
Document Number: 337129-001US

Migrating Offloading Software to
Intel® Xeon Phi™ Processor
White Paper

February 2018

2 Migrating Offloading Software to Intel® Xeon Phi™ Processor
White Paper, February 2018

Legal Lines and DisclaimersIntel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any
damages resulting from such losses.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.
This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for
a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.
Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the
referenced web site and confirm whether referenced data are accurate.
Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting www.intel.com/design/literature.htm.
Intel, Intel Xeon Phi, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2018, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm

Migrating Offloading Software to Intel® Xeon Phi™ Processor 3
White Paper, February 2018

Contents

1 Introduction ..5

2 Hardware Configurations...7
2.1 Introduction ...7
2.2 Large and medium clusters...7
2.3 Small clusters and workstations ..8

3 Software Migration .. 11
3.1 Introduction ... 11
3.2 Software tools .. 11

3.2.1 Intel® MPI Library.. 11
3.2.2 Offloading over Fabric ... 12

3.3 Porting application to the Intel® Xeon Phi™ Processor.. 13
3.3.1 Native and MPI (distributed) applications... 13
3.3.2 Offloading applications .. 13

3.4 Tuning applications for Intel® Xeon Phi™ Processor ... 16
3.4.1 Increased number of cores .. 16
3.4.2 Intel® Advanced Vector Extensions (Intel® AVX)-512................................. 16
3.4.3 Cluster modes ... 16
3.4.4 High bandwidth memory ... 16
3.4.5 Load balancing of the application.. 18
3.4.6 Application examples .. 18

4 Benchmarking and Benchmarks Details ... 21

Figures
2-1 Fixed Assignment of Accelerators to Computing Nodes ...7
2-2 Heterogeneous Computing Cluster...8
2-3 Cluster Rack with Network Switches...8
2-4 Example Server Rack Using Point to Point Fabric Connections....................................9
2-5 Example of a Workstation Based Setup (1:2) ..9
3-1 LAMMPS* Ported to Offloading to Intel® Xeon Phi™ Processor................................ 19

4 Migrating Offloading Software to Intel® Xeon Phi™ Processor
White Paper, February 2018

Revision History

§

Document
Number

Revision
Number Description Date

337129 001 • Initial Release February 2018

Migrating Offloading Software to Intel® Xeon Phi™ Processor 5
White Paper, February 2018

1 Introduction

The Intel® Xeon Phi™ x100 coprocessor introduced the concept of many core
architecture with more than 57 processor cores in one package, 4-way multithreading
and 512-bit vector instructions (Intel® Initial Many Core Instructions – Intel® IMCI). It
enabled many usage models and can still be found in numerous machines. At the
moment of writing, the largest computing cluster with hosts equipped with Intel® Xeon
Phi™ x100 coprocessors is ranked 2nd on the list of 500 fastest clusters in the world
(TOP500 list from June 20171.

Many different programming models have been adopted for Intel® Xeon Phi™ x100
coprocessor and significant investments have been made into modernization of
applications running on it.

There are three main programming models or types of applications that use Intel®
Xeon Phi™ x100 coprocessor:

• Native applications running on Intel® Xeon Phi™ x100 coprocessors.

• Distributed applications

• which use Message Passing Interface (MPI) to communicate between processes
(called MPI ranks) on Intel® Xeon Phi™ x100 coprocessors and platforms with
Intel® Xeon® processors.

• Offload applications running on platforms with Intel® Xeon® processors and using
compiler offloading features (Intel® Language Extensions for Offload or OpenMP*
target directives) or communicating via Symmetric Communication Interface
(SCIF) to execute code on Intel® Xeon Phi™ x100 coprocessors.

The introduction of Intel® Xeon Phi™ Processor brought another breakthrough. It not
only extended the many core concept by adding more cores (64-72) but also increased
computing power, improved 512-bit vector instructions and added new type of memory
(MCDRAM). Finally, the next generation of devices can work independently as the main
CPU of a bootable platform.

Thanks to the fact that Intel® Xeon Phi™ Processor is an independent device, the
programming models known for Intel® Xeon® processors can be employed and porting
highly parallel applications to Intel® Xeon Phi™ Processor is relatively straightforward.
However, there are applications that have both strong serial and strong parallel parts
and take advantage of heterogeneous nature of Intel® Xeon® hosts equipped with
Intel® Xeon Phi™ x100 coprocessors.

This white paper proposes migration paths for such applications (referred to as
heterogeneous applications in the document), both from hardware and software
perspective.

§

1. https://www.top500.org/lists/2017/06/

https://www.top500.org/lists/2017/06/

6 Migrating Offloading Software to Intel® Xeon Phi™ Processor
White Paper, February 2018

Migrating Offloading Software to Intel® Xeon Phi™ Processor 7
White Paper, February 2018

2 Hardware Configurations

2.1 Introduction
There are three Intel® hardware products that can not only replace Intel® Xeon Phi™
x100 coprocessors in computing platforms, but also offer better functionality and
improved performance:

• Intel® Xeon® processors can power workstations or rack-mounted servers. Visit
this link to learn more about Intel® Xeon® processors.

• Intel® Xeon Phi™ Processors are usually mounted in rack-mounted servers, but are
also available in workstations (http://dap.xeonphi.com/). Follow this link to learn
more about Intel® Xeon Phi™ x200 product family.

• Intel® Omni-Path Architecture (Intel® OPA) fast fabric adapters are usually
separate PCI-e extension cards, but can also be integrated in Intel® Xeon Phi™
x200 processors. Intel® Omni-Path Architecture is designed to connect nodes in
clusters, but also supports point to point communication, so just two nodes can be
connected with fast fabric, for example a platform with Intel® Xeon® processor and
a workstation with Intel® Xeon Phi™ x200 processor. It is also possible to install
two Intel® OPA adapters in one machine to create a one-to-two configuration. Visit
this link for more information.

2.2 Large and medium clusters
Traditionally Intel® Xeon Phi™ x100 coprocessors in large clusters were installed in
servers with Intel® Xeon® processors, creating what can be called a hardware-defined
heterogeneous topology. The following figure illustrates this approach. Usually, all
nodes were connected with a fast fabric.

If highly parallel applications with relatively small serial parts prevail in the anticipated
usage model of a cluster, homogeneous cluster of Intel® Xeon Phi™ Processor based
nodes should be the number one choice. If the planned usage model contains
applications with both serial and parallel parts, the topology shown in Figure 2-1,
“Fixed Assignment of Accelerators to Computing Nodes” on page 7 can be extended by

Figure 2-1. Fixed Assignment of Accelerators to Computing Nodes

http://dap.xeonphi.com/
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform.html
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-architecture-fabric-overview.html

8 Migrating Offloading Software to Intel® Xeon Phi™ Processor
White Paper, February 2018

adding Intel® Xeon Phi™ Processor based nodes and connecting them with a fast fabric
to the original cluster. Intel® Xeon Phi™ x100 coprocessors could then be removed, as
Intel® Xeon Phi™ Processors can take over their responsibilities.

Figure 2-2 shows a heterogeneous cluster with systems based on Intel® Xeon®
processors and Intel® Xeon Phi™ Processors. Heterogeneous computing nodes can be
joined in different configurations based on requirements of particular applications. This
flexibility is usually provided by a fast fabric network, such as Intel® OPA. Both types of
servers can reside in one rack or cabinet (the following figure) or in separate racks.

2.3 Small clusters and workstations
Creating a fast fabric network for small clusters and in workstation environments can
significantly increase the cost of the installation. The main contribution to that is the
cost of fast fabric network switches. However, it is possible to create small setups using
Intel® OPA adapters in point to point configuration. The following figure shows an

Figure 2-2. Heterogeneous Computing Cluster

Figure 2-3. Cluster Rack with Network Switches

Migrating Offloading Software to Intel® Xeon Phi™ Processor 9
White Paper, February 2018

example configuration of a server rack with four Intel® Xeon® processor based servers
connected using point to point connections to four servers with Intel® Xeon Phi™
Processors, which were installed in a single 2U server chassis.

Both rack-mounted servers and workstations with Intel® Xeon Phi™ Processors are
available (see http://dap.xeonphi.com/). It is therefore possible to build workstation
setups connected with Intel® OPA fast fabric and, additionally, with regular Ethernet
connections. This topology can utilize one to one connection or two Intel® Xeon Phi™
Processor based workstations serving one system with Intel® Xeon® processor (see
Figure 2-5). All software solutions that can be used for migration will work on such
setup.

§

Figure 2-4. Example Server Rack Using Point to Point Fabric Connections

Figure 2-5. Example of a Workstation Based Setup (1:2)

http://dap.xeonphi.com/

10 Migrating Offloading Software to Intel® Xeon Phi™ Processor
White Paper, February 2018

Migrating Offloading Software to Intel® Xeon Phi™ Processor 11
White Paper, February 2018

3 Software Migration

3.1 Introduction
Porting different application types described in Chapter 1, “Introduction” can be quite
straightforward if the right tools are utilized in the process.

Migration of any application running the Intel® Xeon Phi™ x100 coprocessor consist of
two major steps:

1. Porting the application to run on the Intel® Xeon Phi™ Processor based system
2. Tuning of the application to utilize available resources in the best possible way.

3.2 Software tools

3.2.1 Intel® MPI Library
Intel® MPI is an implementation of the Message Passing Interface, a highly optimized
communication runtime standardized by the MPI Forum. It consist of hundreds of
functions, but the simplest program can be built using just a few. The most basic
communication is provided by MPI_Send and MPI_Recv pairs, used to exchange
messages between processes (or ranks in the MPI nomenclature) that can run on
different machines. MPI implementations are often highly optimized for a particular
network type or even a particular network topology. The following example code
demonstrates a simple program using MPI:

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main(int argc, char **argv)
{
 int my_rank;
 int ranks_no;

 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 MPI_Comm_size(MPI_COMM_WORLD, &ranks_no);

 if (my_rank == 0)
 {
 // Orchestrator
 int other_rank;

for (other_rank = 1; other_rank < ranks_no; other_rank++)
 {

http://mpi-forum.org/

12 Migrating Offloading Software to Intel® Xeon Phi™ Processor
White Paper, February 2018

// Receive rank numbers from other ranks
 int other_rank_received = -1;
 MPI_Recv(&other_rank_received, 1, MPI_INTEGER,
 other_rank, 1, MPI_COMM_WORLD, &status);
 printf("Rank %d reported!\n", other_rank_received);
 }
 }
 else
 {
 // Report own rank to the orchestrator
 MPI_Send(&my_rank, 1, MPI_INTEGER, 0, 1, MPI_COMM_WORLD);
 }

 MPI_Finalize();

 return 0;
}

Compile and run the example using the Intel® MPI Compiler:

$ mpiicc –o basic_mpi basic_mpi.c
$ mpirun –np 10 ./basic_mpi

The np parameter instructs the MPI runtime to start 10 ranks on a local machine.

To learn more about Intel® MPI Library visit https://software.intel.com/en-us/intel-
mpi-library.

3.2.2 Offloading over Fabric
The Intel® C/C++ and Fortran Compilers support offloading directives in the source
code. This feature allows the application developer to specify which parts of the
program will be offloaded to the Intel® Xeon Phi™ processor-based coprocessors or
nodes. The Intel® offloading runtime supports Intel® Language Extensions for Offload
(Intel® LEO) and OpenMP* target directives.

An example code using OpenMP* target directives to execute code on a coprocessor
can look like this:

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(void)
{
 printf("Example: Offload using OpenMP target directives\n");
 printf("Hello from the host!\n");
 #pragma omp target
 {
 if (omp_is_initial_device() != 0)
 {
 printf("Offload executed on host.\n");
 exit(-1);
 }

https://software.intel.com/en-us/intel-mpi-library
https://software.intel.com/en-us/intel-mpi-library

Migrating Offloading Software to Intel® Xeon Phi™ Processor 13
White Paper, February 2018

 printf("Hello from the target!\n");
 }
 return 0;
}

To compile this program and run it on a host equipped with Intel® Xeon Phi™ x100
coprocessor execute:

$ icc -qopenmp –o omp_basic omp_basic.c
$./omp_basic

With the introduction of the Intel® Xeon Phi™ Processor, the offloading programming
model is implemented as Offload over Fabric (OOF) and enables offloading to compute
nodes connected within a high-speed network, such as Intel® OPA. Communication
with the networking layer is realized by the Open Fabric Interface API (OFI). OOF allows
easy porting of applications using offloading programming models. To compile the same
code example for Offload over Fabric and run it between a host with Intel® Xeon®
processor named host and a host with Intel® Xeon Phi™ Processor named target
execute:

$ icc –qopenmp -qoffload-arch=mic-avx512 –o omp_basic
omp_basic.c
$ OFFLOAD_NODES=target ./omp_basic

To learn more about Offload over Fabric visit https://software.intel.com/en-us/articles/
how-to-use-offload-over-fabric-with-knights-landing-intel-xeon-phi-processor.

3.3 Porting application to the Intel® Xeon Phi™
Processor

3.3.1 Native and MPI (distributed) applications
Porting native and MPI applications to Intel® Xeon Phi™ Processor based platforms can
be very straightforward. In many cases only a simple recompilation for new hardware is
required to have a running application:

$ icc –xMIC-AVX512 …
$ mpiicc –xMIC-AVX512 …

This strategy can sometimes fail if the application is using explicit vectorization
(intrinsics). Intel® Xeon Phi™ x100 coprocessor uses Intel® Initial Many Core
Instructions (Intel® IMCI) instruction set that is not fully compatible with AVX-512.
Code can be ported to the new instruction set or modernized to use Intel® Compiler
auto-vectorization features or one of the standard approaches to vectorization, e.g.
OpenMP* SIMD directives. The last approach is very highly recommended – it will allow
for better code portability in the future.

3.3.2 Offloading applications

Offloading using compiler directives

https://software.intel.com/en-us/articles/how-to-use-offload-over-fabric-with-knights-landing-intel-xeon-phi-processor
https://software.intel.com/en-us/articles/how-to-use-offload-over-fabric-with-knights-landing-intel-xeon-phi-processor

14 Migrating Offloading Software to Intel® Xeon Phi™ Processor
White Paper, February 2018

Offloading applications can require a little bit more work, mainly connected to
installation and configuration of the Offload over Fabric runtime software. The runtime
(for both Intel® Xeon® processor and Intel® Xeon Phi™ Processor based nodes) can be
found at Intel® Xeon Phi™ Processor Software page. The website also contains detailed
documentation on required configuration of nodes and offloading runtime.

When the Offloading over Fabric software is installed and tested, the offloading
application can be recompiled for offloading to Intel® Xeon Phi™ Processor based host.
For applications using OpenMP* target directives the -qoffload-arch=mic-avx512 switch
should be added to the compiler options:

$ icc –qopenmp -qoffload-arch=mic-avx512 …
To compile applications using Intel® Language Extensions for Offload (Intel® LEO) the -
qoffload switch should be replaced with -qoffload-arch=mic-avx512 compiler option:

$ icc -qoffload-arch=mic-avx512 …
There are two situations when code change may be required:

1. Explicit vectorization is used in the offloaded code (i.e. intrinsics)
2. __MIC__ preprocessor definition is used in the offloaded code

The first case was addressed in Section 3.3.1, “Native and MPI (distributed)
applications.”

__MIC__ preprocessor macro allows to compile a code segment only if the code is
compiled for Intel® Xeon Phi™ x100 coprocessor. For example:

#pragma omp target
{
#ifdef __MIC__

// This code is executed on
 // Intel® Xeon Phi™ x100 coprocessor (target)
#else

// This code is executed on Intel® Xeon® processor (host)
 #endif
}

This construct is possible because each offload region is implicitly compiled two times –
once for Intel® Xeon® processor and once for Intel® Xeon Phi™ x100 coprocessor. It
allows to execute offload regions on the host processor if no coprocessor is present in
the system. For Intel® Xeon Phi™ x200 processor the __MIC__ macro has been
replaced with the __TARGET_ARCH_MIC macro and the code of the application may
have to be changed to reflect that. The above example, after modification for running
on Intel® Xeon Phi™ Processor, should look like this:

#pragma omp target
{
#ifdef __TARGET_ARCH_MIC

// This code is executed on
 // Intel® Xeon Phi™ Processor (target)
#else

// This code is executed on Intel® Xeon® processor (host)
 #endif
}

https://software.intel.com/en-us/articles/xeon-phi-software

Migrating Offloading Software to Intel® Xeon Phi™ Processor 15
White Paper, February 2018

It is worth noting that the OpenMP* target directives can be automatically executed on
the host processor if no coprocessor is available. It is also possible to compile code
using Intel® Language Extensions for Offload so that the presence of a coprocessor in
the system is not required and the code will be executed entirely on the host:

$ icc -qoffload=optional …
This method has a penalty of executing offload semantics without doing actual
offloading, but applications with small amount of serial work can perform reasonably
well on Intel® Xeon Phi™ Processor based systems. Those applications can be later
modernized so as not to use the offloading model at all.

Offloading using SCIF API

There is a subset of offloading applications that use Symmetric Communication
Interface (SCIF) to communicate with Intel® Xeon Phi™ x100 coprocessor and execute
offloaded code in client/server model. Such applications can be easily migrated to other
APIs working in highly optimized network environments, such as MPI. Table below
shows example mapping of SCIF functions to MPI functions.

This is an example mapping that may not lead to optimal code, so more careful
investigation of the application algorithms and MPI features should be performed
before pursuing this migration path.

To achieve full performance the application should be compiled into two binaries – one
optimized for Intel® Xeon® processor and one optimized for Intel® Xeon Phi™
Processor. The two binaries should be both started using a single mpirun command,
which establishes communication between ranks running on different nodes. For
example the command line below starts one rank (from the binary file named app_mpi)
on a machine with hostname hostname and another rank (from the binary file
optimized for Intel® Xeon Phi™ Processor named app_mpi_phi) on a machine called
targetname:

$ mpirun -np 1 -hosts <hostname> ./app_mpi : \
-np 1 -hosts <targetname> ./app_mpi_phi

SCIF functionality SCIF functions MPI functions

Connection management scif_connect, scif_listen, scif_accept Not necessary – handled by MPI
runtime

Sending/receiving messages scif_send/scif_recv MPI_Send/MPI_Recv

Remote Direct Memory Access
(RDMA)

scif_writeto/scif_readfrom
scif_vwriteto/scif_vreadfrom

MPI_Put/MPI_Get

Memory registration for RDMA scif_register/scif_unregister MPI_Win_create/ MPI_Win_free

Data transfer (RDMA)
synchronization

scif_fence_wait MPI_Win_fence

16 Migrating Offloading Software to Intel® Xeon Phi™ Processor
White Paper, February 2018

3.4 Tuning applications for Intel® Xeon Phi™
Processor

3.4.1 Increased number of cores
Applications written with portability in mind, i.e. not hardcoded for the number of cores
available on Intel® Xeon Phi™ x100 coprocessor, should scale to more cores. However,
some new bottlenecks can emerge, so careful testing of the scalability of the
application should be performed. Use tools such as Intel® VTune Amplifier XE to
diagnose any potential issues.

3.4.2 Intel® Advanced Vector Extensions (Intel® AVX)-512
The SIMD width of Intel® Xeon Phi™ Processor vector instruction is the same as the
width of Intel® Xeon Phi™ x100 coprocessor instructions, but the Instruction Set
Architecture (ISA) is not fully compatible. One of the most important changes is the
fact that Intel® Xeon Phi™ Processor (unlike Intel® Xeon Phi™ x100 coprocessor)
provides additional support to SSE and Intel AVX-2 instruction sets. In portable
programs most of the issues connected to vectorization should be handled by the
compiler and runtimes, but the utilization of the vector processing units (VPUs) and
vectorization quality should be monitored using tools such as Intel® Vector Advisor and
Intel® Compiler vectorization reports. Those tools can advise the user on how to
refactor their code to release its full potential when run on Intel® Xeon Phi™ Processor.

3.4.3 Cluster modes
The Intel® Xeon Phi™ Processor can run in several cluster (cluster on a die) modes, but
for most workloads Quadrant mode is recommended. Some codes can achieve better
performance when processor is run in SNC-4 cluster mode. In this mode the Intel®
Xeon Phi™ Processor is virtually divided into four (in Cache memory mode) or eight (in
Flat memory mode) Non-uniform Memory Access (NUMA) nodes. This affects how the
operating system kernel works and may have both negative and positive effects on the
performance of the application. It is recommended to test both SNC-4 and Quadrant
modes to find the most suitable mode for particular application.

3.4.4 High bandwidth memory
Intel® Xeon Phi™ Processor is equipped with 16GB of high bandwidth memory
(MCDRAM). This memory can be used automatically to extend existing cache hierarchy
(when the processor runs in Cache memory mode) or can extend the available physical
address space when the processor runs in Flat mode. It should be noted, that
MCDRAM’s latency can be slightly higher than the latency of DDR4 memory1. To
saturate the bandwidth, it is recommended to access the MCDRAM from many threads
running on Intel® Xeon Phi™ Processor.

Non-uniform Memory Access (NUMA) mechanism is used in Flat and Hybrid memory
modes to expose the MCDRAM memory to the operating system. Learn more

 about this mechanism.

Native/MPI applications

1. https://sites.utexas.edu/jdm4372/2016/12/06/memory-latency-on-the-intel-xeon-phi-x200-knights-
landing-processor/

https://sites.utexas.edu/jdm4372/2016/12/06/memory-latency-on-the-intel-xeon-phi-x200-knights-landing-processor/
https://sites.utexas.edu/jdm4372/2016/12/06/memory-latency-on-the-intel-xeon-phi-x200-knights-landing-processor/

Migrating Offloading Software to Intel® Xeon Phi™ Processor 17
White Paper, February 2018

There are two approaches to using MCDRAM memory in Flat mode by native (and MPI)
applications:

1. Using NUMA control features of the Linux* operating system.

2. Using explicit API calls: system or a library, such as

3. memkind library.

The first method can be used for workloads that require relatively small amounts of
memory (up to 16GB) and therefore can fit entirely within MCDRAM. In Quadrant
cluster mode, the MCDRAM memory is assigned to NUMA node 1 and the application
can be bound to this node:

$ numactl –m 1 ./application
This command instructs the operating system to use strict bind policy: all allocations
will be performed by the operating system from NUMA node 1 and therefore from
MCDRAM memory. It is also possible to use the preferred policy:

$ numactl –p 1 ./application
This policy instructs the operating system to allocate from the NUMA node 1 (and thus
MCDRAM) first and, once this resource is exhausted, from regular DDR memory. The
performance of an application using preferred policy can be less predictable.
The second method (i.e. using the memkind library) allows the user to place only
selected allocations in MCDRAM memory and can often achieve better results. Visit the
memkind website and learn more about the library.
The OpenMP* committee is currently working on new features in the OpenMP*
standard (see OpenMP* TR5 document for details) that will expose new kinds of
memory to the users in an easy and portable way.

Offload applications

Offload regions running on Intel® Xeon Phi™ Processor based nodes use MCDRAM
mode by default if it is available. The runtime can be configured to use different
memory polices. The user can define the first kind of memory to be used (MCDRAM or
DDR) and fallback mechanism. Fallback defines the action taken when the first kind of
memory is exhausted: allocate from the other kind of memory or simply let the
operating system abort the application.
It is also possible to use the memkind library to selectively place allocations made by
the offloaded regions in the MCDRAM memory and use OpenMP* target pointers to
register those allocations in the OpenMP* runtime:

#pragma omp target map(from: target_data)
is_device_ptr(target_data)

{
 target_data = (double *)hbw_malloc(SIZE);
}

omp_target_memcpy(target_data, host_data, SIZE, 0, 0, 0,
omp_get_initial_device());

#pragma omp target is_device_ptr(target_data) map(from: result)
{
 result = compute(target_data);

18 Migrating Offloading Software to Intel® Xeon Phi™ Processor
White Paper, February 2018

}

#pragma omp target is_device_ptr(target_data)
{
 hbw_free(target_data);
}

This code can be compiled with the following command line:

$ icc <...> -lmemkind -qoffload-option,mic,compiler,\
'-lmemkind‘ <...>

See Offload over Fabric documentation for details about configuring the offloading
runtime.

3.4.5 Load balancing of the application
Some offloading and heterogeneous MPI applications implemented automatic load
balancing algorithm for dividing workloads between Intel® Xeon® processor and Intel®
Xeon Phi™ x100 coprocessor. Those applications should also work well on Intel® Xeon
Phi™ Processor based nodes. Programs without those mechanisms should be analyzed
taking into account the fact that Intel® Xeon Phi™ Processor is a more powerful and
conversely the work division that worked well for Intel® Xeon Phi™ x100 coprocessor
will most likely be invalid when cooperating between Intel® Xeon® processors and
Intel® Xeon Phi™ Processors based hosts.

3.4.6 Application examples
Techniques described in this section were successfully applied to existing applications
and proved that the presented approach can improve the performance of existing
applications. To confirm that we recompiled LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) for Offloading over Fabric and compared the results of
running one of Liquid Cristal benchmarks to results achieved on a machine with two
Intel® Xeon® processors and the same machine with Intel® Xeon Phi™ x100
coprocessor. It was a naive port, with no additional optimizations for Intel® Xeon Phi™
Processor. See Chapter 4, “Benchmarking and Benchmarks Details” for more
information on benchmarking and configuration

Migrating Offloading Software to Intel® Xeon Phi™ Processor 19
White Paper, February 2018

Another example of successful migration is porting the Parallel Tissue Modeling
Framework (Timothy). Learn more about the results of this effort.

§

Figure 3-1. LAMMPS* Ported to Offloading to Intel® Xeon Phi™ Processor

https://www.hindawi.com/journals/sp/2017/8721612/abs/

20 Migrating Offloading Software to Intel® Xeon Phi™ Processor
White Paper, February 2018

Migrating Offloading Software to Intel® Xeon Phi™ Processor 21
White Paper, February 2018

4 Benchmarking and Benchmarks
Details

Software and workloads used in performance tests may have been optimized for
performance on Intel® microprocessors only.

Performance tests, such as SYSmark* and MobileMark*, are measured using specific
computer systems, components, software, operations and functions. Any change to any
of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases,
including performance of combinations of products. For more complete information visit
www.intel.com/benchmarks.

Intel® measured results as of November 2016 using LAMMPS* benchmarks from the
USER-INTEL package (src/USER-INTEL/TEST) with naive port to Offload over Fabric
(compilation for offloading to Intel® Xeon Phi™ Processor).

OFFLOAD HOST AND BASELINE CONFIGURATION:

• Dual Socket Intel® Xeon® processor E5-2699 v3 (45 M Cache, 2.3 GHz, 18 Cores)
with Intel® Hyper-Threading and Turbo Boost Technologies enabled

• 64 GB DDR4-2133 MHz memory

• Red Hat Enterprise Linux* 7.2 (Maipo)

• Intel® Omni-Path Host Fabric Interface Adapter 100 Series 1 Port PCIe* x16

• Intel® Server Board S2600WT2

• 500GB SATA drive ST500DM002 and 1TB ST1000NM0033 Disks.

14 MPI ranks and 2 threads on the Intel® Xeon® processor based host used in the
benchmark, Intel® package, 1 offload target, automatic load balancing.

OFFLOAD TARGET CONFIGURATION:

• One node Intel® Xeon Phi™ Processor 7250 (16 GB, 1.4 GHz, 68 Cores) in Intel®
Server System LADMP2312KXXX41

• 64GB DDR4, quad cluster mode

• MCDRAM flat memory mode

• Red Hat Enterprise Linux* 7.2 (Maipo)

• Intel® Omni-Path Fabric Interface

• 250MB SATA WD2502ABYS-0 System Disk.

• Intel® Compiler 17.0.0

• Intel® MPI Library 2017

• LAMMPS* code base: 30 Jul 16

§

www.intel.com/benchmarks

22 Migrating Offloading Software to Intel® Xeon Phi™ Processor
White Paper, February 2018

	1 Introduction
	2 Hardware Configurations
	2.1 Introduction
	2.2 Large and medium clusters
	2.3 Small clusters and workstations

	3 Software Migration
	3.1 Introduction
	3.2 Software tools
	3.2.1 Intel® MPI Library
	3.2.2 Offloading over Fabric

	3.3 Porting application to the Intel® Xeon Phi™ Processor
	3.3.1 Native and MPI (distributed) applications
	3.3.2 Offloading applications

	3.4 Tuning applications for Intel® Xeon Phi™ Processor
	3.4.1 Increased number of cores
	3.4.2 Intel® Advanced Vector Extensions (Intel® AVX)-512
	3.4.3 Cluster modes
	3.4.4 High bandwidth memory
	3.4.5 Load balancing of the application
	3.4.6 Application examples

	4 Benchmarking and Benchmarks Details

