
13UniPHY External Memory Interface Debug Toolkit

2013.12.16

emi_rm_011 Subscribe Send Feedback

The EMIF Toolkit lets you diagnose and debug calibration problems and produce margining reports for
your external memory interface.

The toolkit is compatiblewithUniPHY-based externalmemory interfaces that use theNios II-based sequencer,
with toolkit communication enabled. Toolkit communication is on by default in versions 10.1 and 11.0 of
UniPHY IP; for version 11.1 and later, toolkit communication is on whenever debugging is enabled on the
Diagnostics tab of the IP core interface.

The EMIF Toolkit can communicate with several different memory interfaces on the same device, but can
communicate with only one memory device at a time.

Architecture
The EMIF toolkit provides a graphical user interface for communication with connections.

All functions provided in the toolkit are also available directly from the quartus_sh TCL shell, through
the external_memif_toolkit TCL package. The availablity of TCL support allows you to create
scripts to run automatically from TCL. You can find information about specific TCL commands by running
help -pkg external_memif_toolkit from the quartus_sh TCL shell.

If you want, you can begin interacting with the toolkit through the GUI, and later automate your workflow
by creating TCL scripts. The toolkit GUI records a history of the commands that you run. You can see the
command history on the History tab in the toolkit GUI.

Communication
Communication between the EMIF Toolkit and external memory interface connections varies, depending
on the connection type and version. In versions 10.1 and 11.0 of the EMIF IP, communication is achieved
using direct communication to the Nios II-based sequencer. In version 11.1 and later, communication is
achieved using a JTAG Avalon-MM master attached to the sequencer bus.

The following figure shows the structure of UniPHY-based IP version 11.1 and later, with JTAG Avalon-
MM master attached to sequencer bus masters.

ISO
9001:2008
Registered

© 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words
and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other
words and logos identified as trademarks or service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

www.altera.com

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=emi_rm_011
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(emi_rm_011%202013.12.16)%20UniPHY%20External%20Memory%20Interface%20Debug%20Toolkit&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 13-1: UniPHY IP Version 11.1 and Later, with JTAG Avalon-MM Master

SCC PHY AFI Tracking

JTAG Avalon
Master
(new)

Combined
ROM/RAM
(Variable
Size)

Sequencer Managers

Bridge

NIOS II

Avalon -MM

Avalon-MM

Debug Bus

Sequencer Bus

Register
File

EMIF Toolkit

Calibration and Report Generation
The EMIF Toolkit uses calibration differently, depending on the version of UniPHY-based interface in use.
For versions 10.1 and 11.0 UniPHY-based interfaces, the EMIF Toolkit causes the memory interface to
calibrate several times, to produce the data from which the toolkit generates its reports. In version 11.1 and
later, report data is generated during calibration, without need to repeat calibration. For version 11.1 and
later, generated reports reflect the result of the previous calibration, without need to recalibrate unless you
choose to do so.

Setup and Use
Before using the EMIF Toolkit, you should compile your design and program the target device with the
resulting SRAM Object File (. sof). For designs compiled in the Quartus II software version 12.0 or earlier,
debugging information is contained in the JTAG Debugging Information file (.jdi); however, for designs
compiled in the Quartus II software version 12.1 or later, all debugging information resides in the .sof file.

You can run the toolkit using all your project files, or using only the Quartus II Project File (.qpf), Quartus II
Settings File (.qsf), and .sof file; the .jdi file is also required for designs compiled prior to version 12.1. To
ensure that all debugging information is correctly synchronized for designs compiled prior to version 12.1,
ensure that the .sof and .jdi files that you used are generated during the same run of theQuartus II Assembler.

After you have programmed the target device, you can run the EMIF Toolkit and open your project. You
can then use the toolkit to create connections to the external memory interface.

General Workflow
To use the EMIF Toolkit, you must link your compiled project to a device, and create a communication
channel to the connection that you want to examine.

UniPHY External Memory Interface Debug ToolkitAltera Corporation

Send Feedback

emi_rm_011
Calibration and Report Generation13-2 2013.12.16

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UniPHY%20External%20Memory%20Interface%20Debug%20Toolkit%20(emi_rm_011%202013.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Linking the Project to a Device
1. To launch the toolkit, select External Memory Interface Toolkit from the Tools menu in the Quartus II

software.
2. After you have launched the toolkit, open your project and click the Initialize connections task in the

Tasks window, to initialize a list of all known connections.
3. To link your project to a specific device on specific hardware, perform the following steps:

a. Click the Link Project to Device task in the Tasks window.
b. Select the desired hardware from theHardware dropdown menu in the LinkProject toDevice dialog

box.
c. Select the desired device on the hardware from the Device dropdown menu in the Link Project to

Device dialog box.
d. Select the correct Link file type, depending on the version ofQuartus II software inwhich your design

was compiled:

• If your design was compiled in the Quartus II software version 12.0 or earlier, select JDI as the
Link file type, verify that the .jdi file is correct for your .sof file, and click Ok.

• If your design was compiled in the Quartus II software version 12.1 or later, select SOF as the Link
file type, verify that the .sof file is correct for your programmed device, and click Ok.

Figure 13-2: Link Project to Device Dialog Box

When you link your project to the device, the toolkit verifies all connections on the device against the
information in the JDI or SOF file, as appropriate. If the toolkit detects any mismatch between the JDI file
and the device connections, an error message is displayed.

For designs compiled using the Quartus II software version 12.1 or later, the SOF file contains a design hash
to ensure the SOF file used to program the device matches the SOF file specified for linking to a project. If
the hash does not match, an error message appears.

If the toolkit successfully verifies all connections, it then attempts to determine the connection type for each
connection. Connections of a known type are listed in the Linked Connections report, and are available for
the toolkit to use.

Establishing Communication to Connections
After you have completed linking the project, you can establish communication to the connections

1. In the Tasks window,

Altera CorporationUniPHY External Memory Interface Debug Toolkit

Send Feedback

13-3Linking the Project to a Device
emi_rm_011
2013.12.16

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UniPHY%20External%20Memory%20Interface%20Debug%20Toolkit%20(emi_rm_011%202013.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• ClickEstablishMemory InterfaceConnection to create a connection to the externalmemory interface.
• Click Establish Efficiency Monitor Connection to create a connection to the efficiency monitor.

2. To create a communication channel to a connection, select the desired connection from the displayed
pulldown menu of connections, and click Ok. The toolkit establishes a communication channel to the
connection, creates a report folder for the connection, and creates a folder of tasks for the connection.

By default, the connection and the reports and tasks folders are named according to the hierarchy
path of the connection. If you want, you can specify a different name for the connection and its
folders.

Note:

3. You can run any of the tasks in the folder for the connection; any resulting reports appear in the reports
folder for the connection.

Reports
The toolkit can generate a variety of reports, including summary, calibration, and margining reports for
external memory interface connections. To generate a supported type of report for a connection, you run
the associated task in the tasks folder for that connection.

Summary Report

The Summary Report provides an overview of the memory interface; it consists of the following tables:

• Summary table. Provides a high-level summary of calibration results. This table lists details about the
connection, IP version, IP protocol, and basic calibration results, including calibration failures. This table
also lists the estimated average read and write data valid windows, and the calibrated read and write
latencies.

• Interface Details table. Provides details about the parameterization of the memory IP. This table allows
you to verify that the parameters in use match the actual memory device in use.

• Groups Masked from Calibration table. Lists any groups that were masked from calibration when
calibration occurred. Masked groups are ignored during calibration.

• Ranks Masked from Calibration tables (DDR2 and DDR3 only). Lists any ranks that were masked from
calibration when calibration occurred. Masked ranks are ignored during calibration.

UniPHY External Memory Interface Debug ToolkitAltera Corporation

Send Feedback

emi_rm_011
Reports13-4 2013.12.16

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UniPHY%20External%20Memory%20Interface%20Debug%20Toolkit%20(emi_rm_011%202013.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Calibration Report

TheCalibrationReport provides detailed information about themargins observed before and after calibration,
and the settings applied to the memory interface during calibration; it consists of the following tables:

• Per DQS Group Calibration table. Lists calibration results for each group. If a group fails calibration, this
table also lists the reason for the failure.

If a group fails calibration, the calibration routine skips all remaining groups. You can deactivate
this behaviour by running the Enable Calibration for All Groups On Failure command in the
toolkit.

Note:

• DQ Pin Margins Observed Before Calibration table. Lists the DQ pin margins observed before calibration
occurs. You can refer to this table to see the per-bit skews resulting from the specific silicon and board
that you are using.

• DQS Group Margins Observed During Calibration table. Lists the DQS group margins observed during
calibration.

• DQ Pin Settings After Calibration and DQS Group Settings After Calibration table. Lists the settings
made to all dynamically controllable parts of the memory interface as a result of calibration. You can
refer to this table to see the modifications made by the calibration algorithm.

Margin Report

The Margin Report lists the post-calibration margins for each DQ and data mask pin, keeping all other pin
settings constant; it consists of the following tables:

• DQ Pin Post Calibration Margins table. Lists the margin data in tabular format.
• Read Data Valid Windows report. Shows read data valid windows in graphical format.
• Write Data Valid Windows report. Shows write data valid windows in graphical format.

Operational Considerations
Some features and considerations are of interest in particular situations.

Specifying a Particular JDI File

Correct operation of the EMIF Toolkit depends on the correct JDI being used when linking the project to
the device. The JDI file is produced by the Quartus II Assembler, and contains a list of all system level debug
nodes and their heirarchy path names. If the default .jdi file name is incorrect for your project, you must
specify the correct .jdi file. The .jdi file is supplied during the link-project-to-device step, where the
revision_name.jdi file in the project directory is used by default. To supply an alternative .jdi file, click on the
ellipse then select the correct .jdi file.

PLL Status

When connecting to DDR-based external memory interface connections, the PLL status appears in the
Establish Connection dialog box when the IP is generated to use the CSR controller port, allowing you to
immediately see whether the PLL status is locked. If the PLL is not locked, no communication can occur
until the PLL becomes locked and the memory interface reset is deasserted.

When you are linking your project to a device, an error message will occur if the toolkit detects that a JTAG
Avalon-MM master has no clock running. You can run the Reindex Connections task to have the toolkit
rescan for connections and update the status and type of found connections in the Linked Connections
report.

Altera CorporationUniPHY External Memory Interface Debug Toolkit

Send Feedback

13-5Operational Considerations
emi_rm_011
2013.12.16

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UniPHY%20External%20Memory%20Interface%20Debug%20Toolkit%20(emi_rm_011%202013.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Margining Reports

The EMIF Toolkit can display margining information showing the post-calibration data-valid windows for
reads andwrites.Margining information is determined by individuallymodifying the input and output delay
chains for each data and strobe/clock pin to determine the working region. The toolkit can displaymargining
data in both tabular and hierarchial formats.

Group Masks

To aid in debugging your externalmemory interface, the EMIFToolkit allows you tomask individual groups
and ranks from calibration. Masked groups and ranks are skipped during the calibration process, meaning
that only unmasked groups and ranks are included in calibration. Subsequent mask operations overwrite
any previous masks.

Note:

For information about calibration stages, refer to UniPHY Calibration Stages in the Functional Description
- UniPHY chapter.

Related Information
Functional Description - UniPHY

Troubleshooting
In the event of calibration failure, refer to the following figure to assist in troubleshooting your design.
Calibration results and failing stages are available through the external memory interface toolkit.

Figure 13-3: Debugging Tips

Stage 1
Read Calibration

Guaranteed Read
Failure

Address/Command
Skew Issue

Check
Address/Command

Clock Phase

Check
Address/Command
Board Skew and

Delays

Ensure DQ and DQS
are matched on the

board

Failing stage of group

Calibration Failure

DQ/DQS
Centering Issue

Add or subtract delay
to DQS to center DQS
within DQ window

Check DQS enable
calibration margin

Check DQ-to-DQS
phase; it should
be edge aligned.

No working DQSen
phase found

Ensure board parameters
are correct and include
complete path to the

memory device

Ensure board parameters
are correct and include
complete path to the

memory device

Per-bit Read
deskew failure

No first write levelling
phase found

Verify the write leveling
window to ensure all
groups are within the

maximum write
leveling range

Increase the D6
delay on CLK Contact

Altera

No last working write
leveling phase found

Write leveling copy
failure

Stage 2
Write Leveling

Verify the write leveling
window to ensure all
groups are within the

maximum write
leveling range

Increase the D6 delay
on DQ and DQS for the
groups that cannot

write level

LFIFO Tuning

Stage 3
Read Calibration

Failure is unexpected here.
If a failure occurs at this

point, it is probably
Stage 2 (Write Leveling)

that is failing.

Stage 4 Write
Calibration

Per-bit write
deskew

Mask the failing DQ
group and rerun

calibration

Check margins to see
if failure is all bits in

group or only some bits

Check DQ-to-DQS
phase

Verify board traces
and solder joints

EMIF On-Chip Debug Toolkit
The EMIF On-Chip Debug Toolkit allows user logic to access the same calibration data used by the EMIF
Toolkit, and allows user logic to send commands to the sequencer. You can use the EMIF On-Chip Debug

UniPHY External Memory Interface Debug ToolkitAltera Corporation

Send Feedback

emi_rm_011
Troubleshooting13-6 2013.12.16

http://www.altera.com/literature/hb/external-memory/emi_fd_uniphy.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UniPHY%20External%20Memory%20Interface%20Debug%20Toolkit%20(emi_rm_011%202013.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Toolkit to access calibration data for your design and to send commands to the sequencer just as the EMIF
Toolkit would. The following information is available:

• Pass/fail status for each DQS group
• Read and write data valid windows for each group

In addition, user logic can request the following commands from the sequencer:

• Destructive recalibration of all groups
• Masking of groups and ranks
• Generation of per-DQ pin margining data as part of calibration

The user logic communicates through an Avalon-MM slave interface as shown below.

Figure 13-4: User Logic Access

User logic
Altera

Memory Interface
Avalon
Slave

Access Protocol
The EMIFOn-ChipDebugToolkit provides access to calibration data through anAvalon-MMslave interface.
To send a command to the sequencer, user logic sends a command code to the command space in sequencer
memory. The sequencer polls the command space for new commands after each group completes calibration,
and continuously after overall calibration has completed.

The communication protocol to send commands fromuser logic to the sequencer uses amultistep handshake
with a data structure as shown below, and an algorithm as shown in the figure which follows.

typedef struct_debug_data_struct {
...
// Command interaction
alt_u32 requested_command;
alt_u32 command_status;
alt_u32 command_parameters[COMMAND_PARAM_WORDS];...
}

To send a command to the sequencer, user logic must first poll the command_status word for a value
of TCLDBG_TX_STATUS_CMD_READY, which indicates that the sequencer is ready to accept commands.
When the sequencer is ready to accept commands, user logic must write the command parameters into
command_parameters, and then write the command code into requested_command.

The sequencer detects the command code and replaces command_status with
TCLDBG_TX_STATUS_CMD_EXE, to indicate that it is processing the command. When the sequencer has
finished running the command, it setscommand_status toTCLDBG_TX_STATUS_RESPONSE_READY
to indicate that the result of the command is available to be read. (If the sequencer rejects the requested
command as illegal, it sets command_status to TCLDBG_TX_STATUS_ILLEGAL_CMD.)

User logic acknowledges completion of the command by writing TCLDBG_CMD_RESPONSE_ACK to
requested_command. The sequencer responds by setting command_status back to
STATUS_CMD_READY. (If an illegal command is received, itmust be cleared usingCMD_RESPONSE_ACK.)

Altera CorporationUniPHY External Memory Interface Debug Toolkit

Send Feedback

13-7Access Protocol
emi_rm_011
2013.12.16

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UniPHY%20External%20Memory%20Interface%20Debug%20Toolkit%20(emi_rm_011%202013.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-5: Debugging Algorithm Flowchart

Read
Command_status

Yes

Nocommand_status ==
CMD_READY ?

End

Yes

Nocommand_status ==
RESPONSE_READY ?

Write command
payload

Write command code

Read command_status

Write
RESPONSE_ACK code

Command Codes Reference
The following table lists the supported command codes for the On-Chip Debug Toolkit.

Table 13-1: Supported Command Codes

DescriptionParametersCommand

Runs the calibration routine.NoneTCLDBG_RUN_MEM_CALIBRATE

Marks all groups as valid for calibra-
tion.

NoneTCLDBG_MARK_ALL_DQS_GROUPS_AS_VALID

Mark the specified group to be
skipped by calibration.

Group to skipTCLDBG_MARK_GROUP_AS_SKIP

Mark all ranks as valid for calibrationNoneTCLDBG_MARK_ALL_RANKS_AS_VALID

Mark the specified rank to be skipped
by calibration.

Rank to skipTCLDBG_MARK_RANK_AS_SKIP

Enables generation of the margin
report.

NoneTCLDBG_ENABLE_MARGIN_REPORT

UniPHY External Memory Interface Debug ToolkitAltera Corporation

Send Feedback

emi_rm_011
Command Codes Reference13-8 2013.12.16

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UniPHY%20External%20Memory%20Interface%20Debug%20Toolkit%20(emi_rm_011%202013.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Header Files
The UniPHY-based external memory interface IP generates header files which identify the debug data
structures and memory locations used with the EMIF On-Chip Debug Toolkit. You should refer to these
header files for information required for use with your core user logic. It is highly recommended to use a
software component (such as a Nios II processor) to access the calibration debug data.

The header files are unique to your IP parameterization and version, therefore you must ensure that you are
referring to the correct version of header for your design. The names of the header files are: core_debug.h
and core_debug_defines.h.

Generating UniPHY IP With the Debug Port
The following steps summarize the procedure for implementing your IP with the EMIF On-Chip Debug
Toolkit enabled.

1. Start the Quartus II software and generate a new external memory interface with UniPHY. For QDR II
and RLDRAM II protocols, ensure that sequencer optimization is set to Performance (for Nios II-based
sequencer).

2. On the Diagnostics tab of the parameter editor, turn on Enable EMIF On-Chip Debug Toolkit.
3. Ensure that the EMIF On-Chip Debug Toolkit interface type is set to Avalon-MM Slave.
4. Click Finish to generate your IP.
5. Find the Avalon interface in the top-level generated file. Connect this interface to your debug component.

input wire [19:0] seq_debug_addr, // seq_debug.address
input wire seq_debug_read_req, // .read
output wire [31:0] seq_debug_rdata, // .readdata
input wire seq_debug_write_req, // .write
input wire [31:0] seq_debug_wdata, // .writedata
output wire seq_debug_waitrequest, // .waitrequest
input wire [3:0] seq_debug_be, // .byteenable
output wire seq_debug_rdata_valid // .readdatavalid

6. Find the core_debug.h and core_debug_defines.h header files in <design_name>/<design_name>_s0_
software and include these files in your debug component code.

7. Write your debug component using the supported command codes, to read and write to the Avalon-MM
interface.

The debug data structure resides at the memory address SEQ_CORE_DEBUG_BASE, which is defined in
the core_debug_defines.h header file.

Example C Code for Accessing Debug Data
A typical use of the EMIF On-Chip Debug Toolkit might be to recalibrate the external memory interface,
and then access the reports directly using the summary_report_ptr, cal_report_ptr, and
margin_report_ptr pointers, which are part of the debug data structure.

The following code sample illustrates:

/*
 * DDR3 UniPHY sequencer core access example
*/

Altera CorporationUniPHY External Memory Interface Debug Toolkit

Send Feedback

13-9Header Files
emi_rm_011
2013.12.16

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UniPHY%20External%20Memory%20Interface%20Debug%20Toolkit%20(emi_rm_011%202013.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

#include <stdio.h>
#include <unistd.h>
#include <io.h>
#include "core_debug_defines.h"

int send_command(volatile debug_data_t* debug_data_ptr, int command,
int args[], int num_args)
{
volatile int i, response;

// Wait until command_status is ready
do {
 response = IORD_32DIRECT(&(debug_data_ptr->command_status), 0);
} while(response != TCLDBG_TX_STATUS_CMD_READY);

// Load arguments
if(num_args > COMMAND_PARAM_WORDS)
{
// Too many arguments
return 0;
}
for(i = 0; i < num_args; i++)
{
IOWR_32DIRECT(&(debug_data_ptr->command_parameters[i]), 0, args[i]);
}
// Send command code
IOWR_32DIRECT(&(debug_data_ptr->requested_command), 0, command);
// Wait for acknowledgment
do {
 response = IORD_32DIRECT(&(debug_data_ptr->command_status), 0);
} while(response != TCLDBG_TX_STATUS_RESPOSE_READY && response !=
TCLDBG_TX_STATUS_ILLEGAL_CMD);
// Acknowledge response
IOWR_32DIRECT(&(debug_data_ptr->requested_command), 0,
TCLDBG_CMD_RESPONSE_ACK);
// Return 1 on success, 0 on illegal command
return (response != TCLDBG_TX_STATUS_ILLEGAL_CMD);
}
int main()
{
 volatile debug_data_t* my_debug_data_ptr;
 volatile debug_summary_report_t* my_summary_report_ptr;
 volatile debug_cal_report_t* my_cal_report_ptr;
 volatile debug_margin_report_t* my_margin_report_ptr;
volatile debug_cal_observed_dq_margins_t* cal_observed_dq_margins_ptr;

 int i, j, size;
 int args[COMMAND_PARAM_WORDS];
 // Initialize pointers to the debug reports
 my_debug_data_ptr = (debug_data_t*)SEQ_CORE_DEBUG_BASE;
 my_summary_report_ptr =
(debug_summary_report_t*)(IORD_32DIRECT(&(my_debug_data_ptr-
>summary_report_ptr), 0));
 my_cal_report_ptr =

UniPHY External Memory Interface Debug ToolkitAltera Corporation

Send Feedback

emi_rm_011
Example C Code for Accessing Debug Data13-10 2013.12.16

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UniPHY%20External%20Memory%20Interface%20Debug%20Toolkit%20(emi_rm_011%202013.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

(debug_cal_report_t*)(IORD_32DIRECT(&(my_debug_data_ptr-
>cal_report_ptr), 0));
 my_margin_report_ptr =
(debug_margin_report_t*)(IORD_32DIRECT(&(my_debug_data_ptr-
>margin_report_ptr), 0));

 // Activate all groups and ranks
 send_command(my_debug_data_ptr, TCLDBG_MARK_ALL_DQS_GROUPS_AS_VALID,
 0, 0);
 send_command(my_debug_data_ptr, TCLDBG_MARK_ALL_RANKS_AS_VALID, 0,
0);
 send_command(my_debug_data_ptr, TCLDBG_ENABLE_MARGIN_REPORT, 0, 0);

 // Mask group 4
args[0] = 4;
 send_command(my_debug_data_ptr, TCLDBG_MARK_GROUP_AS_SKIP, args, 1);

 send_command(my_debug_data_ptr, TCLDBG_RUN_MEM_CALIBRATE, 0, 0);

 // SUMMARY
 printf("SUMMARY REPORT\n");
 printf("mem_address_width: %u\n",
IORD_32DIRECT(&(my_summary_report_ptr->mem_address_width), 0));
 printf("mem_bank_width: %u\n", IORD_32DIRECT(&(my_summary_report_ptr-
>mem_bank_width), 0));
 // etc...

 // CAL REPORT
 printf("CALIBRATION REPORT\n");
 // DQ read margins
 for(i = 0; i < RW_MGR_MEM_DATA_WIDTH; i++)
 {
 cal_observed_dq_margins_ptr = &(my_cal_report_ptr-
>cal_dq_in_margins[i]);
 printf("0x%x DQ %d Read Margin (taps): -%d : %d\n", (unsigned
int)cal_observed_dq_margins_ptr, i,
 IORD_32DIRECT(&(cal_observed_dq_margins_ptr->left_edge), 0),
 IORD_32DIRECT(&(cal_observed_dq_margins_ptr->right_edge), 0));
 }
 // etc...
 return 0;
}

Debug Report for Arria V and Cyclone V SoC Devices
The UniPHY External Memory Interface Debug Toolkit and EMIF On-Chip Debug Toolkit do not work
with Arria V and Cyclone V SoC devices. Debugging information for Arria V and Cyclone V SoC devices
is available by enabling a debug output report, which contains similar information.

Enabling the Debug Report for Arria V and Cyclone V SoC Devices
To enable a debug report for Arria V or Cyclone V SoC devices, perform the following steps:

Altera CorporationUniPHY External Memory Interface Debug Toolkit

Send Feedback

13-11Debug Report for Arria V and Cyclone V SoC Devices
emi_rm_011
2013.12.16

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UniPHY%20External%20Memory%20Interface%20Debug%20Toolkit%20(emi_rm_011%202013.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Open the <design_name>/hps_isw_handoff/sequencer_defines.h file in a text editor.
2. In the sequencer_defines.h file, locate the following line: #define RUNTIME_CAL_REPORT 0
3. Change#define RUNTIME_CAL_REPORT 0 to#define RUNTIME_CAL_REPORT 1, and save

the file.
4. Generate the board support package (BSP) with semihosting enabled, or with UART output.

The system will now generate the debugging report as part of the calibration process.

Document Revision History

ChangesVersionDate

Maintenance release.2013.12.16December 2013

• Changes to Setup and Use and General Workflow sections.

• Added EMIF On-Chip Debug Toolkit section
• Changed chapter number from 11 to 13.

2.2November 2012

Added table of debugging tips.2.1August 2012

• Revised content for new UnIPHY EMIF Toolkit.
• Added Feedback icon.

2.0June 2012

Harvested 11.0 DDR2 and DDR3 SDRAM Controller with UniPHY EMIF
Toolkit content.

1.0November 2011

UniPHY External Memory Interface Debug ToolkitAltera Corporation

Send Feedback

emi_rm_011
Document Revision History13-12 2013.12.16

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20UniPHY%20External%20Memory%20Interface%20Debug%20Toolkit%20(emi_rm_011%202013.12.16)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	13. UniPHY External Memory Interface Debug Toolkit
	Architecture
	Communication
	Calibration and Report Generation

	Setup and Use
	General Workflow
	Linking the Project to a Device
	Establishing Communication to Connections
	Reports

	Operational Considerations
	Troubleshooting
	EMIF On-Chip Debug Toolkit
	Access Protocol
	Command Codes Reference
	Header Files
	Generating UniPHY IP With the Debug Port
	Example C Code for Accessing Debug Data

	Debug Report for Arria V and Cyclone V SoC Devices
	Enabling the Debug Report for Arria V and Cyclone V SoC Devices

	Document Revision History

