. This GUID is used by HOB
consumer phase components to correlate device ownership of a resource.

ResourceType

Resource type enumeration as defined by EFI_RESOURCE_TYPE. Type
EFI_RESOURCE_TYPE is defined in “Related Definitions” below.

ResourceAttribute

Resource attributes as defined by EFI_RESOURCE_ATTRIBUTE_TYPE. Type
EFI_RESOURCE_ATTRIBUTE_TYPE is defined in “Related Definitions” below.

PhysicalStart

Physical start address of the resource region. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the EFI 1.10 Specification.

ResourceLength

Number of bytes of the resource region.

Description
The resource descriptor HOB describes the resource properties of all fixed, nonrelocatable resource
ranges found on the processor host bus during the HOB producer phase. This HOB type does not
describe how memory is used but instead describes the attributes of the physical memory present.

Draft for Review Code Definitions

Version 0.9 September 2003 29

The HOB consumer phase reads all resource descriptor HOBs when it established the initial Global
Coherency Domain (GCD) map. The minimum requirement for the HOB producer phase is that
executable content in the HOB producer phase report one of the following:

• The resources that are necessary to start the HOB consumer phase
• The fixed resources that are not captured by HOB consumer phase driver components that were

started prior to the dynamic system configuration performed by the platform boot-policy phase

For example, executable content in the HOB producer phase should report any physical memory
found during the HOB producer phase. Another example is reporting the Boot Firmware Volume
(BFV) that contains firmware volume(s). Executable content in the HOB producer phase does not
need to report fixed system resources such as I/O port 70h/71h (real-time clock) because these fixed
resources can be allocated from the GCD by a platform-specific chipset driver loading in the HOB
consumer phase prior to the platform boot-policy phase, for example.

Current thinking is that the GCD does not track the HOB’s Owner GUID, so a HOB consumer
phase component that assumes ownership of a device’s resource must deallocate the resource
initialized by the HOB producer phase from the GCD before attempting to assign the devices
resource to itself in the HOB consumer phase.

Related Definitions
There can only be a single ResourceType field, characterized as follows.
//***
// EFI_RESOURCE_TYPE
//***

typedef UINT32 EFI_RESOURCE_TYPE;

#define EFI_RESOURCE_SYSTEM_MEMORY 0x00000000
#define EFI_RESOURCE_MEMORY_MAPPED_IO 0x00000001
#define EFI_RESOURCE_IO 0x00000002
#define EFI_RESOURCE_FIRMWARE_DEVICE 0x00000003
#define EFI_RESOURCE_MEMORY_MAPPED_IO_PORT 0x00000004
#define EFI_RESOURCE_MEMORY_RESERVED 0x00000005
#define EFI_RESOURCE_IO_RESERVED 0x00000006
#define EFI_RESOURCE_MAX_MEMORY_TYPE 0x00000007

The following table describes the fields listed in the above definition.

EFI_RESOURCE_SYSTEM_MEMORY Memory that persists out of the HOB producer
phase.

EFI_RESOURCE_MEMORY_MAPPED_IO Memory-mapped I/O that is programmed in the
HOB producer phase.

EFI_RESOURCE_IO Processor I/O space.

EFI_RESOURCE_FIRMWARE_DEVICE Memory-mapped firmware devices.

EFI_RESOURCE_MEMORY_MAPPED_IO_PORT Memory that is decoded to produce I/O cycles.

EFI_RESOURCE_MEMORY_RESERVED Reserved memory address space.

Hand-Off Block (HOB) Specification Draft for Review

30 September 2003 Version 0.9

EFI_RESOURCE_IO_RESERVED Reserved I/O address space.

EFI_RESOURCE_MAX_MEMORY_TYPE Any reported HOB value of this type or greater
should be deemed illegal. This value could
increase with successive revisions of this
specification, so the “illegality” will also be based
upon the revision field of the PHIT HOB.

The ResourceAttribute field is characterized as follows:

//***
// EFI_RESOURCE_ATTRIBUTE_TYPE
//***

typedef UINT32 EFI_RESOURCE_ATTRIBUTE_TYPE;

// These types can be ORed together as needed.
//
// The first three enumerations describe settings
//
#define EFI_RESOURCE_ATTRIBUTE_PRESENT 0x00000001
#define EFI_RESOURCE_ATTRIBUTE_INITIALIZED 0x00000002
#define EFI_RESOURCE_ATTRIBUTE_TESTED 0x00000004

//
// The rest of the settings describe capabilities
//
#define EFI_RESOURCE_ATTRIBUTE_SINGLE_BIT_ECC 0x00000008
#define EFI_RESOURCE_ATTRIBUTE_MULTIPLE_BIT_ECC 0x00000010
#define EFI_RESOURCE_ATTRIBUTE_ECC_RESERVED_1 0x00000020
#define EFI_RESOURCE_ATTRIBUTE_ECC_RESERVED_2 0x00000040
#define EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED 0x00000080
#define EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED 0x00000100
#define EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED

0x00000200
#define EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE 0x00000400
#define EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE 0x00000800
#define EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE

0x00001000
#define EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE

0x00002000
#define EFI_RESOURCE_ATTRIBUTE_16_BIT_IO 0x00004000
#define EFI_RESOURCE_ATTRIBUTE_32_BIT_IO 0x00008000
#define EFI_RESOURCE_ATTRIBUTE_64_BIT_IO 0x00010000
#define EFI_RESOURCE_ATTRIBUTE_UNCACHED_EXPORTED 0x00020000

Draft for Review Code Definitions

Version 0.9 September 2003 31

The following table describes the fields listed in the above definition.

EFI_RESOURCE_ATTRIBUTE_
PRESENT

Physical memory attribute: The memory region
exists.

EFI_RESOURCE_ATTRIBUTE_
INITIALIZED

Physical memory attribute: The memory region
has been initialized.

EFI_RESOURCE_ATTRIBUTE_
TESTED

Physical memory attribute: The memory region
has been tested.

EFI_RESOURCE_ATTRIBUTE_SINGLE_
BIT_ECC

Physical memory attribute: The memory region
supports single-bit ECC.

EFI_RESOURCE_ATTRIBUTE_
MULTIPLE_BIT_ECC

Physical memory attribute: The memory region
supports multibit ECC.

EFI_RESOURCE_ATTRIBUTE_ECC_
RESERVED_1

Physical memory attribute: The memory region
supports reserved ECC.

EFI_RESOURCE_ATTRIBUTE_ECC_
RESERVED_2

Physical memory attribute: The memory region
supports reserved ECC.

EFI_RESOURCE_ATTRIBUTE_READ_
PROTECTED

Physical memory protection attribute: The
memory region is read protected.

EFI_RESOURCE_ATTRIBUTE_WRITE_
PROTECTED

Physical memory protection attribute: The
memory region is write protected.

EFI_RESOURCE_ATTRIBUTE_
EXECUTION_PROTECTED

Physical memory protection attribute: The
memory region is execution protected.

EFI_RESOURCE_ATTRIBUTE_
UNCACHEABLE

Memory cacheability attribute: The memory
does not support caching.

EFI_RESOURCE_ATTRIBUTE_WRITE_
THROUGH_CACHEABLE

Memory cacheability attribute: The memory
supports being programmed with a write-through
cacheable attribute.

EFI_RESOURCE_ATTRIBUTE_WRITE_
COMBINEABLE

Memory cacheability attribute: The memory
supports a write-combining attribute.

EFI_RESOURCE_ATTRIBUTE_WRITE_
BACK_CACHEABLE

Memory cacheability attribute: The memory
region supports being configured as cacheable
with a write-back policy. Reads and writes that
hit in the cache do not propagate to main
memory. Dirty data is written back to main
memory when a new cache line is allocated.

EFI_RESOURCE_ATTRIBUTE_16_
BIT_IO

Memory physical attribute: The memory
supports 16-bit I/O.

EFI_RESOURCE_ATTRIBUTE_32_
BIT_IO

Memory physical attribute: The memory
supports 32-bit I/O.

Hand-Off Block (HOB) Specification Draft for Review

32 September 2003 Version 0.9

EFI_RESOURCE_ATTRIBUTE_64_
BIT_IO

Memory physical attribute: The memory
supports 64-bit I/O.

EFI_RESOURCE_ATTRIBUTE_
UNCACHED_EXPORTED

Memory cacheability attribute: The memory
region is uncacheable and exported and
supports the fetch and add semaphore
mechanism.

The table below specifies the resource attributes applicable to each resource type.

Table 3-1. HOB Producer Phase Resource Types

EFI_RESOURCE_ATTRIBUTE_TYPE

HOB Producer
Phase System
Memory

HOB Producer
Phase Memory-
Mapped I/O

HOB Producer
Phase I/O

Present X

Initialized X

Tested X

SingleBitEcc X

MultipleBitEcc X

EccReserved1 X

EccReserved2 X

ReadProtected X X

WriteProtected X X

ExecutionProtected X

Uncacheable X X

WriteThroughCacheable X X

WriteCombineable X X

WriteBackCacheable X X

16bitIO X

32bitIO X

64bitIO X

UncachedExported X X

Draft for Review Code Definitions

Version 0.9 September 2003 33

GUID Extension HOB

EFI_HOB_GUID_TYPE

Summary
Allows writers of executable content in the HOB producer phase to maintain and manage HOBs
whose types are not included in this specification. Specifically, writers of executable content in the
HOB producer phase can generate a GUID and name their own HOB entries using this module-
specific value.

Prototype
typedef struct _EFI_HOB_GUID_TYPE {

EFI_HOB_GENERIC_HEADER Header;
EFI_GUID Name;

//
// Guid specific data goes here
//

} EFI_HOB_GUID_TYPE;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_GUID_EXTENSION.

Name

A GUID that defines the contents of this HOB. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
The GUID extension HOB allows writers of executable content in the HOB producer phase to
create their own HOB definitions using a GUID. This HOB type should be used by all executable
content in the HOB producer phase to define implementation-specific data areas that are not
architectural. This HOB type may also pass implementation-specific data from executable content
in the HOB producer phase to drivers in the HOB consumer phase.

A HOB consumer phase component such as a HOB consumer phase driver will read the GUID
extension HOB during the HOB consumer phase. The HOB consumer phase component must
inherently know the GUID for the GUID extension HOB for which it is scanning the HOB list. This
knowledge establishes a contract on the HOB’s definition and usage between the executable
content in the HOB producer phase and the HOB consumer phase driver.

Hand-Off Block (HOB) Specification Draft for Review

34 September 2003 Version 0.9

Firmware Volume HOB

EFI_HOB_FIRMWARE_VOLUME

Summary
Details the location of firmware volumes that contain firmware files.

Prototype
typedef struct {

EFI_HOB_GENERIC_HEADER Header;
EFI_PHYSICAL_ADDRESS BaseAddress;
UINT64 Length;

} EFI_HOB_FIRMWARE_VOLUME;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_FV.

BaseAddress

The physical memory-mapped base address of the firmware volume. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the EFI 1.10
Specification.

Length

The length in bytes of the firmware volume.

Description
The firmware volume HOB details the location of firmware volumes that contain firmware files. It
includes a base address and length. In particular, the HOB consumer phase will use these HOBs to
discover drivers to execute and the hand-off into the HOB consumer phase will use this HOB to
discover the location of the HOB consumer phase firmware file.

The firmware volume HOB is produced in the following ways:

• By the executable content in the HOB producer phase in the Boot Firmware Volume (BFV)
that understands the size and layout of the firmware volume(s) that are present in the platform.

• By a module that has loaded a firmware volume from some media into memory. The firmware
volume HOB details this memory location.

Firmware volumes that described by the firmware volume HOB must have a firmware volume
header whose definition matches that described in the Intel® Platform Innovation Framework for
EFI Firmware Volume Block Specification.

The HOB consumer phase consumes all firmware volume HOBs that are presented by the HOB
producer phase for use by its read-only support for the Framework Firmware File System (FFS).
The HOB producer phase is required to describe any firmware volumes that may contain the HOB
consumer phase or platform drivers that are required to discover other firmware volumes.

Draft for Review Code Definitions

Version 0.9 September 2003 35

CPU HOB

EFI_HOB_CPU

Summary
Describes processor information, such as address space and I/O space capabilities.

Prototype
typedef struct _EFI_HOB_CPU {

EFI_HOB_GENERIC_HEADER Header;
UINT8 SizeOfMemorySpace;
UINT8 SizeOfIoSpace;
UINT8 Reserved[6];

} EFI_HOB_CPU;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_CPU.

SizeOfMemorySpace

Identifies the maximum physical memory addressability of the processor.

SizeOfIoSpace

Identifies the maximum physical I/O addressability of the processor.

Reserved

For this version of the specification, this field will always be set to zero.

Description
The CPU HOB is produced by the processor executable content in the HOB producer phase. It
describes processor information, such as address space and I/O space capabilities. The HOB
consumer phase consumes this information to describe the extent of the GCD capabilities.

Hand-Off Block (HOB) Specification Draft for Review

36 September 2003 Version 0.9

Memory Pool HOB

EFI_HOB_MEMORY_POOL

Summary
Describes pool memory allocations.

Prototype
typedef struct _EFI_HOB_MEMORY_POOL {

EFI_HOB_GENERIC_HEADER Header;
} EFI_HOB_MEMORY_POOL;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_POOL.

Description
The memory pool HOB is produced by the HOB producer phase and describes pool memory
allocations. The HOB consumer phase should be able to ignore these HOBs. The purpose of this
HOB is to allow for the HOB producer phase to have a simple memory allocation mechanism
within the HOB list. The size of the memory allocation is stipulated by the HobLength field in
EFI_HOB_GENERIC_HEADER.

Draft for Review Code Definitions

Version 0.9 September 2003 37

Capsule Volume HOB

EFI_HOB_CAPSULE_VOLUME

Summary
Details the location of capsule volumes that contain firmware files.

Prototype
typedef struct {

EFI_HOB_GENERIC_HEADER Header;
EFI_PHYSICAL_ADDRESS BaseAddress;
UINT64 Length;

} EFI_HOB_CAPSULE_VOLUME;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_CV.

BaseAddress

The physical memory-mapped base address of the capsule volume. This value is set
to point to the base of the contiguous memory of the capsule(s). Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the EFI 1.10
Specification.

Length

The length of the contiguous memory in bytes.

Description
The capsule volume HOB details the location of capsule volumes that contain firmware files. It
includes a base address and length.

The capsule volume HOB is the same format as the firmware volume HOB but describes the
contents of a capsule update. The HOB producer phase would typically discover and aggregate the
memory contents of the capsule update and create the capsule volume HOB. Subsequently, an agent
in the HOB consumer phase would discover the capsule volume HOB and effect the appropriate
action, such as the update itself, based on the contents. See the Intel® Platform Innovation
Framework for EFI Capsule Specification for more information on capsule update process.

Hand-Off Block (HOB) Specification Draft for Review

38 September 2003 Version 0.9

Unused HOB

EFI_HOB_TYPE_UNUSED

Summary
Indicates that the contents of the HOB can be ignored.

Prototype
#define EFI_HOB_TYPE_UNUSED 0xFFFE

Description
This HOB type means that the contents of the HOB can be ignored. This type is necessary
to support the simple, allocate-only architecture of HOBs that have no delete service. The
consumer of the HOB list should ignore HOB entries with this type field.

An agent that wishes to make a HOB entry ignorable should set its type to the prototype
defined above.

Draft for Review Code Definitions

Version 0.9 September 2003 39

End of HOB List HOB

EFI_HOB_TYPE_END_OF_HOB_LIST

Summary
Indicates the end of the HOB list. This HOB must be the last one in the HOB list.

Prototype
#define EFI_HOB_TYPE_END_OF_HOB_LIST 0xffff

Description
This HOB type indicates the end of the HOB list. This HOB type must be the last HOB type in the
HOB list and terminates the HOB list. A HOB list should be considered ill formed if it does not
have a final HOB of type EFI_HOB_TYPE_END_OF_HOB_LIST.

	Intel® Platform Innovation Framework for EFI Hand-Off Block (HOB) Specification
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Conventions Used in This Document
	Data Structure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Design Discussion
	Explanation of HOB Terms
	HOB Overview
	Example HOB Producer Phase Memory Map and Usage
	HOB List
	Constructing the HOB List
	Constructing the Initial HOB List
	HOB Construction Rules
	Adding to the HOB List

	3. Code Definitions
	Introduction
	HOB Generic Header
	EFI_HOB_GENERIC_HEADER

	PHIT HOB
	EFI_HOB_HANDOFF_INFO_TABLE (PHIT HOB)

	Memory Allocation HOB
	Memory Allocation HOB
	EFI_HOB_MEMORY_ALLOCATION

	Boot-Strap Processor (BSP) Stack Memory Allocation HOB
	EFI_HOB_MEMORY_ALLOCATION_STACK

	Boot-Strap Processor (BSP) BSPSTORE Memory Allocation HOB
	EFI_HOB_MEMORY_ALLOCATION_BSP_STORE

	Memory Allocation Module HOB
	EFI_HOB_MEMORY_ALLOCATION_MODULE

	Resource Descriptor HOB
	EFI_HOB_RESOURCE_DESCRIPTOR

	GUID Extension HOB
	EFI_HOB_GUID_TYPE

	Firmware Volume HOB
	EFI_HOB_FIRMWARE_VOLUME

	CPU HOB
	EFI_HOB_CPU

	Memory Pool HOB
	EFI_HOB_MEMORY_POOL

	Capsule Volume HOB
	EFI_HOB_CAPSULE_VOLUME

	Unused HOB
	EFI_HOB_TYPE_UNUSED

	End of HOB List HOB
	EFI_HOB_TYPE_END_OF_HOB_LIST

