
 
 

Interoperability between OpenCL* 
and Microsoft Direct3D* 
Sample User's Guide 
 

Intel® SDK for OpenCL* Applications - Samples 

Document Number: 329766-003US



Interoperability between OpenCL* and Microsoft Direct3D* 

2 
 

Contents 
Contents ...................................................................................................................... 2 
Legal Information .......................................................................................................... 3 
About Interoperability between OpenCL* and Microsoft Direct3D* ........................................ 4 
Introduction ................................................................................................................. 4 
Motivation .................................................................................................................... 4 
Algorithm ..................................................................................................................... 4 
OpenCL Implementation ................................................................................................. 4 
Local Memory Caching ................................................................................................... 5 
Project Structure ........................................................................................................... 5 
Controlling the Sample ................................................................................................... 5 
References ................................................................................................................... 5 



Legal Information 

3 

Legal Information 
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, 
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY 
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, 
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, 
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO 
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 
OTHER INTELLECTUAL PROPERTY RIGHT. 

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or 
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH 
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, 
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS 
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, 
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY 
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS 
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. 

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not 
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel 
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities 
arising from future changes to them. The information here is subject to change without notice. Do not finalize a 
design with this information. 

The products described in this document may contain design defects or errors known as errata which may cause 
the product to deviate from published specifications. Current characterized errata are available on request. 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your 
product order. 

Copies of documents which have an order number and are referenced in this document, or other Intel literature, 
may be obtained by calling 1-800-548-4725, or go to: 

http://www.intel.com/design/literature.htm. 

Intel processor numbers are not a measure of performance.  Processor numbers differentiate features within each 
processor family, not across different processor families.  Go to: 
http://www.intel.com/products/processor_number/. 

Software and workloads used in performance tests may have been optimized for performance only on Intel 
microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer 
systems, components, software, operations and functions.  Any change to any of those factors may cause the 
results to vary.  You should consult other information and performance tests to assist you in fully evaluating your 
contemplated purchases, including the performance of that product when combined with other products. 

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries. 

* Other names and brands may be claimed as the property of others. 

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos. 

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation. 

Copyright © 2010-2013 Intel Corporation. All rights reserved. 

 

Optimization Notice 

 Intel's compilers may or may not optimize to the same degree for non-Intel 
microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. 
Intel does not guarantee the availability, functionality, or effectiveness of any optimization 
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in 
this product are intended for use with Intel microprocessors. Certain optimizations not 
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to 
the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice. 
Notice revision #20110804 



Interoperability between OpenCL* and Microsoft Direct3D* 

4 

About Interoperability between OpenCL* and Microsoft 
Direct3D* 
OpenCL* and Microsoft Direct3D* 10 API Interoperability sample demonstrates how to use the 
Microsoft Direct3D and Intel® SDK for OpenCL Applications together for data processing and real-time 
rendering. 

The sample demonstrates creating a heterogeneous pipeline using OpenCL for processing and 
Direct3D for real-time rendering in a 3D environment. 

Introduction 
Microsoft DirectX* SDK provides a hardware-accelerated 3D graphics environment used in gaming and 
visualization applications. The OpenCL and Microsoft Direct3D 10 API Interoperability sample uses 
OpenCL for computation of a particle buffer projection and Direct3D graphical capabilities to render 
the particles in real-time.  

Motivation 
The OpenCL and Microsoft Direct3D 10 API Interoperability sample demonstrates an OpenCL 
implementation of multi-dimensional projections, showing how to: 

• Integrate data processing using the Intel SDK for OpenCL Applications with Microsoft DirectX* 
in order to develop a heterogeneous API pipeline. 

• Utilize processing power for large datasets and DirectX for real-time 3D rendering. 

Algorithm 
The algorithm consists of the following stages: 

1. Create shared Direct3D/OpenCL memory buffers using the cl_khr_d3d10_sharing OpenCL 
extension, and populate with initial data. 

2. Initialize Direct3D environment for real-time graphics. 
3. Use OpenCL to compute the distances between all pairs of points in their original multi-

dimensional space, utilizing a cache of local memory to optimize this computation on the Intel 
Processor Graphics device. 

4. Use OpenCL to compute the linear projection of the particle buffer by multiplying the multi-
dimensional points by a linear projection matrix. The points are now projected to 3-
dimensional space. 

5. Use OpenCL to compute the distances between all pairs of points in their projected 3-
dimensional space, again utilizing a cache of local memory to optimize this computation on the 
Intel Processor Graphics. 

6. Use OpenCL to calculate the difference between the pair-wise distances in the original multi-
dimensional space with the pair-wise distances in the projected 3-dimensional space. This is a 
widely used metric for linear projection error. 

7. Render the projected 3D points in the Direct3D environment, using the geometry shader to 
generate particle sprites on-the-fly. 

OpenCL* Implementation 
The first part of the application utilizes OpenCL* to project multi-dimensional points to 3 dimensions, 
and stores the resulting points in a buffer shared by Direct3D which allows them to be rendered in a 



Local Memory Caching 

5 

real-time 3D environment. After the projection is calculated, the error introduced by projecting the 
points to lower-dimensional space is calculated and outputted to the console. Projection error, in this 
case, is defined as the difference between high-dimensional relative distances and low-dimensional 
relative distances. In order to do this, we calculate the differences between all pairs of points before 
they are projected, and again after they are projected. We then take the difference between these two 
buffers of pair-wise distances to get the projection error. 

• Projection.cl – Computes the linear projection of a multi-dimensional point to 3-dimensional 
space by multiplying each multi-dimensional point by a projection matrix 

• RelativeDistanceError.cl – Calculates the distance between each pair of points in high-
dimensional space and stores the scalar distance values in another buffer 

The OpenCL pipeline first projects each individual point by the projection matrix, then produces two 
distance matrices representing scalar distances between each pair of points in high-dimensional space 
and 3-dimensional space. The final kernel calculates the difference between the two scalar distance 
buffers. This final output is representative of the projection error as a result of the projection matrix. 

Local Memory Caching 
We use a buffer of local memory to cache blocks of particles and quickly calculate the scalar distances 
between pairs of particles. We employ the same methods used in GPU Gems 3 extended to OpenCL for 
Intel, see http://http.developer.nvidia.com/GPUGems3/gpugems3_ch31.html for more information. 
Blocks of particles are loaded into a local memory cache, whereby their information can be accessed 
extremely quickly. The distances between all pairs of particles in the local memory block are 
calculated efficiently, and a new block of particles is loaded into the local memory cache. The process 
is repeated until all pair-wise distances between particles have been calculated. 

Project Structure 
The OpenCL and Microsoft Direct3D 10 API Interoperability sample project has the following structure:  

• D3D10BufferSample.cpp – file contains body of c++ code which loads OpenCL kernels, 
initializes Direct3D environment, and runs the main program loop. 

• FreeCamera.cpp – file contains free moving camera class to navigate in Direct3D environment 
• FreeCamera.h – header file for FreeCamera.cpp 
• ParticleDraw.fx – file contains HLSL shader code to transform a vertex and create a 

textured sprite to visualize it 
• Projection.cl – file contains OpenCL kernel to project multi-dimensional points by a linear 

transformation matrix 
• RelativeDistError.cl – file contains OpenCL kernels to calculate pair-wise distances 

between particles and differences between distance buffers. 

Controlling the Sample 
Navigate the camera using keys W, A, D, S as well as clicking and dragging the left-mouse button. 
Press the Shift key while moving to move faster. 

References 
• http://msdn.microsoft.com/en-us/directx/ 

• http://http.developer.nvidia.com/GPUGems3/gpugems3_ch31.html 

• http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf 

http://msdn.microsoft.com/en-us/directx/
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch31.html
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

	Interoperability between OpenCL* and Microsoft Direct3D*

	Contents
	Legal Information
	About Interoperability between OpenCL* and Microsoft Direct3D*
	Introduction
	Motivation
	Algorithm
	OpenCL* Implementation
	Local Memory Caching
	Project Structure
	Controlling the Sample
	References

