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Abstract
PinOSis an extension of thePin dynamic instrumentation frame-
work for whole-system instrumentation, i.e., to instrument both
kernel and user-level code. It achieves this by interposingbetween
the subject system and hardware using virtualization techniques.
Specifically, PinOS is built on top of the Xen virtual machinemon-
itor with Intel VT technology to allow instrumentation of unmod-
ified OSes. PinOS is based on software dynamic translation and
hence can perform pervasive fine-grain instrumentation. Byinher-
iting the powerful instrumentation API from Pin, plus introducing
some new API for system-level instrumentation, PinOS can beused
to write system-wide instrumentation tools for tasks like program
analysis and architectural studies. As of today, PinOS can boot
Linux on IA-32 in uniprocessor mode, and can instrument complex
applications such as database and web servers.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging - code inspections and walk-throughs,
debugging aids, tracing; D.3.4 [Programming Languages]: Pro-
cessors - compilers, incremental compilers

General Terms Performance, Experimentation, Languages

Keywords Whole-system, dynamic instrumentation, program
analysis tools, binary translation, virtualization

1. Introduction
As the complexity of computer systems continues to grow, it is in-
creasingly important to have tools that can provide detailed obser-
vation of system behavior.Software instrumentationframeworks1

like ATOM [27], Dynins [5], Valgrind [23], Pin [19], and Nir-
vana [3], have shown to be very useful for developing tools that
do program analysis, performance profiling, and architectural sim-
ulation. In spite of their success, a major limitation of these frame-
works is that they instrument only user-level code—no kernel-level
code is instrumented. This limitation becomes significant in appli-

1 We call them instrumentationframeworksinstead of instrumentationtools
because each of them is used to build multiple tools using itsinstrumenta-
tion API.
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cations such as database and web servers, where a majority ofexe-
cution time is spent inside the operating system.

On the other hand, whereas there do exist a few instrumentation
frameworks (Kerninst [28], Dtrace [7], and Dprobes [21]) that can
instrument operating systems, we find that these existing whole-
system instrumentation frameworks are limited in two ways.First,
since they all use theprobe-basedapproach of introducingprobes
to perform instrumentationin-place in the binary (in contrast to
the software dynamic translationapproach used by user-level in-
strumentation frameworks like Valgrind [23], Pin [19], andNir-
vana [3]), they are generally not suitable for pervasive fine-grain
instrumentation (e.g., instrumenting every single instruction ever
executed). This limitation prevents using these frameworks for de-
veloping tools like memory-leak checkers [23] and instruction trac-
ers [3]. Second, all these frameworks are OS-specific, as their in-
strumentation engines are built in to the OSes being instrumented
(Kerninst and Dtrace for Solaris, Dprobes for Linux). As a result,
tools developed for one of these operating systems do not work on
another.

In this study, we have extended a popular user-level instrumen-
tation framework, Pin [19], to achievewhole-systeminstrumenta-
tion. This extension is calledPinOS. It uses the same software dy-
namic translation approach as Pin does, and is therefore able to per-
form pervasive fine-grain instrumentation. PinOS inheritsthe same
rich instrumentation API [15] from Pin, and adds some new API
specific to system-wide instrumentation. By design, PinOS works
as a software layer runningunderneaththe instrumented OS and
doesnot require making any changes to it. This makes it possible
for PinOS to instrument unmodified OSes. In addition, running as a
separate layer helps achieve two desirable properties of instrumen-
tation:isolationandtransparency. With isolation, the instrumented
OS and the instrumentation engine do not share any code and hence
avoid any potential re-entrancy problems. With transparency, the
execution behavior of the instrumented OS is the same as whatwe
would observe without instrumentation.

The PinOS approach of running underneath the instrumented
OS has a major technical challenge: PinOS cannot use the system
facilities (mainly memory allocation and I/O services) provided by
the instrumented OS. And of course, PinOS like any other soft-
ware, needs these system facilities as it runs. Implementing these
facilities from scratch inside PinOS would be a tremendous task.
Fortunately, we observe thatvirtualizationoffers a neat solution to
this challenge. By running the OS that we want to instrument as a
guest OSinside a virtual machine (instead of on bare hardware),
PinOS can obtain system facilities from thehostOS. Based on this
observation, we have built PinOS on top of the Xen virtual machine
monitor [14] (with our own modifications). In order to run unmod-
ified (legacy) OSes as guests, we use Xen with the Intel hardware
virtualization support on x86 (VT-x) [22]. As of today, PinOS can



FILE * trace;

// Print a memory write record
VOID RecordMemWrite(VOID * ip,

VOID * va, VOID * pa, UINT32 size)
{

Host_fprintf(trace,"%p: W %p %p %d\n",
ip, va, pa, size);

}

// Called for every instruction
VOID Instruction(INS ins, VOID *v)
{

if (INS_IsMemoryWrite(ins))
INS_InsertCall(

ins, IPOINT_BEFORE,
AFUNPTR(RecordMemWrite),
IARG_INST_PTR, IARG_MEMORYWRITE_VA,
IARG_MEMORYWRITE_PA,
IARG_MEMORYWRITE_SIZE, IARG_END);

}

int main(int argc, char *argv[])
{

PIN_Init(argc, argv);
trace = Host_fopen("atrace.out", "w");
INS_AddInstrumentFunction(Instruction, 0);
// Never returns
PIN_StartProgram();
return 0;

}

Figure 1. A Pintool for tracing memory writes with PinOS.

instrument unmodified IA32 Linux guests running inside Xen,in-
cluding instrumenting the entire booting process and real-life ap-
plications like database and web servers. We are also planning to
instrument Windows guests in the future.

This paper focuses on the design and implementation issues we
have encountered in the project and our solutions to them. Webegin
with a simple PinOS tool in Section 2. Section 3 gives a high-
level overview of the PinOS architecture. We then dive into the
design issues of the two portions of PinOS: the VMM driver in
Section 4, followed by the instrumentation layer in Section5. To
demonstrate the practicality of PinOS, we have ported two popular
instrumentation tools (one is a code profiler and another is acache
simulator) from Pin to PinOS, and we present the results of using
these tools in Section 6. We relate our work to others’ in Section 7
and conclude in Section 8.

2. A Sample PinOS Tool
Prior to discussing how PinOS works, we give a brief introduc-
tion to the PinOS instrumentation API through a simple example.
PinOS inherits the same API from Pin, which allow a tool to ob-
serve all the architectural state of the instrumented system, includ-
ing the contents of registers, memory, and control flow. In addi-
tion, it provides new API for whole-system instrumentation, such
as physical addresses of memory accesses and callbacks for events
like page faults and interrupts. Following the ATOM [27] model,
a Pintool is a C/C++ program with two sets of procedures added
for instrumentation. One set is calledanalysis routines, which de-
fine what to do with instrumentation, while the other set is called
instrumentation routines, which determine where to place calls to
analysis routines. The arguments to analysis routines can be archi-
tectural state or constants.
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Figure 2. PinOS Architecture

Figure 1 lists the code of a Pintool that traces both the virtual
and physical addresses and size of every memory write executed
on the system. Themain procedure initializes PinOS and opens a
file on thehost OSvia Host fopen to hold the tracing file. Writ-
ing results on the host OS instead of the guest OS helps achieve
instrumentation isolation and transparency. We then register the
procedure calledInstruction, and tell PinOS to start executing
the system. Whenever a memory write instruction is encountered
the first time, PinOS inserts a call toRecordMemWrite before
the instruction (specified by the argumentIPOINT BEFORE to
INS InsertCall), passing the instruction pointer (specified by
IARG INST PTR), virtual address and physical address for the
memory operation (specified byIARG MEMORYWRITE VA and
IARG MEMORYWRITE PA, respectively), and number of bytes
written (specified byIARG MEMORYWRITE SIZE). Every time an
instruction that writes memory executes, it callsRecordMemWrite
and records information in the trace file on the host OS via
Host fprintf.

Note that the user-level Pin version of the above Pintool is
nearly identical to the PinOS version except that file I/O func-
tions are replaced by the correspondingHost xxx functions and
that IARG MEMORYWRITE PA is only available in PinOS. This
demonstrates the ease of porting existing tools from Pin to PinOS.

3. Architecture
As PinOS strives to observe and instrument every instruction exe-
cuted in a subject system, it must interpose between the subject op-
erating system and the underlying hardware. We use virtualization
technology to introduce the PinOS layer below the guest system
layer. Figure 2 illustrates the architecture of the PinOS framework.
We run a modified version of the Xen [14] virtual machine monitor
(VMM) on bare hardware. In order to rununmodifiedguest oper-
ating systems, the hardware itself must be equipped with Intel’s
hardware virtualization support on x86 (VT-x).

In Xen terminology, virtual machines are called domains; there
exists one privileged virtual machine called thehost domainor
Dom0, and all other virtual machines are calledguest domainsor
DomU. We run the subject system, including its operating system
and all its applications in a guest domain. Inside this guestdomain,
we transparently inject PinOS underneath the subject operating sys-
tem, so that PinOS will be in a position to observe every instruction
ever executed in the subject system.

We picked Xen for several compelling reasons: it is a robust,
widely-deployed, simple and efficient VMM; it is available via an
open-source license; last, but not the least, it provides debugging
support for our development efforts. We introduce a PinOS driver
inside the Xen VMM by modifying Xen. In this driver, in addi-
tion to introducing new hypercalls (i.e., calls into Xen VMM) for
PinOS’s own use, we exploit a lot of the support that is already



implemented in Xen (such as shadow paging and I/O request redi-
rection [14]) and we adapt them for our purposes.

On top of Xen is the PinOS instrumentation layer, which con-
sists of three major components:Code Cache, Instrumentation En-
gine, andPintool. PinOS maintains a cache of guest code trans-
lations in the code cache component. The technique ofsoftware
dynamic translationis employed to achieve two goals:

• Always maintain control: Every control-transfer instruction is
translated so that control is either transferred to an existing
translated version of the target in the code cache or to the
instrumentation engine so that the target can be translatedand
put into the code cache.

• Perform instrumentation: As new code is encountered and
translated, the user-programmed Pintool performs the speci-
fied instrumentation on the guest code. For instance, a Pintool
may demand the instrumentation of every memory load and
store instruction in order to simulate cache behavior.

The execution of PinOS-based instrumentation takes the form of
an infinite loop of alternating executions of the instrumentation en-
gine and the code cache. The instrumentation engine is responsible
for code compilation, code cache maintenance, instructionemula-
tion, invocation of instrumentation routines in the Pintool, etc. The
code cache executes translated guest code and also appropriately
invokes user-provided analysis routines.

Pin [19] compiles from the given ISA directly into the same ISA
(i.e., IA32 to IA32) without going through an intermediate format,
and the compiled code is stored in a software-based code cache.
Only code residing in the code cache is executed – the original
code is never executed. An application is compiled one traceat a
time. A trace is a straight-line sequence of instructions which termi-
nates at one of the conditions: (i) anunconditionalcontrol transfer
(branch, call, or return), (ii) a pre-defined number ofconditional
control transfers, or (iii) a pre-defined number of instructions have
been fetched in the trace. In addition to the last exit, a trace may
have multiple side-exits (the conditional control transfers). Each
exit initially branches to astub, which re-directs the control to the
engine. The engine determines the target address (which is stati-
cally unknown for indirect control transfers), generates anew trace
for the target if it has not been generated before, and resumes the
execution at the target trace. PinOS retains the compilation tech-
niques that Pin uses including techniques to improve the quality
of translated code, such as trace linking, register re-allocation, and
inlining analysis routines [19].

Finally, we considered other architectural alternatives for PinOS.
The main design question iswherethe PinOS instrumentation layer
should be placed with respect to the Xen VMM. Options include
putting PinOS as part of the VMM, in the same domain as the guest
OS (i.e. the current design), or in another domain. We chose the cur-
rent design for three reasons: (1) it matches the existing design of
user-level Pin so that we do not have to significantly restructure our
code, (2) it potentially has better performance because theguest OS
and PinOS sit in the same domain, hence minimizing cross-domain
operations, and (3) separating PinOS instrumentation fromthe Xen
VMM makes it easier to port PinOS to another VMM in the future.

4. VMM Driver
We introduce a PinOS driver inside the Xen VMM by modifying
Xen to provide PinOS four main functionalities: memory stealing,
attach/detach, I/O services, and time virtualization. We discuss
these design issues in this section.
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Figure 3. Our memory stealing technique.V0 to Vn are virtual
pages on the guest;P0 to Pi are physical pages on the guest;M0 to
Mn are physical pages on the host (also known as machine pages).

4.1 Memory Stealing

PinOS requires its own memory for several purposes: the code
cache, PinOS executable, stack and heap, and I/O buffers. PinOS
needs to steal both physical memory pages and a part of the virtual
address space from the guest in order to operate within the guest
domain.

In a Xen system, the VMM maintains a shadow of the virtual
machine’s memory-management data structure, called theshadow
page tableso that it can control which pages of the machine’s
memory are available to the virtual machine. Thus there are two
layers of physical pages:guest-physicalpages andmachine pages.
The guest domain’s page table maps virtual pages to guest-physical
pages, i.e., to what itthinksare physical pages. The hardware uses
Xen’s shadow page table for memory address translation so that
the VMM can always control what memory each virtual machine is
using. Xen assigns real machine pages to guest-physical pages, and
the shadow page table takes care of mapping virtual pages directly
to machine pages. One such shadow page table is maintained for
every guest address space encountered.

We exploit Xen’s shadow paging to achieve memory stealing
for PinOS. To stealphysical memory, we modify Xen to pre-
allocate a separate range of machine pages for PinOS. These pages
are unknown to the guest operating system, thus are completely
transparently stolen.

We also need to steal some portion of the guestvirtual address
space. Our current strategy is to statically steal part of the guest’s
kernel address space (to minimize chances of conflicts), andto
detect and report any guest OS mapping activity in the stolen
space. We modify Xen to add, in the shadow page table, mappings
from these stolen virtual pages to the pre-allocated machine pages.
Again, these mappings have to be propagated to every shadow page
table used by Xen. Our scheme is illustrated in Figure 3, where
Mk to Mn are the pre-allocated machine pages on the host for
PinOS andVk to Vn are the virtual pages we steal from the guest.
We have not encountered any address space conflicts so far with
this strategy. In the future, it may be desirable to have a more
dynamic approach ofrelocatingthe stolen address space portion as
per dynamic availability, although we don’t expect this to be much
of an issue with 64-bit address spaces.

4.2 Attach / Detach

PinOS can be enabled on theentire runof a guest system. However,
PinOS also has the ability to attach itself to a running guestsystem
only when the user is interested in performing instrumentation and
to detach subsequently. This facility has two major advantages:



• The user can avoid the overhead of PinOS being active during
OS boot and shutdown every time she wants to perform whole-
system instrumentation on an application run.

• Enabling PinOS on the entire run of the guest system may
pollute the instrumentation data collection, or at the veryleast,
may require resetting of instrumentation data collection.

We add hypercalls in Xen to support PinOS attach and detach
functionality. Upon an attach request hypercall, typically made
through a tool provided on the host operating system, we perform
the following steps:

1. Save key parts of processor state of the ‘attachee’ guest domain
into virtual state maintained by PinOS. The processor statehere
includes, in addition to the basic state such as general purpose
registers, instruction pointer, stack pointer, etc., all the state that
PinOS further virtualizes within the Xen guest domain such as
the segmentation state, interrupt descriptor table, etc.

2. Set the guest domain state to the initial state of PinOS so that
PinOS hijacks control upon execution of that guest domain.

3. Upon gaining control, PinOS starts instrumenting the guest
system from the current program counter (PC), i.e., the PC at
which attach was performed.

The reading and writing of guest domain state above may in-
volve some hidden processor state, i.e., processor registers that are
not visible at the ISA interface. A typical example of such state
is the segment descriptor cache maintained alongside each seg-
ment register. To overcome this challenge, we exploit IntelVT sup-
port, which essentially makes these invisible registers visible to the
VMM.

Detach is implemented similarly where the guest domain state
is restored with the virtual guest system state that PinOS maintains
so that execution can continue natively without the involvement of
PinOS.

4.3 I/O Services

PinOS requires I/O services for two purposes: one is to generate log
files for debugging and the other is to provide file I/O operations to
Pintools. As illustrated in Figure 2, PinOS routes all its I/O requests
to the host OS, which actually performs the requests and thensends
the results back to PinOS. We set up a daemon process on the host
domain (i.e. Domain-0 in Figure 2) to periodically poll and process
requests from PinOS. The channels between the host and guest
domains are implemented via memory regions that are mapped into
both domains.

4.4 Time Virtualization

Depending on the kind of instrumentation being performed by
PinOS tools, the run-time instrumentation overhead could be sig-
nificant. Sometimes, this could slow down the guest system toan
extent that the guest will complain about “timeout”. Our current
strategy is to reduce the Virtual Programmable Interrupt Timer
(VPIT) frequency delivered to the guest from Xen by 20x (the VPIT
is a compile-time constant in Xen). While this strategy works for
the PinOS tools that we currently have, we realize that an adap-
tive scheme would be needed once we have more tools with a
wider range of instrumentation overheads. This is currently ongo-
ing work.

5. Instrumentation Layer
This section discusses design issues relating to the instrumentation
layer introduced by PinOS beneath the guest OS in a guest do-
main. We describe the modifications we made to user-level Pinfor
system-wide instrumentation along the way.
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Figure 4. A problem in the 〈V A,PA〉 code-cache indexing
scheme with trace linking.

T2:

Translation of <V2, P2>
if ( SoftTLB[V2] != P2 )

{ // <V2,P2> is invalid.

// Invoke Engine to resolve.

Call Engine;

// Never return

}

// <V2, P2> is still valid. Execute the

// rest of the trace.

A Translated Trace in Code Cache
Physical-address validation

SoftTLB

P3V2

P1V1

PAVA

Figure 5. Using a run-time physical-address test solves the prob-
lem in Figure 4.

5.1 Code Cache Indexing and Sharing

All existing user-level instrumentation frameworks, including Pin,
use applicationvirtual addressesto index their code caches. How-
ever, for system-wide instrumentation, virtual addressesalone are
insufficient to distinguish code as different applicationsmay be
assigned the same virtual addresses in different address spaces.
Therefore, code-cache indexing in PinOS needs a new scheme that
can differentiate address spaces. We have studied two such schemes
described below.

The first scheme uses the Virtual Address (VA) andAddress-
Space Identifier (ASID)pair as the code-cache index (denoted as
〈V A, ASID〉). On the x86 architecture, the ASID is the physical
address of the page table used by the current process and is always
stored in the control registercr3. The main advantage of this
scheme is the ease of implementation (as the ASID can be obtained
by simply readingcr3), while the main disadvantage is that the
code cache cannot be shared among address spaces. Thus, the
same code has to be retranslated over and over again in different
address spaces, incurring unnecessary run-time and code-cache
space overhead.

The second scheme uses the Virtual Address andPhysical Ad-
dress (PA)pair as the code-cache index (denoted as〈V A, PA〉).
Compared against the〈V A, ASID〉 scheme, this scheme allows
sharing the code cache among address spaces as long as the
〈V A, PA〉 remain the same in different address spaces, which is
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the case for most kernel-level code (e.g., interrupt handlers, sched-
ulers etc). Nevertheless, this scheme has the following technical
challenges.

First, we need a way to get physical addresses efficiently. While
we can always make a hypercall to Xen to get the physical address
from a virtual address, it is too expensive to do this frequently as
each hypercall takes several thousand cycles in the currentXen/VT
implementation. We address this challenge by maintaining aSoft-
ware TLB (calledSoftTLB) inside PinOS which caches the VA-to-
PA mappings of code that PinOS has translated. The SoftTLB is
kept coherent using the techniques described in Section 5.4. As a
result, most requests of getting physical address translation are sat-
isfied by the SoftTLB; we only need call Xen on SoftTLB misses.

The second challenge of the〈V A, PA〉 scheme is its interac-
tion with trace linking [1], an optimization used in almost every
dynamic binary translator. Trace linking allows jumping from one
trace in the code cache to another without going through the instru-
mentation engine and hence improves performance. The problem-
atic interaction is illustrated using the example in Figure4. Pro-
cess A is first executed, and the translations based on the mappings
〈V 1, P1〉 and 〈V 2, P2〉 are generated in the code cache as T1
and T2, respectively. Trace linking connects T1 and T2 via a di-
rect jump. Later on, Process B is executed and its corresponding
page mappings are〈V 1, P1〉 and〈V 2, P3〉. Since the translation
of 〈V 1, P1〉 is already cached, there is no need to re-translate this
trace, and so we execute T1 out of the code cache directly. How-
ever, as V2 is now mapped to P3 instead of P2, the jump from T1
to T2 is wrong. Instead, we should generate a new translationfor
〈V 2, P3〉 and transfer control to it after executing T1.

To solve this problem, we add a run-time test at the entry of each
trace to validate the physical address upon which the generation
of that particular trace relied. The trace is used only if theactual
physical address matches the assumed physical address. Howthis
technique solves the problem in Figure 4 is illustrated in Figure 5,
where a physical-address validation test is added to the entry of
trace T2. The guest page mappings of Process B are shown in the
SoftTLB. In this case, since the assumed physical address (P2) is
not equal to the actual physical address (P3), the test will fail and
we will enter the instrumentation engine, which will in turntransfer
control to a trace corresponding to〈V 2, P3〉.

We have implemented both the〈V A, ASID〉 and〈V A,PA〉
schemes, and measured their effectiveness in terms of run-time
overhead and code-cache space consumed. Figure 6 shows how
much time and code-cache space PinOS takes to boot FC4 Linux
under each scheme (the machine used is the “Setup A” described in
Table 1). The〈V A, PA〉 scheme is the obvious winner as it is faster
by 6 times and generates 20 times less code than the〈V A, ASID〉
scheme. These results clearly demonstrate the importance of shar-
ing code cache among address spaces.

5.2 Interrupt and Exception Emulation

Interrupts and exceptions are emulated in PinOS for two reasons.
The first reason is to ensure that PinOS maintains full control of
the guest. For instance, if we do not emulate interrupts, PinOS will
lose control after process preemption, which is typically triggered
by timer interrupts. The second reason is for instrumentation trans-
parency. For instance, a guest interrupt handler can inspect some
registers to tell what the current thread is. PinOS has to present
the guest register context (not the hardware register context) to the
guest interrupt handler in order for it to find the correct thread.

To emulate interrupts and exceptions, PinOS first installs its
own interrupt/exception handlers in the Interrupt Descriptor Table
(IDT) so that all interrupts and exceptions are intercepted. Then
interrupts and exceptions are handled using different approaches,
as explained below.

5.2.1 Interrupt Emulation

Interrupts areasynchronousin nature—they could happen at any
time during the execution. The most common ones are timer in-
terrupts. The issue with interrupts is that they could happen while
we are executing something other than the guest code (e.g., we
may be executing the instrumentation engine or the Pintool when
a timer interrupt happens). We therefore cannot deliver theinter-
rupt at those points. Moreover, we cannot simply present to the
guest interrupt handler the hardware register context whenthe in-
terrupt happened; instead, we must present a valid guest register
context (these two contexts are different because the hardware exe-
cutes code-cache traces which are positioned at different addresses
than the original guest code). Therefore, when we receive aninter-
rupt, we put it on to a queue instead of delivering it to the guest
immediately. We also add a run-time test at the entry of each trace
to check if the queue has any pending interrupt. When a trace,say
T , is executed out of the code cache and there is a pending inter-
rupt, the run-time test will return true. We will call the engine to
instrument the guest handler for that pending interrupt. Wepresent
the guest register context at the entry ofT to the guest interrupt
handler, effectively creating an illusion that the interrupt happened
at the entry ofT . Finally, we transfer control to the instrumented
handler.

5.2.2 Exception Emulation

Unlike interrupts, exceptions aresynchronous—they cannot be de-
layed and must be handled immediately. The most common excep-
tions are page faults. Guest exceptions could happen while in the
instrumentation engine or in the code cache. The former could be
instruction page faults that happen when the instrumentation engine
fetches some guest code that has not been paged in by the guestOS.
The latter could be data page faults while the guest code is executed
out of the code cache. In either case, we need to recover the guest
register context from the hardware register context at the exception.
Then we instrument the corresponding guest exception handler, us-
ing the guest register context we just recovered, and finallytransfer
control to the instrumented handler. In addition, we have toensure
that our exception emulation is bothpreciseandfaithful.

Precise exception emulation means the following. If PinOS
translates one original guest instruction into a multiple-instruction
sequence and an exception happens in the middle of the sequence,
the guest register context that should be presented to the exception
handler is the one at the beginning of the sequence, not the one in
the middle. Essentially, because of code translation, PinOS may in-
troducepseudo instruction boundaries, i.e., instruction boundaries
that are present on the hardware during execution but are notex-
pected by the guest semantics. If a page fault happens at sucha
pseudo instruction boundary, we must first rollback the effect of
the instructions since the most recent guest instruction boundary



Figure 7. An illustration of theIrreversible SegmentationProb-
lem.

before delivering the page fault to the guest page-fault handler. Im-
plementing rollback in the code cache is highly complicated[6],
mainly because of the need to maintain bookkeeping of how much
and what kind of progress we have made since the last instruc-
tion boundary so that we can rollback that progress; nevertheless,
it is relatively straightforward to implement rollback inside the in-
strumentation engine. For this reason, PinOS never generates any
multiple-instruction translation inside the code cache; instead, all
such multiple-instruction sequences are always emulated inside the
instrumentation engine. And, we have implemented a stack-style
logging mechanism inside the instrumentation engine to track all
changes to the guest’s register and memory state during emulation.
Using this log, we can rollback to the last guest instructionbound-
ary in case an exception occurs during emulation.

Faithful exception emulation means the following. When an
instruction is executed, the OS may expect the hardware to raise
a certain exception when some condition is met. Therefore, if the
instruction is emulated by the instrumentation engine (instead of
directly running on hardware), we should check all conditions and
raise exceptions corresponding to the hardware semantics.One
example is the emulation of themov into ss instruction: we
need to raise a general-protection fault if the segment sectorss has
a value of 0.

5.3 Virtualization of Segmentation Support

Due to the memory requirements of PinOS, we need to steal not
only virtual and physical pages but also segment descriptortable
entries. Also, we need the ability to switch segment registers be-
tween guest and PinOS descriptor values as and when needed.

Segmentation state in the Intel x86 architecture consists of pri-
marily a set of segment registers,CS, DS, ES, FS, GS andSS, and
two tables, the global (GDT) and local (LDT) descriptor tables. The
segment registers themselves consist of avisible segment selec-
tor part and ahiddensegment descriptor cache. The hidden part
is cached with a descriptor value from the entry in GDT/LDT that
the selector points to. The descriptor cache may be out-of-sync with
respect to the current descriptor value in the table, and software of-
ten depends on this semantic guarantee. In addition, while aload of
a segment register loads both the visible and hidden parts, astore
saves only the visible part. This asymmetry in saving and restor-
ing results in theirreversible segmentation problem[12], where a
segment register’s value once replaced cannot be reversed.

A relevant instance of this problem is illustrated in Figure7. Ini-
tially, theDS register has selector value0x10. The corresponding
GDT entry has a descriptor valueA and theDS descriptor cache also
has been loaded with the valueA upon the register being loaded.
Later, the guest writesB into thisGDT entry. However, theDS de-

Figure 8. An illustration of how theIrreversible Segmentation
problem is addressed.

scriptor cache continues to have the valueA. But, when the instru-
mentation system saves and restoresDS gratuitously, due to context
switches from the code cache and back for example, the descriptor
cache ends up being loaded with the new valueB, whereas the guest
expects it to still have the valueA, becauseDS has not yet been ex-
plicitly loaded as far as the guest is concerned!

To address the irreversible segmentation problem and to enable
stealing of descriptor table entries, we employ a segmentation vir-
tualization scheme where only the descriptor caches of the guest
system are shadowed instead of the entire descriptor tablesbeing
shadowed, a technique similar to the one proposed in VDebug [6].
PinOS maintains its ownGDT, which is accessible by the under-
lying hardware. In thisGDT, PinOS reserves some entries corre-
sponding to thex86 segment descriptor caches. The rest of the
entries in the table are available for PinOS’s own use. As andwhen
the guest explicitly loads segment registers, we copy guestsegment
descriptors into the corresponding cache entries in PinOS’s GDT,
and issue a segment register load instruction with the selector value
modified to point to that cache entry. To implement this scheme, we
use dynamic translation of the guest instruction stream to identify
and emulate segment-selector-sensitive instructions. This scheme
ensures preservation of guest-expected hardware semantics.

Figure 8 shows how this solution addresses the irreversibleseg-
mentation problem. The same instance as earlier is shown under
the virtualization scheme we employ. This time, when the gratu-
itous load of theDS register is performed by the instrumentation
system,DS is still loaded with the valueA because that is what
resided in the “hardware-accessible” (i.e., PinOS)GDT even though
the guestGDT entry contained the new valueB. This is because
even though the guestGDT entries can keep changing upon guest
writes, the PinOSGDT entries change only upon explicit segment
register loads performed by the guest.

A major advantage of this scheme is that there is no need for
tracking guest descriptor table writes [12], as we bring in descrip-
tor values into the caches just-in-time, i.e., upon explicit guest loads
of segment registers. The downside lies in the need to use dynamic
translation and emulate all segment-selector-sensitive instructions,
which increases the system’s complexity significantly. However,
we have observed that such instructions are usually dynamically
rare, and that the scheme does not have a significant performance
impact.

5.4 Code Cache Coherence

One of the most effective optimizations that make dynamic trans-
lation a viable technique is the reuse of translated code through
the maintenance of a code cache. However, the reuse brings anim-
portant challenge: keeping the code cache coherent with respect



to the original code. In a whole-system scenario, this challenge
is two-fold: keeping the code cache coherent in the face of (self)-
modifying code and in the face of page mapping changes.

The content of a guest code-page may change after PinOS
has cached code from that page on to the code cache. In such a
situation, reusing the existing translation cache isincorrect. We
address this problem using the standard write-monitoring solution.
Whenever PinOS brings code from a page into the code cache, we
mark that page non-writable. Writing to such a monitored page
causes a page-fault. PinOS intercepts this page-fault exception,
invalidates all translated code belonging to that page in the code
cache, and then re-executes the write.

The write-monitoring technique we described above is a widely-
employed, standard technique in the application-level space. The
application of this technique to an entire system instead ofa single
application process presents two important issues. The first is main-
taining transparency from the guest operating system. We perform
the marking of a page as non-writable in theshadowpage table
instead of in theguestpage table, so that the write-monitoring is
performed completely transparently from the guest. The second is
the issue of ensuring correctness in the face of alternate mappings.
It is not enough to mark the individual page-mapping correspond-
ing to the virtual address of a code fragment that is being brought
in to the code cache as non-writable. There may exist other page-
mappings that map on to the same physical page because of page-
sharing, for instance. No matter which mapping is used to perform
the write, if the code-page content is ultimately changed, the code
cache must be updated accordingly. Therefore, to ensure correct-
ness of the code cache coherence solution, we must monitor not
only that particular page-mapping, but also all present andfuture
page-mappings that map on to thatphysical page. To implement
such monitoring, we maintain areverse page-mapping tablethat
maps a physical page to all virtual pages that have been observed
to map on to it. Thus, translated code present in the code cache is
guaranteed to be coherent with respect to thecurrentpage content.

The code cache must also be kept coherent in the face of page-
mapping changes, i.e., if the virtual page is mapped on to a different
physical page, the code cache must be updated. As described in sec-
tion 5.1, we index the code cache using the〈V A, PA〉 pair, and
introduce a check block to ensure the currency of the〈V A,PA〉
mapping at every trace entry to solve the trace linking correctness
problem. It turns out that this solution automatically ensures code
cache coherence even in the face of page-mapping changes, be-
cause if the virtual page is mapped on to a different physicalpage,
control would be passed to the fall-back strategy in the instrumen-
tation engine upon execution of the check block in the incorrect
translation.

In addition to keeping the code cache coherent, we must also
keep the cached page-mappings in the SoftTLB coherent in the
face of page-mapping changes by the guest. Xen already marks
guest page-table pages read-only and thus tracks all writesto them.
Therefore, to achieve SoftTLB coherence, we rely on Xen to in-
form PinOS with updates about page-mapping changes so that the
SoftTLB that PinOS maintains can be updated accordingly.

6. Evaluation
To demonstrate the usefulness of PinOS, we have ported two tools
from Pin to PinOS. One is a code profiler calledInsmix while
the other is a cache simulator calledCMP$im. In this section, we
present some analysis results obtained from these tools. Wealso
present an evaluation of the performance overhead of PinOS.

Setup Hardware Xen Dom0 Xen DomU
(Host OS) (Guest OS)

A 2.40GHz, FC5 with FC4 with
Core 2 Duo 6600, XenoLinux Linux
4096KB L2 Cache Kernel Kernel

2GB Memory 2.6.16 2.6.11
B 2.80GHz, FC4 with FC4 with

Pentium D, XenoLinux Linux
2048KB L2 Cache Kernel Kernel

4GB Memory 2.6.16 2.6.11

Table 1. Experimental Setup

Benchmark Benchmark Run With Run
Short Name Full Name Parameters On

FC4-Boot FC4-Linux Booting Default A
Apache ab Benchmark on n=50000 A
Bench Apache httpd 2.2.3

AlterTable MySQL test-alter-table Default B
ATIS MySQL test-ATIS Default B

BigTables MySQL test-big-tables Default B
Connect MySQL test-connect 10000-loop B
Create MySQL test-create 1000-loop B
Select MySQL test-select 1000-loop B

Wisconsin MySQL test-wisconsin Default B

Table 2. Benchmark Details

6.1 Experimental Setup

All the results we present in this section were obtained on two
machines2 equipped with Intel VT support and installed with the
Xen VMM. Table 1 shows the configurations of the two machines,
called setupA andB.

We performed experiments on several benchmarks, including
the boot procedure of FC4-Linux, Apache ab benchmark, and
MySQL sql-test benchmark suite. They were picked for their rel-
atively large portion of execution time spent in the kernel.Table 2
shows the details of these benchmarks, along with the short names
we use in the rest of this section.

6.2 Insmix

Insmix is a code profiler that collects two pieces of information
about program execution. The first is the dynamic frequency of
each instruction opcode executed in the program. The secondtype
is the dynamic frequency of all basic blocks executed. Insmix has
been used to compare the quality of code generation of different
compilers. It has also been used to identify the hot basic blocks in
programs for optimization. In the PinOS version, Insmix collects
this information in both user and kernel space, and reports them
separately in the output file.

Figure 9 shows the user-level vs. kernel-level distribution of dy-
namic instruction counts obtained by running the Insmix tool on
each of our benchmarks. While the kernel-level instructions ac-
count for as high as 65% of overall instructions executed in the
case of MySQL test-create benchmark, and as high as 40-45% in
the case of FC4-Linux boot and Apache ab benchmark, they ac-
count for a smaller, yet significant, portion of overall instructions in
the rest of the cases. This analysis suggests that while instrument-

2 The results were obtained on two machines due to lack of time to run all
the experiments on the same machine.
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Figure 9. User/kernel distribution of instructions obtained by run-
ning the Insmix tool on various benchmarks using PinOS.

ing a subject execution, instrumenting kernel-level instructions as
well can be important, and in some cases may be even inevitable.

Table 3 shows the analysis results obtained by running the Ins-
mix tool on MySQL test-alter-table benchmark. The results shown
include the top five most frequently executed basic-blocks in the
Linux kernel while running MySQL test-alter-table, along with
their mapped symbol identifiers, the dynamic execution count ob-
served, the number of instructions contained in that basic-block,
and finally, the contribution of that basic-block to overalldynamic
instruction count. Among these basic-blocks, the second one serves
as an interesting observation: more than a third of a percentof over-
all instructions executed belong to a basic-block in the function
ext3do updateinode, which is expected given that the MySQL
test-alter-table benchmark would have to update disk files fre-
quently.

Table 4 shows the opcode frequency of all x86 privileged in-
structions observed while running the Insmix tool on MySQL test-
alter-table and on FC4-Boot. The Insmix tool was able to gather
the dynamic instruction counts, grouped by opcode for the entire
instruction set. Here we show only counts for the privilegedsub-
set of the x86 instruction set. Note that the tool was not written to
be able to distinguish between different kinds ofMOV instructions,
and hence could not gather the counts in the case ofMOV from/into
control registers (CR) and debug registers (DR). The results reveal
that somesystem state setupinstructions likeLGDT (Load Global
Descriptor Table register) andLLDT (Load Local Descriptor Table
register) are encountered a few times during the boot procedure, but
never encountered later. On the other hand, theCLI (Clear Interrupt
bit), STI (Set Interrupt bit) andIRETD (Interrupt Return, usually
used for returning to user-level from a system call) instructions are
encountered hundreds of thousands of times during execution of
both benchmarks.

6.3 CMP$im

CMP$im is a detailed cache simulator that models a multi-level
cache hierarchy, including both instruction and data caches. It can
model private and shared caches on a multi-core system, although
in its current PinOS version only single-core systems are modeled.
CMP$im with PinOS simulates cache accesses from both user and
kernel code. To distinguish accesses to distinct data that have same
virtual addresses, we use physical addresses as cache tags.

Bbl Addr BBl Symbol Count #Insts Inst. %
Contrib.

c0111a40 delaypit+0x1a 93531291 2 1.17%
c8aac20b ext3 do update 10177398 6 0.38%

inode+0x82
c011d58f might sleep+0x2a 5170776 5 0.16%
c011d57f might sleep+0x1a 5170776 4 0.13%
c011d565 might sleep 5170776 10 0.32%

Table 3. Top five hottest basic-blocks in the Linux kernel obtained
by running the Insmix tool on MySQL test-alter-table benchmark
using PinOS. The column “Inst. % Contrib.” is the percentage
of instructions contributed by that basic block (i.e. “Count” ×
“#Insts”) with respect to the total instruction count.

Priv. Alter FC4 Priv. Alter FC4
Instr Table Boot Instr Table Boot
CLI 8912950 2806991 LGDT 0 2
STI 2217286 845921 LLDT 0 2

IRETD 599646 574204 LIDT 0 2
OUT 551209 57181 LTR 0 1

OUTSW 990104 9824 INVD 0 0
IN 311762 31994 WBINVD 0 0

INSW 240 48403 RDMSR 0 15
HLT 207 4458 WRMSR 0 0

INVLPG 619 54923 RDPMC 0 0
CLTS 1350 80 LMSW 0 0

RDTSC 7043 1777 MOV CR/DR NA NA

Table 4. Opcode frequency of all x86 privileged instructions ob-
tained by running the Insmix tool on MySQL test-alter-tableand
FC4-Boot using PinOS.

We ran CMP$IM on MySQL (using “test-create” with a loop
count of 1000) with a simulated cache configuration of separate
32KB D-cache and 32KB I-cache, a 512KB unified L2-cache,
and a 4MB unified L3 cache. Figure 10 shows various metrics
on the D-cache behaviors varying over time. We show the results
with whole-system simulation in Figure 10(a) and the results with
user-mode only simulation in Figure 10(b). First, we note that
the whole-system simulation has over 3 billion instructions while
the user-mode only simulation has only 1.1 billion instructions.
Second, in terms of both misses/1000 instructions and miss rate,
the whole-system simulation has different phase behaviorsthan
the user-mode only simulation, although their running averages are
similar. This result indicates that memory accesses from the kernel
do have measurable impact on cache behavior, and that whole-
system instrumentation helps obtain a more accurate picture while
performing architectural simulation.

6.4 Performance Evaluation

Figure 11 shows the performance slowdown of PinOS relative to
native execution. The first bar in each case corresponds to the
PinOS run with no instrumentation, which we callNullTool, and
the second bar corresponds to the PinOS run with instrumentation
being performed by theInsmixtool. As can be seen from the figure,
while the NullTool slowdown is as little as 12x and 20x in the
cases of AlterTable and Create respectively, it is as high as120x
in the case of Wisconsin, and ranges around 50-60x in most of the
other cases. The Insmix slowdown is approximately 20-30% more
than the NullTool slowdown, because of the extra instrumentation
overhead incurred during execution.

Figure 11 also shows the breakup of slowdown in terms of con-
tributions by the two alternately executing components of PinOS:
code cache and instrumentation engine. The results indicate that
the instrumentation engine accounts for over 60-70% of the perfor-
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(b) User-mode only simulation
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Figure 10. D-cache behaviors of MySQL collected via CMP$im.
The x-axis is number of instructions simulated in billions.The y-
axis has four metrics: (1) number of memory accesses per 1000
instructions, (2) number of misses per 1000 instructions, (3) miss
rate, and (4) percentage of evicted cache lines that are never refer-
enced again in the future. For each metric, the dots represent phase
behaviors (one dot per million instructions) while the dashed line
is the running average.

mance overhead in all the cases. The instrumentation enginemay
be entered for several reasons, the two main ones being code com-
pilation and instruction emulation. As future work, we hopeto ob-
tain more detailed results to help understand the individual contri-
butions by these tasks towards the overall performance overhead.

Finally, the instrumentation overhead of PinOS reported here is
significantly higher than the one reported for user-level Pin [19].
There are three main reasons. First, the benchmarks we chosefor
PinOS evaluation have much less code reuse than the SPEC2000
benchmarks used in the evaluation of user-level Pin. As a result, the
dynamic compilation overhead contributes more to the overall per-
formance in our results. Second, there are two additional run-time
tests3 in each code-cache trace generated by PinOS than by user-

3 One test is for validating the page mapping (see Section 5.1 and the other
is for checking if there is any pending interrupt (see Section 5.2)

level Pin. Third, PinOS emulates many more instructions viathe
instrumentation engine than user-level Pin. Bringing the overhead
of PinOS closer to the level of Pin is on our future work agenda.
Nevertheless, we don’t view the current level of high overheads as
a significant concern, considering that our focus has not been on
tuning performance so far. Our focus has rather been on building a
new kind of instrumentation framework in the first place.

7. Related Work
In this section, we discuss how our system differs from (or builds
upon) various systems that either perform dynamic instrumentation
or use software dynamic translation (SDT) or both, as well as
systems that simulate, emulate or virtualize machines.

Dynamic optimization systems such as Dynamo [1] and Mojo
[9] employ software dynamic translation to perform run-time opti-
mization to improve the performance of native binaries.

SDT infrastructures such as DynamoRio [4], Strata [25],[18]
and Walkabout [10] offer a general framework to build new tools
that use dynamic binary translation to perform a variety of tasks
including optimization, reference monitors and architectural sim-
ulation. For example, program shepherding [17] employs theDy-
namoRio infrastructure to build a tool that enforces security poli-
cies on execution of untrusted binaries by monitoring control flow
transfers. Another instance is Strata being employed to build a
high-performance architectural simulator through a framework of
trigger-action mechanisms.

Shade [11] uses SDT to implement high-performance instruc-
tion set simulators. However, both Shade and the architectural sim-
ulators built with Strata are user-level only simulators.

SDT is employed to build dynamic binary analysis and instru-
mentation frameworks in the case of Valgrind [23], Pin [19],Nir-
vana [3] and HDTrans [26]. Valgrind uses sophisticated SDT to
perform heavyweight dynamic binary analysis which can be used
for performance measurements, profiling, memory analysis and de-
bugging. Pin is a dynamic binary instrumentation tool that pro-
vides a high-level API for run-time instrumentation of programs
that can be used towards computer architecture research andedu-
cation, among other things. Nirvana is a run-time frameworkthat
can collect a complete user-mode trace of a program’s execution
that can be re-simulated deterministically. HDTrans is a lightweight
dynamic instrumentation system for the IA-32 architecture. Both
Valgrind and Pin offer rich APIs towards making their frameworks
easily programmable. In all these cases, the instrumentation is per-
formed only on user-level code. That is, all system calls aretreated
as black-box instructions as far as instrumentation is concerned.

On the other hand, while there do exist a slew of instrumen-
tation frameworks that can instrumentoperating systems, they are
mostly probe-based, i.e., given a program location that is to be
instrumented, they insertprobesat those locations in-place in the
subject binary. The probe can be either a breakpoint instruction
or a “software breakpoint” instruction, such as a jump or call to
an alternate location. In either case, the destination of the probe
instruction would be an instruction sequence that performsin-
strumentation, executes the originally replaced instruction, and
then returns control back to the caller. In most cases, the probes
can be inserted, enabled and disabled dynamically. Examples in-
clude KernInst [28], DynInst [5], LTT (Linux Trace Toolkit)[31],
DProbes [21], KProbes [8], DTrace [7] (on Solaris), and SystemTap
[24] (which is the equivalent of DTrace in the Linux world). These
tools differ in several ways with respect to our SDT-based whole-
system dynamic instrumentation approach. First, these frameworks
are usually meant for instrumentation at function boundaries and
such, but are generally not suitable for very fine-grain instrumenta-
tion. Second, because of their probe-placing mechanism, they gen-
erally have limitations about where instrumentation can beadded
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Figure 11. Performance overhead of PinOS on various benchmarks (AlterTable, ATIS, BigTables, Connect, Create, Select and Wisconsin
are individual test cases of the MySQL sql-test benchmark suite). The first bar in each case corresponds to a NullTool run and the second bar
corresponds to an Insmix run. Each bar further shows the breakup of contributions by code cache execution and by instrumentation engine
execution.

on variable instruction-sized architectures such as x86. Third, per-
haps most importantly, these frameworks are not suitable tobe
used forpervasiveinstrumentation such as memory checkers and
instruction tracers as this would amount to placing probes at ev-
ery (memory) instruction that is potentially executed. Finally, these
frameworks are OS-specific (e.g., DTrace on Solaris vs. SystemTap
on Linux) as their instrumentation engines are built in to the OS
being instrumented.

Bochs [16] is an open-source IA-32 PC emulator. Another full-
machine emulator is QEmu [2], which uses dynamic translation to
implement a fast machine emulator capable of emulating several
CPUs on several hosts. While both these systems can emulate
the entire machine, they do not facilitate general instrumentation,
nor do they provide a programmable framework for performing
instrumentation.

Simics [20] is a full machine simulation platform. It provides an
API for extensibility in terms of adding new plug-in device models,
etc. But, it does not seem straightforward to adapt this API to be
used as a programmable instrumentation framework.

Perhaps the closest to our work is Embra [30], which employs
whole-system SDT to perform full-machine simulation of a MIPS
machine. As they had to overcome the challenges of performing
whole-system dynamic translation, they had to solve problems that
are similar to the ones we addressed. For instance, they too had to
address the complications posed by trace linking in the presence of
tricky page mappings. Apart from the technical difference that it
did not have to deal with the presence of variable instruction sizes
of the x86 architecture, it does not seem to provide a programmable
framework for a user to easily build a tool to perform dynamic
whole-system instrumentation.

VMware [12] is a full-system virtual machine emulator that uses
a combination of native execution for non-privileged code and dy-
namic translation to emulate privileged-mode behavior. Xen [14]
avoids the need to perform dynamic translation by employingpara-
virtualization(which was originally proposed by Denali [29]), i.e.,
performing modifications to the guest system to make itXen-aware
or Xen-friendly. Recently, with the help of hardware-assisted virtu-
alization technology such as Intel VT [22], Xen 3.0 [13] can pro-
vide the virtualization service tounmodifiedguests. Both VMware
and Xen share Bochs and QEmu’s goal of simply providing an illu-
sion of a full-machine to their users, and do not facilitate dynamic
instrumentation.

8. Conclusion and Future Work
We have presented PinOS, an extension of the Pin dynamic instru-
mentation framework, for whole-system dynamic instrumentation.
By running inside the Xen virtual machine environment usingthe
Intel VT hardware support, PinOS can instrument unmodified op-
erating systems. And by using software dynamic translationtech-
niques, PinOS is able to instrument at a finer granularity andmore
pervasively than other whole-system instrumentation frameworks.
We have demonstrated how PinOS could be used for system-wide
program analysis and architectural studies with a code profiler and
cache simulator built on top of PinOS.

Future work includes porting PinOS to other platforms, suchas
64-bit x86, multiprocessors, and Windows. We are also working on
improving our time virtualization techniques and instrumentation
performance.
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