

OpenGL* Interoperability Tutorial
Sample User's Guide

Intel® SDK for OpenCL* Applications - Samples

Document Number:

OpenGL*

2

Contents
Contents .. 2
Legal Information .. 3
About the OpenGL Interop Tutorial .. 4
Introduction ... 4
General Execution Flow .. 4
Basic Approaches to the OpenGL-OpenCL Interoperability .. 5
cl_khr_gl_sharing extension ... 5
Notes on Textures Formats and Targets ... 6
Creating the Interoperability-Capable OpenCL Context ... 7
Texture Sharing via clCreateFromGLTexture ... 8
Texture Sharing via Pixel-Buffer-Object and clCreateFromGLBuffer .. 8
Texture Sharing with glMapBuffer .. 9
Synchronization .. 9
Sample Output and Controls .. 10
More Resources ... 11

OpenCL-OpenGL*interoperability tutorial

3

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. Go to:
http://www.intel.com/products/processor_number/.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Intel, Intel logo, Intel Core, VTune, Xeon are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Copyright © 2014 Intel Corporation. All rights reserved.

Optimization Notice

 Intel's compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in
this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Notice revision #20110804

OpenCL-OpenGL*interoperability tutorial

4

About the OpenGL* Interop Tutorial
OpenGL* is a popular rendering API, while OpenCL™ is specifically crafted for the efficient computing.
General interoperability scenario includes transferring data between the two APIs on a regular basis
(often each frame) in both directions, for example:

• Physics simulation in OpenCL, producing the vertex data to be rendered with OpenGL
• Generating a frame with OpenGL, with further image post-processing applied in OpenCL (for

example, HDR tone-mapping)
• Procedural (noise) generation in OpenCL, followed by using the results as OpenGL texture in

the rendering pipeline

Since most OpenGL and OpenCL calls are not executed immediately, but instead placed in some
command queues, a host logic to coordinate the resource ownership between OpenCL and OpenGL is
required.
This tutorial gives an overview of basic methods for texture sharing and synchronization between the
two APIs backed with performance numbers and recommendations. Finally, few advanced
interoperability topics are also covered in this document along with some further references.

Introduction
Many programmers consider between different compute APIs for programming GPUs, for example
between GLSL or OpenCL kernels. For short/simple tasks that intimately interact with graphics
pipeline, the OpenGL Compute Shaders can be an API of choice. Yet for more general (and complex)
scenarios the OpenCL computing might have advantages over GLSL, since it enables executing the
compute portion in the asynchronous manner with respect to the rendering pipeline. Also OpenCL
enables utilizing devices other than GPUs. Yet, unlike conventional “native” programming in C/C++,
OpenCL enables leveraging devices other than CPUs as well, for example, DSPs.

Also notice that there are other APIs that can interoperate with OpenCLwell, which makes general
application flow more efficient. For example, things like video transcoding, which are best handled
with the Intel Media SDK. Unlike OpenGL, Intel OpenCL implementation offers zero-copy with Media
SDK.

Still it is important to understand caveats and limitations for the interoperability, which we cover in
details below.

General Execution Flow
Briefly, true (zero-copy) interoperability is about passing ownership and not the actual data of a
resource between the APIs. It is important to keep in mind that it is OpenCL memory object created
from OpenGL object, not vice versa:

• OpenGL texture (or render-buffer) becomes an OpenCL image
(via clCreateFromGLTexture)

OpenCL images are very similar to OpenGL textures, by means of supporting interpolation,
border modes, normalized coordinates, and so on.

• OpenGL vertex buffers become OpenCL buffers in a similar way (clCreateFromGLBuffer);

This tutorial showcases three different approaches (next chapter) to utilize interoperability with
OpenGL for the following general scenario: OpenCL memory object is created from the OpenGL
texture.

OpenCL-OpenGL*interoperability tutorial

5

o Every frame, the OpenCL memory object is updated with OpenCL kernel, providing the updated
texture data to OpenGL after that.

o Every frame, OpenGL renders textured Screen-Quad to display the results.

Basic Approaches to the OpenGL-OpenCL™
Interoperability

This tutorial provides three different interoperability modes:

1. Direct OpenGL texture sharing via clCreateFromGLTexture
• This is the most performance-efficient way when doing interoperability with Intel

HD Graphics OpenCL device, which also enables modifing the texture “in-place”.
• Still, the number of OpenGL texture formats and targets that are possible to share via

OpenCL images is limited. Refer to the dedicated chapter in the doc.
2. Creating an intermediate (staging) Pixel-Buffer-Object for the OpenGL texture via

clCreateFromGLBuffer, updating the buffer with OpenCL and copying the results back to the
texture

• The downside of this approach is that even though the PBO itself does support zero-
copy with OpenCL, the final PBO-to-texture transfer still relies on copying. So this
method is slower than direct sharing.

• The upside that there are less restrictions on the texture formats and targets:
you can use formats and targets beyond that the glTexSubImage2D imposes.

3. Mapping of the GL texture with glMapBuffer, wrapping the resulting host pointer as OpenCL
buffer for processing and copying the results back upon glUnmapBuffer

• Similarly to the approach based on PBO, this approach enables interoperability for the
virtually any texture that is possible to update with glTexSubImage2D.

• Yet unlike the original PBO-based method it does not require any extension
support.

• Performance-wise, it is even slower than PBO-based method (particularly on the small
textures), since OpenCL buffer is created/released each time - for every frame,
example.

Notice that performance-wise the interoperability approach based on the direct OpenGL texture
sharing via clCreateFromGLTexture is the fastest way to share data with Intel Graphics OpenCL
device, while mapping of the GL texture with glMapBuffer is the slowest. Yet for the CPU OpenCL
device, the performance picture is inversed.

The tutorial does not cover interoperability with respect to OpenGL vertex buffers in this tutorial, but
these are conceptually similar to Pixel-Buffer-Objects: the approach is based on using
clCreateFromGLBuffer for zero-copy sharing.

Also, notice that plain data transfers from OpenGL to the host memory (e.g. mapping) and then to the
OpenCL memory space and back (upon unmapping) is the most straightforward method that assumes
neither extension usage nor actual sharing. As we just discuss this method allows the most general
interoperability, while any copying overheads (but not a power sipping) can be hidden with multi-
buffering approach (which is not covered in the tutorial). Refer to the details of the general
asynchronous transfer to/from OpenGL in the (last) section on the further reading. In order to be
more performance/power efficient than a plain memory copy, an OpenCL implementation supporting
cl_khr_gl_sharing is required.

cl_khr_gl_sharing extension
OpenCL-OpenGL interoperability is implemented as a Khronos extensions to OpenCL (below we refer
to the extensions spec version 1.2). Therefore, the name of this extension (cl_khr_gl_sharing)
should be listed in the list of supported extensions queried for the platform and the device, see
OpenCL 1.2 specification section Table 4.3.

The interfaces (API) for this extension are provided in the cl_gl.h header.

http://www.khronos.org/registry/cl/specs/opencl-1.2-extensions.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

OpenCL-OpenGL*interoperability tutorial

6

Just as with other vendor extension APIs, the clGetExtensionFunctionAddressForPlatform function
should be used to get pointers to the actual functions of the specific OpenCL platform. For example:

clGetGLContextInfoKHR declaration in the cl_gl.h:
/* declared in the cl_gl.h*/
extern CL_API_ENTRY cl_int CL_API_CALL
clGetGLContextInfoKHR(const cl_context_properties * /* properties */,
 cl_gl_context_info /* param_name */,
 size_t /* param_value_size */,
 void * /* param_value */,
 size_t * /* param_value_size_ret */)
CL_API_SUFFIX__VERSION_1_0;

typedef CL_API_ENTRY cl_int (CL_API_CALL *clGetGLContextInfoKHR_fn)(
 const cl_context_properties * properties,
 cl_gl_context_info param_name,
 size_t param_value_size,
 void * param_value,
 size_t * param_value_size_ret);
/*\declared in the cl_gl.h*/

In your code:

#include <CL\cl_gl.h>
//getting the pointer for the actual function for the specified platfrom
…
clGetGLContextInfoKHR_fn pclGetGLContextInfoKHR =

(clGetGLContextInfoKHR_fn)
clGetExtensionFunctionAddressForPlatform(intel_platform,
"clGetGLContextInfoKHR");

//calling the function via its pointer
pclGetGLContextInfoKHR(…);

Here is the full list of functions for the extension and a short description for each:

Notes on Textures Formats and Targets
It is important to understand that the number of OpenGL texture formats and targets that are possible
to share via OpenCL images, is limited. You can find the full information on this topic here:
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clCreateFromGLTexture.html

The following OpenGL texture usages (“targets”) are available for sharing:
• OpenCL (1D, 2D, 3D) image object created from a regular OpenGL (1D, 2D,3D) texture
• 2D OpenCL image can be created from a single face of an OpenGL cubemap texture
• OpenCL 1D or 2D image array can be created from the OpenGL 1D or 2D texture array

clGetGLContextInfoKHR Queries the devices associated with the OpenGL context

clCreateFromGLBuffer Creates an OpenCL buffer object from the OpenGL buffer object

clCreateFromGLTexture Creates an OpenCL image object from the OpenGL texture object

clCreateFromGLRenderbuffer Creates an OpenCL 2D image object from the OpenGL renderbuffer

clGetGLObjectInfo Queries type and name for the OpenGL object used to create the
OpenCL memory object

clGetGLTextureInfo Gets additional information (target and mipmap level) about the GL
texture object associated with a memory object

clEnqueueAcquireGLObjects Acquires OpenCL memory objects from OpenGL

clEnqueueReleaseGLObjects Releases OpenCL memory objects to OpenGL

https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clCreateFromGLTexture.html
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clGetGLContextInfoKHR.html
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clCreateFromGLBuffer.html
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clCreateFromGLTexture.html
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clCreateFromGLRenderbuffer.html
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clGetGLObjectInfo.html
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clGetGLTextureInfo.html
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clEnqueueAcquireGLObjects.html
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clEnqueueReleaseGLObjects.html

OpenCL-OpenGL*interoperability tutorial

7

Refer to the Table 9.4 in the OpenCL 1.2 extension spec that describes the list of GL texture internal
formats and the corresponding image formats in OpenCL. These are most important four-channel
formats like GL_RGBA8 or GL_RGBA32F, for which the mapping is guaranteed.
Textures created with other OpenGL internal formats may have a mapping to a CL image format. So if
such mappings exist (which is implementation-specific) the clCreateFromGLTexture succeeds,
otherwise it fails with CL_INVALID_IMAGE_FORMAT_DESCRIPTOR. Notice that single-channel textures are
generally not supported for sharing.

Also notice that OpenGL depth (depth-stencil) buffers sharing is subject for separate
cl_khr_depth_images and cl_khr_gl_depth_images extensions, which we do not cover in this
tutorial.
Finally, multi-sampled (MSAA) textures, both color and depth are subject for
cl_khr_gl_msaa_sharing (which requires both cl_khr_depth_images and
cl_khr_gl_depth_images support from the implementation).

Creating the Interoperability-Capable OpenCL Context
Since OpenCL memory objects are created from OpenGL objects, you need some sort of the shared
OpenCL-OpenGL context. To avoid implicit copying via host, create OpenCL context for the same
underlying device that drives the OpenGL context as well.

You can enumerate all OpenCL device(s) capable of sharing with the OpenGL context you are willing to
interoperate, via clGetGLContextInfoKHR. First, you need to setup additional context parameters:

//Additional attributes to OpenCL context creation
//which associate an OpenGL context with the OpenCL context
cl_context_properties props[] =
 {
//OpenCL platform
 CL_CONTEXT_PLATFORM, (cl_context_properties) platform,
//OpenGL context
 CL_GL_CONTEXT_KHR, (cl_context_properties) hRC,
//HDC used to create the OpenGL context
 CL_WGL_HDC_KHR, (cl_context_properties) hDC,
 0
 };
For the fastest interoperability, select a device currently associated with the given OpenGL context
(CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR flag for the clGetGLContextInfoKHR).

Notice that there are many more OpenCL devices that can potentially share the data with the OpenGL
context (for example, via copies). The code example below uses clGetGLContextInfoKHR with
CL_DEVICES_FOR_GL_CONTEXT_KHR to enumerate all interoperable devices:

size_t bytes = 0;
// Notice that extension functions are accessed via pointers
// initialized with clGetExtensionFunctionAddressForPlatform (previous section).

// queuing how much bytes we need to read
clGetGLContextInfoKHR(props, CL_DEVICES_FOR_GL_CONTEXT_KHR, 0, NULL, &bytes);
// allocating the mem
size_t devNum = bytes/sizeof(cl_device_id);
std::vector<cl_device_id> devs (devNum);
//reading the info
clGetGLContextInfoKHR(props, CL_DEVICES_FOR_GL_CONTEXT_KHR, bytes, devs, NULL));
//looping over all devices
for(size_t i=0;i<devNum; i++)
{

//enumerating the devices for the type, names, CL_DEVICE_EXTENSIONS, etc
clGetDeviceInfo(devs[i],CL_DEVICE_TYPE, …);
…
clGetDeviceInfo(devs[i],CL_DEVICE_EXTENSIONS,…);
…

}

http://www.khronos.org/registry/cl/specs/opencl-1.2-extensions.pdf

OpenCL-OpenGL*interoperability tutorial

8

The tutorial supports selecting the platform and device to run (refer to the section on the controlling
the sample), so upon enumerating the available devices for the requested platform the “OpenGL-
shared” OpenCL context is created, along with a queue for the selected device:

context = clCreateContext(props,1,&device,0,0,NULL);
queue = clCreateCommandQueue(context,device,CL_QUEUE_PROFILING_ENABLE,NULL);

Texture Sharing via clCreateFromGLTexture
This is the most efficient method to enable direct OpenGL-texture to OpenCL-image sharing via
clCreateFromGLTexture. This approach also enables modifying the content of the texture in-place.
Below is the required sequence of steps:

1. Create OpenGL 2D texture in the regular way, for example:
//generate the texture ID
glGenTextures(1, &texture));
//bdinding the texture and setting the
glBindTexture(GL_TEXTURE_2D, texture));
//regular sampler params
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
//need to set GL_NEAREST
//(and not GL_NEAREST_MIPMAP_* which results in CL_INVALID_GL_OBJECT later)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST));
//specify texture dimensions, format etc
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, g_width, g_height, 0, GL_RGBA,
GL_UNSIGNED_BYTE, 0);

2. Create the OpenCL image corresponding to the texture (once):
cl_mem mem = clCreateFromGLTexture(context, CL_MEM_WRITE_ONLY,
GL_TEXTURE_2D, 0,texture,NULL);
notice the CL_MEM_WRITE_ONLY flag that enables fast discarding of the data, use
CL_MEM_READ_WRITE if your kernel requires reading the current texture context. Also remove
the __write_only qualifier for the image read access in the kernel.

3. Acquire the ownership via clEnqueueAcquireGLObjects:
glFinish();
clEnqueueAcquireGLObjects(queue, 1, &mem, 0, 0, NULL));

4. Execute the OpenCL kernel that alters the image:
clSetKernelArg(kernel_image, 0, sizeof(mem), &mem);
…
clEnqueueNDRangeKernel(queue,kernel_image, …);

5. Releasing the ownership via clEnqueueReleaseGLObjects:
clFinish(queue);
clEnqueueReleaseGLObjects(queue, 1, &mem, 0, 0, NULL));

In this approach the relation between OpenCL image and OpenGL texture is specified just once and
only acquire/release calls are used to pass ownership of the resources between APIs (thus providing
zero-copy goodness for the actual texture data).
However, the number of texture formats and usages, for which this sharing is possible, is rather
limited (refer to the dedicated section).

Texture Sharing via Pixel-Buffer-Object and
clCreateFromGLBuffer
This method relies on the intermediate (staging) Pixel-Buffer-Object (PBO). It is less efficient than
direct sharing (previous chapter) due to the final copying of the PBO bits to the texture. Yet it
potentially enables sharing textures of more formats (refer to the formats that glTexSubImage2D
supports), unlike the limited set supported by clCreateFromGLTexture (refer to the section on
texture formats in this doc). The code sequence is like follows:

1. Create an OpenGL 2D texture in a regular way (refer to the first step in the previous section)

http://www.opengl.org/sdk/docs/man2/xhtml/glTexSubImage2D.xml

OpenCL-OpenGL*interoperability tutorial

9

2. Create the OpenGL Pixel-Buffer-Object (once):
GLuint pbo;
glGenBuffers(1, &pbo);
glBindBuffer(GL_ARRAY_BUFFER, pbo);
//specifying the buffer size
glBufferData(GL_ARRAY_BUFFER, width * height * sizeof(cl_uchar4), …);

3. Create the OpenCL buffer corresponding to the Pixel-Buffer-Object (once):
mem = clCreateFromGLBuffer(g_context, CL_MEM_WRITE_ONLY, pbo, NULL);
Notice the CL_MEM_WRITE_ONLY flag as buffer contains no original texture data, so no point to
made it readable.

4. Acquire ownership via clEnqueueAcquireGLObjects, execute the kernel that updates the
buffer content, and release the ownership via clEnqueueReleaseGLObjects: these steps are
the same as steps 3-5 of the previous chapter (only kernel itself is slightly different, as it
operates on OpenCL buffer, not image);

5. Finally, stream data from the PBO to the texture is required:
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo);
glBindTexture(GL_TEXTURE_2D, texture);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA,
GL_UNSIGNED_BYTE, NULL);

Texture Sharing with glMapBuffer

This method is similar to the previous approach (PBO-based), but instead of relying on the
clCreateFromGLBuffer to share the PBO with OpenCL it performs straightforward mapping of the
PBO to the host memory instead (so it does not require any extension to support):

1. Create texture and PBO (refer to the first steps in the previous section)
2. Map the PBO bits to the host memory:

void* p = glMapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_READ_WRITE));
3. The resulting pointer is wrapped with the OpenCL buffer using the CL_MEM_USE_HOST_PTR to

avoid copy (yet the buffer is created/destroyed each frame)
cl_mem mem =
clCreateBuffer(g_context,CL_MEM_WRITE_ONLY|CL_MEM_USE_HOST_PTR,
width*height*sizeof(cl_uchar4), p, NULL);

4. OpenCL kernel that alters the buffer content (changing values to green) is called
clSetKernelArg(kernel_buffer, 0, sizeof(mem), &mem);
…
clEnqueueNDRangeKernel(queue,kernel_buffer, …);
clFinish(queue);

5. Upon the kernel completion, the buffer bits are copied back with glUnmapBuffer; also notice
that calls to clEnqueueMapBuffer/clEnqueueUnmapMemObject are needed to make sure the
actual buffer memory behind the mapped pointer is updated as (discrete) GPUs might mirror a
buffer instead and perform an actual update (copy) upon clEnqueueUnmapMemObject.

6. Release the OpenCL buffer
clReleaseMemObject(mem);

7. The rest is the same to the last (fifth) step of the previous approach (PBO bits are copied to
the texture with glTexSubImage2D).

Synchronization
In order to maintain data integrity, it is the application logic responsibility to synchronize access to
shared OpenCL/OpenGL objects.

Specifically, prior to calling clEnqueueAcquireGLObjects, the application must ensure that any
pending OpenGL operations that access the objects specified in mem_objects have completed (in all
OpenGL contexts). Note that no synchronization methods other than glFinish are portable between
OpenGL implementations at this time, so this tutorial relies on this mechanism.

Similarly, prior to executing the subsequent OpenGL commands that reference the released objects
(after clEnqueueReleaseGLObjects), the application is responsible for ensuring that any pending
OpenCL operations which access the objects have completed. The most portable way is
calling clWaitForEvents with the event object returned by clEnqueueReleaseGLObjects, or by
calling clFinish (as we do in this tutorial).

http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clWaitForEvents.html
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clFinish.html

OpenCL-OpenGL*interoperability tutorial

10

There is a more fine-grained way provided by the cl_khr_gl_event extension that enables creating
OpenCL event objects from the OpenGL fence object. The OpenGL fence can be placed in the OpenGL
command stream, while enabling to wait for completion of that fence in the CL command queue. The
complimentary GL_ARB_cl_event extension in OpenGL provides the way of creating an OpenGL sync
object from an OpenCL event.

More importantly, supporting the cl_khr_gl_event guarantees that the OpenCL implementation will
ensure that any pending OpenGL operations are complete for the OpenGL context upon calling the
clEnqueueAcquireGLObjects in the OpenCL context. Similarly, clEnqueueReleaseGLObjects
guarantees the OpenCL is done with the objects, so no explicit clFinish is required. This is referred
to as implicit synchronization.

The tutorial checks for the extension support and omits calls to clFinish()/glFinish(), if the
cl_khr_gl_event support is presented for the selected device.

Sample Output and Controls
Use “Tab” key to switch between interoperability modes described in the previous sections. The
texture color indicates the current interoperability mode, and title of the window is also updated
accordingly. The sustained performance (in overall FPS) is also reported:

Notice that more detailed performance statistics on each stage of the pipeline like acquiring the data
from OpenGL, updating the data, and rendering the results, is printed in the console output. For
example:

http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/cl_khr_gl_event.html
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/cl_khr_gl_event.html
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/cl_khr_gl_event.html

OpenCL-OpenGL*interoperability tutorial

11

You can run the sample application with the following command-line options:

Command-Line Options

Short
Form

Full Form
Description

-h --help Shows command-line options with descriptions.

-p
--platform Selects OpenCL platform by ID (0 to n-1, where

n is the number of available platforms).

-t

--type Selects an OpenCL device to run by type. First
device of the specified type will be picked. The
following options are available:

- cpu
- gpu

Combine the -t option with the -p option, which
specifies OpenCL platform.

-d

--device number-or-string Selects an OpenCL device by number (or
name).

This option combines well with the previous
ones. For example, if you have multiple devices
of the same type specified with –t, you can
select the particular device to run using -d.

More Resources
Details of the cl_khr_gl_sharing extension
http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/cl_khr_gl_sharing.html

http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/cl_khr_gl_sharing.html

OpenCL-OpenGL*interoperability tutorial

12

OpenGL Insights (Asynchronous Buffer Transfers chapter)

http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-

AsynchronousBufferTransfers.pdf

http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-AsynchronousBufferTransfers.pdf
http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-AsynchronousBufferTransfers.pdf

	OpenGL* Interoperability Tutorial
	Contents
	Legal Information
	About the OpenGL* Interop Tutorial
	Introduction
	General Execution Flow
	Basic Approaches to the OpenGL-OpenCL™ Interoperability
	cl_khr_gl_sharing extension
	Notes on Textures Formats and Targets
	Creating the Interoperability-Capable OpenCL Context
	Texture Sharing via clCreateFromGLTexture
	Texture Sharing via Pixel-Buffer-Object and clCreateFromGLBuffer
	Texture Sharing with glMapBuffer
	Synchronization
	Sample Output and Controls
	More Resources
	Details of the cl_khr_gl_sharing extension

