
1

Sharing Surfaces between OpenCL™ and
DirectX* 11 on Intel® Processor Graphics

Adam Lake, Robert Ioffe

2/18/2015

2

Contents
Introduction .. 3

Motivation... 3

Key Takeaway .. 3

Intel® Processor Graphics with Shared Physical Memory .. 3

Synchronization between OpenCL and DirectX 11 ... 4

Overview of Surface Sharing between OpenCL and DirectX 11 ... 4

Initialization... 4

Writing to the shared surface ... 5

The Render Loop ... 5

Shutdown .. 5

Details of Surface Sharing between OpenCL and DirectX 11 .. 5

Initialization... 5

Writing to the shared surface ... 8

The Render Loop ... 9

Shutdown .. 9

Future Work .. 9

Sharing explicit synchronization events between OpenCL and DirectX 11 .. 9

Sharing Framebuffers, Depth, Stencil, and MSAA surfaces .. 9

Double-buffering ... 9

What do to when no surface sharing is supported? ... 9

Surface Sharing Example ... 9

Dependencies.. 9

Sample File and Directory Structure ... 10

Building and Running the example ... 10

To learn more .. 11

Acknowledgements ... 12

References .. 12

Definitions ... 12

Legal Information .. 14

3

Introduction
This tutorial demonstrates how to share surfaces between OpenCl™ and DirectX* 11 with Intel ®

Processor Graphics on Microsoft Windows*, using the surface sharing extension in OpenCL. The goal is

to provide access to the expressiveness enabled by the OpenCL C kernel and the rendering capabilities

of the DirectX11 API. One example where this could be used would be a real-time computer vision

application, which runs a feature detector over an image in OpenCL, then uses DirectX 11 to render the

final output to the screen in real time with features clearly marked. Another would be using a

dynamically generated procedural texture created in OpenCL when rendering a 3D object in the scene.

Finally, imagine post-processing an image with OpenCL after rendering the scene using the 3D pipeline.

This could be useful for color conversions, resampling, or performing compression in some scenarios.

To get you started with surface sharing, we will show how to update a texture created using DirectX 11

with OpenCL. The same processes apply to updates to a vertex buffer or an off-screen framebuffer

object that might be used in a non-interactive offline image processing pipeline.

The surface sharing extension is defined in the OpenCL extension specification with the string

cl_khr_dx11_sharing. We also leverage the context property

CL_CONTEXT_INTEROP_USER_SYNC, which is supported on Intel Processor Graphics and set to the

default value CL_FALSE.

We occasionally use DX11 as shorthand for DirectX 11.

Motivation
This tutorial will show you how to create shared surfaces between OpenCL and DirectX.

Key Takeaway
This tutorial shows you how to share a surface between OpenCL and DirectX11 using the

cl_khr_dx11_sharing extension, and take advantage of CL_CONTEXT_INTEROP_USER_SYNC

on Intel Processor Graphics. When creating the DX11 texture description, set the flag MiscFlags field

of D3D11_TEXTURE2D_DESC object to D3D11_RESOURCE_MISC_SHARED to ensure no copy

takes place between OpenCL and DirectX 11. Note that the D3D11_RESOURCE_MISC_FLAG cannot

be used when creating resources with D3D11_CPU_ACCESS flags. For more detail on this last point

see the MSDN references at the end of the article.

Intel® Processor Graphics with Shared Physical Memory
Intel Processor Graphics shares memory with the CPU. Figure 1 shows their relationship. While not

shown in this figure, several architectural features exist that enhance the memory subsystem. For

example, cache hierarchies, samplers, support for atomics, and read and write queues are all utilized to

get maximum performance from the memory subsystem.

4

Synchronization between OpenCL and DirectX 11
When sharing surfaces between OpenCL and DirectX 11, it is important to handle the possibility that a

program may have both DirectX and OpenCL trying to update the same surface or surface location at the

same time. There are two ways to handle this. The flag CL_CONTEXT_INTEROP_USER_SYNC is used

to determine if the developer is responsible for handling the synchronization between the APIs. If this

flag is set to CL_FALSE, as is the case in this sample, the driver will handle ensuring that the DirectX 11

operations on the surface issued before clEnqueueAcquireD3D11ObjectsKHR have posted their

results to memory before OpenCL operates on the surface. Similarly, this flag ensures that the OpenCL

operations have completed before any DX11 operations are allowed to operate on the surface upon

clEneuqueReleaseD3D11ObjectsKHR. This flag and the semantics make surface sharing very

easy between the two APIs.

Overview of Surface Sharing between OpenCL and DirectX 11
Below is a summary of the logic the sample code performs for surface sharing. The next section provides

detailed explanation of each step.

Initialization
1. OpenCL:

a. Query to determine if the extension cl_khr_dx11_sharing is supported; exit if

unsupported.

b. Create the context, passing the appropriate device options.

c. Create a queue on the device and context that supports sharing between OpenCL and

DX11.

2. DirectX: Create a DX11 texture that will be shared with OpenCL; make sure to set the MiscFlags

field of the D3D texture descriptor.

3. OpenCL: Using the DX11 handle created in 2, create a shared surface via the OpenCL extension.

Intel® CPU
Intel® processor

graphics

Main Memory (DRAM)

Figure 1. Relationship of the CPU, Intel® Processor Graphics, and main memory.
Notice a single pool of memory is shared by the CPU and GPU, unlike discrete
GPUs that have their own dedicated memory that must be managed by the
driver.

5

Steps 1 and 2 can be interchanged. Step 3 must follow steps 1 and 2.

Writing to the shared surface
1. Lock the surface for OpenCL exclusive access.

2. Write to the surface via the OpenCL C kernel. In the case of texture data, be sure to use the

image read and/or write functions and pass in the image appropriately.

3. Unlock the surface so that DirectX may now read or write the surface.

The Render Loop
The render loop uses a simple pass through a programmable vertex and a pixel shader to texture map

two screen-oriented triangles that form a quadrilateral for displaying the result. The quadrilateral uses

only a part of the screen to show the clear color on the background of the rendering, which is useful for

debugging more complex scenarios.

Shutdown
1. Cleanup the state objects.

Details of Surface Sharing between OpenCL and DirectX 11

Initialization
1. OpenCL:

a. Query to determine if the extension cl_khr_dx11_sharing is supported; exit if

unsupported.

Not every implementation of OpenCL supports surface sharing between OpenCL and DirectX 11, so the

first step is to determine if the extension even exists on the system. We iterate through the platforms

looking at the extension string for a platform that supports surface sharing. Careful reading of the

specification highlights this is a platform extension or a device extension, so we actually have to check

both! Later, when we create a context we will have to query to determine which of our devices in the

context can share with the DX11 context.

This sample is only supported on Intel Processor Graphics, but it should be trivial to expand the scope to

other GPUs. The extension string we are looking for is cl_khr_dx11_sharing. The relevant code

snippet is:

char extension_string[1024];
memset(extension_string, '\0', 1024);
status = clGetPlatformInfo(platforms[i],

CL_PLATFORM_EXTENSIONS,
sizeof(extension_string),
extension_string,
NULL);

char *extStringStart = NULL;
extStringStart = strstr(extension_string, "cl_khr_dx11_sharing");
if(extStringStart != 0){

printf("Platform does support cl_khr_dx11_sharing\n");
…

}

Note a similar code sequence applies to the device query and is included in the example code in case

you want to modify the code to work on other platforms.

6

b. Create the context, passing the appropriate device options.

cl_context_properties cps[] =
 {
 CL_CONTEXT_PLATFORM, (cl_context_properties)g_platformToUse,
 CL_CONTEXT_D3D11_DEVICE_KHR, (intptr_t)g_pd3dDevice,
 CL_CONTEXT_INTEROP_USER_SYNC, CL_FALSE,
 0
 };

Create a queue on the device and context that supports sharing between OpenCL and DX11. Note that
in the context we specified the CL_CONTEXT_INTEROP_USER_SYNC flag and set it to CL_FALSE, which is
the default value. Use this flag to specify whether you are going to manage synchronization between
OpenCL and DX11 or let the runtime handle it.

We first query for the number of devices in our platform that meet our criteria. Note because this is an
extension, and we have already verified the platform supports this extension, we have to create a
pointer to the extension function we use for this next step.

 clGetDeviceIDsFromD3D11KHR_fn ptrToFunction_clGetDeviceIDsFromD3D11KHR = NULL;
 ptrToFunction_clGetDeviceIDsFromD3D11KHR = (clGetDeviceIDsFromD3D11KHR_fn)
clGetExtensionFunctionAddressForPlatform(g_platformToUse, "clGetDeviceIDsFromD3D11KHR");

cl_uint numDevs = 0;
 //careful with the g_pd3DDevice

status = ptrToFunction_clGetDeviceIDsFromD3D11KHR(g_platformToUse,
CL_D3D11_DEVICE_KHR, (void *)g_pd3dDevice, CL_PREFERRED_DEVICES_FOR_D3D11_KHR, 0,
NULL, &numDevs);

 testStatus(status, "Failed on clGetDeviceIDsFromD3D11KHR");

Using this information we create a device with only the DX11 context we requested to share.

cl_device_id *devID = NULL;
 g_clDevices = (cl_device_id *)malloc(sizeof(cl_device_id) * numDevs);
 ptrToFunction_clGetDeviceIDsFromD3D11KHR(g_platformToUse, CL_D3D11_DEVICE_KHR,
(void *)g_pd3dDevice, CL_PREFERRED_DEVICES_FOR_D3D11_KHR, numDevs, g_clDevices, NULL);
 testStatus(status, "Failed on clGetDeviceIDsFromD3D11KHR");

 //create an OCL context from the device we are using as our DX11 rendering device
 g_clContext = clCreateContext(cps, 1, g_clDevices, NULL, NULL, &status);
 testStatus(status, "clCreateContext error");

Finally, create our command queue for the application on this device. Note that this is focused on

getting surface sharing to run well on Intel Processor Graphics so we are going to spare some of the

complexity of making platform portable code for device selection.

 //create an openCL commandqueue
 g_clCommandQueue = clCreateCommandQueue(g_clContext, devID, 0, &status);
 testStatus(status, "clCreateCommandQueue error");

2. DirectX: Create a DX11 texture that we will share with OpenCL. Here we use the flag

D3D11_RESOURCE_MISC_SHARED to ensure we create an optimal sharing scenario with Intel

Processor Graphics.

7

void CreateTextureDX11()
{
 unsigned char *texture = NULL;
 texture = (unsigned char *)malloc(sizeof(unsigned char) * NUM_IMAGE_CHANNELS *
SHARED_IMAGE_HEIGHT * SHARED_IMAGE_WIDTH);
 if(texture == nullptr)
 {
 printf("error creating texture\n");
 }

 for(unsigned int i=0;i<NUM_IMAGE_CHANNELS * SHARED_IMAGE_HEIGHT *
SHARED_IMAGE_WIDTH;)
 {
 texture[i++] = 255;
 texture[i++] = 0;
 texture[i++] = 0;
 texture[i++] = 255;
 }

 D3D11_TEXTURE2D_DESC desc;
 ZeroMemory(&desc, sizeof(D3D11_TEXTURE2D_DESC));
 desc.Width = SHARED_IMAGE_WIDTH;
 desc.Height = SHARED_IMAGE_HEIGHT;
 desc.MipLevels = 1;
 desc.ArraySize = 1;
 desc.Format = DXGI_FORMAT_R8G8B8A8_UNORM; desc.SampleDesc.Count = 1;
 desc.SampleDesc.Quality = 0;
 desc.Usage = D3D11_USAGE_DEFAULT;
 desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
 desc.CPUAccessFlags = 0;
 if(g_UseD3D11_RESOURCE_MISC_SHAREDflag == true)
 {
 printf("Using the D3D11_RESOURCE_MISC_SHARED flag\n");
 desc.MiscFlags = D3D11_RESOURCE_MISC_SHARED;
 }
 else
 {
 desc.MiscFlags = 0;

 }
 D3D11_SUBRESOURCE_DATA tbsd;
 ZeroMemory(&tbsd, sizeof(D3D11_SUBRESOURCE_DATA));
 tbsd.pSysMem = (void *)texture;
 tbsd.SysMemPitch = SHARED_IMAGE_WIDTH * NUM_IMAGE_CHANNELS;
 tbsd.SysMemSlicePitch = SHARED_IMAGE_WIDTH * SHARED_IMAGE_HEIGHT *
NUM_IMAGE_CHANNELS;
 g_pd3dDevice->CreateTexture2D(&desc, &tbsd, &g_pSharedDX11Texture2D);
 //still need to bind

 free(texture);
}

3. OpenCL: Using the DX11 handle created in 2, create a shared surface via the OpenCL extension.

This is the heart of our surface sharing API. The sharing will work only if the following call succeeds:

int ShareDX11BufferWithCL()

8

{
 int status = 0;

 g_SharedRGBAimageCLMemObject =
ptrToFunction_clCreateFromD3D11Texture2DKHR(g_clContext, CL_MEM_WRITE_ONLY,
g_pSharedDX11Texture2D, 0, &status);
 if(status == 0)
 {
 printf("Successfully shared!\n");
 status = SUCCESS;
 }
 else
 {
 printf("Sharing failed\n");
 status = FAIL;
 }
 return status;
}

Steps 1 and 2 can be interchanged. Step 3 must follow steps 1 and 2.

Writing to the shared surface
We need to make sure when OpenCL is reading or writing the surface that DX11 is not using the surface

and vice versa. To do this the extension supports functions to acquire and release exclusive access to the

surface. Here we describe the steps to use these APIs. There are two ways to do this. First, we could use

sync objects in our code. Second, and the way we do it in this sample, is to take advantage of the

behavior when we use the flag CL_CONTEXT_INTEROP_USER_SYNC set to CL_FALSE. When this

flag is set, the synchronization is implicit at the clEnqueueAcquireD3D11ObjectsKHR() and

clENqueueReleaseD3D11ObjectsKHR() API call sides.

4. Lock the surface for OpenCL exclusive access.

status = ptrToFunction_clEnqueueAcquireD3D11ObjectsKHR(g_clCommandQueue, 1,
&g_SharedRGBAimageCLMemObject, 0, 0, 0);

5. Write to the surface via the OpenCL C kernel. In the case of texture data, be sure to use the

image read and/or write functions and pass in the image appropriately. The kernel simply writes

into a subset of the texels of the texture.

kernel void drawBox(__write_only image2d_t output, float fDimmerSwitch)
{
 int x = get_global_id(0);
 int y = get_global_id(1);

 int xMin = 0, xMax = 1, yMin = 0, yMax = 1;

 if((x >= xMin) && (x <= xMax) && (y >= yMin) && (y <= yMax))
 {
 write_imagef(output, (int2)(x, y), (float4)(0.f, 0.f, fDimmerSwitch, 1.f));
 }
}

6. Unlock the surface so that OpenCL can now read or write the surface.

9

status = ptrToFunction_clEnqueueReleaseD3D11ObjectsKHR(g_clCommandQueue, 1,
&g_SharedRGBAimageCLMemObject, 0, NULL, NULL);

The Render Loop
The render loop uses a simple pass through a programmable vertex and a pixel shader to texture map

two screen-oriented triangles that form a quadrilateral for display of the result.

Shutdown
1. Clean up the state objects.

This sample doesn’t require much to be done for cleanup. The one object is the cl_mem object for the

shared surface. On the DX11 side we must release the texture we created to share, the sampler for the

texture, and the view on the texture.

Future Work
This tutorial covers the basics of surface sharing. With more time we’d like to expand the scope of the

tutorial to cover additional use cases touched on here.

Sharing explicit synchronization events between OpenCL and DirectX 11
In addition to the implicit synchronization used in this article, OpenCL and DirectX 11 can also use the

CL_CONTEXT_INTEROP_USER_SYNC flag set to CL_TRUE and handle synchronization

explicitly with Windows synchronization objects. It would be interesting to compare the performance of

the two. Driver architects we’ve talked to have found the difference to be minimal to none at all so this

is the current recommendation, but it would be instructive to verify.

Sharing Framebuffers, Depth, Stencil, and MSAA surfaces
OpenCL and DirectX 11 lack surface sharing capabilities for many useful surfaces. It would be useful to

have these supported similar to the case with surface sharing between OpenGL and DirectX 11. Also,

while the extension and documentation are not explicit about this, only non-mipmapped surface sharing

is required to be supported with this extension.

Double-buffering
We could explore the tradeoffs in complexity and performance using a double-buffering scheme. In this

tutorial we focused on functionality and the basics of surface sharing.

What do to when no surface sharing is supported?
Maxim Shevtsov has an article cited in the references that covers the case of when a copy must take

place between OpenCL and OpenGL. While these recommendations are focused on OpenGL many of the

recommendations apply to sharing with DirectX 11.

Surface Sharing Example

Dependencies
The surface sharing sample has the following dependencies:

 Windows 8 or greater SDK; note that the DirectX SDK is now deprecated and the Windows SDK

is used for Direct3D* development.

10

 Microsoft Visual Studio* 2012 or 2013

o Make use of the DirectX-specific portions of the SDK including the d3dcompiler_46.dll.

o D3dcompiler_46.dll is copied to the respective Debug or Release directory that the

executables reside at the SOLUTION (not the PROJECT) level. There are other ways to

handle this dependency.

o This sample should work with other versions of Visual Studio, but has not been tested,

 Intel® INDE (Intel® OpenCL™ Code Builder is part of it now):

o Use the cl.h, cl_d3d11.h, and opencl.lib files

The following settings were used in the sample, but yours may be slightly different:

 Copy d3dcompiler_46.dll to the debugger release directory that the executables will be

built to at the SOLUTION (not PROJECT) level.

 Add the location of cl.h and cl_d3d11.h to your include path. For example,
o C:\Program Files (x86)\Intel\OpenCL SDK\3.0\include\CL

 Add the location of the OpenCL Library to your library path: For example,
o C:\Program Files (x86)\Intel\OpenCL SDK\3.0\lib\x86

 Add OpenCL.lib to your set of statically linked libraries.

Sample File and Directory Structure
The solution is located in the directory CL_20_DX11_surface_sharing. A directory by the same

name is where the project and source files reside. This sample code is focused on demonstrating

surfaced sharing between OpenCL and DirectX 11 and is not meant to be a product-quality

implementation.

The files are organized as follows:

 Main.cpp – Mostly windowing code, the windows message pumping loop, dispatches events

to the respective OpenCL and DX11 functions, and a keyboard handler

 Common_CL_20_DX11.h – Flags that are used for both OpenCL and DX11

 DX11.h, DX11.cpp – Functions specific to DX11 including initialization, shutdown, and

rendering

 OCL.h, OCL.cpp – Functions specific to OpenCL

 OpenCLRGBAFile.cl – Source code for the OpenCL kernel

 PixelShader.hlsl, VertexShader.hlsl– Simple vertex and pixel shaders for DX11

Building and Running the example
Build this sample code by selecting Build->Build Solution from the main menu. All of the executables

should be generated. You can run them in Visual Studio directly or go to the Debug and/or Release

directories that are located in the same location as the CL_20_DX11_surface_sharing solution

file.

To run the sample, press F5 in the Visual Studio IDE. The three relevant kernel and shader files are

OpenCLRGBAFile.cl, PixelShader.hlsl, and VertexShader.hlsl.

11

Figure 2. Expected result of sample. The yellow is the background clear color. The image is a screen-
oriented quadrilateral made of two texture-mapped triangles. The texture is a small red 4x4 texture map
with the lower left portion of texels being written by OpenCL™ after being originally populated by
OpenGL*. OpenCL writes a value to the blue color channel cycling from black to blue (0 to 255 in the blue
channel).

To learn more
There are additional buffer types that you can share between OpenCL and DirectX 11. Also, there are

additional synchronization mechanisms you can leverage. These are detailed in the OpenCL Extension

spec, and you can look there for more details.

12

Acknowledgements
Thanks to Murali Sundarasen, Aaron Kunze, Allen Hux, Pavan Lanka, Maxim Shevtsov, Michal Mrozek,
Piotr Uminski, Stephen Junkins, Dan Petre, and Ben Ashbaugh. All were available for technical
discussions, clarifications, or reviews along the way.

References
1. OpenCL 1.2 specification: https://www.khronos.org/registry/cl/

2. OpenCL 2.0 specification, composed of three volumes: the OpenCL C Language specification, the

OpenCL Runtime API, and the OpenCL extensions: https://www.khronos.org/registry/cl/

3. Stephen Junkins’ whitepaper: The Compute Architecture of Intel® Processor Graphics Gen 7.5:

https://software.intel.com/sites/default/files/managed/f3/13/Compute_Architecture_of_Intel_Proc

essor_Graphics_Gen7dot5_Aug2014.pdf. This is a must-read for anyone using OpenCL on Intel®

Processor Graphics platforms.

4. Adam Lake’s tutorial on minimizing buffer copies on Intel Processor Graphics:

https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-

performance-by-minimizing-buffer-copies-on-intel-processor-graphics

5. Synchronization objects in Windows: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms686364(v=vs.85).aspx

6. Limitations of the use of the flag D3D11_RESOURCE_MISC_FLAG with D3D11_CPU_ACCESS:

http://msdn.microsoft.com/en-us/library/windows/desktop/ff476203(v=vs.85).aspx

7. Limitations on the types of surfaces that can support surface sharing:

http://msdn.microsoft.com/en-

us/library/windows/desktop/hh404562(v=vs.85).aspx#direct3d_device_sharing

Definitions
Definitions for some terms used in this tutorial are included below. For more details consult the

references.

 Buffers: OpenCL distinguishes between buffers and images. OpenCL buffers are laid out linearly

in memory—think of a buffer as an array.

 Textures: Refer to buffers of data laid out in a tiled format and read via the on-die samplers in

OpenGL or DX11. This memory layout enables increased performance via texture samplers that

filter the input pixels read from memory via pre-specified filter kernels.

 Surface: Refers to buffers, textures, or images. It is a general term for data in memory that may

be tiled or linear in layout. In some cases a surface has additional data such as dimension,

height, width, and data layout attributes. These attributes are managed via the API (OpenCL,

OpenGL, DirectX, etc.).

 Samplers: Are used to read from images in OpenCL and textures in OpenGL or DX11. The

sampler exploits internal caches and the tiled layout of an image or texture in memory for

improved performance when filtering. The samplers include caches and logic to perform

sampling from several texels and (possibly) mip map levels at the same time and output a single

texel value for a single request.

https://www.khronos.org/registry/cl/
https://www.khronos.org/registry/cl/
https://software.intel.com/sites/default/files/managed/f3/13/Compute_Architecture_of_Intel_Processor_Graphics_Gen7dot5_Aug2014.pdf
https://software.intel.com/sites/default/files/managed/f3/13/Compute_Architecture_of_Intel_Processor_Graphics_Gen7dot5_Aug2014.pdf
https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686364(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686364(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff476203(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/hh404562(v=vs.85).aspx#direct3d_device_sharing
http://msdn.microsoft.com/en-us/library/windows/desktop/hh404562(v=vs.85).aspx#direct3d_device_sharing

13

 Images: Refers to buffers of data laid out in a tiled format and read via the on-die samplers in

OpenCL. They are the equivalent of OpenGL or DX11 textures. What image formats and texture

formats can be shared or supported depends on the specific implementation.

 Surface sharing: Shorthand for cross-API surface sharing and is used to refer to the creation of a

surface in one API and the use of the data in another. The motivation is to minimize creating

multiple copies of the same surface but this is not strictly true unless we follow a set of device-

dependent restrictions. This tutorial describes those restrictions for Intel Processor Graphics.

 Texture mapping: An association of pixels in memory to a polygon in the graphics pipeline. In

this example we texture map an OpenGL or DX11 texture onto two screen-oriented polygons for

display.

 Shared Physical Memory: The host and the device share the same physical DRAM. This is

different from shared virtual memory, when the host and device share the same virtual

addresses, and is not the subject of this paper. The key hardware feature that enables surface

sharing is the fact that the CPU and GPU have shared physical memory. Shared physical and

shared virtual memories are not mutually exclusive. Devices may not be able to see entire

physical memory to support shared physical memory.

 Intel® Processor Graphics: The term used when referring to current Intel graphics solutions.

Product names for Intel GPUs integrated in SoC include Intel® Iris™ Graphics, Intel® Iris™ Pro

Graphics, or Intel® HD Graphics depending on the exact SoC. For additional hardware

architecture details see The Compute Architecture of Intel® Processor Graphics Gen 7.5

document listed in the References section of this document or http://ark.intel.com/.

http://ark.intel.com/

14

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS
OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY
OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Intel, the Intel logo, Iris, and Iris Pro are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

Copyright © 2015, Intel Corporation. All rights reserved.

