
Developing for Intel®
Graphics: Today and
Into the Future
Kyle Grau

Agenda

Current Intel® Graphics and Trends

General Detection of Features for DirectX* 12 and Vulkan*

SIMD on Intel

Prepare for Upcoming Features

* other names and brands may be claimed as the property of others

Intel® Graphics Increasing in
Performance and Capabilities

Performance capability over time not drawn to scale

1 2 3 4
5

6
7

8

9

11

Gen Gen Gen
Gen

Gen

Gen

Gen

Gen

Gen

Gen

GPU Detection for Features

▪ GPU hardware is
constantly
changing with each
generation

• One generation of
hardware from a vendor
may now support new
features

▪ For DirectX* 12 and
Vulkan*, query the
hardware for feature
support using
defined APIs

• For DirectX* 12, check feature
support with ID3D12Device::
CheckFeatureSupport

• For Vulkan* use
vkPhysicalDeaviceFeatures
and check for proper
extension support with
vkEnumerateInstanceExtensio
nProperties

▪ Avoid using vendor IDs
to disable features, use
slower execution paths,
or defaulting to low
settings.

• Always check to see if the
hardware detected
supports the features
needed and meets the
technical requirements for
your game

▪ Do use features
keeping in mind
architectural
differences

Understanding Intel’s Driver Versioning

Our driver build number is the last 7 digits of the
driver version. Check these numbers if there is a
reason you need specific driver support from Intel

No

If you have legacy code that is only checking the last
4 digits, please update your code to check the last 7
digits to ensure your game will run on Intel

https://www.intel.com/content/www/us/en/suppor
t/articles/000005654/graphics.html

EU SIMD Explained

Support for 1/2/4/8/16 or 32-wide
instructions

• Higher than SIMD8 instructions pair adjacent
registers
• SIMD16 would pair 2 physical registers to a

single logical 64B register

Compiler makes the decision :

• VS/DS/HS/GS: SIMD8

• PS/CS : SIMD8/16/32

Performance tip – Reducing
register pressure allows:

▪ Higher SIMD

• Better latency hiding

• Better instruction
pipelining

▪ Reduced spills

▪ Better codegen

How To Reduce Register Pressure

GRF Usage:

Instruction used

<64

SIMD16

64-128

SIMD8

>128

SIMD8 with Spills

Don’t:

▪ Branch on constant buffer conditions

▪ Non uniform access to buffer data

▪ Excessive variable decl. (esp. arrays)

Do’s:

▪ Use partial precision

▪ Move common code outside branches

▪ Specialization constants / #define

SIMD Key
Takeaways

▪ Reduce register pressure
whenever possible
▪ Better SIMD width
▪ Better latency hiding
▪ Better instruction

pipelining
▪ Reduced spills and fills
▪ Better codegen

▪ Do not make assumptions
about SIMD lane counts

• Use GetWaveSize() and similar wave intrinsics to
get wave count. Swizzle operations on one
hardware vendor may fail on another

• Race conditions can happen when SIMD is
different than thread group size. Use barriers to
ensure proper read/write access to memory

• If thread groups are independent and do not rely on
other thread groups, avoid barriers as they
introduce unnecessary waiting conditions

Adaptive Sync

Supported since Gen11 (Ice Lake graphics)

Enable to relieve screen tearing and
stuttering on displays that support it

Requirements

▪ Monitor that supports VESA adaptive sync display
▪ User also has to enable it with Intel Graphics Control Panel

For DX12
▪ Use DXGI_SWAP_CHAIN_ALLOW_TEARING and

DXGI_PRESENT_ALLOW_TEARING

For Vulkan*
▪ Use VK_PRESENT_MODE_IMMEDIATE_KHR or

VK_PRESENT_MODE_FIFO_KHR

High Dynamic Range Support

DirectX* 12

▪ Swap chain must use
DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL or
DXGI_SWAP_EFFECT_FLIP_DISCARD and recommended to
use DXGI_FORMAT_R10G10B10A2_UNORM

▪ Must explicitly use IDXGISwapChain3::SetColorSpace1 method
to set color space to
DXGI_COLOR_SPACE_RGB_FULL_G2084_NONE_P2020

▪ Use DXGI_OUTPUT_DESC1 to get information about supported
color spaces, color information, and luminance values to adjust
tone mapping in post processing

Queue Support

▪ Multiple queues with hardware support can
support asynchronous compute on GPU.

• One queue for render work, another for compute shader
tasks, and another for copy operations.

• Still require necessary synchronization if there is a
dependency across queues. (semaphore)

▪ Allows the creation of separate command
lists for different tasks.

▪ For DX12: If hardware has queue support,
creating queues for compute and
submitting compute command lists on that
will enable async compute

▪ For Vulkan*: Use
vkGetPhysicalDeviceQueueFamilyProperties
to enumerate queue families and create
vkQueue on appropriate queue family.

▪ For compute-only work that would benefit
from async compute, create on non-
graphics work queue. Always profile to see
if there is benefit using async compute

▪ Avoid overlapping compute work in both
the graphics and compute queues.

Shared Functions Render Command
Streamer

Compute Command
Streamer Copy Engine Media Engine

Ray Tracing Support

Supported with dedicated hardware via
DirectX* 12 and Vulkan*

Early Guidance

▪ Use TraceRay over inline ray queries

▪ Use indexed meshes for BVH builds

▪ Batch acceleration structure build operations

• Do not interleave barriers, do them all in one command list
and barrier at the end

Ray Generation

TraceRay()

Acceleration Structure
Traversal

Any Hit

Intersection

No Yes

Miss Closest Hit

Hit?

Mesh Shading

▪ 2 shader stages to replaces legacy geometry
pipeline for a compute-shader like approach for
generating geometry

▪ Allows for transformation, culling, and generating
geometry in small batches without fixed functions.

▪ Run in SIMD8/16 by default

▪ Hardware allocates for the worst-case scenario

▪ Big meshlets can lead to lower efficiency

Legacy D3D12 graphics pipeline

IA VS HS Tess DS GS Raster PS

Mesh shader pipeline

Amplification Shader Mesh Shader Raster PS

Variable Rate Shading

Allows developers to increase visual
quality while maintaining frame rate

▪ Pixels not adding to visual fidelity can
have reduced shading rate

DirectX* 12:

▪ Tier 1: Per draw/per primitive

▪ Tier 2: Allow control of shading rate based on image

Vulkan*:

▪ Supported via VK_KHR_fragment_shading_rate

• For features, check feature support for per draw, per
primitive, and for image based with
VkPhysicalDeviceFeatures

Call to Action

Use GPU detection code to
help guide enabling of features
for Intel

Variable SIMD means lane count
can vary based on graphics
compiler choice

For Vulkan* KHR
extensions, check
for supported sizes
and limits

Ensure middleware
is using right
features as well

▪ Try to avoid disabling features
based on vendor ID, future
hardware may support these
capabilities

Be aware of the new
guidance from Intel on
checking Intel Graphics
Driver versions

▪ Current guidance is to check last 7 digits
of the driver version to get full build
number

Use DirectX* and
Vulkan* APIs for:

▪ Adaptive sync
▪ HDR
▪ Ray Tracing
▪ Mesh Shading
▪ Variable Rate Shading

▪ Use GetWaveSize() and similar wave intrinsics
to get wave size. Swizzle operations on one
hardware vendor may fail on another

▪ Design your shader algorithms to work with any
SIMD width

Check available
command queues

* other names and brands may be claimed as the property of others

