

Intel® SGX Web
Training

Hands-on Lab

Manual
Version 1.0

 | 2

Intel® SGX Roadshow Hands-on Lab

Overview
In this lab, you will explore features of Intel® Software Guard Extensions (Intel® SGX). The Hands-
on Lab web course is designed to be developer-centric, and it focuses more on using Intel SGX
than on discussing its theoretical underpinnings.

Topics in this lab will be presented through a combination video presentations and self-directed,
hands-on work directly with Intel SGX. Time-wise, you will spend the majority of your time
working directly with Intel SGX, either coding or following along with examples.

Task 0: Lab Setup
Because this lab uses the Intel SGX software-development kit (SDK), the development
environment needs to be set up accordingly. This preparatory step is added for reference and is
not part of the actual hands-on lab.

Task 0 Steps
1. Install Microsoft® Visual Studio® 2015 Professional. Community Edition is not sufficient

because it does not support plugins.
2. Install the Intel SGX SDK.

(Optional) Install the Intel SGX platform software (PSW).

 | 3

Intel® SGX Roadshow Hands-on Lab

Task 1: Intel SGX Overview
Task 1.1: Intel SGX Settings in BIOS

Lab
Objective

In this lab, we will view Intel SGX BIOS settings; if supported, the BIOS
might include settings for Enabled, Software Controlled, and Disabled.

1. Boot an Intel® SGX™ capable system. If you do not have access to such a system, follow
along by viewing the screen captures.

2. Enter the BIOS configuration screen. (The method for this varies by manufacturer.)
3. Find the setting that controls Intel® Software Guard Extensions™. Note that not all

Intel® SGX™ systems provide BIOS options to enable and disable Intel® SGX™. If your
system does not have these options, follow along by viewing the screen captures.

4. Select Intel® SGX™ Enable.
5. In the Intel® SGX™ Enable pane on the right, select Disabled.

6. Exit the BIOS configuration screen and let the system reboot.
7. Once fully booted, download and unzip the Lab 1.1 package.
8. Run ProperIntelSGXDetection, and then note the application output on the screen.

 | 4

Intel® SGX Roadshow Hands-on Lab

9. Run ImproperIntelSGXDetection, and then note the application output on the screen.

10. Run NoIntelSGXDetection, and then note the application output on the screen.

11. Restart the system.
12. Re-enter the BIOS configuration screen.
13. In the Intel® SGX™ Enable pane on the right, select Enabled.
Exit the BIOS configuration screen and let the system fully boot to continue.

 | 5

Intel® SGX Roadshow Hands-on Lab

Task 1.2: Intel SGX AESM Service

Lab
Objective

In this lab, we will determine if the Intel SGX Application Enclave Services
Manager (AESM) service is running from within the service-management
console.

DEVELOPER
TIP

Successful installation of the Intel SGX PSW on Intel SGX–enabled
hardware should result in the Intel SGX AESM service running. Refer to the
Intel SGX Installation Guide for additional information regarding
prerequisites.

1. Launch the Start menu.
2. Type services.msc, and then press Enter to launch the service-management console.

https://software.intel.com/sites/default/files/managed/df/4d/Intel-SGX-SDK-Installation-Guide-for-Windows-OS.pdf

 | 6

Intel® SGX Roadshow Hands-on Lab

3. Scroll down to Intel® SGX AESM.
4. Double-click to view the service’s settings.

 | 7

Intel® SGX Roadshow Hands-on Lab

Task 1.3: Testing for Intel SGX Support

Lab
Objective

In this lab, we will run precompiled examples that demonstrate why Intel
SGX applications must be written to properly detect Intel SGX hardware
and fail gracefully.

Run the following tasks from a laptop or desktop that does not support Intel SGX.

1. From the lab package, open Labs\Lab 1.1 Feature Detection\Pre-Build x64
Binaries with Cpp Runtime into Visual Studio. Copy the executables to a computer
that does not support Intel SGX (these binaries will require the Microsoft Visual C++
Redistributable package, included in the directory).

2. Run ImproperIntelSGXDetection.exe.

 | 8

Intel® SGX Roadshow Hands-on Lab

Result
Because Intel SGX was not detected on the machine, the application will
crash. Intel SGX detection code is in the application; however, it was
written in a way in which it does not exit gracefully.

3. Run NoIntelSGXDetection.exe.

Result
Because Intel SGX detection was not implemented, the application
executed Intel SGX function calls without Intel SGX support. As a result,
the application will crash without exiting gracefully.

 | 9

Intel® SGX Roadshow Hands-on Lab

4. Run ProperIntelSGXDetection.exe.

Result

By providing multiple code paths, the
application was able to fail gracefully when
it was unable to detect Intel SGX. As a
result, the application is able to handle the
error and report the issue without a crash.

Run the following from a laptop or desktop that supports Intel SGX.

1. Browse to Labs\Lab 1.1 Feature Detection\Pre-Build x64 Binaries with Cpp
Runtime.

2. Run ProperIntelSGXDetection.exe.

Result
Notice that Intel SGX support was detected, Intel SGX ECALL and OCALL
functions were executed successfully, and the functions were reported to
the end user.

 | 10

Intel® SGX Roadshow Hands-on Lab

MORE INFO

Because we’re now running the Intel SGX detection examples on an Intel
SGX–capable and enabled device, there is no need to run
ImproperIntelSGXDetection.exe or NoIntelSGXDetection.exe—they
will execute successfully regardless of proper detection.

DEVELOPER
TIP

Intel provides a detailed article and code samples for Intel SGX detection.
Refer to the “Properly Detecting Intel® Software Guard Extensions in Your
Applications” article for details.

https://software.intel.com/en-us/articles/properly-detecting-intel-software-guard-extensions-in-your-applications
https://software.intel.com/en-us/articles/properly-detecting-intel-software-guard-extensions-in-your-applications

 | 11

Intel® SGX Roadshow Hands-on Lab

Task 1.4: Review of Intel SGX Support

Lab
Objective

In this lab, we will review and learn about key Intel SGX–detection
function calls used in the ProperIntelSGXDetection project.

1. Launch Visual Studio 2013.
2. Click Open Project.
3. Browse to Labs\Lab 1.1 Feature Detection.

4. Select IntelSGXDetection.sln, and then click Open.
5. Expand Application Project > ProperIntelSGXDetection > Source Files.
6. Select ProperIntelSGXDetection.cpp.

 | 12

Intel® SGX Roadshow Hands-on Lab

7. Go to the platform_supports_sgx function. This function checks if the hardware
supports Intel SGX.

8. Go to psw_status. This function checks if the PSW exists and returns a value of

True or False.

 | 13

Intel® SGX Roadshow Hands-on Lab

9. Go to is_psw_installed. This function attempts to load the PSW-required dynamic-link
libraries (DLLs).

10. Go to the LoadLibrary functions. These functions load the DLLs. If they return NULL, the

PSW is not installed and enclaves cannot run. The sgx_uae_service.dll and sgx_urts.dll
DLLs are required in order to run enclaves.

 | 14

Intel® SGX Roadshow Hands-on Lab

11. Go to the p_sgx_enable_device function. This function attempts to enable Intel SGX if
it’s currently disabled.

12. Go to the sgx_device_status function. This function will check if Intel SGX is enabled on

the device.

 | 15

Intel® SGX Roadshow Hands-on Lab

MORE INFO
Refer to the proper Intel SGX detection and multiple code paths within
your Intel SGX application articles for more information.

https://software.intel.com/en-us/articles/properly-detecting-intel-software-guard-extensions-in-your-applications
https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-series-part-6-dual-code-paths
https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-series-part-6-dual-code-paths

 | 16

Intel® SGX Roadshow Hands-on Lab

Task 1.5: Don’t Compile Secrets into Enclave DLLs

Lab
Objective

In this lab, we will learn why it’s critical that you don’t compile secrets into
your enclaves.

1. Launch a hex editor application (HxD is shown).

2. Select File > Open.

3. Browse to Labs\Lab 1.5 Bad Enclave Example in the lab package.

4. Open BadEnclave.signed.dll.

MORE INFO
An enclave is built and loaded as a Windows® DLL or a shared-object (SO)
library in Unix®. The enclave file can be disassembled; as a result, the
algorithms used by the enclave developer will not remain secret.

 | 17

Intel® SGX Roadshow Hands-on Lab

1. Search for Don’t. This shows the secret that was compiled in the DLL.

Result
Because the secret was compiled into the enclave DLL file, it’s easily
found. This is unsecure, and the secret is not safe.

DEVELOPER TIP

To secure your secret, remember these steps:

1. Write the enclave application without secrets.
2. Get the enclave application signed and bound to a CPU.
3. Provision secrets from a trusted remote client.
4. Run the enclave program in the CPU for trusted execution.

 | 18

Intel® SGX Roadshow Hands-on Lab

Task 2: Introduction to Intel SGX Applications
Task 2.1: Create a Console-Application Project

Lab
Objective

In this lab, we will spend just a moment to create a simple Win32 console
application. We can make sure Visual Studio is installed and configured
before we continue on to more complex activities.

1. Launch Visual Studio.
2. Click New Project.
3. Select Visual C++.
4. Select Win32 Console Application.

5. Name the application ConsoleApp.
6. Accept the Win32 Application Wizard default settings.

 | 19

Intel® SGX Roadshow Hands-on Lab

7. Click Finish.
8. Under #include “stdafx.h”, enter the following lines to reference the class and

namespace:

Enter Code #include <iostream>
using namespace std;

9. Above return 0;, enter the following:

Enter Code cout << "Hello World";

 | 20

Intel® SGX Roadshow Hands-on Lab

10. Save the application.

 | 21

Intel® SGX Roadshow Hands-on Lab

Task 2.2: Create an Enclave-Application Project

Lab
Objective

In this lab, we will quickly demonstrate how to create an Intel SGX enclave
project.

1. Launch Visual Studio, if it is not already running.
2. Click File > New > Project.
3. Select Visual C++.
4. Select Intel® SGX Enclave Project.

5. Name the application Enclave.
6. From the Welcome to the Intel® SGX Enclave Project Wizard screen, click Next.
7. Select Enclave as the project type, and then click Finish.
8. Save the project.

 | 22

Intel® SGX Roadshow Hands-on Lab

MORE INFO

When an enclave project is created for the first time, you have to choose
either using an already existing signing key or having Visual Studio
automatically generate a key for you. Currently, the evaluation SDK allows
the developer to create and run enclaves using the Debug and Pre-
release profiles.

Enclaves compiled under the Release profile will not work until the
developer completes the production licensing process. If you would like
to deliver a production-quality application using Intel SGX, please contact
the Intel SGX Program at sgx_program@intel.com for more information
about a production license.

After you receive a production license, use the provided key to sign the
enclave.

Follow this link for more information regarding signing key files.

DEVELOPER
TIP

Avoid using spaces in enclave naming conventions; Intel SGX tools and
functions do not support spaces in enclave names.

Yes: my_enclave.edl No: my enclave.edl

mailto:sgx_program@intel.com
https://software.intel.com/en-us/node/708946

 | 23

Intel® SGX Roadshow Hands-on Lab

Task 2.3: Add an Enclave Project to the Console-Application Project

Lab Objective
In this lab, we will add multiple projects under the same solution,
making our examples closer to real-world development projects.

1. Right-click the ConsoleApp solution.
2. Click Add > Existing Project.
3. Search for Enclave.vcxproj.
4. Click Open.
5. Now both the console application and enclave project are in the same solution file.
6. Click Save.

 | 24

Intel® SGX Roadshow Hands-on Lab

Task 2.4: Import an Enclave into the Console-Application Project

Lab Objective
In this lab, we will demonstrate how to import an enclave (.edl file)
from one project to another.

1. From Visual Studio, click File > Open > Project/Solution.
2. Open the ConsoleApp project.
3. Right-click the ConsoleApp application project.
4. Select Intel® SGX Configuration.
5. Select Import Enclave.

6. Click Import EDL.

 | 25

Intel® SGX Roadshow Hands-on Lab

7. Locate the Enclave.edl file in the EDL project, and then click Open.

8. Expand Imported, select Enclave.edl, and then click OK.

MORE INFO
Additional information regarding importing enclaves into your
application can be found in this article.

https://software.intel.com/en-us/articles/intel-software-guard-extensions-developing-a-sample-enclave-application

 | 26

Intel® SGX Roadshow Hands-on Lab

Task 2.5: Add a Trusted Call to an Enclave Project

Lab
Objective

In this lab, we will add a trusted call to our enclave project, compile the
Enclave.edl, and review the auto-generated wrapper and header files.

1. From the Enclave project, open Enclave.edl.

2. Enter the following sample trusted call:

Enter Code public void foo([out, size=len] char* buf, size_t len);

3. Right-click Enclave.edl, and then select Compile.

 | 27

Intel® SGX Roadshow Hands-on Lab

4. Go to Generated Files > Enclave_t.c. This is the auto-generated wrapper function file. Do
not modify this file by hand because it is recreated with each build. This also contains the
function definitions for the trusted proxies and bridges.

5. Select Enclave_t.h. This is an auto-generated header file for the wrapper functions. This
also contains the prototype declarations for the trusted proxies and bridges.

6. Save the enclave project.

 | 28

Intel® SGX Roadshow Hands-on Lab

Task 2.6: Implement Enclave Functions

Lab
Objective

In this lab, we will create an enclave and, if successful, provision a secret
to the enclave.

1. Open Enclave.cpp.

2. Add the following function code to call the trusted ECALL:

Enter Code

#include <string.h>
void foo(char *buf, size_t len)
{

const char *secret = "Hello Enclave!";
if (len > strlen(secret))

{

memcpy(buf, secret, strlen(secret) + 1);

}

}

3. Expand ConsoleApp > Source Files.
4. Open ConsoleApp.cpp.
5. Add the following before the main() function:

Enter Code

#include <stdio.h>
#include <tchar.h>
#include "sgx_urts.h"
#include "Enclave_u.h"
#define ENCLAVE_FILE _T("enclave.signed.dll")
#define MAX_BUF_LEN 100

6. Add the following in the main() function:

 | 29

Intel® SGX Roadshow Hands-on Lab

Enter Code

sgx_enclave_id_t eid;
sgx_status_t ret = SGX_SUCCESS;
sgx_launch_token_t token = {0};
int updated = 0;
char buffer[MAX_BUF_LEN] = "Hello World!";

// Create the Enclave with above launch token.
ret = sgx_create_enclave(ENCLAVE_FILE, SGX_DEBUG_FLAG,
&token, &updated,
 &eid, NULL);
if (ret != SGX_SUCCESS) {
printf("App: error %#x, failed to create enclave.\n",
ret);
return -1;
}

// A bunch of Enclave calls (ECALL) will happen here.
foo(eid, buffer, MAX_BUF_LEN);
printf("%s", buffer);

// Destroy the enclave when all Enclave calls finished.
if(SGX_SUCCESS != sgx_destroy_enclave(eid))
return -1;
cin.get();

return 0;

7. Change the working directory for the debugger:

a. Right-click ConsoleApp.
b. Select Properties.
c. Select Debugging.
d. Change the Working Directory path to $(Outdir).

 | 30

Intel® SGX Roadshow Hands-on Lab

8. Complete step 7 for the enclave application.
9. Compile the console application.
10. Once built successfully, browse to the compiled executable.

11. Run the executable and verify the result.

 | 31

Intel® SGX Roadshow Hands-on Lab

Result The application should be fully functional at this point.

 | 32

Intel® SGX Roadshow Hands-on Lab

Task 3: Review of Enclave Components
Task 3.1: Run the File-Encrypter Application

Lab
Objective

In this lab, we will run the file-encrypter application to review the final
product of the application that will be created during the course of this
hands-on lab.

1. Browse to the Intel-SGX-HOL > File Encrypter Pre-Built Binary folder.

2. Run the file-encrypter application.

 | 33

Intel® SGX Roadshow Hands-on Lab

3. Click Crypt > Set password.

4. Enter a password.
5. In the directory pane, select the @ Lab Test Files @ folder.

6. Select the file Intel(R)_SGX_Windows_SDK_1.7.100.35600.exe.

 | 34

Intel® SGX Roadshow Hands-on Lab

7. Click Process Selected Files.
8. Click Crypt > Set password.
9. Enter an incorrect password.
10. Select an encrypted file.
11. Click Decrypt.
12. Click Process Selected Files.
13. Run through the application a few more times to get familiar with the process.

 | 35

Intel® SGX Roadshow Hands-on Lab

Task 3.2: Review the File-Encrypter Project

Lab
Objective

In this lab, before we begin to make changes to the file-encrypter project,
we will review the four projects found in the solution, giving us an
understanding and foundation to build on.

1. Launch Visual Studio.
2. Browse to Intel-SGX-HOL > Basic EDL.

3. Open Basic EDL File Encrypter.sln.

 | 36

Intel® SGX Roadshow Hands-on Lab

4. This solution contains four projects:
a. File Encrypter: This is the C# graphical user interface (GUI) of the file-encrypter

application. The file-encrypter application talks directly to the CryptCore DLL.
b. CryptCore: This contains two modules, CryptCore and CryptCoreNative. These

two modules make up the CryptCore DLL and they are responsible for
marshalling code between .NET and native C/C++. The CryptCore DLL talks
directly to the EnclaveWrapper DLL. This module is a mix of managed and
unmanaged code:

i. CryptCore: This is managed C++ code.
ii. CryptCoreNative: This is managed and native C++ code.

c. EnclaveWrapper: This is 100-percent native C code. The EnclaveWrapper DLL
talks to the enclave, EnclaveCrypto.

d. EnclaveCrypto: This is 100-percent native C++ code. This is the enclave.

Figure 1 Relationship of the File Encrypter, CryptCore, EnclaveWrapper, EnclaveCrypto projects

 | 37

Intel® SGX Roadshow Hands-on Lab

Task 3.3: Walkthrough of the Enclave Project’s Components

Lab
Objective

In this lab, we will further explore the enclave interfaces and wrapper
functions.

1. Return to Visual Studio.
2. Browse to Intel-SGX-HOL > Basic EDL.
3. Open Basic EDL File Encrypter.sln.
4. Expand EnclaveCrypto > Source Files.
5. Select EnclaveCrypto.edl. This file is used to set the trusted and untrusted zones of the

enclave interface.

6. Expand DLL > CryptCore > Source Files.
7. Select CryptCoreNative.cpp. This file interfaces with the EnclaveWrapper functions and

allows the transition of the managed code to the unmanaged native C++ code.

Native C/C++

 | 38

Intel® SGX Roadshow Hands-on Lab

8. Expand EnclaveWrapper > Source Files.
9. Select EnclaveWrapper.cpp. This file creates the wrapper functions around the functions

that will interface between the EnclaveCrypto and CryptCoreNative functions.

Managed and
native C++

Native C

 | 39

Intel® SGX Roadshow Hands-on Lab

Task 4: Basic Enclave-Definition Language (EDL) and ECALL
Task 4.1: File-Encrypter Project EDL

Lab
Objective

In this lab, we will create the EDL trusted calls for the file-encrypter project.

1. Return to Visual Studio.
2. Browse to Intel-SGX-HOL > Basic EDL.
3. Open Basic EDL File Encrypter.sln.
4. Expand EnclaveCrypto > Source Files.
5. Select EnclaveCrypto.edl.
6. Read through the information provided under each “lab exercise” heading to complete

the four existing exercises. Each exercise contains information needed to fill out the
required attributes.

Complete
Functions

ecrypto_set_password()
ecrypto_crypt_initialize()
crypto_crypt_block()
ecrypto_crypt_finish()

7. Save changes when complete.
8. Right-click EnclaveCrypto.edl, and then select Compile. If there are no errors, the EDL

file has compiled successfully.
9. Navigate to Generated files.
10. Review EnclaveCrypto_t.c.
11. Review EnclaveCrypto_t.h.
12. Leave the project open for the next exercise.

 | 40

Intel® SGX Roadshow Hands-on Lab

Task 4.2: File-Encrypter Project EnclaveWrapper ECALL Functions

Lab
Objective

In this lab, we will add ECALLs to several functions to EnclaveWrapper.cpp
using commented instructions found in the file.

1. Expand EnclaveWrapper > Source Files.
2. Select EnclaveWrapper.cpp.
3. EnclaveWrapper.cpp contains five lab exercises. Complete each exercise using the

information provided in the solution file.

Add
ECALLs

Add ECALLs to the following functions;
ecrypto_set_password()
ecrypto_crypt_initialize()
crypto_crypt_block()
ecrypto_crypt_finish()
ecrypto_crypt_close()

4. Save changes when completed.

 | 41

Intel® SGX Roadshow Hands-on Lab

Task 4.3: Compile Basic File-Encrypter Application

Lab
Objective

In this lab, we will compile and test the file-encrypter application.

1. Compile the project. If the project compiles successfully, the exercises have been
completed successfully.

Build the application to show how encrypting and decrypting a file works.

2. Select Crypt > Set Password.

 | 42

Intel® SGX Roadshow Hands-on Lab

3. Enter a password, and then click OK.

4. Select a test file.
5. Click Encrypt, and then click Process Selected Files.

6. The file is now encrypted.
7. Click Crypt > Password, and then enter an incorrect password.
8. Select the encrypted file, click Decrypt, and then click Process Selected Files.

 | 43

Intel® SGX Roadshow Hands-on Lab

9. Run through the process a couple more times with the other files provided to view what

the outcome is.

 | 44

Intel® SGX Roadshow Hands-on Lab

Task 4.4: Review Enclave Configuration Advanced Lab

Lab
Objective

In this lab, we will explore and modify buffer allocation used to encrypt
and decrypt files.

1. Launch Visual Studio 2015.
2. Click Open Project.
3. Navigate to Intel-SGX-HOL > Basic EDL.
4. Select FileEncrypter.sln, and then click Open.
5. Expand DLL > CryptCore > Source Files.
6. Select CryptCoreNative.cpp.

7. The file-encryption program uses a 128-KB buffer size to encrypt and decrypt files.

Let’s see what happens if the buffer size is increased to 512-KB.
8. Change 128 to 512.

 | 45

Intel® SGX Roadshow Hands-on Lab

9. Build the application to show how encrypting and decrypting a file works.

10. Click Crypt > Set Password.

 | 46

Intel® SGX Roadshow Hands-on Lab

11. Enter a password, and then click OK.

12. Select a file that is greater in size than 512 KB.
13. Click Process Selected Files. What error do you receive? How does it help explain what

the issue is?
14. Reset the buffer size to 128 KB.
15. Expand Enclave > EnclaveCrypto > Source Files.
16. Open EnclaveCrypto.config.xml.

17. The StackMaxSize and HeapMaxSize limits are set for the enclave size; adjust these

settings as needed. What are the problems that might be created by increasing these
limits?

Advanced
Exercises

If you have completed the previous exercises, here are some
additional lab exercises to try on your own:

 | 47

Intel® SGX Roadshow Hands-on Lab

1. Right now, the file encryption uses a 128 KB input/output
(I/O) buffer. This is defined in CryptCoreNative.cpp:

static DWORD bsize = 1024 * 128; // 128 KB buffer

What happens if you increase the buffer size to 512 KB?

What causes this error?

2. What change can you make to the enclave configuration
(EnclaveCrypto.config.xml) to allow this larger buffer size?

3. What other problems might your solution to number 3

create?

 | 48

Intel® SGX Roadshow Hands-on Lab

Task 5: Advanced Enclave-Definition Language (EDL), ECALL,
and OCALL

Task 5.1: Advanced EDL

Lab
Objective

In this lab, we will improve the security of our encryption and then use
OCALLs to provide updates to a progress bar.

Part 1
In this part, we will change the EDL for ecrypto_crypt_block so that it doesn’t copy the blocks
to be encrypted/decrypted into and out of the enclave. The encryption still takes place inside
the enclave, but the enclave reads directly from unprotected memory and writes directly
back to it.

Procedure

1. From the Enclave folder, expand the EnclaveCrypto project.
2. Open EnclaveCrypto.edl.
3. Find LAB EXERCISE, PART 1 in the comments.
4. Replace the declaration of ecrypto_crypt_block as indicated in the comments.
5. Rebuild and test.

Result The application should be fully functional at this point.

Part 2
In this part, we move the progress bar update from CryptCoreNative.cpp to an OCALL made
from the enclave. This is more or less an academic exercise to show how to create OCALLs.
The program is actually less efficient this way, but the point is to demonstrate the concept.

Procedure

1. Add the OCALL definition to the enclave:
a. From the Enclave folder, expand the EnclaveCrypto project.
b. Open EnclaveCrypto.edl.
c. Find LAB EXERCISE, PART 2, STEP 1 in the comments (in the “untrusted”

section).
d. Add the o_update_progress function definition by using the comments as a

guide.
e. Keep this file open for Step 2.

2. Modify an ECALL declaration to pass in a callback pointer:
a. Find LAB EXERCISE, PART 2, STEP 2 in the comments.
b. Modify the definition for ecrypto_crypt_block to add a callback pointer

parameter at the end, using the comments as a guide.
c. In the EnclaveCrypto project, right-click EnclaveCrypto.edl.

 | 49

Intel® SGX Roadshow Hands-on Lab

d. Select Compile.
e. This should build with no errors.

Result
1>------ Build started: Project: EnclaveCrypto, Configuration: Debug x64 ------
1> Creating proxy/bridge routines
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ======

3. Modify the ECALL function to accept the incoming callback parameter:
a. Open EnclaveMain.cpp.
b. Find LAB EXERCISE, PART 2, STEP 3 in the comments.
c. Modify ecrypto_crypt_block to add the callback parameter.

4. Add the OCALL to ecrypto_crypt_block:
a. Find LAB EXERCISE, PART 2, STEP 4 in the comments.
b. Add code to perform the OCALL. Use the comments as a guide.

Our enclave is ready for our OCALL. Now we have to modify the application to pass our
callback pointer in and implement the OCALL function.

5. Remove the old callback method from the untrusted code:
a. From the DLL folder, expand the CryptCore project.
b. Open CryptCoreNative.cpp.
c. Locate LAB EXERCISE, PART 2, STEP 5 in the comments.
d. Remove the indicated code block.

6. Remove the old callback method from the untrusted code (continued):
a. Locate LAB EXERCISE, PART 2, STEP 6 in the comments.
b. Remove the indicated code block.

7. Pass the callback parameter to the enclave wrapper ew_crypt_block:
a. Locate LAB EXERCISE, PART 2, STEP 7 in the comments.
b. Add the callback parameter using the comments as a guide.

8. Modify the declaration for ew_crypt_block to accept the callback parameter:
a. From the DLL folder, expand the EnclaveWrapper project.
b. Open EnclaveWrapper.h.
c. Find LAB EXERCISE, PART 2, STEP 8 in the comments.
d. Modify the declaration for ew_crypt_block using the comments as a guide.

9. Modify the function definition for ew_crypt_block to accept the callback parameter:
a. Open EnclaveWrapper.cpp.
b. Find LAB EXERCISE, PART 2, STEP 9 in the comments.
c. Modify the function to accept the callback pointer parameter.

10. Pass the callback pointer to the ecrypto_crypt_block ECALL:
a. Find LAB EXERCISE, PART 2, STEP 10 in the comments.
b. Modify the call to the ecrypto_crypt_block ECALL to pass the callback pointer

parameter.
11. Add the OCALL function:

a. Find LAB EXERCISE, PART 2, STEP 11 in the comments.

 | 50

Intel® SGX Roadshow Hands-on Lab

b. Create the OCALL that makes our callback using the comments as a guide.
12. Clean the solution and rebuild.

Advanced
Exercises

If you have completed the previous exercises, here are some additional lab
exercises to try on your own:

1. This example is using an OCALL to update the progress bar as an
academic exercise. We don't need to use an OCALL at all here. Why not?

2. What performance issue might we create by making OCALLs where they
aren't needed?

3. Rewrite the application to eliminate the OCALL. Does the performance
improve significantly?

4. Many enclaves that have to use I/O loops can be implemented as either
multiple ECALLs or one ECALL with multiple OCALLs. How would you
rewrite this application to do the latter? What are the tradeoffs in doing
this?

 | 51

Intel® SGX Roadshow Hands-on Lab

Task 6: Debugging

Lab
Objective

In this lab, we will explore debugging and where to place breakpoints
when developing your Intel SGX application.

Task 6.1: Debugging Intel SGX Applications
5. Launch Visual Studio 2015.
2. Click Open Project.
3. Browse to Intel-SGX-HOL > Debugging.
4. Select Debugging Sample.sln, and then click Open.
5. You might see the following notification; if so, click OK.

6. Expand Debugging Sample > Source Files.

 | 52

Intel® SGX Roadshow Hands-on Lab

7. Open Debugging Sample.cpp.

8. Next to the generate_key enclave function, locate Lab Exercise.
9. Press F9 to create a breakpoint.

 | 53

Intel® SGX Roadshow Hands-on Lab

10. Place a breakpoint at status = sgx_create_enclave(…).

11. Expand Enclave > Source Files.
12. Open Enclave.cpp.
13. Place a breakpoint in the generate_key enclave function.

 | 54

Intel® SGX Roadshow Hands-on Lab

14. Run the Local Windows Debugger. What happened in the debugging session?

15. Right-click the Debugging Sample project, and then select Properties.
16. Select the General page, and then copy the Output Directory path.

 | 55

Intel® SGX Roadshow Hands-on Lab

17. Select Debugging.

18. Paste the path to Working Directory.

19. Repeat the steps for the Enclave project.

Run the Local Windows Debugger once again. Did the debugger step into the enclave
function?

20. Open the Enclave.cpp file.

 | 56

Intel® SGX Roadshow Hands-on Lab

21. Hover over the breakpoint for the error.

22. From the Local Windows Debugger drop-down menu, select Intel SGX Debugger.

23. For each project, repeat steps 19–22 to set the debugging working directory.
24. Run the Intel SGX Debugger.
25. Watch the Autos window to view the changing “bytes” value.

Result
After you run the Intel SGX debugger, you can step into the enclave
function.

 | 57

Intel® SGX Roadshow Hands-on Lab

MORE INFO
Additional information regarding Intel SGX debugging can be found this
article.

https://software.intel.com/en-us/node/708949

 | 58

Intel® SGX Roadshow Hands-on Lab

Task 7: Data Sealing

Lab
Objective

In this lab, we will add support for keeping state across sessions. The
user’s password is sealed and saved in unprotected memory, so it can be
restored if the system suspends/resumes. We can’t pick up in the middle
of encrypting/decrypting a file, but we can prevent the user from having
to re-enter a password.

Task 7.1: Data Sealing
1. Add an ECALL to get the sealed-data buffer size:

a. From the Enclave folder, expand the EnclaveCrypto project.
b. Open EnclaveCrypto.edl.
c. Find LAB EXERCISE, STEP 1 in the comments.
d. Add the ECALL declaration using the comments as a guide.
e. Keep the file open for the next step.

2. Modify the ecrypto_set_password ECALL to obtain the sealed-data buffer:
a. Find LAB EXERCISE, STEP 2 in the comments.
b. Add the ECALL declaration using the comments as a guide.
c. Keep the file open for the next step.

3. Add an ECALL to restore the password from the sealed-data buffer:
a. Find LAB EXERCISE, STEP 3 in the comments.
b. Add the ECALL declaration using the comments as a guide.

4. Add the ECALL ecrypto_get_seal_size to the enclave:
a. Open EnclaveMain.cpp.
b. Find LAB EXERCISE, STEP 4 in the comments
c. Add a function/ECALL named ecrypto_get_seal_size using the comments as a

guide.
d. Keep the file open for the next step.

5. Add the data-sealing parameters to the ECALL ecrypto_set_password:
a. Find LAB EXERCISE, STEP 5 in the comments.
b. Add the parameters to this function using the comments as a guide.

6. Seal the password inside the ECALL ecrypto_set_password:
a. Find LAB EXERCISE, STEP 6 in the comments.
b. Add the call to seal the data using the comments as a guide.

7. Add the ECALL that restores the password from the sealed-data buffer:
a. Find LAB EXERCISE, STEP 7 in the comments.
b. Add the function to unseal the data and restore the user’s password using the

comments as a guide (a function stub is commented out that you can use as a
starting point).

8. Complete the function ew_recreate_enclave that recreates an enclave after a power
event:

 | 59

Intel® SGX Roadshow Hands-on Lab

a. From the DLL folder, expand the EnclaveWrapper project.
b. Open EnclaveWrapper.cpp.
c. Find LAB EXERCISE, STEP 8 in the comments.
d. Add the needed subroutine calls to the function stub using the comments

as a guide.
9. Create the sealed-data buffer:

a. Find LAB EXERCISE, STEP 9 in the comments.
b. Add the function call and the necessary code to the ew_set_password function

using the comments as a guide.
10. Add the data-sealing parameters to the ECALL for ecrypto_set_password:

a. Find LAB EXERCISE, STEP 10 in the comments.
b. Add the parameters to the call to the ecrypto_set_password ECALL using the

comments as a guide.
11. Add the ECALL that restores the password to the function ew_restore_password:

a. Find LAB EXERCISE, STEP 11 in the comments.
b. Add the call to the ECALL ecrypto_restore_password to the function stub for

ew_restore_password.
12. Add code to recreate the enclave and restore the password to the function

ew_crypt_initialize:
a. Find LAB EXERCISE, STEP 12 in the comments.
b. Add the calls to recreate the enclave and restore the password using the

comments as a guide.
13. Compile and test.

Advanced
Exercises

If you have completed the previous exercises, here are some additional lab
exercises to try on your own:

Enclaves can be launched by any application, not just the ones "intended"
to use them. This is why Intel uses the term "untrusted" to refer to
applications and memory outside of an enclave: the enclave cannot and
must not trust the calling application.

1. The sealed data is currently saved to memory. What security risk does
this create in the file-encrypter program?

2. What would be the more serious security vulnerability if the sealed data
was saved to disk?

3. Can this program be "fixed" to eliminate the vulnerabilities in number 1
and number 2 while still preserving the core feature of saving the user's
password across a power event? How would you do that?

 | 60

Intel® SGX Roadshow Hands-on Lab

Conclusion
In the course of this lab, you experienced Intel SGX. Specifically, you learned about:

• How Intel SGX helps protect your data through enclaves, and how Intel SGX enclaves
work

• Basic and advanced EDL
• Debugging Intel SGX applications
• Sealing data in order for Intel SGX applications to maintain state

For more information, the Intel SGX SDK manual can be found here:
https://software.intel.com/sites/products/sgx-sdk-users-guide-windows/Default.htm

https://software.intel.com/sites/products/sgx-sdk-users-guide-windows/Default.htm

 | 61

Intel® SGX Roadshow Hands-on Lab

Appendix A—Intel SGX Glossary
This glossary is provided as a convenient means of looking up Intel SGX terminology without
having to hunt through other sources. While thorough, it is not all-inclusive, nor should the
entries be considered definitive.

AESM
Intel SGX Application Enclave Services Manager, the Intel launch enclave installed as part of the
PSW.

Attestation
Attestation is the process of demonstrating that a piece of software has been properly
instantiated on the platform. In Intel SGX, it is the mechanism by which another party can gain
confidence that the correct software is securely running within an enclave on an enabled
platform. See this article for reference.

• Local Attestation: Two or more enclaves sharing secrets to address size and efficiency
issues, or where applications have more than one enclave that need to work together.
Each enclave must verify the other; once done, they establish a protected session and
use an Elliptic curve Diffie-Hellman (ECDH) key exchange to share a session key.

• Remote Attestation: The process by which one enclave attests (verifies) its trusted
computing base (TCB) to another entity outside of the platform. Intel SGX extends local
attestation by allowing a quoting enclave (QE) to use the Intel® Enhanced Privacy ID
(EPID) to create a quote report. Hardware and software is used to generate a quote that
is sent to a third-party server to establish trust.

ECALL
Enclave call: A call from the application into an interface function within the enclave. See this
article for reference.

Edger8r
The Edger8r tool ships as part of the Intel SGX evaluation SDK. It generates edge routines by
reading a user-provided EDL file. These edge routines provide the interface between the
untrusted application and the enclave. Normally, the tool will run automatically as part of the
enclave build process. However, an advanced enclave writer might invoke the Edger8r manually.

EDL
Enclave definition language (EDL) files are meant to describe trusted and untrusted enclave
functions and types used in the function prototypes. The Edger8r tool uses this file to create C-
wrapper functions for both enclave exports (used by ECALLs) and imports (used by OCALLs). See
this article for reference.

https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/sites/default/files/managed/b1/ae/Intel-SGX-SDK-Developer-Guide-for-Windows-OS.pdf
https://software.intel.com/sites/default/files/managed/b1/ae/Intel-SGX-SDK-Developer-Guide-for-Windows-OS.pdf
https://software.intel.com/en-us/node/708941
https://software.intel.com/en-us/node/708968
https://software.intel.com/en-us/node/708968

 | 62

Intel® SGX Roadshow Hands-on Lab

EMMT
Enclave Memory Management Tool (EMMT): Intel SGX SDK–provided tool (sgx_emmt) to
measure the real usage of protected memory by the enclave at runtime. See this article for
reference.

Enclave
Protected areas (containers) of execution containing secrets and application code. Enclaves are
loaded as DLLs and managed by the CPU.

EPC
Enclave Page Cache (EPC) is a part of physical memory (RAM) that is reserved for enclaves; the
EPC is encrypted and trusted by the CPU. The EPC verifies access from inside an enclave and that
the linear address is correct.

EPCM
Enclave Page Cache Map (EPCM) is a secure structure used by the processor to track the
contents of the EPC. See this article for reference.

EPID
Intel Enhanced Privacy ID (EPID) is the algorithm for attestation of a trusted system while
preserving privacy. Intel EPID lets an enclave attest that it’s running a given software on a given
CPU. See this article for reference.

KDF
Key Derivation Function (KDF) derives one or more secret keys from a secret value such as a
master key, a password, or a passphrase using a pseudo-random function. Used by MRSIGNER
and MRENCLAVE to seal data. See this article for reference.

ME
Intel® Manageability Engine (ME) resides in the chipset platform controller hub (PCH). Amongst
other features, it provides several protection-related functions such as trusted time, monotonic
counters, and non-volatile storage. Intel ME is operating-system independent. See this article for
reference.

OCALL
Outside call: A call made from within the enclave to the outside application. See this article for
reference.

PSE
Platform service enclaves (PSEs) are architectural enclaves from Intel.

https://software.intel.com/en-us/node/708953
https://software.intel.com/en-us/node/708953
https://www.trust.cased.de/fileadmin/user_upload/Group_TRUST/LectureSlides/ESS-SS2014/Exercise_02_SS2014.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-Crypto-Review-wp.pdf
https://en.wikipedia.org/wiki/Pseudo-random_function
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://downloadcenter.intel.com/download/25881
https://downloadcenter.intel.com/download/25881
https://software.intel.com/sites/default/files/managed/b1/ae/Intel-SGX-SDK-Developer-Guide-for-Windows-OS.pdf
https://software.intel.com/sites/default/files/managed/b1/ae/Intel-SGX-SDK-Developer-Guide-for-Windows-OS.pdf

 | 63

Intel® SGX Roadshow Hands-on Lab

PSW
Intel SGX platform software (PSW) installs Intel SGX application enclaves, AESM, Intel SGX
Runtime System Library, and drivers. See this article for reference.

SDK
Software-development kit (SDK): The Intel SGX SDK is a collection of APIs, libraries,
documentation, sample source code, and tools that allows software developers to create and
debug Intel SGX–enabled applications in C/C++. See this article for reference.

SGX
Intel Software Guard Extensions (Intel SGX) is a set of new CPU instructions that can be used by
applications to set aside private regions of code and data. See this article for reference.

QE
Quoting enclave (QE) is an architectural enclave from Intel that is involved in the quoting service.

Sealing
Sealing is the process of encrypting enclave secrets for persistent storage to disk. This allows
secrets to be retrieved if the enclave is torn down (either due to power event or by the
application itself), and subsequently brought back up. See this article for reference.

• MRSIGNER: Is a signing identity provided by an authority, which signs the enclave prior
to distribution. This value is called MRSIGNER and will be the same for all enclaves
signed with the same authority. Thus, it will allow the same sealing key to be used for
different enclaves, including different versions of the same enclave. A developer can take
advantage of sealing using the signing identity to share sensitive data via a sealed data
blob between multiple enclaves for a given application and enclaves of different
applications produced by the same development firm. See this article for reference.

• MRENCLAVE: Is an enclave identity represented by the value of MRENCLAVE, which is a
cryptographic hash of the enclave log (measurement) as it goes through every step of
the build and initialization process. MRENCLAVE uniquely identifies any particular
enclave, so using the enclave identity will restrict access to the sealed data only to
instances of that enclave. Note that different builds/versions of an enclave will result in
different MRENCLAVE values. Thus, when sealing using the enclave identity, sealed data
will not be available to different versions of the same enclave, only to identical enclave
instantiations. See this article for reference.

Secrets
Refers to code or constructs (such as passwords, account numbers, encryption keys, health
records, or personally identifiable information [PII]).

https://downloadmirror.intel.com/26169/eng/SGX%20PSW%20Release%20Notes%20for%20Windows%20OS.pdf
https://software.intel.com/en-us/sgx-sdk
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2016/05/04/introduction-to-intel-sgx-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing

 | 64

Intel® SGX Roadshow Hands-on Lab

TCB
A trusted computing base (TCB) is the portions of hardware and software that are considered
safe and uncompromised. A system’s protection is improved if the TCB is as small as possible,
making an attack harder.

Trusted
“Trusted” refers to code or constructs that run in the Trusted Execution Environment inside an
enclave.

Trusted Run-Time System (tRTS)
Code that executes within an enclave environment and that performs functions such as:

• Receiving calls (ECALLs) from the application and making calls (OCALLs) outside the
enclave

• Managing the enclave itself

Untrusted
“Untrusted” refers to code or constructs that run in the application environment outside the
enclave.

Untrusted Run-Time System (uRTS)
Code that executes outside an enclave environment and performs functions such as:

• Loading and manipulating an enclave (for example, destroying an enclave)
• Making calls (ECALLs) to an enclave and receiving calls (OCALLs) from an enclave

Appendix B—Intel SGX Developer Notes and Best Practices

• What is the signing key when creating an enclave project in Visual Studio? Import an
existing signing key to the enclave project; a random key will be generated if no file is
selected. The enclave signer will sign the enclave with the key file.

• Every time a secret is provisioned, you should make an OCALL to seal data (based on
performance and the effort that was expended to gather the secret).

• Intel SGX AESM will download the latest whitelist.
• The PSW requires administrator privileges to run the installer. From an administrator

command prompt, run the following:
o msiexec /i SGX_PSW.msi
o To force Intel SGX PSW installation with an administrative account, use the

following command:
 msiexec /i SGX_PSW.msi FORCE_INSTALL=1
 Silent/unattended installations can be done by adding the /qn or /quiet

switch: msiexec /i SGX_PSW.msi /qn
• Unsafe C++11 attributes:

 | 65

Intel® SGX Roadshow Hands-on Lab

o Developers should use C++11 attributes inside an enclave with care. The
attribute noreturn, in particular, might cause a potential security risk. For instance,
if a trusted function calls a noreturn function, any clean-up code placed after the
function call will be ignored. For example:

[noreturn]]void foo(parameters…) { ... } int
ecall_function(parameters…) { ... foo(...); // Clean-up code
below will be ignored ... return 0; }

• File I/O inside an Intel SGX enclave: While all the code and data inside an enclave are
protected, not all code can be executed inside an enclave; for example, all privileged
instructions are invalid in an enclave. This means that all system calls and I/O operations
are not available in an enclave. Thus, the standard C library shipped with the Intel SGX
SDK is intentionally left incomplete, missing lots of common and useful procedures, such
as open, read, write, close, exit, and so on. This makes porting existing applications into
an enclave a painful job. The following list of instructions are INVALID inside an enclave:

• Thread-Binding Policy: When an enclave writer develops an enclave that might employ
more than one thread, the developer must be aware that untrusted code controls the
binding of an untrusted thread to the trusted-thread context (composed of a TCS page,
SSA, stack, and thread-local storage variables). Thus, the developer must follow the
policies on using thread-local storage and thread-synchronization objects within the
enclave. See the SDK developers guide for details.

• The EPC is limited to just 128 MB (of which 88 MB is usable) as of this writing. Best
practices suggest using default memory allocations for development. Then, use the

https://software.intel.com/sites/default/files/managed/b1/ae/Intel-SGX-SDK-Developer-Guide-for-Windows-OS.pdf

 | 66

Intel® SGX Roadshow Hands-on Lab

EMMT provided in the SDK to determine actual memory use, and adjust accordingly. The
EMMT can identify enclave memory usage where other memory tools cannot.

• An enclave-configuration file is used to set/update the following enclave settings:
ProdID, ISVSVN, StackMaxSize, HeapMaxSize, TCSNum, TCSPolicy, DisableDebug,
MiscSelect, and MiscMask. See this article for reference.

• Rely on the SDK as the authority on supported operating systems; this will likely be
following the “latest” operating system.

• Consider sealing after the state of your enclave has changed, based on a balance of
performance.

• There is not a current published roadmap for the SDK.
• Do not use sealing as a general-purpose encryption tool; instead, target keys rather than

data.
• Library Patching: Say you are going to port something like the following into enclave

(see this article for reference):

#include <stdio.h>
int log_lvl = 4;
#define log(level, msg) { \
 if (level < log_lvl) fprintf(stderr, msg); \
} /* compiler error! */

The problem is that stdio.h, shipped with the Intel SGX SDK, has neither stderr nor fprintf.
Commenting out every occurrence of log is not ideal; not only is it tedious and error-
prone, it deprives you of the ability to do logging, which is critical for debugging
purposes. In contrast, the following solution is simple and elegant, because it keeps your
logging code and requires modifying only one-line of code (for each file):

#include “stdio.h” /* use a patched header file! */

int log_lvl = 4;
#define log(level, msg) { \
 if (level < log_lvl) fprintf(stderr, msg); \
} /* compiler ok! */

o The idea is simple: we write a patched version of the C-library header, which
includes the stuff that is missing. This technique is called library patching. The
code below is our new stdio.h:

https://software.intel.com/en-us/node/708930
http://www.tatetian.io/2016/01/25/file-io-inside-intel-sgx-enclave/

 | 67

Intel® SGX Roadshow Hands-on Lab

• Include a list of enclave project files. Assuming the enclave project name is
sample_enclave, here is the list of files generated by the wizard):

o Source files:
 sample_enclave.cpp: main source file, to be filled with user functions and

variables. The user can add additional source files.
 sample_enclave_t.c: trusted auto-generated wrapper functions. Do not

modify this file, because every build recreates it.

 | 68

Intel® SGX Roadshow Hands-on Lab

 sample_enclave.edl: EDL file. Declares which functions are exported
(trusted) and imported (untrusted) by the enclave. EDL syntax is explained
in a separate section.

o Header files:
 sample_enclave_t.h: trusted auto-generated header for wrapper functions.

Do not modify this file, because every build recreates it.
o Resource files:

 sample_enclave.config.xml: specifies the enclave configuration. Details are
explained in a separate section.

 sample_enclave.private.pem: RSA private key used to sign the enclave.
o Note: The private key must be kept secret and safe. If exposed, the key could be

used by malware writers to create a valid signed enclave. If you do not want to
expose the private key in the enclave project, you can use sgx_sign to sign the
enclave in a separate environment.

• An EDL file is used to define the enclave interface. There are two parts to an EDL file:
o The trusted section defines the ECALLs:

 ECALLs define entry points into the enclave.
 It is important to note that an Intel SGX–enabled application should

always have at least one public ECALL to enter the enclave.
o The untrusted section defines the OCALLs:

 OCALLs define the transfer of control from inside the enclave to the
application to perform system calls and other I/O operations.

 OCALLs could also be used in cases where the enclave needs to transfer
data back to the application.

 OCALLs are optional.
o A sample EDL template is shown below.

enclave {
//Include files
//Import other edl files
//Data structure declarations to be used as parameters of the
//function prototypes in edl
 trusted {
//Include file if any.
//It will be inserted in the trusted header file (enclave_t.h)
//Trusted function prototypes
 };
 untrusted {
//Include file if any.
//It will be inserted in the untrusted header file (enclave_u.h)
//Untrusted function prototypes
 };
};

 | 69

Intel® SGX Roadshow Hands-on Lab

The content in this document was created by Prowess Consulting and commissioned by Intel.

Prowess and the Prowess logo are trademarks of Prowess Consulting, LLC.

Copyright © 2017 Prowess Consulting, LLC. All rights reserved.

Other trademarks are the property of their respective owners.

	Overview
	Task 0: Lab Setup
	Task 0 Steps

	Task 1: Intel SGX Overview
	Task 1.1: Intel SGX Settings in BIOS
	Task 1.2: Intel SGX AESM Service
	Task 1.3: Testing for Intel SGX Support
	Task 1.4: Review of Intel SGX Support
	Task 1.5: Don’t Compile Secrets into Enclave DLLs

	Task 2: Introduction to Intel SGX Applications
	Task 2.1: Create a Console-Application Project
	Task 2.2: Create an Enclave-Application Project
	Task 2.3: Add an Enclave Project to the Console-Application Project
	Task 2.4: Import an Enclave into the Console-Application Project
	Task 2.5: Add a Trusted Call to an Enclave Project
	Task 2.6: Implement Enclave Functions

	Task 3: Review of Enclave Components
	Task 3.1: Run the File-Encrypter Application
	Task 3.2: Review the File-Encrypter Project
	Task 3.3: Walkthrough of the Enclave Project’s Components

	Task 4: Basic Enclave-Definition Language (EDL) and ECALL
	Task 4.1: File-Encrypter Project EDL
	Task 4.2: File-Encrypter Project EnclaveWrapper ECALL Functions
	Task 4.3: Compile Basic File-Encrypter Application
	Task 4.4: Review Enclave Configuration Advanced Lab

	Task 5: Advanced Enclave-Definition Language (EDL), ECALL, and OCALL
	Task 5.1: Advanced EDL
	Part 1
	Procedure

	Part 2
	Procedure

	Task 6: Debugging
	Task 6.1: Debugging Intel SGX Applications

	Task 7: Data Sealing
	Task 7.1: Data Sealing

	Conclusion
	Appendix A—Intel SGX Glossary
	AESM
	Attestation
	ECALL
	Edger8r
	EDL
	EMMT
	Enclave
	EPC
	EPCM
	EPID
	KDF
	ME
	OCALL
	PSE
	PSW
	SDK
	SGX
	QE
	Sealing
	Secrets
	TCB
	Trusted
	Trusted Run-Time System (tRTS)
	Untrusted
	Untrusted Run-Time System (uRTS)

	Appendix B—Intel SGX Developer Notes and Best Practices

