PinOS: A Programmable Framework for
Whole-System Dynamic I nstrumentation

Prashanth P. Bungale

Intel Corporation, Hudson, MA
and Harvard University, Cambridge, MA

Email: prash@eecs.harvard.edu

Abstract

PinOSis an extension of th@in dynamic instrumentation frame-
work for whole-system instrumentation, i.e., to instruiéoth
kernel and user-level code. It achieves this by interpobetgveen
the subject system and hardware using virtualization tegcias.
Specifically, PinOS is built on top of the Xen virtual machimen-
itor with Intel VT technology to allow instrumentation of omod-
ified OSes. PinOS is based on software dynamic translatidn an
hence can perform pervasive fine-grain instrumentationinBegr-
iting the powerful instrumentation API from Pin, plus intiecing
some new API for system-level instrumentation, PinOS causieel
to write system-wide instrumentation tools for tasks likegram
analysis and architectural studies. As of today, PinOS caot b
Linux on 1A-32 in uniprocessor mode, and can instrument demp
applications such as database and web servers.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging - code inspections and walk-thinsug
debugging aids, tracing; D.3.#fogramming LanguaggsPro-
cessors - compilers, incremental compilers

General Terms Performance, Experimentation, Languages

Keywords Whole-system, dynamic instrumentation, program
analysis tools, binary translation, virtualization

1. Introduction

As the complexity of computer systems continues to grovs i+
creasingly important to have tools that can provide defedleser-
vation of system behavioBoftware instrumentatioframeworks!
like ATOM [27], Dynins [5], Valgrind [23], Pin [19], and Nir-
vana [3], have shown to be very useful for developing tookt th
do program analysis, performance profiling, and architettsim-
ulation. In spite of their success, a major limitation ofgadrame-
works is that they instrument only user-level code—no kelexel
code is instrumented. This limitation becomes significarappli-

1We call them instrumentatioflameworksnstead of instrumentatiools
because each of them is used to build multiple tools usinigstsumenta-
tion API.

Permission to make digital or hard copies of all or part o twork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE'07, June 13-15, 2007, San Diego, California, USA.
Copyright(© 2007 ACM 978-1-59593-630-1/07/0006. . . $5.00.

Chi-Keung Luk

Intel Corporation, Hudson, MA
Email: chi-keung.luk@intel.com

cations such as database and web servers, where a majogitg-of
cution time is spent inside the operating system.

On the other hand, whereas there do exist a few instrumentati
frameworks (Kerninst [28], Dtrace [7], and Dprobes [21]attlican
instrument operating systems, we find that these existinglevh
system instrumentation frameworks are limited in two wadsisst,
since they all use thprobe-basedpproach of introducingrobes
to perform instrumentatioim-place in the binary (in contrast to
the software dynamic translatioapproach used by user-level in-
strumentation frameworks like Valgrind [23], Pin [19], ahdr-
vana [3]), they are generally not suitable for pervasive-fjran
instrumentation (e.g., instrumenting every single indian ever
executed). This limitation prevents using these framewdok de-
veloping tools like memory-leak checkers [23] and instiarctrac-
ers [3]. Second, all these frameworks are OS-specific, asithe
strumentation engines are built in to the OSes being ingtnied
(Kerninst and Dtrace for Solaris, Dprobes for Linux). As aut,
tools developed for one of these operating systems do ndt @ror
another.

In this study, we have extended a popular user-level ingtnsm
tation framework, Pin [19], to achiewshole-systeninstrumenta-
tion. This extension is calleBinOS It uses the same software dy-
namic translation approach as Pin does, and is therefoea@bler-
form pervasive fine-grain instrumentation. PinOS inhdfisssame
rich instrumentation API [15] from Pin, and adds some new API
specific to system-wide instrumentation. By design, Pin@®ke
as a software layer runningnderneaththe instrumented OS and
doesnot require making any changes to it. This makes it possible
for PinOS to instrument unmodified OSes. In addition, rugrée a
separate layer helps achieve two desirable propertiestfimen-
tation:isolationandtransparencyWith isolation, the instrumented
OS and the instrumentation engine do not share any code aid he
avoid any potential re-entrancy problems. With transpeyethe
execution behavior of the instrumented OS is the same aswéat
would observe without instrumentation.

The PinOS approach of running underneath the instrumented
OS has a major technical challenge: PinOS cannot use thensyst
facilities (mainly memory allocation and 1/O services) yided by
the instrumented OS. And of course, PinOS like any other soft
ware, needs these system facilities as it runs. Implemgntiase
facilities from scratch inside PinOS would be a tremendask.t
Fortunately, we observe theirtualization offers a neat solution to
this challenge. By running the OS that we want to instrumerd a
guest OS9nside a virtual machine (instead of on bare hardware),
PinOS can obtain system facilities from thestOS. Based on this
observation, we have built PinOS on top of the Xen virtual hirae
monitor [14] (with our own modifications). In order to run uonk
ified (legacy) OSes as guests, we use Xen with the Intel haedwa
virtualization support on x86 (VT-x) [22]. As of today, Pi8tan

FILE » trace;
/1 Print a memory wite record
VO D RecordMemWite(VAO D * ip,
VO D * va, VOD * pa, U NT32 size)

Host _fprintf(trace,"%: W% % %\ n",

ip, va, pa, size);
}
/] Called for every instruction
VO D Instruction(INS ins, VOD *v)

if (INS_IsMenoryWite(ins))
INS_ I nsertCall(
ins, | PO NT_BEFORE,
AFUNPTR(Recor dMeniWite),
| ARG_| NST_PTR, | ARG_MEMORYWRI TE_VA,
| ARG_MVEMORYWRI TE_PA,
| ARG_MEMORYWRI TE_SI ZE, | ARG_END) ;

}

int main(int argc,

{

char =argv[])

PIN_ I nit(argc, argv);

trace Host _fopen("atrace.out", "w');
I NS_AddI nst runent Functi on(l nstruction,
/1 Never returns

PI N_StartProgram();

return O;

0);

Figure 1. A Pintool for tracing memory writes with PinOS.

instrument unmodified 1A32 Linux guests running inside XienR,
cluding instrumenting the entire booting process and liéakp-
plications like database and web servers. We are also pigriai
instrument Windows guests in the future.

This paper focuses on the design and implementation isseies w
have encountered in the project and our solutions to thenbélym
with a simple PinOS tool in Section 2. Section 3 gives a high-
level overview of the PinOS architecture. We then dive irte t
design issues of the two portions of PinOS: the VMM driver in
Section 4, followed by the instrumentation layer in Secttoo
demonstrate the practicality of PinOS, we have ported twiufzr
instrumentation tools (one is a code profiler and anothercache
simulator) from Pin to PinOS, and we present the results wfgus
these tools in Section 6. We relate our work to others’ in Bact
and conclude in Section 8.

2. A Sample PinOS Tool

Prior to discussing how PinOS works, we give a brief introaduc
tion to the PinOS instrumentation API through a simple examp
PinOS inherits the same API from Pin, which allow a tool to ob-
serve all the architectural state of the instrumented sysieclud-
ing the contents of registers, memory, and control flow. Idiad
tion, it provides new API for whole-system instrumentatisoch

as physical addresses of memory accesses and callbackefis e
like page faults and interrupts. Following the ATOM [27] nebd

a Pintool is a C/C++ program with two sets of procedures added
for instrumentation. One set is calledalysis routineswhich de-
fine what to do with instrumentation, while the other set ikech
instrumentation routingswhich determine where to place calls to
analysis routines. The arguments to analysis routines eardhi-
tectural state or constants.

Xen-Domain0 Xen-DomainU

Guest OS

Host 0S Pintool | CodeCache

Engine

1/0
| Xen Virtual Machine Monitor (VMM) |

| Hardware |

Figure2. PinOS Architecture

Figure 1 lists the code of a Pintool that traces both the &irtu
and physical addresses and size of every memory write esgcut
on the system. Themi n procedure initializes PinOS and opens a
file on thehost OSvia Host _f open to hold the tracing file. Writ-
ing results on the host OS instead of the guest OS helps a&chiev
instrumentation isolation and transparency. We then tegihe
procedure calletinst ruct i on, and tell PinOS to start executing
the system. Whenever a memory write instruction is encoadte
the first time, PinOS inserts a call ®ecor dMemN i t e before
the instruction (specified by the argumdn®O NT_BEFORE to
I NS_I nsert Cal |), passing the instruction pointer (specified by
I ARG.I NST_PTR), virtual address and physical address for the
memory operation (specified byARG.MEMORYWRI TE_VA and
I ARG.MEMORYWRI TE_PA, respectively), and number of bytes
written (specified by ARG.VEMORYWRI TE_SI ZE). Every time an
instruction that writes memory executes, it c&ecor dMenmN i t e
and records information in the trace file on the host OS via
Host fprintf.

Note that the user-level Pin version of the above Pintool is
nearly identical to the PinOS version except that file 1/0Ocfun
tions are replaced by the correspondidgst _xxx functions and
that | ARG.MEMORYWRI TE_PA is only available in PinOS. This
demonstrates the ease of porting existing tools from Pinn®s.

3. Architecture

As PinOS strives to observe and instrument every instroctie-
cuted in a subject system, it must interpose between thesidgp-
erating system and the underlying hardware. We use viratidin
technology to introduce the PinOS layer below the guestesyst
layer. Figure 2 illustrates the architecture of the PinCGirfework.
We run a modified version of the Xen [14] virtual machine monit
(VMM) on bare hardware. In order to rummodifiedguest oper-
ating systems, the hardware itself must be equipped withl'ént
hardware virtualization support on x86 (VT-x).

In Xen terminology, virtual machines are called domainsy¢h
exists one privileged virtual machine called thest domainor
DomQ and all other virtual machines are callgdest domainsr
DomU. We run the subject system, including its operating system
and all its applications in a guest domain. Inside this gdestain,
we transparently inject PinOS underneath the subject tipgrsys-
tem, so that PinOS will be in a position to observe every utiton
ever executed in the subject system.

We picked Xen for several compelling reasons: it is a robust,
widely-deployed, simple and efficient VMM,; it is available&an
open-source license; last, but not the least, it providdsigging
support for our development efforts. We introduce a PinOgedr
inside the Xen VMM by modifying Xen. In this driver, in addi-
tion to introducing new hypercalls (i.e., calls into Xen VNINbr
PinOS’s own use, we exploit a lot of the support that is alyead

implemented in Xen (such as shadow paging and 1/O requeist red
rection [14]) and we adapt them for our purposes.

On top of Xen is the PinOS instrumentation layer, which con-
sists of three major componentSode Cachglnstrumentation En-
ging andPintool. PinOS maintains a cache of guest code trans-
lations in the code cache component. The techniqusoftivare
dynamic translationis employed to achieve two goals:

e Always maintain controlEvery control-transfer instruction is
translated so that control is either transferred to an igst
translated version of the target in the code cache or to the
instrumentation engine so that the target can be transtatdd
put into the code cache.

e Perform instrumentatianAs new code is encountered and
translated, the user-programmed Pintool performs theispec
fied instrumentation on the guest code. For instance, a ®into
may demand the instrumentation of every memory load and
store instruction in order to simulate cache behavior.

The execution of PinOS-based instrumentation takes tine é6r
an infinite loop of alternating executions of the instrunation en-
gine and the code cache. The instrumentation engine ismeipe
for code compilation, code cache maintenance, instruaionla-
tion, invocation of instrumentation routines in the Pidt@tc. The
code cache executes translated guest code and also apfelypri
invokes user-provided analysis routines.

Pin [19] compiles from the given ISA directly into the sama@lS
(i.e., 1A32 to 1A32) without going through an intermediatarhat,
and the compiled code is stored in a software-based code cach
Only code residing in the code cache is executed — the ofigina
code is never executed. An application is compiled one teace
time. A trace is a straight-line sequence of instructiongtkermi-
nates at one of the conditions: (i) anconditionalcontrol transfer
(branch, call, or return), (ii) a pre-defined numberazinditional
control transfers, or (i) a pre-defined number of instioos have
been fetched in the trace. In addition to the last exit, actraay
have multiple side-exits (the conditional control tramsfe Each
exit initially branches to a&tuly which re-directs the control to the
engine. The engine determines the target address (whidatis s
cally unknown for indirect control transfers), generatesw trace
for the target if it has not been generated before, and resuhee
execution at the target trace. PinOS retains the compilagoh-
nigues that Pin uses including techniques to improve thditgqua
of translated code, such as trace linking, register rezation, and
inlining analysis routines [19].

Finally, we considered other architectural alternativ@$finOS.
The main design questionigherethe PinOS instrumentation layer
should be placed with respect to the Xen VMM. Options include
putting PinOS as part of the VMM, in the same domain as thetgues
OS (i.e. the current design), or in another domain. We cHuoseur-
rent design for three reasons: (1) it matches the existisigdeof
user-level Pin so that we do not have to significantly restmaecour
code, (2) it potentially has better performance becausgukst OS
and PinOS sit in the same domain, hence minimizing crossadom
operations, and (3) separating PinOS instrumentation fhaiXen
VMM makes it easier to port PinOS to another VMM in the future.

4. VMM Driver

We introduce a PinQOS driver inside the Xen VMM by modifying
Xen to provide PinOS four main functionalities: memory $iten
attach/detach, 1/0 services, and time virtualization. Vi&cuss
these design issues in this section.

Guest OS Xen

Page Table Shadow Page Table
Vo Py Vo My
v, P, % M,
= Vi M
vV P, PINOS

Memory~ ¥~ Vi M N

z Vk+1 MK+1 >
N Vo M, _A

Figure 3. Our memory stealing techniqué&j, to V,, are virtual
pages on the guesk, to P; are physical pages on the guekf; to
M, are physical pages on the host (also known as machine pages).

4.1 Memory Stealing

PinOS requires its own memory for several purposes: the code
cache, PinOS executable, stack and heap, and I/O buffer@SPi
needs to steal both physical memory pages and a part of tivalvir
address space from the guest in order to operate within testgu
domain.

In a Xen system, the VMM maintains a shadow of the virtual
machine’s memory-management data structure, calledhitadow
page tableso that it can control which pages of the machine’s
memory are available to the virtual machine. Thus there ame t
layers of physical pageguest-physicapages andnachine pages
The guest domain’s page table maps virtual pages to gugsteah
pages, i.e., to what thinksare physical pages. The hardware uses
Xen's shadow page table for memory address translation &o th
the VMM can always control what memory each virtual machge i
using. Xen assigns real machine pages to guest-physicespagd
the shadow page table takes care of mapping virtual pagestigir
to machine pages. One such shadow page table is maintained fo
every guest address space encountered.

We exploit Xen's shadow paging to achieve memory stealing
for PinOS. To steabhysical memory, we modify Xen to pre-
allocate a separate range of machine pages for PinOS. Thges p
are unknown to the guest operating system, thus are coryplete
transparently stolen.

We also need to steal some portion of the gwstial address
space. Our current strategy is to statically steal part efghest’s
kernel address space (to minimize chances of conflicts),tand
detect and report any guest OS mapping activity in the stolen
space. We modify Xen to add, in the shadow page table, magpping
from these stolen virtual pages to the pre-allocated magbayes.
Again, these mappings have to be propagated to every shaalysv p
table used by Xen. Our scheme is illustrated in Figure 3, wher
M, to M, are the pre-allocated machine pages on the host for
PinOS andV;, to V;, are the virtual pages we steal from the guest.
We have not encountered any address space conflicts so far wit
this strategy. In the future, it may be desirable to have aemor
dynamic approach aelocatingthe stolen address space portion as
per dynamic availability, although we don't expect this torhuch
of an issue with 64-bit address spaces.

4.2 Attach/ Detach

PinOS can be enabled on thetire runof a guest system. However,
PinOS also has the ability to attach itself to a running gagstem
only when the user is interested in performing instrumeoiteand
to detach subsequently. This facility has two major adwgega

e The user can avoid the overhead of PinOS being active during

OS boot and shutdown every time she wants to perform whole- GuestCodeIn Process A QGuestCode In Process B

system instrumentation on an application run. i <v1, P> B 1<V1,P1> e
e Enabling PinOS on the entire run of the guest system may j jmpv2 L | jmpv2)_

pollute the instrumentation data collection, or at the Jesst,) :)3

may require resetting of instrumentation data collection. i <v2, P2> : | <v2,P3>

We add hypercalls in Xen to support PinOS attach and detach ‘ : ‘ :

functionality. Upon an attach request hypercall, typigathade e | N e |

through a tool provided on the host operating system, weoparf Step 1:
the fO"OWing steps: Process A is instrumente

Step 2:

and its translation is cached. |T1: S fricetis tB i\j;nFs’;rumenlteddand
. i . inds that <V1,P1> is already
1. Save key parts of processor state of thiteicheéguest domain o fimp T2, | transiated. So. no need to ro-
into virtual state maintained by PinOS. The processor siate 3| [lranslate. However, the jump to
. . e . T2 is incorrect because V2 is
includes, in addition to the basic state such as generabparp e now mapped to P3 instead of P2
registers, instruction pointer, stack pointer, etc.,la state that If;nsla“on :
PinOS further virtualizes within the Xen guest domain sush a for<vz,P2x °

the segmentation state, interrupt descriptor table, etc.

2. Set the guest domain state to the initial state of PinO®ab t
PinOS hijacks control upon execution of that guest domain.

3. Upon gaining control, PinOS starts instrumenting thesgue
system from the current program counter (PC), i.e., the PC at
which attach was performed.

Figure 4. A problem in the (VA, PA) code-cache indexing
scheme with trace linking.

The reading and writing of guest domain state above may in- ATransated Trace n Code Cache "0 1o

volve some hidden processor state, i.e., processor regjisiat are T2: SRR = SoftTLE
not visible at the ISA interface. A typical example of suchtst Translation of <V2, P2> | | { /i <v2,P2> is invalid. =
is the segment descriptor cache maintained alongside eaph s thi ad e VA | PA
ment register. To overcome this challenge, we exploit IMiesup- Call Engine; Vi P1
port, which essentially makes these invisible registesilé to the I Never return v2 P3
VMM. .

Detach is implemented similarly where the guest domairestat Il <V2, P2> s still valid. Execute the

Il rest of the trace.

is restored with the virtual guest system state that PinOiitaias
so that execution can continue natively without the involeat of

PinOS.
43 1/0 Services Figure 5. Using a run-time physical-address test solves the prob-
PinOS requires 1/O services for two purposes: one is to geadog lem in Figure 4.

files for debugging and the other is to provide file 1/O openadito
Pintools. As illustrated in Figure 2, PinOS routes all i3 tequests
to the host OS, which actually performs the requests andséeds 51 Code Cachelndexing and Sharing
the results back to PinOS. We set up a daemon process on the ho
domain (i.e. Domain-0 in Figure 2) to periodically poll andpess
requests from PinOS. The channels between the host and gues
domains are implemented via memory regions that are mapped i
both domains.

SAII existing user-level instrumentation frameworks, inding Pin,
pse applicatiowvirtual addresseso index their code caches. How-
ever, for system-wide instrumentation, virtual addressese are
insufficient to distinguish code as different applicatianay be
assigned the same virtual addresses in different addresesp
4.4 TimeVirtualization Therefore, code-cache indexing in PinOS needs a new scliemne t
can differentiate address spaces. We have studied two sbhemgs
described below.

The first scheme uses the Virtual Address (VA) akddress-
Space ldentifier (ASIDpair as the code-cache index (denoted as
(VA, ASID)). On the x86 architecture, the ASID is the physical
address of the page table used by the current process anchigsal
stored in the control registezr 3. The main advantage of this
scheme is the ease of implementation (as the ASID can benebitai
by simply readingcr 3), while the main disadvantage is that the
code cache cannot be shared among address spaces. Thus, the
same code has to be retranslated over and over again inetiffer
address spaces, incurring unnecessary run-time and caie-c
. space overhead.

5. Instrumentation L ayer The second scheme uses the Virtual AddressRimgsical Ad-

This section discusses design issues relating to the mefrtation dress (PA)pair as the code-cache index (denoted ®sl, PA)).

layer introduced by PinOS beneath the guest OS in a guest do-Compared against thg” A, ASID) scheme, this scheme allows
main. We describe the modifications we made to user-leveldPin ~ sharing the code cache among address spaces as long as the
system-wide instrumentation along the way. (VA, PA) remain the same in different address spaces, which is

Depending on the kind of instrumentation being performed by
PinOS tools, the run-time instrumentation overhead coeldip-
nificant. Sometimes, this could slow down the guest systeanto
extent that the guest will complain about “timeout”. Our reut
strategy is to reduce the Virtual Programmable Interruphéri
(VPIT) frequency delivered to the guest from Xen by 20x (tHV

is a compile-time constant in Xen). While this strategy veof&r

the PinOS tools that we currently have, we realize that ap-ada
tive scheme would be needed once we have more tools with a
wider range of instrumentation overheads. This is curyeoitigo-

ing work.

(a) Execution time (b) Code cache space
6,001 21,60 1,538
5,340
%500 i
8 1,20
23,00 & 800)
8 2
32,001 g 600
2 o 400
Wy 0o 840 °
§ 200 n
0 0
<VA, ASID> <VA, PA> <VA, ASID> <VA, PA>

Figure 6. Execution time and code cache space comparison of

5.2 Interrupt and Exception Emulation

Interrupts and exceptions are emulated in PinOS for twooresas
The first reason is to ensure that PinOS maintains full comtro
the guest. For instance, if we do not emulate interruptQBimwill
lose control after process preemption, which is typicaliggered
by timer interrupts. The second reason is for instrumeniatians-
parency. For instance, a guest interrupt handler can ingueue
registers to tell what the current thread is. PinOS has tsqune
the guest register context (not the hardware register gorethe
guest interrupt handler in order for it to find the correcieidul.
To emulate interrupts and exceptions, PinOS first instads i

the two indexing schemes (data based on PinOS using these tWoy\yn interrupt/exception handlers in the Interrupt Desorifrable

schemes to boot FC4 Linux).

the case for most kernel-level code (e.g., interrupt hasdiehed-
ulers etc). Nevertheless, this scheme has the followinggrieal
challenges.

First, we need a way to get physical addresses efficientljieNVh
we can always make a hypercall to Xen to get the physical addre
from a virtual address, it is too expensive to do this fredlyeas
each hypercall takes several thousand cycles in the cuXemv T
implementation. We address this challenge by maintainiSgft
ware TLB (calledSoftTLB inside PinOS which caches the VA-to-
PA mappings of code that PinOS has translated. The SoftTLB is
kept coherent using the techniques described in SectianAs.4
result, most requests of getting physical address traoslate sat-
isfied by the SoftTLB; we only need call Xen on SoftTLB misses.

The second challenge of tH& A, PA) scheme is its interac-
tion with trace linking[1], an optimization used in almost every
dynamic binary translator. Trace linking allows jumpingrr one
trace in the code cache to another without going throughrisiei-
mentation engine and hence improves performance. Thegsbl
atic interaction is illustrated using the example in FigdrePro-
cess A is first executed, and the translations based on thpingap
(V1, P1) and (V2, P2) are generated in the code cache as T1
and T2, respectively. Trace linking connects T1 and T2 via-a d
rect jump. Later on, Process B is executed and its correspgnd
page mappings ard/1, P1) and (V2, P3). Since the translation
of (V1, P1) is already cached, there is no need to re-translate this
trace, and so we execute T1 out of the code cache directly- How
ever, as V2 is now mapped to P3 instead of P2, the jump from T1
to T2 is wrong. Instead, we should generate a new transl&pion
(V2, P3) and transfer control to it after executing T1.

To solve this problem, we add a run-time test at the entry cfiea
trace to validate the physical address upon which the gtaera
of that particular trace relied. The trace is used only if dutual
physical address matches the assumed physical addressthisow
technique solves the problem in Figure 4 is illustrated iguFe 5,
where a physical-address validation test is added to thy et

(IDT) so that all interrupts and exceptions are intercepidten
interrupts and exceptions are handled using different Gaagires,
as explained below.

5.2.1 Interrupt Emulation

Interrupts areasynchronousn nature—they could happen at any
time during the execution. The most common ones are timer in-
terrupts. The issue with interrupts is that they could happhile

we are executing something other than the guest code (eeg., w
may be executing the instrumentation engine or the Pintdwnv

a timer interrupt happens). We therefore cannot deliverinber-

rupt at those points. Moreover, we cannot simply presenhéo t
guest interrupt handler the hardware register context vtherin-
terrupt happened; instead, we must present a valid gueisteeg
context (these two contexts are different because the lzaedexe-
cutes code-cache traces which are positioned at diffedelreases
than the original guest code). Therefore, when we receiviaten
rupt, we put it on to a queue instead of delivering it to theggyue
immediately. We also add a run-time test at the entry of eaatet

to check if the queue has any pending interrupt. When a tsme,

T, is executed out of the code cache and there is a pending inter
rupt, the run-time test will return true. We will call the éng to
instrument the guest handler for that pending interrupt.présent

the guest register context at the entryTofto the guest interrupt
handler, effectively creating an illusion that the intgatrhappened

at the entry ofT". Finally, we transfer control to the instrumented
handler.

5.2.2 Exception Emulation

Unlike interrupts, exceptions asynchronous-they cannot be de-
layed and must be handled immediately. The most common excep
tions are page faults. Guest exceptions could happen whileel
instrumentation engine or in the code cache. The formerdcbal
instruction page faults that happen when the instrumemtatngine
fetches some guest code that has not been paged in by thedgtiest
The latter could be data page faults while the guest codeeimuged

out of the code cache. In either case, we need to recover st gu
register context from the hardware register context at Xeegtion.
Then we instrument the corresponding guest exception bandi-

trace T2. The guest page mappings of Process B are shown in thang the guest register context we just recovered, and finahsfer

SoftTLB. In this case, since the assumed physical addredsigP
not equal to the actual physical address (P3), the test aiilahd
we will enter the instrumentation engine, which will in turansfer
control to a trace corresponding {92, P3).

We have implemented both thH& A, ASID) and(VA, PA)
schemes, and measured their effectiveness in terms ofimen-t

control to the instrumented handler. In addition, we havertsure
that our exception emulation is bogineciseandfaithful.

Precise exception emulation means the following. If PinOS
translates one original guest instruction into a multipigtruction
sequence and an exception happens in the middle of the seuen
the guest register context that should be presented to treptzn

overhead and code-cache space consumed. Figure 6 shows howandler is the one at the beginning of the sequence, not #éon
much time and code-cache space PinOS takes to boot FC4 Linuxthe middle. Essentially, because of code translation, Bim@y in-

under each scheme (the machine used is the “Setup A’ deddribe
Table 1). TheV A, P A) scheme is the obvious winner as itis faster
by 6 times and generates 20 times less code thatiftie ASTD)
scheme. These results clearly demonstrate the importdrateac
ing code cache among address spaces.

troducepseudo instruction boundarigse., instruction boundaries
that are present on the hardware during execution but arexzot
pected by the guest semantics. If a page fault happens atasuch
pseudo instruction boundary, we must first rollback the ciffef

the instructions since the most recent guest instructiambary

Instrumentation
Engine

Restore
Ds

GDT GDT GDT
Gratuitous Load performed by

Instrumentation System

0x10 0x10

Guest Writes B [0x10
into GDT[0x10]

DS: DS: DS:
Selector: 0x10 Selector: 0x10 Selector: 0x10

Wrong! Should still be A as the guest has not
yet explicitly performed a load into DS!

H/W H/ W HIW
GDT GDT GDT
ox2| A [o2| A @ x2| A
Save Restore
DS DS
GDT GDT GDT
Gratuitous Load performed
by Instrumentation System
0x10 A Guest Writes B [0x10 B 0x10 B
into GDT[0x10]
DS: DS: DS:
Selector: 0x2 Selector: 0x2 Selector: 0x2
J
Desc. Cache: A Desc. Cache: A Desc. Gache:(A)

Correct!
Emulated DS:

__Se\ec(or: 0x10

Emulated DS;

Selector: 0x10

Emulated DS:

Selector: 0x10

Figure 7. An illustration of thelrreversible SegmentatioRrob-
lem.

before delivering the page fault to the guest page-faultieanim-
plementing rollback in the code cache is highly complicd&ld
mainly because of the need to maintain bookkeeping of howhmuc
and what kind of progress we have made since the last instruc-
tion boundary so that we can rollback that progress; negtats,

it is relatively straightforward to implement rollback ide the in-
strumentation engine. For this reason, PinOS never gersceaty
multiple-instruction translation inside the code cachmstéad, all
such multiple-instruction sequences are always emulatide the
instrumentation engine. And, we have implemented a stgd&-s
logging mechanism inside the instrumentation engine tcktel
changes to the guest's register and memory state duringatioml
Using this log, we can rollback to the last guest instructionnd-
ary in case an exception occurs during emulation.

Faithful exception emulation means the following. When an
instruction is executed, the OS may expect the hardwareise ra
a certain exception when some condition is met. Therefotégi
instruction is emulated by the instrumentation enginetéiad of
directly running on hardware), we should check all conditi@nd
raise exceptions corresponding to the hardware semar@ios.
example is the emulation of theov i nt o ss instruction: we
need to raise a general-protection fault if the segmenbsssthas
a value of 0.

5.3 Virtualization of Segmentation Support

Due to the memory requirements of PinOS, we need to steal not
only virtual and physical pages but also segment descriptie
entries. Also, we need the ability to switch segment regishbe-
tween guest and PinOS descriptor values as and when needed.

Segmentation state in the Intel x86 architecture consigsi-o
marily a set of segment registefsS, DS, ES, FS, GS andSS, and
two tables, the global@DT) and local L DT) descriptor tables. The
segment registers themselves consist ofisible segment selec-
tor part and ahiddensegment descriptor cache. The hidden part
is cached with a descriptor value from the entry in GDT/LD@tth
the selector points to. The descriptor cache may be ougxud-with
respect to the current descriptor value in the table, anaivaoé of-
ten depends on this semantic guarantee. In addition, wholgdbof
a segment register loads both the visible and hidden pastra
saves only the visible part. This asymmetry in saving antbres
ing results in therreversible segmentation problerfi2], where a
segment register’s value once replaced cannot be reversed.

A relevant instance of this problem is illustrated in Figdréni-
tially, the DS register has selector valix10. The corresponding
GDT entry has a descriptor val#eand theDS descriptor cache also
has been loaded with the valdeupon the register being loaded.
Later, the guest writeB into this GDT entry. However, th®S de-

Figure 8. An illustration of how thelrreversible Segmentation
problem is addressed.

scriptor cache continues to have the vafuaBut, when the instru-
mentation system saves and rest@8gratuitously, due to context
switches from the code cache and back for example, the géscri
cache ends up being loaded with the new v@pehereas the guest
expects it to still have the valuk becaus®S has not yet been ex-
plicitly loaded as far as the guest is concerned!

To address the irreversible segmentation problem and tolena
stealing of descriptor table entries, we employ a segmientair-
tualization scheme where only the descriptor caches of thestg
system are shadowed instead of the entire descriptor thbieg
shadowed, a technique similar to the one proposed in VDedjug [
PinOS maintains its ow@®DT, which is accessible by the under-
lying hardware. In thisGDT, PinOS reserves some entries corre-
sponding to thex86 segment descriptor caches. The rest of the
entries in the table are available for PinOS’s own use. Asvameh
the guest explicitly loads segment registers, we copy gegghent
descriptors into the corresponding cache entries in PiaGBT,
and issue a segment register load instruction with the selealue
modified to point to that cache entry. To implement this sohene
use dynamic translation of the guest instruction streandéatify
and emulate segment-selector-sensitive instructions Jéheme
ensures preservation of guest-expected hardware semantic

Figure 8 shows how this solution addresses the irreversige
mentation problem. The same instance as earlier is showarund
the virtualization scheme we employ. This time, when thdwgra
itous load of theDS register is performed by the instrumentation
system,DS is still loaded with the valuéA because that is what
resided in the “hardware-accessible” (i.e., Pin@BY even though
the guestGDT entry contained the new valug This is because
even though the gue€DT entries can keep changing upon guest
writes, the PinOS=DT entries change only upon explicit segment
register loads performed by the guest.

A major advantage of this scheme is that there is no need for
tracking guest descriptor table writes [12], as we bringesdatip-
tor values into the caches just-in-time, i.e., upon expdjoest loads
of segment registers. The downside lies in the need to usangign
translation and emulate all segment-selector-sensitisgLictions,
which increases the system’s complexity significantly. ldoer,
we have observed that such instructions are usually dyrsdiyic
rare, and that the scheme does not have a significant perfiocena
impact.

5.4 Code Cache Coherence

One of the most effective optimizations that make dynan@odr
lation a viable technique is the reuse of translated codeutir
the maintenance of a code cache. However, the reuse bririgs an
portant challenge: keeping the code cache coherent wifieces

to the original code. In a whole-system scenario, this enai Setup Hardware Xen Dom0O | Xen DomU
is two-fold: keeping the code cache coherent in the facealf){s (Host OS) | (Guest OS)
modifying code and in the face of page mapping changes. A 2.40GHz, FC5 with FC4 with

The contentof a guest code-page may change after PinOS Core 2 Duo 6600,| XenoLinux Linux
has cached code from that page on to the code cache. In such a 4096KB L2 Cache| Kernel Kernel
situation, reusing the existing translation cachenisorrect We 2GB Memory 2.6.16 2.6.11
address this problem using the standard write-monitoraigtion. B 2.80GHz, FC4 with FC4 with
Whenever PinOS brings code from a page into the code cache, we Pentium D, XenoLinux Linux
mark that page non-writable. Writing to such a monitoredepag 2048KB L2 Cache| Kernel Kernel
causes a page-fault. PinOS intercepts this page-faultpéroe 4GB Memory 2.6.16 2.6.11
invalidates all translated code belonging to that page éncibde -
cache, and then re-executes the write. Table 1. Experimental Setup

The write-monitoring technique we described above is a lyide
employed, standard technique in the application-levetesp@he
application of this technique to an entire system insteaa sihgle .
application process presents two important issues. Thésfimsain- Benchmark Benchmark Run With | Run
taining transparency from the guest operating system. \Wenpe Short Name Full Name Parameters | On
the marking of a page as non-writable in thleadowpage table FC4-Boot FC4-Linux Booting Default A
instead of in theguestpage table, so that the write-monitoring is Apache ab Benchmark on n=50000 | A
performed completely transparently from the guest. Theseds Bench Apache httpd 2.2.3
the issue of ensuring correctness in the face of alternappings. AlterTable | MySQL test-alter-tablel Default B
It is not enough to mark the individual page-mapping cormash ATIS MySQL test-ATIS Default B
ing to the virtual address of a code fragment that is beingidino BigTables | MySQL test-big-tables] Default B
in to the code cache as non-writable. There may exist othge-pa Connect MySQL test-connect | 10000-loop | B
mappings that map on to the same physical page because of page Create MySQL test-create 1000-loop B
sharing, for instance. No matter which mapping is used téoper Select MySQL test-select 1000-loop B
the write, if the code-page content is ultimately changkd,dode Wisconsin | MySQL test-wisconsin| Default B

cache must be updated accordingly. Therefore, to ensureator

ness of the code cache coherence solution, we must monitor no

only that particular page-mapping, but also all present faiae
page-mappings that map on to ttpdtysical page To implement
such monitoring, we maintain @everse page-mapping tabtbat
maps a physical page to all virtual pages that have beenwaaser
to map on to it. Thus, translated code present in the codeedach
guaranteed to be coherent with respect todineent page content.

Table 2. Benchmark Details

6.1 Experimental Setup

All the results we present in this section were obtained oa tw
machines’ equipped with Intel VT support and installed with the

The code cache must also be kept coherent in the face of page-Xen VMM. Table 1 shows the configurations of the two machines,

mapping changes, i.e., if the virtual page is mapped on tiierelint
physical page, the code cache must be updated. As desarnibed-i
tion 5.1, we index the code cache using {fié4, PA) pair, and
introduce a check block to ensure the currency of {hied, PA)

mapping at every trace entry to solve the trace linking ainess
problem. It turns out that this solution automatically eresucode

called setupA andB.

We performed experiments on several benchmarks, including
the boot procedure of FC4-Linux, Apache ab benchmark, and
MySQL sql-test benchmark suite. They were picked for thelr r
atively large portion of execution time spent in the kerfielble 2
shows the details of these benchmarks, along with the shares

cache coherence even in the face of page-mapping changes, bewe use in the rest of this section.

cause if the virtual page is mapped on to a different phygiegk,
control would be passed to the fall-back strategy in therimsén-
tation engine upon execution of the check block in the ireirr
translation.

In addition to keeping the code cache coherent, we must also
keep the cached page-mappings in the SoftTLB coherent in the
face of page-mapping changes by the guest. Xen already mark

guest page-table pages read-only and thus tracks all woitagm.
Therefore, to achieve SoftTLB coherence, we rely on Xen to in
form PinOS with updates about page-mapping changes sdhhat t
SoftTLB that PinOS maintains can be updated accordingly.

6. Evaluation

To demonstrate the usefulness of PinOS, we have ported ti® to
from Pin to PinOS. One is a code profiler callatbmix while
the other is a cache simulator calle@MP$m. In this section, we
present some analysis results obtained from these toolsal¥de
present an evaluation of the performance overhead of PinOS.

6.2

Insmix is a code profiler that collects two pieces of inforimat
about program execution. The first is the dynamic frequerfcy o
each instruction opcode executed in the program. The setyped
is the dynamic frequency of all basic blocks executed. Ixdmais

Insmix

Sbeen used to compare the quality of code generation of differ

compilers. It has also been used to identify the hot basickislin
programs for optimization. In the PinOS version, Insmixlecis
this information in both user and kernel space, and repbemt
separately in the output file.

Figure 9 shows the user-level vs. kernel-level distributid dy-
namic instruction counts obtained by running the Insmix tmo
each of our benchmarks. While the kernel-level instrudiac-
count for as high as 65% of overall instructions executechi t
case of MySQL test-create benchmark, and as high as 40-45% in
the case of FC4-Linux boot and Apache ab benchmark, they ac-
count for a smaller, yet significant, portion of overall ingttions in
the rest of the cases. This analysis suggests that whileimsnt-

2The results were obtained on two machines due to lack of timart all
the experiments on the same machine.

o User
m Kernel

qg\ions

D 0 O
S 2 8
> c} >

40%r

20%f

Percentage of Total Instru

Q
=
ATIS

L
o
©
|_
2
m

FC4-Boo
AlterTable

Figure9. User/kernel distribution of instructions obtained by run-
ning the Insmix tool on various benchmarks using PinOS.

ing a subject execution, instrumenting kernel-level inctions as
well can be important, and in some cases may be even inevitabl

Table 3 shows the analysis results obtained by running the In
mix tool on MySQL test-alter-table benchmark. The resutisven
include the top five most frequently executed basic-blockthe
Linux kernel while running MySQL test-alter-table, alongthv
their mapped symbol identifiers, the dynamic execution tobn
served, the number of instructions contained in that blick,
and finally, the contribution of that basic-block to overdyhamic
instruction count. Among these basic-blocks, the secoedserves
as an interesting observation: more than a third of a pexfenter-
all instructions executed belong to a basic-block in thecfiom
ext3do_updateinode which is expected given that the MySQL
test-alter-table benchmark would have to update disk fites f
quently.

Table 4 shows the opcode frequency of all x86 privileged in-
structions observed while running the Insmix tool on MyS@ktt
alter-table and on FC4-Boot. The Insmix tool was able to gath
the dynamic instruction counts, grouped by opcode for theeen
instruction set. Here we show only counts for the privilegeih-
set of the x86 instruction set. Note that the tool was nottemito
be able to distinguish between different kindM®V instructions,
and hence could not gather the counts in the cas&@¥ from/into
control registers (CR) and debug registers (DR). The resaiteal
that somesystem state setupstructions likeLGDT (Load Global
Descriptor Table register) and DT (Load Local Descriptor Table
register) are encountered a few times during the boot proreethut
never encountered later. On the other handQhk(Clear Interrupt
bit), STI (Set Interrupt bit) andRETD (Interrupt Return, usually
used for returning to user-level from a system call) indinres are
encountered hundreds of thousands of times during execofio
both benchmarks.

6.3 CMPS$im

CMP$im is a detailed cache simulator that models a mulgllev
cache hierarchy, including both instruction and data cacliean
model private and shared caches on a multi-core systenouafth

in its current PinOS version only single-core systems ardetesl.
CMP$im with PinOS simulates cache accesses from both uder an
kernel code. To distinguish accesses to distinct data that sBame
virtual addresses, we use physical addresses as cache tags.

Bbl Addr BBI Symbol Count #nsts Inst. %
Contrib.

c0111a40 delaypit+Ox1a 93531291 2 1.17%

cBaac20b ext3_do_update 10177398 6 0.38%

_inode+0x82

c011d58f | __mightsleep+0x2a| 5170776 5 0.16%

c011d57f | __mightsleep+0Oxla| 5170776 4 0.13%

c011d565 __might.sleep 5170776 10 0.32%

Table 3. Top five hottest basic-blocks in the Linux kernel obtained
by running the Insmix tool on MySQL test-alter-table benetnkn
using PinOS. The column “Inst. % Contrib.” is the percentage
of instructions contributed by that basic block (i.e. “Courx
“#Insts”) with respect to the total instruction count.

Priv. Alter FC4 Priv. Alter FC4
Instr Table Boot Instr Table | Boot
CLI 8912950 | 2806991 LGDT 0 2
STI 2217286 | 845921 LLDT 0 2
IRETD 599646 574204 LIDT 0 2
ouT 551209 57181 LTR 0 1
OUTSW 990104 9824 INVD 0 0
IN 311762 31994 WBINVD 0 0
INSW 240 48403 RDMSR 0 15
HLT 207 4458 WRMSR 0 0
INVLPG 619 54923 RDPMC 0 0
CLTS 1350 80 LMSW 0 0
RDTSC 7043 1777 MOV CR/DR NA NA

Table 4. Opcode frequency of all x86 privileged instructions ob-
tained by running the Insmix tool on MySQL test-alter-tabted
FC4-Boot using PinOS.

We ran CMP$IM on MySQL (using “test-create” with a loop
count of 1000) with a simulated cache configuration of separa
32KB D-cache and 32KB I-cache, a 512KB unified L2-cache,
and a 4MB unified L3 cache. Figure 10 shows various metrics
on the D-cache behaviors varying over time. We show the tesul
with whole-system simulation in Figure 10(a) and the reswiith
user-mode only simulation in Figure 10(b). First, we notatth
the whole-system simulation has over 3 billion instrucsiavhile
the user-mode only simulation has only 1.1 billion instioics.
Second, in terms of both misses/1000 instructions and rais r
the whole-system simulation has different phase behavtwas
the user-mode only simulation, although their running ages are
similar. This result indicates that memory accesses frark#inel
do have measurable impact on cache behavior, and that whole-
system instrumentation helps obtain a more accurate pigthile
performing architectural simulation.

6.4 Performance Evaluation

Figure 11 shows the performance slowdown of PinOS relatve t
native execution. The first bar in each case correspondseto th
PinOS run with no instrumentation, which we cBlullTool, and
the second bar corresponds to the PinOS run with instrurtienta
being performed by thensmixtool. As can be seen from the figure,
while the NullTool slowdown is as little as 12x and 20x in the
cases of AlterTable and Create respectively, it is as high28s

in the case of Wisconsin, and ranges around 50-60x in mosieof t
other cases. The Insmix slowdown is approximately 20-30%emo
than the NullTool slowdown, because of the extra instruiaibomn
overhead incurred during execution.

Figure 11 also shows the breakup of slowdown in terms of con-
tributions by the two alternately executing components iofo/:
code cache and instrumentation engine. The results irditait
the instrumentation engine accounts for over 60-70% of éréop-

(&) Whole-system simulation

600
500
400
3001
200
100

Accesses Per 1000

2 ot e e gl o T T Y e o e — e e — — o]

Misses Per 1000
=
S)

e 30
2 1
B 2PN e e i = S i~~~ — - __]
= 1+

0
5 100
H
23 st
3
g5 SO
L 4
I \ \ \

0 1 2 3

Instructions (Billions)
(b) User-mode only simulation

e e [e . o TP P Py PP PP P v LT v e e e
2 500f
& 400
% 300F
¢ 200f
g 100

0
S 20F
g
:_: 15+
© 0P e e e e s s
I R e imiint
g L
2 s

0

aE
@ 2P AL egaeee,tetenteoeoeennt 0 e e e e o
I ittt

0
5 100
23 st
§5 50
TL
TR 25 o000 ten ca0m 028 sove ovs s00 050t o oo o wo 25 LELA5 405 02 0w 7053 755 010 79070 P00 Sbere? o ey 68 r0m e By 03 G
ER | |

0 0.5 1

Instructions (Billions)

Figure 10. D-cache behaviors of MySQL collected via CMP$im.
The x-axis is number of instructions simulated in billiofi$ie y-

level Pin. Third, PinOS emulates many more instructionsthi&
instrumentation engine than user-level Pin. Bringing therbead

of PinOS closer to the level of Pin is on our future work agenda
Nevertheless, we don’t view the current level of high ovedseas

a significant concern, considering that our focus has non loee
tuning performance so far. Our focus has rather been onihgil
new kind of instrumentation framework in the first place.

7. Related Work

In this section, we discuss how our system differs from (aldsu
upon) various systems that either perform dynamic instniaten

or use software dynamic translation (SDT) or both, as well as
systems that simulate, emulate or virtualize machines.

Dynamic optimization systems such as Dynamo [1] and Mojo
[9] employ software dynamic translation to perform run-gimpti-
mization to improve the performance of native binaries.

SDT infrastructures such as DynamoRio [4], Strata [25],[18
and Walkabout [10] offer a general framework to build newlsoo
that use dynamic binary translation to perform a varietyasks
including optimization, reference monitors and architieat sim-
ulation. For example, program shepherding [17] employsDize
namoRio infrastructure to build a tool that enforces segyoli-
cies on execution of untrusted binaries by monitoring aarftow
transfers. Another instance is Strata being employed tdd baui
high-performance architectural simulator through a frevord of
trigger-action mechanisms.

Shade [11] uses SDT to implement high-performance instruc-
tion set simulators. However, both Shade and the architactim-
ulators built with Strata are user-level only simulators.

SDT is employed to build dynamic binary analysis and instru-
mentation frameworks in the case of Valgrind [23], Pin [19];-
vana [3] and HDTrans [26]. Valgrind uses sophisticated SDT t
perform heavyweight dynamic binary analysis which can bedus
for performance measurements, profiling, memory analysisie-
bugging. Pin is a dynamic binary instrumentation tool thed-p
vides a high-level API for run-time instrumentation of prams
that can be used towards computer architecture researcbdard
cation, among other things. Nirvana is a run-time framewtbikt
can collect a complete user-mode trace of a program’s exgcut
that can be re-simulated deterministically. HDTrans iglatliveight
dynamic instrumentation system for the 1A-32 architectiBeth

axis has four metrics: (]_) number of memory accesses per 1oooVaIgrind and Pin offer rich APIs towards making their franorks

instructions, (2) number of misses per 1000 instructioBsnfiss
rate, and (4) percentage of evicted cache lines that are nefee-
enced again in the future. For each metric, the dots represaise
behaviors (one dot per million instructions) while the dagline
is the running average.

mance overhead in all the cases. The instrumentation emggiye
be entered for several reasons, the two main ones being ooale ¢
pilation and instruction emulation. As future work, we hdpeob-
tain more detailed results to help understand the individaatri-
butions by these tasks towards the overall performanceheagt:
Finally, the instrumentation overhead of PinOS reportee fie
significantly higher than the one reported for user-level RO].
There are three main reasons. First, the benchmarks we éhiose

easily programmable. In all these cases, the instrumentétiper-
formed only on user-level code. That is, all system calls@ated
as black-box instructions as far as instrumentation is eored.

On the other hand, while there do exist a slew of instrumen-
tation frameworks that can instrumenperating systemshey are
mostly probe-basedi.e., given a program location that is to be
instrumented, they inseprobesat those locations in-place in the
subject binary. The probe can be either a breakpoint instmic
or a “software breakpoint” instruction, such as a jump ol tal
an alternate location. In either case, the destination efpiftobe
instruction would be an instruction sequence that performs
strumentation, executes the originally replaced instonctand
then returns control back to the caller. In most cases, thbgw
can be inserted, enabled and disabled dynamically. Exanipie
clude Kernlnst [28], Dyninst [5], LTT (Linux Trace ToolkifB1],

PinOS evaluation have much less code reuse than the SPEC200®Probes [21], KProbes [8], DTrace [7] (on Solaris), and Eyslap

benchmarks used in the evaluation of user-level Pin. Asudtrélke
dynamic compilation overhead contributes more to the divpea-
formance in our results. Second, there are two additionatime

[24] (which is the equivalent of DTrace in the Linux world)h@se
tools differ in several ways with respect to our SDT-baseaeh
system dynamic instrumentation approach. First, thesedveorks

test$ in each code-cache trace generated by PinOS than by user-are usually meant for instrumentation at function bouretagnd

30ne test is for validating the page mapping (see Sectionri e other
is for checking if there is any pending interrupt (see Sectid)

such, but are generally not suitable for very fine-grainrinsenta-
tion. Second, because of their probe-placing mechaniseg,ghn-
erally have limitations about where instrumentation caratided

[Instrumentation Engine
[Code Cache

£ a60xp

it 140

Z 140x

X

()

£ 120x

= 100x

i)

3 80x

[}

ad 60x

=}

o 40x

©

£ 20x

2

Ox 5 X 5 X 5 X 5 X 5 X 5 X 5 X 5 X 5 X

£ &% E£§ f&§F f% Ei fF EF B
R R R e R R R 5 £ 5 £
z z z z z z z z z
FC4-Boot Apache AlterTable ATIS BigTables Connect Create Select Wisconsin

Figure 11. Performance overhead of PinOS on various benchmarks {&Elbée, ATIS, BigTables, Connect, Create, Select and Wiscon
are individual test cases of the MySQL sql-test benchmaitke)sThe first bar in each case corresponds to a NullTool nehthe second bar
corresponds to an Insmix run. Each bar further shows thekbpeaf contributions by code cache execution and by instniat®n engine

execution.

on variable instruction-sized architectures such as x&&dT per-
haps most importantly, these frameworks are not suitablbeto
used forpervasiveinstrumentation such as memory checkers and
instruction tracers as this would amount to placing prolesva
ery (memory) instruction that is potentially executed.dHiy) these
frameworks are OS-specific (e.g., DTrace on Solaris vs €8ysap

on Linux) as their instrumentation engines are built in te S
being instrumented.

Bochs [16] is an open-source IA-32 PC emulator. Another full
machine emulator is QEmu [2], which uses dynamic trangiaiio
implement a fast machine emulator capable of emulatingrakve
CPUs on several hosts. While both these systems can emulat
the entire machine, they do not facilitate general instnotiagon,
nor do they provide a programmable framework for performing
instrumentation.

Simics [20] is a full machine simulation platform. It progislan
API for extensibility in terms of adding new plug-in devicedels,
etc. But, it does not seem straightforward to adapt this ARbe
used as a programmable instrumentation framework.

Perhaps the closest to our work is Embra [30], which employs
whole-system SDT to perform full-machine simulation of a8l
machine. As they had to overcome the challenges of perfgmin
whole-system dynamic translation, they had to solve problthat
are similar to the ones we addressed. For instance, theyatdoh
address the complications posed by trace linking in thegmess of
tricky page mappings. Apart from the technical differenkattit
did not have to deal with the presence of variable instractiaes
of the x86 architecture, it does not seem to provide a prograbte
framework for a user to easily build a tool to perform dynamic
whole-system instrumentation.

VMware [12] is a full-system virtual machine emulator thaes
a combination of native execution for non-privileged code dy-
namic translation to emulate privileged-mode behaviom Xi4]
avoids the need to perform dynamic translation by emplopeug-
virtualization (which was originally proposed by Denali [29]), i.e.,
performing modifications to the guest system to makéei-aware
or Xen-friendly Recently, with the help of hardware-assisted virtu-
alization technology such as Intel VT [22], Xen 3.0 [13] can-p
vide the virtualization service tonmodifiedguests. Both VMware
and Xen share Bochs and QEmu'’s goal of simply providing an ill
sion of a full-machine to their users, and do not facilitageamic
instrumentation.

8. Conclusion and Future Work

We have presented PinOS, an extension of the Pin dynamia-inst
mentation framework, for whole-system dynamic instruraéon.
By running inside the Xen virtual machine environment using
Intel VT hardware support, PinOS can instrument unmodifipd o
erating systems. And by using software dynamic translatch-
nigues, PinOS is able to instrument at a finer granularityrande
pervasively than other whole-system instrumentation &aorks.
We have demonstrated how PinOS could be used for system-wide
program analysis and architectural studies with a codelprafind
cache simulator built on top of PinOS.
€ Future work includes porting PinOS to other platforms, sash
64-bit x86, multiprocessors, and Windows. We are also waykin
improving our time virtualization techniques and instrurtaion
performance.

Acknowledgments

We thank the reviewers of VEE 2007 for their helpful criticmed
comments. We thank the entire Pin team at Intel for giving us
a robust Pin to start with. Thanks to Mark Charney for helping
us better understand Xed (the x86 encoder/decoder usedrby Pi
and PinOS) and for fixing Xed issues very promptly. Thanks to
Greg Lueck for many helpful discussions, especially abmuteads,
and for fixing related bugs in Pin. Thanks to Robert Cohn and
Vijay Janapareddi for helpful discussions. We thank Praiathan
Shapiro and Swaroop Sridhar (The Johns Hopkins Univergity)
many many helpful discussions and collaboration on initiebs
about x86 segmentation virtualization, among other things

References

[1] BALA, V., DUESTERWALD, E., AND BANERJIA, S. Dynamo:
A transparent dynamic optimization system. Rroc. 2000 ACM
SIGPLAN Conference on Programming Language Design and
Implementatior(June 2000), pp. 1-12.

BELLARD, F. QEMU, a Fast and Portable Dynamic Translator. In
Proc. 2005 USENIX Annual Technical Conference — FREENIXKTra
(2005), pp. 41-46.

BHANSALI, S., GHEN, W.-K., D. JONG, S., EDWARDS, A.,
MURRAY, R., DRINIC, M., MIHOCKA, D., AND CHAU, J.
Framework for Instruction-level Tracing and Analysis obBram
Execution. InProceedins of the Second International Conference on
Virtual Execution Environmenidune 2006), pp. 154-163.

2

—

(3]

[4] BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An
Infrastructure for Adaptive Dynamic Optimizations. Rroc.
International Symposium on Code Generation and Optinurati
(2003), pp. 265-275.

[5] BuCkK, B.,AND HOLLINGSWORTH, J. K. An API for Runtime Code
Patching. Ininternational Journal of High Performance Computing
Applications(2000), vol. 14, pp. 317-329.

BUNGALE, P. P., RIDHAR, S.,AND SHAPIRO, J. S. Supervisor-
Mode Virtualization for x86 in VDebug. Tech. Rep. SRL2004-0
Johns Hopkins University Systems Research Laboratory, 20&y.

CANTRILL, B. M., SHAPIRO, M. W., AND LEVENTHAL, A. H.
Dynamic Instrumentation of Production Systems. Piroc. 2004
USENIX Annual Technical Conference

6

—

[7

—

[8] CENTER, L. T. KProbes. http://sourceware. org/
syst ent ap/ kpr obes/ .

[9] CHEN, W. K., LERNER, S., CHAIKEN, R.,AND GILLIES, D. M.
Mojo: A Dynamic Optimization System. IRroc. ACM Workshop
on Feedback-directed and Dynamic Optimization (FDDQf3gc
2000).

[10] CIFUENTES, C., LEwIS, B., AND UNG, D. Walkabout-A
Retargetable Dynamic Binary Translation Framework. Phoc.
2002 Workshop on Binary TranslatigGeptember 2002).

[11] CMELIK, B., AND KEPPEL D. Shade: A fast instruction- set
simulator for execution profiling. IIMCM SIGMETRICS Conf.
on the Measurement and Modeling of Computer Syst@9@4),
pp. 128-137.

[12] DEVINE, S., BUGNION, E., AND ROSENBLUM, M. Virtualization
System Including a Virtual Machine Monitor for a Computettwi
a Segmented Architecture. Wnited States Patent 6,397,24day
2002).

[13] DONG, Y., LI, S., MALLICK, A., NAKAJIMA, J., TIAN, K., XU,
X., YANG, F.,AND YU, W. Extending Xen with Intel Virtualization
Technology. Inntel Technology JournglAugust 2006), vol. 10.

[14] DrAGoOVIC, B., FRASER K., HAND, S., HARRIS, T., HO, A.,
PRATT, |I., WARFIELD, A., BARHAM, P.,AND NEUGEBAUER, R.
Xen and the Art of Virtualization. IfProc. 2003 ACM Symposium on
Operating Systems Principlé®ct. 2003), pp. 164-177.

[15] INTEL. Pin User Manual http://rogue.colorado.edu/Pin.

[16] KEVIN LAWTON. Bochs 1A-32 Emulator Project
.http://bochs. sourceforge. net.

[17] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. Secure
Execution via Program Shepherding. 1dth USENIX Security
SymposiunfAugust 2002).

[18] KUMAR, N., CHILDERS, B. R.,AND SOFFA, M. L. Low overhead
program monitoring and profiling. IRASTE '05: The 6th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineeringNew York, NY, USA, 2005), ACM Press,
pp. 28-34.

[19] Luk, C. K., CoHN, R. S., MUTH, R., RATIL, H., KLAUSER, A.,

P. G. LOWNEY, WALLACE, S., REDDI, V. J.,AND HAZELWOOD,

K. Pin: Building Customized Program Analysis Tools With
Dynamic Instrumentation. IRrogramming Languages Design and
Implementation 2008June 2005), pp. 190-200.

[20] MAGNUSSON P. S., GIRISTENSSON M., ESKILSON, J., FORS
GREN, D., HLLBERG, G., HGBERG, J., LARSSON F., MOESTEDT,
A., AND WERNER, B. Simics: A Full System Simulation Platform.
In IEEE ComputelFeb 2002), pp. 50-58.

[21] MOORE, R. A Universal Dynamic Trace for Linux and other
Operating Systems. [Rroc. 2001 USENIX Annual Technical
Conference — Freenix Track

[22] NEIGER, G., SANTONI, A., LEUNG, F., RODGERS D., AND
UHLIG, R. Intel Virtualization Technology: Hardware Support
for Efficient Processor Virtualization. Imtel Technology Journal
(August 2006), vol. 10.

[23] NETHERCOTE N. Dynamic Binary Analysis and Instrumentation
PhD thesis, University of Cambridge, November 2004.

[24] PRASAD, V., COHEN, W., EIGLER, F. C., HUNT, M., KENISTON,
J.,AND CHEN, B. Locating System Problems Using Dynamic
Instrumentation. IfProc. 2005 Ottawa Linux Symposium (OL(R)I
2005).

[25] ScoTT, K., KUMAR, N., VELUSAMY, S., CHILDERS, B., DAVID -
SON, J.,AND SOFFA, M. Retargetable and Reconfigurable Software
Dynamic Translation. IPACM SIGMICRO Int'l. Conf. on Code
Generation and Optimizatio(March 2003).

[26] SRIDHAR, S., SHAPIRO, J. S., BINGALE, P. P.,AND NORTHUR,
E. HDTrans: An Open Source, Low-Level Dynamic Instrumeatat
System. IrProc. 2006 International Conference on Virtual Execution
Environments (VEEJune 2006).

[27] SRIVASTAVA, A., AND EUSTACE, A. ATOM: A system for building
customized program analysis tools. Pmoceedings of the ACM
SIGPLAN 94 Conference on Programming Language Design and
Implementation(1994), pp. 196—-205.

[28] TAMCHES, A., AND MILLER, B. P. Fine-Grained Dynamic
Instrumentation of Commodity Operating System KernelsPioc.
1999 Symposium on Operating Systems Design and Impleientat
(OSDI).

[29] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale and
Performance in the Denali Isolation Kernel. Pmoc. 2002 ACM
Symposium on Operating System Design and Implementat®bIjO
(Dec. 2002).

[30] WITCHEL, E., AND ROSENBLUM, M. Embra: Fast and exible
machine simulation. IMeasurement and Modeling of Computer
System$1996), pp. 68—79.

[31] YAGHMOUR, K., AND DAGENAIS, M. R. Measuring and
Characterizing System Behavior Using Kernel-Level Evergding.
In Proc. 2000 USENIX Annual Technical Conference

