
Driving Code Performance with
Intel® Advisor’s Flow Graph Analyzer

Modernize your Code with
Intel® Parallel Studio XE

Enabling FPGAs for Software Developers

Software

The Parallel
Universe

Issue

30
2017

Letter from the Editor 3
Meet Intel® Parallel Studio XE 2018
by Henry A. Gabb, Senior Principal Engineer, Intel Corporation

Driving Performance with Intel® Advisor’s Flow Graph Analyzer 5
by Vasanth Tovinkere, Architect, Intel® Flow Graph Analyzer; Pablo Reble, Software Engineer;
Farshad Akhbari, Perceptual Computing Technical Lead; and Palanivel Guruvareddiar,
Perceptual Computing Software Architect; Intel Corporation

Welcome to the Adult World, OpenMP* 19
by Barbara Chapman, Professor, Stony Brook University, and Director of Computer Science and
Mathematics, Brookhaven National Laboratory

Enabling FPGAs for Software Developers 25
by Bernhard Friebe, Senior Director of FPGA Software Solutions Marketing, Intel Corporation, and
James Reinders, HPC Enthusiast

Modernize Your Code for Performance, Portability, and Scalability 37
by Jackson Marusarz, Technical Consulting Engineer, Intel Corporation

Dealing with Outliers 45
by Oleg Kremnyov, QA Engineer; Mikhail Averbukh, Software Engineer; and Ivan Kuzmin,
Software Engineering Manager; Intel Corporation

Tuning for Success with the LatestSIMD Extensions 57
and Intel® Advanced Vector Extensions 512
by Xinmin Tian, Senior Principal Engineer; Hideki Saito, Principal Engineer; Sergey Kozhukhov,
Senior Staff Engineer; and Nikolay Panchenko, Staff Engineer; Intel Compiler and Language
Lab, Intel Corporation

Effectively Using Your Whole Cluster 77
by Rama Kishan Malladi, Technical Marketing Engineer, Intel Corporation

Is Your Cluster Healthy? 85
by Brock A. Taylor, HPC Solution Architect, Intel Corporation

Optimizing HPC Clusters 89
by Michael Hebenstreit, Data Center Engineer, Intel Corporation

ConTenTs
FE

AT
U

RE

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 3

leTTer from The ediTor
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a long-time high-performance and
parallel computing practitioner and has published numerous articles on parallel programming. He
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach”
and was program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

Meet Intel® Parallel Studio XE 2018
Intel Parallel Studio XE 2018 is the latest version of Intel’s comprehensive tool suite for modernizing
software on Intel® architectures. In honor of its release, we’ve included several articles on Intel Parallel
Studio XE components in this issue. Modernize Your Code for Performance, Portability, and Scalability
gives a high-level overview of the many new features and capabilities in this tool suite. (You can also learn
more in my blog on the release of Intel Parallel Studio XE 2018.) Dealing with Outliers shows how to
detect fraud in a real-world dataset of credit card transactions, using the Intel® Data Analytics Acceleration
Library to achieve high accuracy at very high performance.

Intel Parallel Studio XE has always supported OpenMP*. The latest release supports OpenMP 4.5 and
many features of the 5.0 draft specification. We close out our celebration of OpenMP’s 20th birthday with
a final guest editorial, this one from Barbara Chapman, Professor at Stony Brook University and Director of
Computer Science and Mathematics at Brookhaven National Laboratory. In Welcome to the Adult World,
OpenMP, Barbara discusses the early success of OpenMP and why it’s likely to remain a vital parallel
programming model for years to come.

The Intel® HPC Developer Conference (November 11-12 in Denver, CO) and SC17 (November 12-17, also
in Denver) are just around the corner, so this issue contains three articles devoted to HPC. We explore
Intel® Cluster Checker in Is Your Cluster Healthy? This component of Intel Parallel Studio encapsulates
many best-known methods and system diagnostics to keep clusters operating efficiently. Several BIOS
options can affect application performance, but it’s difficult to change these options on demand in a
production cluster environment. Learn about a technique to enable on-demand BIOS configuration
changes in Optimizing HPC Clusters. And Effectively Using Your Whole Cluster presents a case study of
HPC application tuning using several of the tools in Intel Parallel Studio XE.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.intel.com/en-us/parallel-studio-xe
https://software.intel.com/en-us/blogs/2017/08/28/fast-forward-parallel-programming-for-the-future
https://software.intel.com/en-us/intel-daal
https://software.intel.com/en-us/intel-daal
https://www.intel.com/content/www/us/en/events/hpcdevcon/overview.html
https://sc17.supercomputing.org/
https://software.intel.com/en-us/intel-cluster-checker
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

The Heterogeneous Parallel Computing Future
The future is heterogeneous. (Actually, CPUs and GPUs have existed within the same system—and even
on the same processor die—for many years now, so heterogeneous computing is already here.) Just as
multicore processors have made parallelism ubiquitous, it won’t be long before CPU, GPU, FPGA, ASIC,
etc. coexisting within the same system makes heterogeneous parallelism ubiquitous, too. I used to
worry about the heterogeneous future, but new parallel programming models will make it easier to map
computations to the most efficient processor architecture. The Intel® Threading Building Blocks Flow
Graph API is one such approach.

This API has already been covered in The Parallel Universe (see “Heterogeneous Programming with Intel®
Threading Building Blocks” in our special issue), so I won’t discuss it here, but this issue’s feature article,
Driving Performance with Intel® Advisor’s Flow Graph Analyzer, gives an in-depth look at the Flow
Graph Analyzer technology preview feature in Intel Parallel Studio XE. We use an autonomous driving
application to illustrate the flow graph computation and analysis.

The Parallel Universe welcomes back its founding editor, James Reinders, to continue the theme of
heterogeneity. In Enabling FPGAs for Software Developers, James and Bernhard Friebe discuss FPGA
programming from a software, rather than a hardware, development perspective. Look for a follow-up
article on FPGA programming in our next issue.

Finally, we close out this issue with a detailed look at what’s new in the AVX-512 instruction set
architecture. Tuning for Success with the Latest SIMD* Extensions and Intel® Advanced Vector
Extensions 512 discusses best practices in performance tuning with the new SIMD language extensions
for AVX-512 and the latest support in the Intel compilers for the Intel® Xeon® Scalable processors.

Coming Attractions
We’re working on a wide range of topics for future issues of The Parallel Universe, including FPGA
programming, Java* performance tuning, new Intel Parallel Studio features, and much more. Be sure to
subscribe so you won’t miss a thing.

Henry A. Gabb
October 2017

< The Parallel Universe 4

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-tbb
https://software.intel.com/sites/default/files/managed/4f/e5/ParallelUniverseMagazine_Special_Edition_v2.pdf
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform.html
http:////software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

driving Code PerformanCe wiTh
inTel® advisor’s flow graPh analyzer
Vasanth Tovinkere, Architect, Intel® Flow Graph Analyzer; Pablo Reble, Software Engineer;
Farshad Akhbari, Perceptual Computing Technical Lead; and Palanivel Guruvareddiar,
Perceptual Computing Software Architect; Intel Corporation

The advanced driver assistance systems (ADAS) and autonomous driving technologies deployed in
modern cars rely on environmental awareness through sensors such as radar, LIDAR, and cameras. The
underlying machine learning or deep learning algorithms that provide this awareness are compute-
intensive―and become even more demanding as the sensor resolution grows. For example, detection
and classification of objects in a video stream requires inspection of every frame for objects of interest at
all possible aspect ratios and sizes. A real-time object detection system also demands a lot of compute
resources. And the demand only increases as we approach near-perfect systems.

Optimizing Performance for an Autonomous Driving Application

< The Parallel Universe 5

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 6

These systems often involve a process of proposal generation (i.e., they propose and then analyze
potential regions of interest in an image). Fortunately, proposal generation is repetitive and can be
parallelized to improve performance. The expressed parallelism is scalable, since proposal generation
can include the entire image as a single proposal all the way down to each pixel in a frame as a separate
proposal. Since there are no dependencies among the processing of proposals, they can be processed in
batches as system resources allow, and as they become available (i.e., in a pipeline fashion).

In this article, we explain how to design and analyze the parallelism in such an application using Intel®
Advisor’s Flow Graph Analyzer (FGA), a tool from Intel that supports parallel applications using the Intel®
Threading Building Blocks (Intel® TBB) flow graph interface. Intel TBB is a widely used C++ template
library that enables developers to easily create parallel applications to take advantage of multicore
architectures and heterogeneous systems. The flow graph interface was introduced in Intel TBB in 2011 to
exploit parallelism at higher levels by providing efficient implementations of dependency graphs and data
flow algorithms. [Editor’s note: “Intel® Threading Building Blocks Celebrates 10 Years,” in The Parallel
Universe special issue, includes several interesting articles on the evolution and future directions of the
Intel TBB API.]

Even though Intel TBB makes it easier to express parallelism, ADAS and autonomous driving applications
are complicated and may contain many interconnected algorithms and layers of parallelism―making
them challenging to both design and tune. FGA, now available as a technology preview feature in Intel
Advisor, makes this task more manageable. We’ll discuss how to use FGA’s features as we go through the
analysis of an OpenCV*-based autonomous driving example that is implemented using the Intel TBB flow
graph API.

The Advanced Driver Assist Example
We’ll use a demo framework for an ADAS as a running example. Our example framework supports two
modes of operation:

1. Online mode, where the framework receives a live feed from the camera sensor mounted on the
rearview mirror and captures data from the front of the car.

2. Offline mode, where recorded frames are read from a file to simulate the camera sensor functionality.

Incoming compressed camera frames are decoded and forwarded to a video input processing module
that performs post-processing of the frames to ensure they are ready to be consumed by the computer
vision algorithms.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/sites/default/files/managed/4f/e5/ParallelUniverseMagazine_Special_Edition_v2.pdf
https://software.intel.com/sites/default/files/managed/4f/e5/ParallelUniverseMagazine_Special_Edition_v2.pdf
http://opencv.org/
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 7

1 ADAS application example

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

The post-processed data is then broadcast to the registered computer vision use-cases in the framework
(e.g., object recognition, lane departure warning, front collision warning). These use-cases can be
executed independently (in parallel) on the same frame. And many of them internally use a process of
proposal generation that allows for parallelization at the use-case level as well. Often, the use-cases are
implemented using OpenCV* algorithms that already contain loop-level parallelism. We therefore have a
framework with multiple levels of parallelism. The framework is extensible, since it allows new algorithms
to be registered through plugins. The computer vision algorithms operate on the decompressed frames
and produce metadata associated with detected objects/lanes and alerts for lane departure and front
collision warnings. A combined module fuses all the information together and overlays it on top of the
decompressed frame, which is then rendered for display, as shown in the colored highlights of Figure 1.
The smaller grayscale images at the top highlight the output of each use-case.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 8

Evolution of the Parallel Framework
In general, a key performance indicator for a video processing application is the frame completion
rate, which means how many frames are completed if there is a fixed time budget for completing each
frame. If the processing of a frame exceeds the budget, it’s dropped. So a completion rate of 70 percent
for a 24 ms deadline means that 70 percent of frames can be completed given this deadline, while 30
percent must be dropped.

We examined three implementations during our optimization of this framework:

1. The original serial/native implementation
2. A parallel/native implementation
3. An Intel TBB flow graph implementation

Figure 2 shows the frame completion rates for these three implementations, demonstrating that shorter
deadlines become feasible as optimizations are applied.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

2 Comparison of frame completion rates

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

The serial/native implementation executes the use-cases in a serial fashion on a multi-core processor. Many
of the use-cases are implemented using OpenCV, and even though they may contain nested, loop–level
parallelism, this approach results in poor utilization of the cores in the system. The exposed parallelism of
the individual algorithms is limited, which directly impacts the scalability of the application.

The parallel-native implementation was task-based, allowing concurrent execution of algorithm modules
using standard threads. However, this causes oversubscription because threads are being created for the
tasks in addition to the Intel TBB threads created within OpenCV. To have a truly flexible and extensible
framework that avoids oversubscription, the flow graph implementation uses Intel TBB at both levels.

Figure 3 shows the advanced driver assist framework implemented as an Intel TBB data flow graph.
Execution starts with a standard flow graph function node (Init) which encapsulates an initial setup routine
that is applied to each frame. Subsequently, interaction with an external activity, the actual decoding of
each frame, is expressed through an asynchronous node (Decode). The video input processing (VIP) node
broadcasts the input image to each use-case (i.e., object recognition, lane departure warning, front collision
warning) and a multifunction node (Copy). This node performs two actions:

1. Stores the unmodified input image for a later merge with the output of the use-cases.
2. Generates a token for each use-case.

The next node generates a tuple of this token and the output buffer, which is subsequently consumed by the
multifunction Combine node. The highlights in Figure 1 are outputs from the different use-cases represented

< The Parallel Universe 9

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

3 Graph depicting the autonomous driving example framework

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

by flow graph composite nodes in the center of Figure 3. In our example, object recognition (OR), lane
departure warning (LDW), and front collision warning (FCW) are implemented using OpenCV. The Display
node in our graph displays the output image. [Editor’s note: The full graph node attributes are beyond the
scope of this article. See the Intel Threading Building Blocks Flow Graph documentation for API details.]

The major advantage of our data flow design is that more parallelism can be expressed, which improves
performance. Also, our implementation doesn’t require any modification of the existing use-cases, since they
can be represented as single grouped function of nodes that just invoke their process_frame() function. That
way, the flow graph implementation is backwards-compatible to all existing framework plugins.

Next, we’ll analyze the performance of this flow graph using the features available in the Intel FGA
tool to understand more about its behavior and discover that while it currently outperforms previous
implementations, there is still room for improvement.

Overview of Intel FGA
Figure 4 shows Intel FGA visualizing a graph and its associated performance trace data. The tool has five
viewing areas:

< The Parallel Universe 10

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

4 Intel FGA showing a captured graph and associated trace data

https://software.intel.com/en-us/node/506211
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 11

1. Menu/Toolbar area: Exposes the operations for designing, manipulating, visualizing, and analyzing graphs.
2. Index area, divided into three categories. Designer mode shows available node types for building new

graphs. Hierarchical View represents the graph topology as a hierarchical tree. And Analysis mode (Figure
4) represents graph performance as squares in a tree map. (In this article, we focus on the Analysis mode.)

3. Canvas area: This is the primary graph viewing area where graphs can be constructed or displayed.
This area supports common editing operations to facilitate the design of new graphs.

4. Reports area: This houses all basic reports such as graph and node properties and reports that are
generated by analytics, such as semantic rule checks and critical path algorithms.

5. Chart area: This area displays performance statistics and execution trace timeline charts for graphs
that have associated trace data. This data is automatically captured by the trace collector, which can
be invoked from the GUI or as a command-line utility.

In Intel FGA, the viewing areas and modes can be used to create two main workflows for design and analysis:

1. The design workflow uses a drag-and-drop paradigm for interactively constructing Intel TBB flow graphs.
2. The analysis workflow captures performance data from Intel flow graph applications.

The tool provides the ability to visualize and interact with the performance data. We use this analysis
workflow to examine the performance data collected for our ADAS example.

Performance Analysis of the ADAS Example
To optimize the performance of our example, we first need to identify the bottlenecks. Intel FGA allows
developers to capture the graph topology and task execution traces from running Intel TBB flow
graph applications. Figure 5 shows the trace collection dialog window that allows users to specify the
application to trace. When data collection is finished, two files are generated:

1. GraphML file describing the topology of the graph that was just executed
2. TraceML file with the task execution traces from the graph

Finding the Most Important Parts of the Application
A common first step in analyzing application performance is identifying where the majority of the time is
spent in an application. Intel FGA has two features to assist with this step.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 12

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

5 Intel FGA trace collection dialog

First, the tree-map view shows the total CPU time represented as a large rectangle that is subdivided into
smaller rectangles representing the nodes in the graph. The area of the nodes is proportional to the total
CPU time consumed by the node. Colors reflect the concurrency observed when the node was executing
(red means low concurrency). Figure 6 shows the tree-map view of our ADAS example. From this figure, we
can conclude that the use-cases require different amounts of time to compute and that OR dominates the
CPU time of the framework. The differences in execution times for the use-cases supports our decision to
allow each use-case to send its results to the overlay node independently. Any kind of barrier might create a
load imbalance.

Intel FGA can also calculate the critical path through an application and project it onto the flow graph’s
topology. This second view is shown in Figure 7. The critical path for our ADAS example highlights the key
set of nodes to consider for optimization. From the combination of tree map and critical path views, we now
know that not only is OR the most time-consuming node individually, it also lies on the most important
path through the application. The performance of the graph is therefore limited by the performance of OR,
so it should be our highest priority for optimization. Sometimes, it may be necessary to determine which
algorithms are candidates for offloading to accelerators to meet a strict performance specification.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 13

6 Tree-map view

7 Screenshot showing the critical path of a graph

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 14

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

Analyzing the Performance Characteristics of the Bottleneck
Now that we’ve identified that OR is the most important algorithm, we can further inspect its performance by
looking at the timeline views in Intel FGA. The over-time task data grouped by thread provides the raw view
of the collected traces. In this chart, we can see tasks executed by each thread and their duration. Figure
8 shows the zoomed-in view of the data for one frame of processing and the legend describing the colors.
The tasks are colored based on the type of task. Graph tasks are colored based on the task duration, with a
lighter color used to highlight tasks that are small relative to the cost of scheduling a task. Nested parallel
tasks and asynchronous tasks are shown in blue.

8 Over-time trace charts showing one frame of data and the associated color legend

The graph task colors are quantized using a gradient that ranges from 1µs to 1ms so developers can
identify tasks (hence nodes) that have execution times that are on the lower end and may be affecting
performance scaling. Selecting a task in the timeline highlights the node in the graph on the canvas. This
chart allows us to focus on the tasks that are too small to be spawned on a thread and enables us to debug
the performance of the graph when we see low concurrency. Similar information is available for the tasks
spawned from nested parallel algorithms.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 15

From Figure 8, we see that while threads are busy at times during OR, there is still room for improvement.
The blue tasks indicate that there is nested parallelism that uses Intel TBB, but the black regions indicate
times during which the cores are idle. Since OR is the dominant computation in our example, we may want
to see which tasks correspond to it. All tasks are shown in Figure 8. If we want to focus only on the tasks that
fall on the critical path, we can use selection-based highlighting to show tasks on the critical path.

Figure 9 shows the timeline view when only tasks related to the critical path are highlighted. Note
that displaying nested tasks is currently an experimental feature of Intel FGA that requires manual
instrumentation. From this figure, we can see that the majority of the tasks in the timeline can be mapped
to the OR node. The core idle times, indicated by the black regions, can be addressed by shrinking the time
taken to compute OR, thereby eliminating the idle time or by scheduling additional algorithms that could
execute in parallel and keep the idle cores busy.

9 Critical path shown on the execution traces

Let’s inspect the OR node execution traces for the frame shown in Figure 9. Zooming into this frame reveals
four nested parallel algorithms executed by the OR node in this frame (Figure 10). Additional information is
presented for the parallel algorithms to help us determine if these algorithms are executing efficiently. The
Statistics view has per-node data presented as a table that shows the performance statistics of each node
at the graph level. In our analysis of the OR node, we’re more interested in the algorithms that are executed
in each node. Figure 10 shows the per-algorithm data for the four parallel algorithms that were executed in
our selected frame. We can see that the efficiencies of OR::tbb149 and OR::tbb213 are reasonably high and
require less performance tuning. OR::tbb261 and OR::tbb284, on the other hand, exhibit poor efficiency,
possibly because of the small number of tasks executed by these algorithms. This could result in load
imbalances that reduce parallel efficiency and scalability.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 16

10 Graph statistics table showing algorithm statistics for OR::tbb149, OR::tbb213, OR::tbb261, and OR::tbb284

Since Intel TBB uses work-stealing to schedule tasks, we may also be interested in seeing which threads
execute particular nodes. It is easy to see this in Intel FGA by switching to a per-node view of the timeline
(Figure 11). We can now see that the OR node is often executed by the same thread (colored green), but that
at times other threads execute it.

11 Tasks grouped by nodes

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 17

In addition to the timeline, algorithm statistics, and graph topology views, we can also view per-node data
in tabular form (Figure 12). This allows developers to sort the data and determine the best regions for
optimization. Selecting a row will highlight the corresponding node in the graph view.

12 Graph Statistics table showing per-node statistics

Conclusions
Intel FGA gives developers a comprehensive set of tools to examine, debug, and analyze Intel TBB flow
graphs. Applying it to our ADAS example application, we were able to quickly identify the most important
nodes for optimization. We were also able to determine that while there was some use of nested parallelism
in the OR use-case, there are still idle cores that we may be able to use to find additional parallelism.

Shortcut to Efficient Parallel Programming
inTel® Threading BUilding BloCks free

download

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2
https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2

As one of nature’s most extraordinary athletes, a hummingbird
beats its wings at an amazing 200 times per second. Now
you can deliver outstanding performance of your code to
achieve 187x faster code1 through vectorization, thread-safe
algorithms, industry-leading compilers and performance-
tuning tools. Let your app soar.

Try it today:
software.intel.com/intel-parallel-studio-xe #PurePerformance

1Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary.
You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit intel.com/performance.
See software.intel.com/en-us/intel-parallel-studio-xe/details#configurations for more details.
For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.
© Intel Corporation

The UlTimaTe
workhorse

http://software.intel.com/intel-parallel-studio-xe
http://software.intel.com/en-us/intel-parallel-studio-xe/details#configurations

welCome To The adUlT world, oPenmP*
Barbara Chapman, Professor, Stony Brook University, and Director of Computer Science and
Mathematics, Brookhaven National Laboratory

OpenMP* entered the world in 1997, at a time when:

• Fortran* was still the clear language of choice for technical computing.
• The term multicore had not entered the vernacular.
• Computer vendors were beginning to market desktop systems configured with two or more

processors that shared memory (SMPs).

Many in the field expected that SMPs would remain modestly parallel systems, with perhaps up to four
processors, as a result of technology limitations exposed by experience with shared-memory platforms in
the 1980s. Yet large distributed, shared-memory (DSM) machines were available, software DSM was

After 20 Years, It’s More Relevant than Ever

< The Parallel Universe 19

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 20

actively being researched, and the Tera MTA* system demonstrated another form of massive
multithreading.

Together with Mats Brorsson (who was then at the University of Lund), I organized the first European
Workshop on OpenMP (EWOMP) in 1999. Although the standard had been around for less than two years
at the time, it attracted plenty of papers and a lively audience. A large fraction of the participants were
application developers who were already using OpenMP for scientific research on large DSM platforms
and reporting, in some cases, astonishingly good results. Experimentation with hybrid programming
that combined MPI and OpenMP was already a topic of interest. Attendees demonstrated a good deal of
enthusiasm about the interface. They enjoyed both the simplicity of creating OpenMP programs and the
relative ease with which the behavior of the resulting parallel code could be understood.

More workshops were initiated that attracted researchers and scientific application developers who had a
specific interest in OpenMP. Participants from industry presented a variety of application codes, ranging
from databases through engineering product design. At the North American Workshop on OpenMP
Applications and Tools (WOMPAT), the first of which took place at the San Diego Supercomputing Center
in 2000, the program included a mix of presentations on application experiences, proposals for extensions
(including features for data placement on NUMA systems developed by Compaq), implementation
experience, and performance modeling. The Workshop on OpenMP Experiences and Implementations
(WOMPEI) was organized in Japan, where the active research and development on OpenMP included
serious efforts to translate OpenMP to clusters.

Overall, it proved difficult to attract application developers from business and industry to the workshops.
In the words of one major user, whose company’s hardware procurement decisions were largely dictated
by the requirements of their large-scale OpenMP programs, he didn’t need to go to a conference on
OpenMP because “it just works.” Some users in industry were satisfied with a modest to moderate
application speedup, potentially accomplished by parallelizing a piece of an overall computation.
Computer scientists, in contrast, were discovering more of the challenges associated with shared memory
in practice and proposing parallel program representations in the compiler, developing more efficient
translations, and devising enhanced runtime techniques. In addition, they created benchmarks that
helped application developers better understand the overheads incurred by different features, as well as
track the quality of individual implementations.

In 2005, the various regional workshops were merged into the International Workshop on OpenMP
(IWOMP), which has since then brought together researchers and members of the language committees
for several days each year to look at the latest ideas for features, implementations, and tools. IWOMP

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 21

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

contributions reflect the entire range of topics that influence the evolution of the specification: experience
reports that highlight the good and the not-so-good, proposals for new features and implementation
techniques, explorations of alternative means to overcome open challenges, consideration of new
hardware technology, strategies for improving the performance of existing constructs, and much more.

While the initial version of the specification was produced via a careful evaluation of prior experience with
shared-memory directives, today’s demands call for a more comprehensive approach. Fortunately, scientific
application developers and computer scientists have been actively exploring OpenMP enhancements ever
since it was announced. Their work has been essential for the continued evolution of OpenMP. Yet in the
early days, it was hard for researchers to directly contribute to the work of improving the specification. ARB
vendors wanted to be absolutely certain that those involved in making key decisions had the best interests
of the standard at heart and didn’t provide inexpensive membership options for academia. This was partly
a response to the commercial failure of the High Performance Fortran* (HPF*) standards effort, in which the
drawbacks of standard design via broad community participation had become all too apparent.

To enable participation by researchers who were keen to contribute their time and expertise, and with strong
encouragement by existing ARB members, I founded an organization called cOMPunity that subsequently
joined the ARB. The initial members of cOMPunity included Mark Bull from EPCC; Eduard Ayguade from
CEPBA, Barcelona; Dieter an Mey at the RWTH Aachen; Mitsuhisa Sato from the University of Tsukuba; and Rudi
Eigenmann from Purdue University. One of the notable things about this group, other than the fact that most of
them are still involved in some way, is the geographic diversity of their affiliations. Fortunately, it’s now very easy
for research organizations to join the ARB directly, and those with more than a passing interest in contributing
to the standard can gain direct membership. The OpenMP experience has, moreover, demonstrated that
researchers, too, can have a long-term interest in―and positive impact on―industry standards.

The computer systems on which OpenMP is deployed have undergone significant change since 1997.
From a very small number of shared-memory processors, through the multicore revolution and the
corresponding need for explicit parallelism in many applications, we are now in an era of heterogeneous
many-core computing. The diversity in the kinds of cores configured on today’s computing systems, the
differences in their capabilities, as well as in the nature of their resource sharing and connectivity, have
led to a large variety in the platforms that may be targeted. The core count continues to increase; the
memory system is undergoing major change and diversification as the vendors attempt to overcome size,
latency, and bandwidth limitations. There has also been change over the last 20 years in the nature of
the applications using OpenMP. From a time when parallelism was primarily exploited in scientific codes,
invariably written in Fortran, we have evolved into a period where an increasing variety of applications are

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

From the outset, OpenMP developers chose to take on the challenge of remaining

relevant in a rapidly changing world―and the OpenMP specification was never static.

parallelized, and where they may be written in C, C++, Fortran, or some combination thereof. OpenMP has
adapted to all of these changes.

From the outset, OpenMP developers chose to take on the challenge of remaining relevant in a rapidly
changing world―and the OpenMP specification was never static. Under able and forward-looking
leadership, it continuously evolved to fit in with its environment, from the addition of bindings for C and
C++, via a much more careful specification, up to features that support the most demanding applications
and systems today. The language committee has, moreover, been adept at identifying and integrating the
best new ideas for parallel application development from a variety of sources.

One of the biggest advantages of OpenMP from the application developer’s perspective is its portability.
Once its features are understood, an application can be adapted for deployment on a variety of vendor
platforms. Yet it’s taken an enormous effort to ensure that OpenMP remains suitable for application needs
across the different parallel computing systems available today. The language committee has tackled the
difficult problem of facilitating execution across heterogeneous cores without shared memory, and even
modified its mission statement accordingly. It’s added features to support the use of SIMD components.
It’s enhanced tasking features to increase their expressivity and enable them to address a wider variety of
coding problems. Features are desirable to help applications efficiently utilize new kinds of memory and
to increase data locality in their codes. The language committee is already looking into it.

Large-scale application developers―who have traditionally been willing to invest significant effort to
get their codes to run with very high efficiency on the largest computers on the planet―are beginning
to voice a new demand for performance portability. Underlying this term is a growing expectation that
their application code should execute well, with little to no modification, across a diverse range of parallel
computing systems. This is a very reasonable demand in view of the cost of moving a code from one
system to another. Yet OpenMP was conceived in an age where transparency of behavior was considered
vital and many of its users continue to place a premium on this characteristic. If OpenMP is to be useful
for performance-portable parallel application creation as well as for prescriptive parallel programming, a
non-trivial effort will be required.

< The Parallel Universe 22

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 23

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

The single most amazing thing about OpenMP is that after 20 years, it’s still relevant. Indeed, it’s used
more extensively than ever. And with implementations on all major platforms, it’s broadly available. More
user representatives than ever before participate in the committee meetings. Application developers are
more vociferous, with specific and sometimes highly demanding requirements. Major agencies such as the
U.S. Department of Energy, in its Exascale Computing Project, support efforts to ensure that OpenMP is
able to meet their requirements at scale. The work to evolve the specification is driven by an active team
of vendor representatives, along with participants from research laboratories and universities who have
committed themselves for the long haul. For a compiler-based programming interface, this is huge.

Still, much remains to be done. Despite the complexity involved, high-quality implementations must be
developed and made available faster. We need to help application developers transition codes written
using other programming interfaces to OpenMP. We need more tools to help those who are creating high-
performing, power-efficient code at scale. We must continue to support those who primarily want ease
of use and maintenance benefits. With the growth in scope and complexity, there’s a need for expanded
training programs targeting users with different levels of expertise. With the growing sophistication of
OpenMP application development, only a vibrant community of researchers, developers, trainers, and
users can satisfy these demands. Fortunately, OpenMP has such a community.

OpenMP
Enabling HPC Since 1997

learn
more

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://www.openmp.org/
http://www.openmp.org/

October 25
 9 a.m. PDT

ACCELERATING LOSSLESS DATA COMPRESSION
CODE FOR CLOUD AND EDGE APPLICATIONS

Discover how Intel® IPP’s highly optimized lossless data compression
functions can improve system performance.

November 1
 9 a.m. PDT

PARALLEL PROGRAMMING STANDARDS UPDATE:
MPI*, OPENMP*, AND INTEL® TBB

Get an overview of these long-lived parallel programming workhorses,
including their strengths and the types of problems each can help you solve.

Movember 8
 9 a.m. PDT

BETTER, FASTER, AND MORE SCALABLE:
THE MARCH TO EXASCALE

In 2018, Intel® MPI Library will upgrade to next-generation MPICH*—
the exascale source used by Argonne National Labs. See why it matters.

fall TeChniCal weBinars
Sharpen your skills.
Get expert answers.

Dive into new development areas.

fUTUre forward

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

Software

regisTer now > Browse arChive >

https://software.intel.com/articles/optimization-notice#opt-en
https://software.seek.intel.com/fall-webinar-series
https://software.intel.com/en-us/events/hpc-webinars/archive

enaBling fPgas for sofTware develoPers
Bernhard Friebe, Senior Director of FPGA Software Solutions Marketing, Intel Corporation, and
James Reinders, HPC Enthusiast

There couldn’t be a better time to examine field programmable gate arrays (FPGAs) (Figure 1). A new
era in computing is emerging thanks to the new programmability of FPGAs. With the onslaught of data
in the world, there’s an incredible need for the power-efficient computing available with custom silicon
designs—but with the flexibility available with the flexibility of FPGAs.

In this article, we share our thoughts on what it takes to truly enable FPGAs for software developers across
all fields—including three that we explicitly discuss:

1. Automotive
2. Networking (e.g., 5G)
3. End-to-end cloud computing (e.g., the data center)

Boosting Efficiency and Performance for Automotive, Networking, and Cloud Computing

< The Parallel Universe 25

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 26

We dive a little deeper into enabling the data center by discussing the acceleration stack and the open
programmable acceleration engine (OPAE). We don’t dive into any particular domain, such as machine
learning, which a complete solutions stack enables through encapsulation of FPGA IP (think library
routines implemented to use an FPGA). However, we do provide some links to explain more about the new
world of accessible FPGA programming that Intel is leading.

What’s an FPGA?
An FPGA is essentially a blank slate waiting for us to draw a circuit design onto it. We do this by writing
a description for the digital circuit we want, compiling it (FPGA developers call this synthesizing) into a
configuration file (called a bitfile) and loading it into the FPGA. Once loaded, an FPGA behaves like the digital
circuit we designed.

FPGAs are never permanently programmed. They don’t remember their program (bitfile/bitstream) when
powered off. In most systems, the FPGA is loaded at power-up—either from firmware on the board with the
FPGA, or programmatically by the host processor. The FPGA can be reloaded any time we want to change it.

The highly parallel architecture of FPGAs means that running computations on an FPGA will give better
performance, lower power, lower latency, and higher throughput than software. Imagine being able to
configure a hardware realization of a function and use that in our program. As we’ll discuss, the hottest topic
in the FPGA world is making FPGA programming more accessible to software developers. Intel is leading the
way to making this happen.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

1 Intel® Stratix® 10 FPGA

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 27

2 The move to 5G

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

The Data Explosion
Three examples where Intel® FPGAs are key to delivering faster speeds, ultra-low latency, power-efficiency,
and enormous flexibility are autonomous and assisted driving, accelerated networking (including 5G and
software-defined networking, or SDN), and cloud computing (including high-performance deep neural
network, or DNN inference). In all three usages, big data is part of why the parallel processing architecture of
FPGAs is so critical.

Automated Vehicles
Automated vehicles, including those offering autonomous driving, are possible because of a combination
of computation in the car, the networking, and the data center. Automated vehicles generate and use huge
amounts of data to navigate safely. It takes about 1GB/second of real-time processing, while the time from
sensing to reacting must be less than one second for safety reasons. For example, Intel processing power
is part of the 2018 Audi A8* Autonomous Driving System. In that design, Intel FPGAs handle the object
fusion, map fusion, parking, pre-crash, processing, and functional safety aspects of the self-driving car.

Networking and 5G
Networks are expanding rapidly, with 1000X increases in bandwidth, 100X increases in devices, and
requirements for 1ms end-to-end round trips. FPGAs are critical in meeting these demands. With devices
supporting 100Gb/second just gaining adoption, IEEE 802.3’s 400 Gb/s Ethernet Study Group (started
in 2013) is expected to result in a standard this year for 400Gb/second. With efforts well underway to
standardize 5G, we are nearing a point where data carried on wireless networks will exceed that of purely
wire-based networks (Figure 2).

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.engadget.com/2017/07/11/audi-introduces-its-semi-autonomous-a8/

< The Parallel Universe 28

Cloud Computing
IDC has said that the total data in the world was about 4.4 zettabytes in 2013, 8.6 zettabytes in 2015, and
will grow to 44 zettabytes by 2020, when it has been predicted that there will be as many as 50 billion
devices connected to the Internet. Cloud computing has demands in the data center, on the edge, and
everywhere in between. It demands scale, throughput, performance/watt efficiency, flexibility, and low
latency. Again, FPGAs are critical in meeting these demands.

The Computing Imperative:
More Parallelism, Less Power, Greater Flexibility
To make sense of this flood of data, we need to automate decision-making, have real-time insights into
what connected devices are telling us, and present interactive and intuitive user connections to this data.
Without accelerated computing, scale-out of many applications (e.g., artificial intelligence) will prove
impractical. New computing requirements demand more parallelism, lower power consumption, and
a degree of flexibility never before seen in accelerators. To meet this need, hardware platforms—from
the edge to the cloud—have been evolving to include mixtures of CPUs and accelerators. FPGAs play
a critical role in the trend toward heterogeneous computing platforms that are highly parallel, power-
efficient, and reprogrammable. In short, FPGAs enable hardware performance with the programmability of
software. However, the FPGA programming model has typically been hardware-centric. As FPGAs become
a standard component of the computing environment, with users expecting the hardware to be software-
defined, they must be accessible not just by hardware developers, but by software developers.

FPGA Programming for a Software World
FPGAs have been around for years to solve hardware design problems. Their programmability was done
exclusively in terms familiar to hardware designers instead of via any programming language designed
for software development. New FPGA designs aimed at supporting software development instead of just
hardware replacement designs, coupled with new software development tools, make FPGA programming
worth a serious look by software developers.

This shift reminds us of the development of GPU programming methods, but with the advantage that
FPGAs are not predesigned with a particular use in mind (i.e., graphics processing). This flexibility ushers in
a new era in computing like none before it.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Completing the Solution Stack for FPGAs
Pioneers in using FPGAs as programmable accelerators have come a long way with very few tools to help
them. They have lived with a foot in the world of hardware design as they programmed using a hardware
description language (HDL) such as Verilog* or VHDL*. A few years ago, we surveyed people interested in
FPGA development. A telling comment we heard was “There’s a community of FPGA developers out there;
the [various FPGA] forums are both pretty active; and there’s a lot of literature available. That being said,
it’s a community of mostly hardware engineers—and a software developer might have trouble having their
questions answered.” While this is changing, the comment is still very important because fewer than one
in 10 people surveyed felt comfortable programming in VHDL or Verilog despite expressing an interest in
FPGAs. In the same group, over 90 percent of software developers knew C, C++, or OpenCL*, and over 75
percent said they would prefer to depend on libraries to exploit FPGA functionality. Therefore, it makes
sense that Intel’s next generation of FPGA tools focus on C, C++, OpenCL, and libraries.

The software stack continues to rely on hardware flows as always, but the complete solutions stack (Figure
3) provides programming layers that give efficient but software-friendly interfaces. These new methods
don’t abandon traditional FPGA tools—which remain available, and have improvements of their own. With
a complete solutions stack for FPGAs, however, programming mirrors what we find in the CPU world—
deep architectural expertise goes into compilers and libraries, which are accessible to programmers whose
expertise is in other areas (i.e., science and engineering disciplines other than computer architecture). There
is a separation of concerns between application developers using FPGAs via FPGA IP and those who develop
the FPGA IP. A complete solutions stack makes this new way of thinking about FPGA programming possible.

< The Parallel Universe 29

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

3 Complete solutions stack empowers both software and hardware developers

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 30

Acceleration Stack for Intel® Xeon® Processors with FPGAs
Intel is investing in FPGA design, programming tools, and libraries to bring about this complete solutions
stack for FPGAs. We will discuss how this is happening for cloud computing and particularly within the
data center.

The acceleration stack for Intel® Xeon® processors with FPGAs (Figure 4) is a robust collection of software,
firmware, and tools designed and distributed by Intel to make it easier to develop and deploy Intel FPGAs
for workload optimization in the data center. It provides optimized and simplified hardware interfaces
and software APIs so that software developers can focus on the unique value-add of their own solutions.
Unprecedented code reuse is now possible with our common developer interface for Intel FPGAs. For
even faster time to market, system-optimized reference libraries are provided for some domains, making
it possible for application developers with little to no prior FPGA experience to use Intel FPGAs to
supercharge performance.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

4 Abstracting and managing FPGAs

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 31

An Elegant Solution for using FPGAs in a Software World
Intel aims to make FPGAs accessible through ordinary library calls. Early FPGA users successfully pursued
similar approaches, but without portable standards. Consider a standard framework (Figure 5) that gives:

• Application developers a standard framework or SDK to indicate required functionality, and then
provides FPGA-accelerated versions of that functionality. These developers continue to program in C,
C++, Fortran, or some other high-level language with a C interface (e.g., Python*). This allows users to
tap into the broader community of open source and commercial tools developers.

• Systems a standard way to access and use FPGAs they deploy. Data center operators, for instance, can
use the open programmable acceleration engine (OPAE) in their acceleration stack to manage FPGAs
in a data center environment.

• FPGA code developers a standard way to package and share accelerated routines. These developers
will use OpenCL or some other method (e.g., an HDL/RTL such as VHDL or Verilog) to precisely tune
and export their FPGA routines.

System owners use the framework to allow applications to load/unload the FPGA packages they need.
Application developers use the framework to request and use FPGA packages, while still doing all
programming in a high-level language. FPGA programmers can use low-level languages to create FPGA
modules and package them for use by application developers.

Open Programmable Acceleration Engine (OPAE)
To help realize this acceleration stack in data centers, Intel helped create the Open Programmable
Acceleration Engine (OPAE) (Figure 6). OPAE runs on the processor and handles all the details of the FPGA
reconfiguration process. The OPAE also provides libraries, drivers, and sample programs that can be used
to develop routines for the FPGA. It offers consistency across product generations by abstracting hardware-
specific FPGA resource details. It’s designed for minimal software overhead and latency and offers a
lightweight user-space library (libfpga). OPAE supports both virtual machines and bare-metal platforms.

The OPAE C API allows software systems to interface with FPGAs. The API provides device- or platform-
specific extensions to model specific features of target architectures. For example, Intel has created
a platform-specific API extension to expose a low-latency notification mechanism over the coherent
memory interconnect of the Intel Xeon processor with Integrated FPGA, which is included as part of the
Intel FPGA IP library.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 32

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

5 Intel® Xeon® processor acceleration stack for FPGAs

6 Acceleration environment

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 33

A key capability of Intel FPGAs is the ability to dynamically reconfigure a portion of an FPGA while the
remaining design continues to function. This allows us to reconfigure regions of the FPGA at runtime to
implement different functionality as needed. The OPAE takes advantage of partial reconfigurability via
distinct bitstreams. This is FPGA lingo for compiled FPGA programs. The FPGA interface manager (FIM,
nicknamed blue bitstream) contains the logic to support FPGA accelerators, including the PCIe* IP core,
the CCI-P* fabric, the onboard memory interface, and the management engine. The accelerator functional
units (AFUs, nicknamed green bitstream) are the compiled versions of our custom functionality. An AFU
is an accelerated computational routine, implemented in FPGA logic, which OPAE offloads to an Intel
FPGA to improve performance. OPAE supports multiple slots for AFUs on the same FPGA. This makes it
reasonable for us to think of AFUs as libraries of FPGA-accelerated functions that applications can load
and use, with the ability to have multiple libraries (AFUs) active at the same time.

Intel also supports an AFU simulation environment (ASE), a code development and simulation tool suite
available in the Intel® QuickAssist Accelerator Abstraction Layer Software Development Kit. It allows testing
of OPAE-enabled software applications against AFU simulations. It aims to provide a consistent transaction-
level hardware interface and software API that allows users to develop and debug production-quality AFU
and host applications that can then be run on the real FPGA system without modifications.

FPGA IP Libraries: Acceleration Libraries
We mentioned earlier that there was plenty of opportunity for FPGA experts to continue using RTL/HDL
to write highly-optimized code. However, what’s new for FPGAs is the ability to package such expertise in
a standard way, essentially as a library, to be used by application developers who are not FPGA experts.
We refer to such libraries as FPGA IP libraries, and the opportunities for writing them seem endless.
FPGA IP libraries could help applications in diverse fields like machine learning, genomics, data analytics,
networking, autonomous driving, beam forming, or anything else that can benefit by having an FPGA do
it in hardware to give us enormous parallelism, low latency, and flexible and power-efficient capabilities.
Not surprisingly, Intel has taken the initiative to write an FPGA IP library to help with the basic—but
important—functionality to use FPGAs. This library helps bootstrap the rest of us and serves as an
example of an FPGA IP library and how it easily integrates into the complete solution stack.

Intel FPGA IP Library
The Intel® FPGA IP Library is a lightweight user-space library that provides abstraction for Intel FPGA IP
resources in a compute environment. Built on top of the driver stack that supports an Intel FPGA IP device,
the library abstracts away hardware- and operating system (OS)-specific details and exposes the underlying
Intel FPGA IP resources as a set of features accessible from within software programs running on the host.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 34

These features include the acceleration logic preconfigured on the device, as well as functions to manage
and reconfigure the device. The library enables user applications to transparently and seamlessly leverage
Intel FPGA IP-based acceleration.

By providing a unified C API, the Intel FPGA IP library supports different kinds of integration and deployment
models, ranging from single-node systems with one or more Intel FPGA IP devices to large-scale
deployments in a data center. A simple use-case, for example, is for an application running on a system
with an Intel FPGA IP PCIe device to easily use the Intel FPGA IP to accelerate certain algorithms. At the
other end of the spectrum, resource management and orchestration services in a data center can use this
API to discover and select Intel FPGA IP resources and then divide them up to be used by workloads with
acceleration needs.

Intel FPGA SDK for OpenCL
For FPGA developers who want to create custom accelerator functions to run on Intel FPGAs, the acceleration
stack provides the Intel® FPGA SDK for Open Computing Language (OpenCL). OpenCL is an industry
standard, C-based programming language that allows users to abstract away the traditional hardware
FPGA development flow and use a faster, higher-level software development flow. With the Intel FPGA SDK
for OpenCL, you develop FPGA designs in C using a high-level software flow. We can emulate OpenCL C
accelerator code on an x86-based host in seconds, get a detailed optimization report with specific algorithm
pipeline dependency information, or prototype the accelerator kernel on a virtual FPGA fabric in minutes.

Summary
Intel is leading the FPGA world with highly programmable FPGA solutions. The time is right to examine the
programming aspects of FPGAs. Moore’s Law has given FPGA designers a lot to work with, and the designers,
in turn, have used those transistors to add features with software programmability in mind. OpenCL
has given a boost for connecting FPGA developers with application needs. And now Intel has released a
framework to help system owners, application developers, and FPGA programmers interact in a standard
way—a real advantage when using Intel FPGAs through a common developer interface, tools, and IP that
make it easier to leverage FPGAs and reuse code.

learn
moreinTel® C++ ComPilers

Speed Your Application’s Performance

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.intel.com/en-us/c-compilers/
https://software.intel.com/en-us/c-compilers/

< The Parallel Universe 35

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

Explore This Topic in Depth
• Intel landing page for FPGA programming
• Intel information on the Intel Xeon processor acceleration stack for FPGAs
• Open Programmable Acceleration Engine (OPAE)
• Overview paper: The Open Programmable Acceleration Engine (OPAE)
• Intel® FPGA SDK for Open Computing Language* (OpenCL*)
• Intel FPGAs for AI
• Intel® FPGA product overviews
• Talk: Inside Microsoft’s FPGA-Based Configurable Cloud by Mark Russinovich, CTO, Azure
• Intel’s Autonomous Driving Press Kit (lots of links)
• Forbes Insights: The Coming Data Avalanche – and How We’ll Handle It
• Accelerating the Future: The Economic Impact of the Emerging Passenger Economy
• FPGA for Dummies and other introductory materials
• Accelerate FPGA development with C++ using Intel® HLS Compiler

Blog highlighTs

Read more >

Intel® Computer Vision SDK—A Brief Overview
BY MARTIN K., INTEL CORPORATION

Earlier this month the Intel® Computer Vision SDK Beta was released. This SDK allows
developers to make their computer vision applications more accurate and faster. This week, I
had the pleasure of sitting down with Tudor Panu in order to talk to him about what the Intel
CV SDK is, a demo showing off some capabilities, and how developers can leverage the SDK for
their computer vision projects. You can watch the full discussion here.

In this blog, I would like to share what I learned about the Intel CV SDK and share some
resources to help get you started in developing computer vision applications.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://lotsofcores.com/FPGA
http://lotsofcores.com/XAS4F
https://01.org/OPAE
http://lotsofcores.com/OPAE
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/solutions/technology/artificial-intelligence/overview.html
https://www.altera.com/products.html
https://channel9.msdn.com/events/Build/2017/B8063?term=FPGA-Based%20Configurable%20Cloud
https://newsroom.intel.com/press-kits/autonomous-driving-intel/
https://www.forbes.com/forbesinsights/intel_semiconductor_index/
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/05/passenger-economy.pdf
https://www.intel.com/content/www/us/en/fpga/solutions.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://software.intel.com/en-us/blogs/2017/08/31/cv-sdk-a-brief-overview
https://www.facebook.com/IntelDeveloperZone/videos/10154895430807338/

amazing
Powered By inTel

Tomorrow’s HPC innovations will be powered by
amazing technologies that speed discovery and

invention. See them at Intel® HPC Developer
Conference 2017. You’ll meet industry luminaries

sharing best practices and techniques.
Get hands-on experience with Intel platforms.

Network with peers and industry experts.
And gain insight on new ways to maximize

software efficiency and drive discovery.

November 11-12
Denver, CO

inTel® hPC develoPer
ConferenCe 2017

learn more & regisTer >

Software

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

https://www.intel.com/content/www/us/en/events/hpcdevcon/overview.html
https://software.intel.com/articles/optimization-notice#opt-en

modernize yoUr Code for PerformanCe,
PorTaBiliTy, and sCalaBiliTy
Jackson Marusarz, Technical Consulting Engineer, Intel Corporation

Whether you’re working on HPC clusters, remote clouds, local workstations, or anything in between,
Intel® Parallel Studio XE is a workhorse—with compilers, libraries, and tools to help you improve your
productivity and application performance. And Intel continues to innovate with the latest release of
Intel Parallel Studio XE. Besides adding support for the newest hardware and programming language
standards, several new features address growing technologies and new environments.

What’s New in Intel® Parallel Studio XE

< The Parallel Universe 37

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-studio-xe
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 38

Hardware
Tools in Intel Parallel Studio XE have support for the latest hardware including Intel® Xeon Phi™ processors
and the Intel® Xeon® Scalable processor family. Taking advantage of the 60-plus cores (200-plus threads)
on Intel Xeon Phi processors and the latest Intel® AVX-512 vectorization instructions on these platforms
moves your application performance into the future―and this latest tool suite helps you get there.

Compilers
The Intel® C/C++ and Fortran* compilers have updates for many of the latest standards without sacrificing
performance. The Intel C/C++ compiler has full support for C11 and C++14, as well as initial C++ 17
support. The Fortran compiler has full Fortran 2008 and initial Fortran 2015 support. Also, to help take
advantage of growing core counts and vector registers, this release adds Parallel Standard Template
Library (Parallel STL) for parallel and vector execution of the C++ STL and initial OpenMP* 5.0 draft
support. Using the Intel compiler is often as easy as switching a few variables in a Makefile* or integrating
with your environment like Microsoft Visual Studio* or Xcode*. Try out a free evaluation to see if you can
boost your application’s performance.

High-Performance Python*
The latest release of the Intel® Distribution for Python* improves the speed of many common libraries
and algorithms, especially in data analytics (Figure 1). The new optimizations in the SciPy* library
and NumPy* package provide speedups for scikit-learn*, one of the most popular machine learning
packages. The Intel Distribution for Python also leverages the Intel® Data Analytics Acceleration
Library (Intel® DAAL) through the pyDAAL interface. For some algorithms in scikit-learn, speedups as
high as 140X have been achieved.

This release also includes an OpenCV* package accelerated with Intel® Integrated Performance Primitives.
OpenCV is a popular library used for computer vision across many disciplines.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://www.intel.com/content/www/us/en/products/processors/xeon-phi.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html?wapkw=avx-512
https://software.intel.com/en-us/c-compilers/ipsxe
https://software.intel.com/en-us/fortran-compilers
https://software.intel.com/en-us/intel-parallel-studio-xe
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/intel-daal
https://software.intel.com/en-us/intel-daal
http://opencv.org/
https://software.intel.com/en-us/intel-ipp
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 39

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

Performance Libraries
Intel Parallel Studio XE comes with several libraries designed to ease the burden of creating high-
performance software. This latest release builds on that motivation with improved algorithms and
usability across the board.

Intel® Math Kernel Library (Intel® MKL)
Intel® MKL implements some of the most common mathematical routines in highly optimized, hand-
tuned versions to take advantage of the latest processor features. Several improvements have been
made targeting batched and compact operations, allowing users to run large groups of linear algebra
computations more efficiently. This is done using the Batch and Compact APIs. [Editor’s note: The Batch
API is discussed in “Introducing Batch GEMM Operations” on Intel® Developer Zone. The Packed API was
discussed in “Reducing Packing Overhead in Matrix-Matrix Multiplication” in The Parallel Universe Issue
27.] Intel MKL takes care of the grouping and parallelization behind the scenes. Also, this release adds 24
new vector math functions, providing a wider range of highly optimized routines to choose from.

1 Python performance as a percentage of C++/Intel DAAL on Intel Xeon processors (higher is better)

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/articles/introducing-batch-gemm-operations
https://software.intel.com
https://software.intel.com/sites/default/files/managed/75/b0/parallel-universe-issue-27.pdf
https://software.intel.com/sites/default/files/managed/75/b0/parallel-universe-issue-27.pdf

< The Parallel Universe 40

Intel® Integrated Performance Primitives (Intel® IPP)
Intel® IPP provides performance-optimized, low-level building blocks for image, signal, and data
processing (data compression/decompression and cryptography) applications. The latest version of Intel
IPP has again boosted many performance-sensitive algorithms, including the addition of SSE4.2 and AVX2
vector instructions for LZO (Lempel–Ziv–Oberhumer) data compression. Also, the previous dependency
the cryptography package had on the main library has been removed, making it easier to take advantage
of the powerful cryptography algorithms included in Intel IPP.

Intel® Threading Building Blocks (Intel® TBB) and Parallel STL
Developers looking to parallelize their C++ applications have known about Intel® TBB for years. The open-
source library has been improved upon again and again, and this year Intel TBB is being used in the Intel
implementation of the Parallel STL.

Analysis Tools
Intel Parallel Studio XE Professional and Cluster editions include several tools to help analyze, tune, and
debug applications in increasingly complex hardware and software ecosystems.

Intel® Advisor
Whether you’re looking to add performance through parallelism or vectorization, Intel® Advisor can
help. Which functions and loops should I target for optimizations? What’s preventing the compiler from
vectorizing my code? How much will my performance improve if I make the recommended changes? Intel
Advisor is designed to answer questions like these. The 2018 version of Intel Advisor includes the cutting-
edge Roofline Analysis feature to pinpoint memory bottlenecks—specifically, loops suffering from poor
vectorization or memory locality (Figure 2).

Use Intel Advisor to easily determine where and how your code can benefit from advances in the latest
technologies like AVX-512 and the highly-parallel Intel Xeon and Xeon Phi architectures.

Intel® VTune™ Amplifier―Now including Performance Snapshot
Intel® VTune™ Amplifier is a powerful analysis tool with built-in expert guidance to help you understand and
boost your application’s performance. And now it includes Performance Snapshot (Figure 3), a quick and
easy-to-use script that provides a high-level view of an application’s use of available hardware (CPU, FPU,
and memory). Whether you’re parallelizing with MPI, OpenMP, or both, time spent inside these libraries or
time spent waiting for parallel work to complete can quickly degrade performance.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.intel.com/en-us/intel-ipp
https://software.intel.com/en-us/intel-tbb/
https://software.intel.com/en-us/intel-advisor-xe/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 41

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

3 Intel® VTune™ Amplifier Performance Snapshot

2 Intel® Advisor Roofline Analysis

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Additionally, letting floating-point units sit idle or stalling CPUs while they wait for memory accesses can
leave lot of performance on the table. Use Performance Snapshot to reclaim these lost cycles.

Intel VTune Amplifier is also adding features for users taking advantage of new technologies like
containerization and cloud computing. It’s now possible to profile applications running in Docker* and Mesos*
containers or attach an Intel VTune Amplifier performance analysis to a running Java* service or daemon.

Intel® Inspector
Optimizing applications for performance is as important as ever, but it’s all for naught if an application
doesn’t run correctly. Intel Inspector automatically checks your application for threading and memory errors
as it runs. These hard-to-diagnose issues may not be detected through standard tests that rely on incorrect
results. However, the algorithms in Intel Inspector can detect issues that may cause a problem in the future,
like memory leaks and non-deterministic race conditions. We’ve added more advanced locking models in
this release and, because Intel Inspector doesn’t require any special recompilation, it just takes a few clicks to
get a profile started and see what issues may be hiding in your code.

Cluster Tools
Cluster computing used to be confined to a limited audience that needed remote access to large, often strictly
managed clusters. Now, with the ubiquity of cloud computing resources and processors like the Intel Xeon Phi
processor―with enough cores to act like a single-node cluster―cluster computing is expanding its reach. Intel
has always been in this field, and the tools in the Cluster Edition of Intel Parallel Studio XE reflect that experience.

The latest version of Intel® MPI Library includes significant optimizations to application startup and
finalization, enhancing productivity and scalability.

Intel® Trace Analyzer and Collector now supports OpenSHMEM*, which has growing interest in the
partitioned global address space (PGAS) community.

A recent addition to the suite of tools is Intel® Cluster Checker, which uses a built-in expert system
to diagnose cluster issues and propose actionable remedies. [Editor’s note: Intel Cluster Checker is
discussed in greater detail in Is Your Cluster Healthy? in this issue.]

Intel Cluster Checker performs tests to identify issues with cluster functionality, performance,
and uniformity, including on the latest Intel® hardware and software. The tool is useful for system
administrators who frequently check cluster status. Now the API gives developers access to these
diagnostics and can provide analyses specific to their needs.

< The Parallel Universe 42

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-mpi-library/
https://software.intel.com/en-us/intel-trace-analyzer
https://software.intel.com/en-us/intel-cluster-checker
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 43

Hardware and Software are Evolving
Creating applications to meet the demands of today’s ecosystem is hard enough. Add to that the requirement
of seamlessly adapting to future platforms and environments and keeping up becomes a huge challenge.
Adopting tools like those in Intel Parallel Studio XE makes it easier and more efficient to design scalable, high-
performance software. Try it out for free today and prepare your code for the platforms of tomorrow.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

Blog highlighTs

Read more >

Create High-Performance, Scalable, and Portable Parallel Code with
New Intel® Parallel Studio XE 2018
BY HENRY GABB, INTEL CORPORATION

Intel® Parallel Studio XE is our flagship product for software development, debugging, and tuning
on Intel® processor architectures for HPC, enterprise, and cloud computing. It is a comprehensive
tool suite that contains everything from compilers and high-performance math libraries all the
way to debuggers and profilers for large-scale cluster applications. These tools enable developers
to exploit the full performance potential of Intel® processors. Intel Parallel Studio XE is designed to
help devs create high-performance, scalable, reliable parallel code—faster.

The latest release, Intel Parallel Studio XE 2018, contains many new and interesting features1.
Let’s start with parallelism. It’s in the product name, after all. Software development and...

inTel® Parallel sTUdio Xe
Modernize Your Code for Pure Performance

download
free Trial

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/blogs/2017/08/28/fast-forward-parallel-programming-for-the-future
https://software.intel.com/en-us/parallel-studio-xe/choose-download
https://software.intel.com/en-us/parallel-studio-xe/choose-download

BUild BeTTer,
fasTer Code

Get Intel’s powerful, award-winning performance libraries to
optimize your code and cut your development time.
They’re free as part of Intel’s mission to support innovation
and impressive performance on Intel® architecture.

free download >
For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

Software

https://software.intel.com/en-us/performance-libraries
https://software.intel.com/articles/optimization-notice#opt-en

dealing wiTh oUTliers
Oleg Kremnyov, QA Engineer; Mikhail Averbukh, Software Engineer; and Ivan Kuzmin,
Software Engineering Manager; Intel Corporation

One challenging―but also very important―task in data analytics is dealing with outliers. We generally
define outliers as samples or events that are inconsistent with the rest of data population1. An outlier
often contains useful information about abnormal characteristics of the systems and entities that impact
the data generation process2.

Common applications for outlier detection algorithms include:

• Intrusion detection systems
• Credit card fraud
• Interesting sensor events
• Medical diagnosis

How to Find Fraudulent Transactions in a Real-World Dataset

< The Parallel Universe 45

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 46

In this article, we’ll focus on one of the most common applications of outlier detection—credit card
fraud. With some simple outlier detection approaches, it’s possible to find 75 to 85 percent of fraudulent
transactions―with false alarms less than 1 percent of the time―on a real-world dataset.

Defining the Approaches
There are two basic approaches to detecting outliers:

1. Supervised, where we use fraudulent and non-fraudulent examples to predict the class of a new
observation

2. Unsupervised, where we don’t have labeled examples and detect fraudulent examples as outliers or
abnormalities

Breaking it down further, there are three basic supervised approaches:

1. Neural networks
2. SVM
3. Logistic regression

Unsupervised approaches include:

1. Statistical-based techniques like BACON* outlier detection
2. Multivariate outlier detection
3. Clustering-based techniques3, 4 like k-means, expectation-maximization (EM), and DBSCAN*5, an

algorithm that detects noise in data that can be treated as outliers6.

We’ll compare these techniques and evaluate each methodology based on certain design criteria.
Accuracy metrics will include both detection and false positive rates7.

It’s important to remember that fraud detection is about more than capturing fraudulent events. It also
requires capturing these activities as quickly as possible—so an algorithm’s performance is an important
metric8. In our test, we’ll use some popular machine learning libraries, including Intel® Data Analytics
Acceleration Library (Intel® DAAL), that implement algorithms for outlier detection to compare results for
both accuracy and performance.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.intel.com/en-us/intel-daal
https://software.intel.com/en-us/intel-daal
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 47

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

Dataset Description
We used a dataset9 from Kaggle*, a platform for predictive modeling and analytics competitions in which
companies and researchers post their data and statisticians and data miners from all over the world
compete to produce the best models10. We chose the most popular real-world dataset on credit card
fraud detection from Kaggle11. It contains 31 numerical input variables (Figure 1).

The time attribute represents seconds elapsed between each transaction and the first transaction in the
dataset. Amount represents the transaction amount, as the name implies. The remaining 28 features are the
principal components obtained with PCA. The original features are not provided due to confidentiality issues.

Class is the response variable. It equals 1 in case of fraud and 0 otherwise. The dataset is highly
unbalanced because fraud transactions are far less common than normal ones. Frauds represent only
0.172 percent of all transactions (492 frauds out of 284,807 transactions).

Let’s take a look at conditional distributions of some of principal components (Figures 2 and 3). Principal
components are not correlated, so dropping those with similar conditional distribution for fraudulent
and normal examples could help us build more accurate models. We’ll use a point-biserial correlation
coefficient12 to measure the relationship between each principal component and target variable (Table 1).
We’ll use this information later for feature engineering.

Credit Card Fraud Detection Approaches
Now we’ll apply different outlier detection techniques to the data, evaluate their accuracy and performance,
and compare them. For credit card fraud detection, we’ll use both supervised and unsupervised methods.

1 Dataset attributes

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 48

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

3 Attribute with different distribution between two types of transactions

2 Attribute with similar distribution between two types of transactions

Table 1. Point-biserial correlation coefficients for principal components

Variable Coefficient Variable Coefficient Variable Coefficient Variable Coefficient
V22 0.000805 V28 0.009536 V2 0.091289 V7 0.187257
V23 0.002685 V27 0.017580 V5 0.094974 V3 0.192961
V25 0.003308 V8 0.019875 V9 0.097733 V16 0.196539
V15 0.004223 V20 0.020090 V1 0.101347 V10 0.216883
V26 0.004455 V19 0.034783 V18 0.111485 V12 0.260593
V13 0.004570 V21 0.040413 V4 0.133447 V14 0.302544
V24 0.007221 V6 0.043643 V11 0.154876 V17 0.326481

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 49

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

Unsupervised Approaches
Statistical approaches were the earliest algorithms used for outlier detection13. We’ll start from outlier-
detection-specific algorithms―multivariate outlier detection and BACON* outlier detection. A great
advantage of these methods is that they are so computationally efficient that it’s easy to apply them to
large datasets14. We achieved the best results with six principal components with a high point-biserial
correlation coefficient (V11, V12, V14, V16, V17, V18) as features. We used implementations from Intel
DAAL and the R* package robustX*. Multivariate outlier detection gave better results for accuracy than
BACON outlier detection (Table 2).

Algorithm Detection
Rate, %

False
Positive
Rate, %

Perfor-
mance,
msec

Multivariate outlier detection, Intel DAAL (threshold = 8.0) 83.54 0.20 16.16

Multivariate outlier detection, Intel DAAL (threshold = 7.0) 84.55 0.41 17.29

BACON outlier detection, Intel DAAL (alpha = 1e-9,
initMethod = baconMahalanobis) 84.55 0.70 82.25

BACON outlier detection, R (alpha = 1e-9,
initMethod = baconMahalanobis) 84.73 1.80 1,860

BACON outlier detection, Intel DAAL (alpha = 1e-9,
initMethod = baconMedian) 84.55 0.70 78.14

ON outlier detection, R (alpha = 1e-9,
initMethod = baconMedian) 84.55 1.80 808

Table 2. Statistical-based outlier detection approaches

Clustering and outlier detection have a complementary relationship. In clustering, the goal is to partition
the points into dense subsets. In outlier detection, the goal is to identify points that don’t seem to fit
naturally into these dense subsets2. Some clustering algorithms, like DBSCAN*, provide sub-products,
which can be considered outliers.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 50

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

There are many clustering-based approaches to outlier detection2,3,4,15. We’ll apply some of them in
our tests. Clustering is inherent in credit card fraud because perpetrators usually produce a group of
fraudulent transactions16.

There are two types of outliers, local and global. Different clustering-based algorithms can detect both types.
The attribute values of a global outlier are outlying with respect to the values taken by the majority of the data
points. The attribute values of a local outlier are extreme when compared to those of its neighbors17.
To detect global outliers, we can perform clustering on a dataset and define some clusters as outliers18
(Table 3). We’ll perform clustering with k-means and EM, treating small clusters as outliers19. Values of k
and n_components were obtained by grid search from range [2, 3, …, 50]. We used the same initial centroids
for k-means for Intel DAAL and Scikit-learn*, obtaining them with k-means++ initialization using the
implementation in Intel DAAL. We achieved the best results using 17 principal components with high point-
biserial correlation coefficients as features. With these methods, we achieved a relatively low false positive rate.

Algorithm Detection
Rate, %

False
Positive
Rate, %

Perfor-
mance,
msec

k-means, Intel DAAL (k=20, 10 iterations), detection of clus-
ters of outliers 76.42 0.02 30.15

k-means, Scikit-learn (k=20, 10 iterations), detection of clus-
ters of outliers 76.42 0.02 1,975.49

EM-GMM, Scikit-learn (n_components=7), detection of clus-
ters of outliers 81.10 0.09 73,490.88

Table 3. Clustering-based methods for global outlier detection

We’ll also apply clustering techniques that can detect local outliers20. A naïve approach is to cluster the
transactions using the k-means algorithm21 and treat points far from cluster centers as outliers (Table 4).

We obtained a good rate of detections. However, the number of false alarms is high. The reason is that the
k-means algorithm is extremely sensitive to outliers, which have a large impact on cluster configuration. As
a result, data points that should be declared as outliers are masked by the clustering. Thus, we need to use
a robust version of k-means that can gracefully handle the presence of outliers―k,l-means15 (Table 5). Like
k-means, this algorithm requires initial centroids. We’ll compute them with different initialization algorithms
available in Intel DAAL―random, k-means++22, and k-means||23―and compare the results.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 51

Algorithm Detection
Rate, %

False
Positive
Rate, %

Perfor-
mance,
msec

k-means, Intel DAAL (k=7, 10 iterations), detection of local
outliers 80.08 0.94 26.94

k-means, Scikit-learn (k=7, 10 iterations), detection of local
outliers 80.08 0.94 1,210.25

Table 4. K-means-based method for local outliers detection

Algorithm Detection
Rate, %

False
Positive
Rate, %

Perfor-
mance,
msec

k,l-means(k=10, l=800, 5 iterations, random init method) 81.71 0.14 165.15

k,l-means(k=10, l=1000, 5 iterations), random init method) 83.13 0.21 167.05

k,l-means(k=10, l=2000, 5 iterations), random init
method) 85.16 0.56 169.03

k,l-means(k=10, l=2000, 5 iterations), k-means++ init
method) 84.95 0.55 169.46

k,l-means(k=10, l=2000, 5 iterations), k-means|| init
method) 81.30 0.55 179.84

Table 5. K,l-means algorithm results

We can see that this approach provides better accuracy than naïve k-means. Results are different for
different initializations. The random method proved to be the best for this problem.

We’ll also use a density-based clustering algorithm that can detect noise in data (Table 6). A point is
detected as noise if it differs significantly from its neighbors. A natural assumption is to treat noise data as
local outliers. We used the same six features as for statistical methods. Values of parameters were obtained
by grid search. We used the R package dbscan*. We reached a good level of detected frauds with a moderate
level of false alarms. However, the performance is significantly worse compared to previous approaches.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 52

Algorithm Detection
Rate, %

False
Positive
Rate, %

Perfor-
mance,
msec

DBSCAN, R (eps = 1, minPts = 8) 82.52 0.43 181,214

DBSCAN, R (eps = 0.9, minPts = 8) 84.35 0.64 121,348

Table 6. Dbscan for outlier detection

Supervised Approaches
Supervised learning methods require training data that contain examples of each class—in our case,
normal and fraudulent transactions2. We’ll divide our dataset into training and evaluation sets, with 80
percent of the data used for training and 20 percent used for model evaluation.

We start with the neural network (Table 7) proposed in the Kaggle kernel24. A simple multi-layer perceptron
with three hidden layers was used by the kernel author. Multi-layered perceptrons (MLPs) are widely used
neural networks for classification as well as outlier detection25.

Algorithm Detection
Rate, %

False
Positive Rate,

%

Performance,
msec

(Training)

Performance,
msec

(Prediction)

Neural network, TensorFlow 82.93 0.10 48,005.41 7.62

Table 7. Neural network

Another supervised learning algorithm used in outlier detection is logistic regression16 (Tables 8 and 9). We’ll
use 17 attributes with the highest point-biserial correlation coefficients (Table 1) and the Amount feature,
which was pre-processed with Z-score normalization. From the histograms24, we can see that fraud and
normal observation are linearly separable due to the use of logistic regression. Our dataset is unbalanced,
so use of random undersampling could help to build a model that detects frauds more accurately. This
omits many non-fraudulent examples from training, so we’ll use a voting classifier26, with each estimator
trained on a randomly under-sampled training dataset. (The regularization parameter, C, was set to one
after experimentation with a wide range of values.) With this technique, we improved the detection rate by 3
percent with almost the same level of false alarms.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 53

Table 8. Logistic regression

Algorithm Detection
Rate, %

False
Positive Rate,

%

Performance,
msec

(Training)

Performance,
msec

(Prediction)

Logistic regression, Scikit-learn (1% of
samples in train data are fraudulent) 80.61 0.02 323.69 1.45

Logistic regression, Scikit-learn
(9% of samples in training data are
fraudulent)

83.67 0.02 20.88 1.51

Table 9. Ensemble of logistic regression models

Algorithm Detection
Rate, %

False
Positive Rate,

%

Performance,
msec

(Training)

Performance,
msec

(Prediction)
Logistic regression, Scikit-learn (9% of
samples in train data are fraudulent,
ensemble of 100 classifiers)

85.71 0.19 3,530.13 131.72

Logistic regression, Scikit-learn (9%
of samples in train data are fraudu-
lent, ensemble of 10 classifiers)

86.73 0.18 335.81 12.22

Let’s see how support vector machines (SVM), another supervised learning algorithm which can also be
used for outlier detection16, works on the same data. We run SVM with 100,000 iterations, a linear kernel,
and C=1. (These parameters were obtained with a grid search.) The same features were used as for logistic
regression. Use of SVM ensembles improves the detection rate significantly while giving a low false alarm
rate (Table 10).

Evaluation of the Different Anomaly Detection Approaches
There are a variety of unsupervised approaches for fraud detection. We applied a few of them in this article.
Outlier detection-specific algorithms, k,l-means and DBSCAN, achieved the best detection rates, reaching 85
percent of frauds detected, while use of k-means to detect clusters of fraudulent transactions gives the lowest
number of false alarms. The sooner fraudulent transactions are detected, the more losses can be avoided by
stopping transactions made with fraudulent credit cards16―making the performance of the algorithm another
key metric. The final choice of fraud detection approach will depend on many factors, including the cost of the
fraudulent behavior detected and the cost associated with stopping it7. Unsupervised methods can be useful in
situations where there is no prior knowledge of classes of observations.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 54

Table 10. SVM

Algorithm Detection
Rate, %

False
Positive Rate,

%

Performance,
msec

(Training)

Performance,
msec

(Prediction)

SVM, Scikit-learn (9% of samples in
train data are fraudulent) 83.67 0.04 250.00 174.40

SVM, Intel DAAL (9% of samples in
train data are fraudulent) 76.53 0.01 246.68 12.23

SVM, Scikit-learn (9% of samples in
train data are fraudulent, ensemble
of 10 classifiers)

91.83 0.04 2,781.41 1,792.12

SVM, Intel DAAL (9% of samples in
train data are fraudulent, ensemble
of 10 classifiers)

91.83 0.04 2,662.94 119.24

SVM, Scikit-learn (9% of samples in
train data are fraudulent, ensemble
of 100 classifiers)

91.83 0.03 28,508.28 21,806.03

SVM, Intel DAAL (9% of samples in
train data are fraudulent, ensemble
of 100 classifiers)

91.83 0.03 27,718.29 1,191.73

When we have prior knowledge of classes of observations, we can use supervised learning algorithms.
We used techniques for unbalanced classification, like undersampling, to help increase the number of
frauds detected. Ensembles of SVM classifiers give the highest detection rates, while random forests have
the lowest false alarm rates. Although supervised methods like SVM gave us significantly better accuracy
compared to unsupervised ones, use of them can pose problems:

• Accurately labeled training data might be prohibitively expensive to obtain25 and a data scientist has to
be confident about the true classes of the training data used to build the models.

• The time to train a model can be high depending on the number of samples and the number of features
per sample.

• Unlike unsupervised approaches, supervised learning cannot detect new types of fraud without
retraining16,27.

As we’ve shown, choosing the right machine learning algorithm for a given application is a non-trivial
problem that requires a lot of thought.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 55

References
1. Victoria Hodge, “Outlier and Anomaly Detection: A Survey of Outlier and Anomaly Detection Methods.”
2. Charu C. Aggarwal, “Outlier Analysis,” Second Edition.
3. Vaishali, “Fraud Detection in Credit Card by Clustering Approach.”
4. Yogesh Bharat Sonawane, Akshay Suresh Gadgil, Aniket Eknath More, Niranjan Kamalakar Jathar, “Credit

Card Fraud Detection Using Clustering Based Approach.”
5. Ester, M., H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large

Spatial Databases with Noise” in Proceedings of the 2nd International Conference on Knowledge Discov-
ery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996.

6. Samson Kiware, B.A, “Detection of Outliers in Time Series Data.”
7. Elham Hormozi , Hadi Hormozi, Mohammad Kazem Akbari, Morteza Sargolzaei Javan, “Accuracy Evalua-

tion of a Credit Card Fraud Detection System on Hadoop MapReduce.”
8. Shraddha Ramesh Bhagwat, Vaishali Londhe, “A Review of Various Credit Card Detection Techniques.”
9. Credit card fraud detection dataset.
10. Overview of Kaggle on Wikipedia.
11. Credit card fraud datasets on Kaggle.
12. Point-biserial correlation coefficient on Wikipedia.
13. Victoria J. Hodge and Jim Austin, “A Survey of Outlier Detection Methodologies.”
14. Nedret Billor, Ali S. Hadi, Paul F. Velleman, “BACON: Blocked Adaptive Computationally Efficient Outlier

Nominators.”
15. Sanjay Chawla, Aristides Gionis, “k-means: A unified Approach to Clustering and Outlier Detection.”
16. Sanjeev Jha, Montserrat Guillen, and J. Christopher Westland, “Employing Transaction Aggregation Strat-

egy to Detect Credit Card Fraud.”
17. Marie Ernst and Gentiane Haesbroeck, “Detection of Local and Global Outliers in Spatial Data.”
18. Bin-mei Liang, “A Hierarchical Clustering Based Global Outlier Detection Method.”
19. Yuan Wang, Xiaochun Wang, Xia Li Wang, “A Spectral Clustering Based Outlier Detection Technique.”
20. Zengyou He, Xiaofei Xu, Shengchun Deng, “Discovering Cluster-Based Local Outliers.”
21. Stuart P Lloyd, “Least Squares Quantization in PCM,” IEEE Transactions on Information Theory 1982, 28

(2): 1982pp: 129–137.
22. Arthur, D. and Vassilvitskii, S, “k-means++: The Advantages of Careful Seeding,” Proceedings of the Eigh-

teenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathe-
matics Philadelphia, PA, USA, 2007, pp. 1027-1035.

23. B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable K-means++,” Proceedings of
the VLDB Endowment, 2012.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine
http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf
http://vldb.org/pvldb/vol5/p622_bahmanbahmani_vldb2012.pdf

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 56

References (continued)

24. Kaggle kernel, use of neural network for fraud detection.
25. Varun Chandola, Arindam Banner Jee, and Vipin Kumar, “Outlier Detection : A Survey.”
26. Gareth James, “Majority Vote Classifiers: Theory and Applications.”
27. Bolton, R.J. and Hand, D.J., “Unsupervised Profiling Methods for Fraud Detection” in Conference
 on Credit Scoring and cCedit Control, Edinburgh, 2001.

Configuration Information

Hardware
• Processor: Intel® Xeon® Platinum 8168 processor @ 2.70GHz
• Core(s) per socket: 24
• Socket(s): 2
• Memory: 63 GB

Software
• Intel® Data Analytics Acceleration Library 2018 Gold
• R version 3.4.1
• Scikit-learn version 0.19.1
• robustX package 1.2-2
• dbscan package 1.1-1

inTel® daTa analyTiCs aCCeleraTion liBrary
Boost Machine Learning and Big Data Analytics

free
download

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2
https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2

Xinmin Tian, Senior Principal Engineer; Hideki Saito, Principal Engineer; Sergey Kozhukhov,
Senior Staff Engineer; and Nikolay Panchenko, Staff Engineer; Intel Compiler and Language
Lab, Intel Corporation

Intel® Advanced Vector Extensions 512 (Intel® AVX-512), the latest x86 vector instruction set, has up to two
fused-multiply add units plus other optimizations. It can accelerate the performance of workloads such as:

• Scientific simulations
• Financial analytics
• Artificial intelligence
• 3D modeling and simulation
• Image and audio/video processing
• Cryptography
• Data compression/decompression

Best Practices for Taking Advantage of the Latest Architectural Features

< The Parallel Universe 57

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

TUning for sUCCess wiTh The laTesT simd eXTensions
and inTel® advanCed veCTor eXTensions 512

https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 58

In this article, we’ll give a brief overview of the Intel AVX-512 Instruction Set Architecture (ISA) and describe
what’s new in the Intel 18.0 compilers for Intel® Xeon® Scalable processors. Next, we present several new
simd language extensions for Intel AVX-512 support in Intel’s latest compilers. Finally, we share our best
practices in performance tuning to achieve optimal performance with the Intel AVX-512 ISA.

What’s New
Intel Xeon Scalable processors introduce several new variations of Intel AVX-512 instruction support. The
main Intel AVX-512 ISA performance features on Intel Xeon Scalable processor-based servers compared
to previous-generation Intel AVX2 are:

• Intel AVX-512 foundation:
 - 512-bit vector width
 - 32 512-bit long vector registers
 - Data expand and compress instructions
 - Ternary logic instruction
 - Eight new 64-bit long mask registers
 - Two source cross-lane permute instructions
 - Scatter instructions
 - Embedded broadcast/rounding
 - Transcendental support
• Intel AVX-512 double- and quad-word Instructions (DQ): QWORD support
• Intel AVX-512 byte and word instructions (BW): Byte and Word support
• Intel AVX-512 Vector Length Extensions (VL): Vector length orthogonality
• Intel AVX-512 Conflict Detection Instructions (CDI): Vconflict instruction

These different AVX-512 features are meant to be supported directly by the hardware and enabled therein.
In this article, we’ll focus on simd language extensions, compiler support, and tuning for the AVX-512-F,
AVX-512-BW, AVX-512-CD, AVX-512-DQ, and AVX-512-VL features in Intel Xeon Scalable processors.

Tuning Challenges for Compilers and Programmers
Figure 1 shows the projected speedup for a theoretical application where a perfect vector speedup
can be achieved for large portions of the code. In the era of four-way vectors such as in 32-bit integers/
floats computed in XMM registers, having the application 80 percent vectorized results in a 2.5x speedup.
Incremental benefits from the compiler and the programmers working harder to vectorize 90 or 95
percent of the code are limited.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform.html
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 59

1 Ideal vector speedup for a theoretical application

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

However, increasing to 8-way and especially 16-way vectors can significantly boost the performance of
heavily-vectorized applications. Figure 1 clearly indicates the potential performance improvements when
compilers and programmers squeeze more vector parallelism from applications to enjoy the benefits of
the YMM and ZMM vectors in the Intel Xeon Scalable processors. Besides widening the vector registers, the
AVX-512 ISA extension comes with a variety of architectural enhancements to help vectorize many more
types of code patterns.

AVX-512F, AVX-512VL, and AVX-512BW
AVX-512F, AVX-512VL, and AVX-512BW include natural extensions of AVX and AVX2 for 32 registers and
masking support. Together, they cover the largest portion of the Intel AVX-512 family of extensions. AVX-512F
extends vector register size to 512-bit for 32-bit and 64-bit integer and floating-point element data. It also:

• Increases the number of architectural vector registers from 16 to 32
• Introduces dedicated mask registers
• Adds masking support for non-load/store operations

AVX-512VL extends AVX-512F so that support for 32 registers and masking can be applied to 128- and
256-bit vectors. Intel AVX-512BW extends Intel AVX-512F so that 32 registers and masking can be applied
to 8- and 16-bit integer element data.

Table 1 uses vector add instructions to illustrate the relationship between the element data type (b/w/d/q/
ps/pd), the instruction features (xmm/ymm/zmm, masked or no-mask, and register number 0-15/16-31),

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 60

and the minimum required ISA extensions on an Intel64 platform. For example, to add a vector of bytes
(vpaddb) on the XMM16 register, support for both AVX-512VL and AVX-512BW are required whether the
operation uses a mask or not. By providing support for all of AVX-512F, AVX-512VL, and AVX-512BW, Intel
Xeon Scalable processors allow the programmers to utilize all 32 available registers and masking capability to
all register sizes (XMM, YMM, or ZMM) and all data element types (byte, word, dword, qword, float, and double)
on most of the operations.

Beyond natural extensions of AVX and AVX2, AVX-512F includes:

• Data compress (vcompress) operations that read elements from an input buffer on indices specified
by mask register 1’s bits. The elements, which have been read, are then written to the destination
buffer. If the number of elements is less than the destination register size, the rest of the space is filled
with zeroes.

• Data expand (vexpand) operations that read elements from the source array (register) and put them
in the destination register on the places indicated by enabled bits in the mask register. If the number
of enabled bits is less than destination register size, the extra values are ignored.

AVX-512CDI
Intel AVX-512CDI is a set of instructions that, together with Intel AVX-512F, enable efficient vectorization
of loops with possible vector dependences (i.e., conflicts) through memory. The most important

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

Table 1. Relationship between element data type and instruction features (xmm/ymm/zmm, masked/no-mask, etc.)

(v)paddb (v)paddw (v)paddw (v)paddq (v)addps (v)addpd
xmm (0-15) no-mask SSE2 SSE2 SSE2 SSE2 SSE SSE2

xmm (16-31) no-mask AVX-512VL
+ AVX-
512BW

AVX-512VL
+ AVX-
512BW

SSE2 AVX-512VL AVX-512VL AVX-512VL

xmm masked AVX-512VL
+ AVX-
512BW

AVX-512VL
+ AVX-
512BW

AVX-512VL AVX-512VL AVX-512VL AVX-512VL

ymm (0-15) no-mask AVX2 AVX2 AVX2 AVX2 AVX AVX
ymm (16-31) no-mask AVX-512VL

+ AVX-
512BW

AVX-512VL
+ AVX-
512BW

AVX-512VL AVX-512VL AVX-512VL AVX-512VL

ymm masked AVX-512VL
+ AVX-
512BW

AVX-512VL
+ AVX-
512BW

AVX-512VL AVX-512VL AVX-512VL AVX-512VL

Zmm (0-31) masked/
no-mask

AVX-
512BW

AVX-
512BW

AVX-512F AVX-512F AVX-512F AVX-512F

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

instruction is VPCONFLICT, which performs horizontal comparisons of elements within a single vector
register. In particular, VPCONFLICT compares each element of a vector register with all previous elements
in that register, then outputs the results of all of the comparisons. Other instructions in Intel AVX-512CDI
allow for efficient manipulation of the comparison results. We can use VPCONFLICT in different ways to
help us vectorize loops. The simplest is to check if there are any duplicate indices in a given simd register.
If not, we can safely use simd instructions to compute all elements simultaneously. If so, we can execute
a scalar loop for that group of elements. Branching to a scalar version of the loop on any duplicate indices
can work well if duplicates are extremely rare. However, if the chance of getting even one duplicate in
a given iteration of the vectorized loop is large enough, then we would prefer to use simd as much as
possible, to exploit as much parallelism as we can.

What’s New in Compiler 18.0 for AVX-512 Tuning
To achieve optimal performance on Intel Xeon Scalable processors, applications should be compiled with the
processor-specific option –xCORE-AVX512 (/QxCORE-AVX512 on Windows*). Such an executable will not
run on non-Intel® processors or on Intel processors that support only older instruction sets. Intel® Compilers
18.0 provide a new option –qopt-zmm-usage=[high|low] for users to tune ZMM code generation:

• Option value low provides a smooth transition experience from the AVX2 ISA to AVX-512 ISA on
Skylake (SKX) targets, such as for enterprise applications. Programmers are encouraged to tune for
ZMM instruction usage via explicit vector syntax such as #pragma omp simd simdlen().

• Option value high is recommended for applications that are bounded by vector computation (e.g.,
HPC applictions) in order to achieve more computations per instruction through wider vectors.

The default value is low for SKX-family compilation targets (e.g. -xCORE-AVX512). Intel compilers also
provide a way to generate a fat binary that supports multiple instruction sets by using the –axtarget
option. For example, if the application is compiled with –axCORE-AVX512,CORE-AVX2 the compiler
can generate specialized code for AVX-512 and AVX2 targets, while also generating a default code path
that will run on any Intel, or compatible non-Intel, processor that supports at least SSE2. At runtime, the
application automatically detects whether it is running on an Intel processor. If so, it selects the most
appropriate code path for Intel processors; if not, the default code path is selected.

It’s important to note that irrespective of the options used, compiler may insert calls to specialized library
routines (such as optimized versions of memset/memcpy) that will dispatch to the appropriate code path at
runtime based on processor detection.

< The Parallel Universe 61

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 62

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

New simd Extensions for AVX-512
Intel Compilers pioneered explicit vectorization of C/C++ and Fortran* application programs and led
the standardization effort in OpenMP* 4.0 and 4.5 3, 4, 5, 7, 8. What follows are the results of our continued
innovation on extending the power of explicit vectorization. We proposed them for future OpenMP
specifications and have implemented them in Intel Compilers 18.0 as a lead vehicle for OpenMP
standardization3, 8.

Compress and Expand
Figure 2 shows compress and expand idioms. The compress and expand terms come from the code
semantics. For instance, the compress pattern compresses all positive elements from the array A[] and
stores them consecutively in the array B[]. It’s known that both patterns contain loop-carried dependencies
(Figures 3 and 4) and can’t be parallelized.

// A is compressed into B
int count = 0;
for (int i = 0; i < n; ++i) {
 if (A[i] > 0) {
 B[count] = A[i];
 ++count;
 }
}

// A is expanded into B
int count = 0;
for (int i = 0; i < n; ++i) {
 if (A[i] > 0) {
 B[i] = A[count];
 ++count;
 }
}

2 Compress and expand idioms

3 Data dependence graph for compress and expand patterns

if (A[i] > 0) {

 B[count] = A[i];

 ++count;

}

if (A[i] > 0) {

 A[i] = B[count];

 ++count;

}

Anti Anti FlowFlowNN N N
Flow Flow

f f

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

A[0] A[1] A[2] A[3] B[0] B[1] B[2] B[3]

B[0] B[1] B[2] B[3] A[0] A[1] A[2] A[3]

< The Parallel Universe 63

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

..B1.14:
vmovups (%rdi,%r11,4), %zmm2
vcmpps $6, %zmm0, %zmm2, %k1
kmovw %k1, %edx
testl %edx, %edx
je ..B1.16
..B1.15:
popcnt %edx, %edx
movl $65535, %r10d
vcompressps %zmm2, %zmm1{%k1}
movslq %ebx, %rbx

shlx %edx, %r10d, %r12d
notl %r12d
kmovw %r12d, %k1
vmovups %zmm1, (%rsi,%rbx,4){%k1}
addl %edx, %ebx
..B1.16:
addq $16, %r11
cmpq %r9, %r11

jb ..B1.14

5 Compress idiom vectorization with AVX-512

Automatic idiom recognition and vectorization of compress and expand idioms have been implemented
in the compiler for simple cases without a guarantee for complicated cases. To provide a vectorization
guarantee for these idioms, we proposed and implemented simple language extensions to the OpenMP 4.5
simd specification to express the compress and expand idioms. Figure 6 shows the new clause monotonic
added to the OpenMP ordered simd construct.

6 Block-based syntaxes for compress and expand patterns

However, vectorizing compress and expand idioms is possible with special processing of the
dependencies. AVX-512 ISA adds v[p]compress and v[p]expand instructions that helps effectively
vectorize these codes. Figure 5 shows the generated simd code for the compress idiom using the new
AVX-512 instruction vcompressps.

int j = 0;
#pragma omp simd
for (int i = 0; i < n; i++) {
 if (A[i]>0) {
#pragma omp ordered simd monotonic(j:1)
 {
 B[j++] = A[i];
 }
}
 }

int j = 0;
#pragma omp simd
for (int i = 0; i < n; i++) {
 if (A[i]>0) {
#pragma omp ordered simd monotonic(j:1)
 {
 A[i] = B[j++];
 }
}
 }

4 Compress and expand execution

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 64

The monotonic clause and its associated ordered simd code block impose the following semantics and rules:

• When a vector iteration reaches the structured block of code, it evaluates step. This must yield an
integral or pointer value that is invariant with respect to the simd loop. The simd execution mask, under
which the structured block of code is executed, is computed as well. Private copies of each monotonic
list item are created for the structured block of code and initialized to item, item + step, item +
2 * step, …, for each executing (with mask==T) simd element (from lower iteration index to higher).
At the end of the structured block of code execution, a uniform copy of item is updated as item +
popcount(mask) * step and private copies of list items become undefined.

• The use of the monotonic list item outside of the associated ordered simd construct is
disallowed (Figure 7). Multiple usages of the same list item in more than one ordered simd
construct is also disallowed.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

int j = 0;
#pragma omp simd
for (int i = 0; i < n; i++) {
 if (A[i]>0) {
 #pragma omp ordered simd monotonic(j:1)
 {
 ++j;
 }
 B[j] = A[i];
 }
}

7 Disallowed usage of a monotonic item outside of the block

• Ordered simd construct with monotonic clause may be implemented as ordered simd construct
without the monotonic clause.

Histogram
Histogram (Figure 8) is a well-known idiom. The semantics of the histogram code counts equal elements of
the array B[] and stores results in the array A[]. Obviously, depending on the content of the array B[], this
loop may or may not have loop-carried dependency.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 65

8 A simple histogram idiom

for (int i = 0; i < n; ++i) { ++A[B[i]]; }

Essentially, there are three cases:

1. If the array B[] has unique values, there is no loop-carried dependency.
2. If all values of the array B[] are equal, this statement represents reduction of a scalar value.
3. If some values are repeated in the array B[], this loop has loop-carried dependency.

At compile time, if the compiler can’t prove whether the values of B[] may or may not introduce data
dependencies, the compiler behaves pessimistically and assumes loop-carried dependency. Programmers
can help the compiler for case 1 by using #pragma ivpdep. For case 2, programmers may be asked to do
manual transformation. For case 3, depending on the target architecture, vectorization can be implemented
in the following ways with explicit vector annotations:

• Array reduction implementation (use simd construct and reduction over array A[])
• Serial implementation (use ordered simd construct for the self-update statement)
• Gather-update-scatter implementation and repeat for equal B[] values

For the gather-update-scatter implementation, AVX-512 provides AVX-512CDI, which contains the v[p]
conflict instruction that allows efficient computation of overlapping indices within a vector of indices. To
effectively leverage AVX-512CDI with a programmer guarantee to handle the histogram idiom, a new clause
overlap is proposed and implemented in the Intel compilers as shown in Figure 9.

9 Usage example of the overlap clause on the histogram idiom

#pragma omp simd
for (int i = 0; i < n; i++) {
 #pragma omp ordered simd overlap(B[i])
 {
 A[B[i]]++;
 }
}

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 66

This new clause has the following language semantics:

• When execution reaches the ordered simd construct, it evaluates the values of overlap expression
B[i] as an r-value, which must yield an integral or pointer value. The implementation must ensure that
if two iterations of the enclosing simd loop compute the same values, the iteration with the lower logical
iteration number must complete the execution of ordered simd code block before the other iteration
starts execution of the same code block.

• Total ordering is not guaranteed by the compiler. It is the programmer’s responsibility to check whether the
partial ordering is sufficient for any possible aliasing between stores to A[] and any loads of A[] and B[].

• The ordered simd block specifies the region where overlapping should be checked. Thus, for
statements outside of the ordered simd overlap block, the overlap check will not be performed.

• The ordered simd construct with overlap clause may be implemented as an ordered simd construct
without the overlap clause.

Conditional Lastprivate
A common case in many programs is that a loop produces the value of its last iteration where the
assignment statement is actually executed (i.e., produces a write to a scalar). The value of the scalar will be
used after the loop (Figure 10).

10 The code on the left gets the last element of A[i], while the code on the right gets the last positive
element of A[i].

int t = 0;
#pragma omp simd lastprivate(t)
for (int i = 0; i < n; i++) {
 t = A[i];
}

int t = 0;
for (int i = 0; i < n; i++) {
 if (A[i] > 0) {
 t = A[i];
 }
}

Both code snippets in Figure 10 can be vectorized, but only the code on the left has explicit support in
OpenMP through the lastprivate clause. The lastprivate clause can’t be used for the code on the
right because of its semantics. The scalar t gets the value from the last executed iteration of the loop; thus,
the t is undefined if the condition A[n-1]>0 is not true. To address this issue, a new modifier, conditional,
is proposed and added to the clause lastprivate (Figure 11).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 67

11 A lastprivate example of supporting conditionally assigned scalars

int t = 0;
#pragma omp simd lastprivate(conditional:t)
for (int i = 0; i < n; i++) {
 if (A[i] > 0) { t = A[i]; }
}

Here are the language semantics of the new conditional modifier:

• A list item that appears in a conditional lastprivate clause is subject to the private clause
semantics. At the end of the simd construct, the original list item gets the value as if the lexically last
conditional assignment happened during scalar execution of the loop.

• The item should not be used if its use happens prior to its definition or it’s outside of the
definition’s scope.

Loops with Early Exits
The existing simd vectorization in OpenMP 4.5 does not support loops with more than one exit. For
example, a common usage such as finding an index of some elements in an array (Figure 12) can’t be
explicitly vectorized properly with the existing simd construct.

12 A loop with two exits that is searching for the first equivalent elements of the arrays A[] and B[]

for (int i = 0; i < n; ++i) {
 if (A[i] == B[i]) {
 j = i; break;
 }
}
// use of j.

int j = 0;
#pragma omp simd early_exit lastprivate(conditional:j)
for (int i = 0; i < n; i++) {
 if (A[i] == B[i]) { j = i; break; }
}
// use of j.

To address this issue, the Intel Compilers have introduced a new loop-level clause, early_exit, as shown
in the right box of Figure 12, with the following semantics:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 68

• Each operation before the last lexical early exit of the loop may be executed as if early exit were not
triggered within the simd chunk.

• After the last lexical early exit of the loop, all operations are executed as if the last iteration of the loop
was found.

• The last value for linear and conditional lastprivate is preserved with respect to scalar execution.
• The last value for reductions is computed as if the last iteration in the last simd chunk was executed

upon exiting the loop.
• The shared memory state may not be preserved with regard to scalar execution.
• Exceptions are not allowed.
• If the innermost loop has an exit out of the simd construction, execution of the innermost loop is similar

to if it had been completely unrolled.

Performance Results
Tables 2 through 4 provide performance results of micro-kernel programs for the monotonic,
overlap, and early_exit extensions discussed previously. Performance measurement is done on
an Intel® system with preproduction Intel Xeon Scalable processors running at 2.1GHz, in a 2-socket
configuration with 24x 2666MHz DIMMs. Actual performance on specific configurations can vary. The
loops are the examples shown in previous sections. Loop trip count n is 109, data types are all 32-bit
integers, vector length is 16, and the compilation command line is icc –xCORE-AVX512. Baseline is
scalar execution of the same set of loops.

Table 2 shows the normalized speedup of vectorized compress and expand idioms. In the “all false”
column, compress/expand conditions are all false. Compressing stores or expanded loads are completely
skipped. Vector evaluation of the condition, and the reduced number of iterations from vectorization, still
lead to 1.17x to 1.19x speedup. For the “all true” column, compress/expand conditions are true; thus, all 16
elements are stored/loaded.

All False 2 Elements 4 Elements 8 Elements 15 Elements All True
Compress 1.20x 1.21x 1.25x 1.32x 1.81x 4.09x

Expand 1.20x 1.18x 1.18x 1.13x 1.35x 3.98x

Table 2. Normalized speedup of compress/expand versus scalar execution. Each column has a
different number of true conditions.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 69

In the middle columns, 2, 4, 8, or 15 elements of the 16-way vector are compress stored or expand
loaded. This table indicates that regardless of the actual number of elements compressed/expanded,
the vectorization of these idiomatic patterns is favorable compared to scalar execution. We ran the same
experiment using aligned and misaligned compressed-to/expanded-from arrays. As we expected, trending
was very similar between aligned and misaligned cases, except for the “all true” extreme, where the aligned
cases have better cache line access characteristics.

Table 3 shows the normalized speedup of the vectorized histogram example. On the left, there is no overlap
case, which is running 23 percent slower than scalar execution. Consider finding alternatives where the
programmer can assert no-overlaps and thus avoid using overlap extension. Sometimes, choosing a shorter
vector length may accomplish that. If conflict resolution is required for vector execution to make sense, other
parts of the loop need to be highly profitable to vectorize. It’s interesting to note that the eight repeats and
full overlap (16 repeats) cases look more favorable than the cases with fewer repeats. This is likely due to
register-based repeats in the vector execution catching up the speed of on-memory dependency over scalar
execution. For more information on conflict performance, see reference 9 at the end of this article.

No
Overlap

2 Repeats 4 Repeats 8 Repeats Full
Overlap

Histogram 0.77x 0.65x 0.66x 0.82x 1.3x

Table 3. Normalized speedup of Histogram versus scalar execution. Each column has a different number of
conflicts within one vector iteration.

Table 4 shows the normalized speedup of a vectorized search loop example. From left to right, the loop
index value at which the match is found increases from 0 to 5,000. A few vector iterations are needed to
achieve visible speedups from vectorization of the search loop.

Match At i=0 i=5 i=10 i=50 i=100 i=500 i=1,000 i=5,000
Vector Iteration 1 1 1 4 9 32 63 313

Search Loop 1.0x 0.99x 1.02x 1.31x 1.54x 3.04x 4.12x 4.46x

Table 4. Normalized speedup of Search relative to scalar execution

It’s important to note that standardization for the explicit vectorization techniques we’ve discussed is
still in progress. Syntax, semantics, and performance characteristics may be subject to change in future
implementations. Some features may remain as Intel-specific extensions.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 70

Best Practices for AVX-512 Tuning

Setting the Baseline
All tuning work should start by setting an appropriate performance baseline. Tuning for Intel Xeon Scalable
processors is no different. Let’s assume that the programmer already has an application reasonably tuned
for Intel Xeon processors using the –xCORE-AVX2 flag of Intel Compilers 17.0. We recommend starting from
the following three binaries using Intel Compilers 18.0:

1. Build the binary with –xCORE-AVX2 (/QxCORE-AVX2 for Windows)
2. Build the binary by replacing –xCORE-AVX2 with –xCORE-AVX512 (/QxCORE-AVX512 for Windows)
3. Build the binary by replacing –xCORE-AVX2 with –xCORE-AVX512 –qopt-zmm-usage=high

(/QxCORE-AVX512 /Qopt-zmm-usage=high for Windows)

Although we expect overall performance of binary-B and/or binary-C to be on-par or better than binary-A,
it’s still best to double-check.

Read Optimization Reports for the Hotspots
Intel compilers produce an optimization report when compilation is performed with –qopt-report
(/Qopt-report for Windows). Before trying to change the behavior of the compiler, it’s best to understand what the
compiler has done and what it knows already. Article 1 in the References section at the end of this article is a good intro-
duction to using the optimization report. [Editor’s note: “Vectorization Opportunities for Improved Performance with
AVX-512” in The Parallel Universe Issue 27 also has a good and more current overview of compiler reports.]

Compare Hot Spot Performance
Responses to the different compilation flag combinations can vary from one hotspot to another. If one
hotspot runs fast with binary-B and another hotspot runs fast with binary-C, learning what the compiler did
for those cases greatly helps in achieving the best for both.

Fine Tuning for ZMM Usage
For binary-B and binary-C, with the OpenMP simd construct, vector length can be explicitly controlled using
the simdlen clause. Try using a larger or smaller vector length on a few hot spots to see how application
performance responds. You may need to combine one or more tuning techniques.

Alignment
When you’re using Intel AVX-512 vector load/store instructions, it’s recommended to align your data to 64
bytes for optimal performance⁶, since every load/store is a cache-line split whenever a 64-byte Intel AVX-

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.intel.com/sites/default/files/managed/75/b0/parallel-universe-issue-27.pdf

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 71

512 unaligned load/store is performed, given the cache line is 64 bytes. This is twice as much as the cache-
line split rate of Intel® AVX2 code that uses 32-byte registers. A high rate of cache-line split in memory-
intensive code may cause a 20 to 30 percent performance degradation. Consider the following struct:

struct RGB_SOA {

__declspec(align(64)) float Red[16];

__declspec(align(64)) float Green[16];

__declspec(align(64)) float Blue[16];

}

The memory allocated for the struct is aligned to 64 bytes, if you use this struct as follows:

 RGB_SOA rgb;

However, if a dynamic memory allocation is used as follows, the __declspec annotation is ignored and
the 64-byte memory alignment is not guaranteed:

 RGB_SOA* rgbPtr = new RGB_SOA();

In this case, you should use dynamic aligned memory allocation and/or redefine the operator new. For AVX-
512, align data to 64 bytes when possible using the following approaches:

• Use the _mm_malloc intrinsic with the Intel® Compiler, or _aligned_malloc of the Microsoft*
Compiler for dynamic data alignment—e.g.: DataBuf = (float *)_mm_malloc (1024 * 1024 *
sizeof(float), 64);

• Use __declspec(align(64)) for static data alignment—e.g.: __declspec(align(64)) float
DataBuf[1024*1024];

Data allocation and uses may happen in different subroutines/files. Thus, the compiler working on the data us-
age site often does not know that the alignment optimization has been made at the allocation site. __assume_
aligned()/ASSUME_ALIGNED is a common assertion to indicate alignment at the data usage site. (See article 2 in
the References section of this article and the applicable Intel Compiler Developer Guide and Reference for details.)

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 72

To Peel or Not to Peel?
The vectorizer often produces three versions of the same loop:

1. One processing the beginning of the loop (called the peel loop)
2. One for the main vector loop
3. One processing the end of the loop (called the remainder loop)

The peel loop is generated for alignment optimization purposes, but this optimization is a double-edged
sword. If the loop trip count is small, it may lower the number of data elements processed by main vector
loop. If the compiler chooses a wrong array to peel for, it can worsen the data alignment of the loop
execution. The compiler flags –qopt-dynamic-align=F (/Qopt-dynamic-align=F for Windows) can
be used to suppress the loop peeling optimization. The pragma vector unaligned can be used on a per-
loop basis. The pragma vector aligned is even better if data is all aligned when entering the loop.

Vectorize Peel/Remainder and Short-Trip-Count Loops
The AVX-512 masking allows creation of a vectorized peel and remainder loops and vectorization of the
short-trip-count loops. However, the vectorized versions of those special loops may not always result
in performance gains, since most of the instructions need to be masked. The main reasons for possible
performance problems are restrictions for store forwarding and possible stalls on merge-masked
operations, when operation depends on others. In the compiler, the store forwarding issue can be addressed
by thorough analysis of data flow and avoiding masking whenever possible. When the store-forwarding
issue becomes inevitable, the unmasked version of the loop (e.g., scalar or vectorized loop with a shorter
vector length) is preferred. You can avoid stalls on merge-masked operations by trying to use zero-masking
operations. The following pragmas make it possible to provide hints to alter the compiler behaviors:

• For remainder loops:
 #pragma vector novecremainder, to not vectorize remainder loops
 #pragma vector vecremainder, to vectorize remainder loop depending on compiler cost model
 #pragma vector always vecremainder, to vectorize remainder loop always
• For short-trip-count loops:
 #pragma vector always, to enforce vectorization
 #pragma novector, to disable vectorization

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 73

13 Reducing gathers in the loop

// Two gathers in the loop
float *a, sum = 0; int *b, *c;
… …
for (int i; i < n; i++) {
 if (pred(x[i]))
 sum += a[b[i]]; // gather
 else
 sum += a[c[i]]; // gather
}

// Optimized with one gather in the loop
for (int i; i < n; i++) {
 int t;
 if (pred(x[i]))
 t = b[i];
 else
 t = c[i];
 sum += a[t]; // one gather remain
}

Gather and Scatter Optimization
The gather and scatter instructions allow us to vectorize more loops. However, the vectorized code may
or may not get performance benefits. The performance of loops that contain gather/scatter code depends
on the ratio between the number of calculations and the number of data loads/stores and on selecting an
optimal vector length for reducing the latency of gather and scatter instructions. A shorter vector length
implies less latency of gather/scatter code. Often, a couple of simple optimizations at the source code level
can help reduce the number of gather and scatter instructions.

Figure 13 shows the two simple manual gather/scatter optimizations while the compiler is trying to
automatically perform these optimizations. The first optimization is to reduce number of gathers/scatters
when the results of two gathers/scatters are blended as shown on the left. In this case, blending the indices
makes it possible to have one gather instead of two as shown on the right. Note that we can apply the same
process to scatter optimization.

The second gather/scatter optimization is an opposite transformation (Figure 14). In this case, a gather is
performed with indices resulting from blend of unit-stride linear indices as shown on the left. To improve
performance, it’s better to perform two unit-stride loads and then do the blend as shown on the right.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 74

Execution Latency Improvement
For loop vectorization, a known issue for compilers is that the loop trip count is unknown at compile time.
However, programmers can often predict the trip count and provide a hint to the compiler using #pragma
loop count. In some cases, the loop trip count can be predicted approximately based on #pragma
unroll information as well. Preferably, the unroll pragma should be used on loops with small enough
bodies to decrease number of loop iterations and to increase loop iteration independency, so they can
be executed in parallel on out-of-order Intel® architectures to hide execution latency. Loop unrolling is
very helpful for computation-bounded loops (i.e., when the computation takes more time than memory
accesses). For example, the loop shown in Figure 15 will execute about 45 percent faster when the unroll-
factor (UF) is set to 8 compared to a UF equal to 0. The measurement was done for n=1,000.

15 Reducing latency using simd + unroll(8)

float *a,*b, *c;
#pragma unroll(8)
#pragma omp simd
for (i= 0; i < n; i++) {
 if (a[i] > c[i]) sum += b[i] * c[i];
}

// One gather in the loop
float *a, sum = 0; int a;
for (int i; i < n; i++) {
 int t;
 if (pred(x[i])) {
 t = i + b;
 }
 else {
 t = i;
 }
 sum += a[t]; // gather
}

// Replace gather with unit-stride loads + blending
for (int i; i < n; i++) {
 float s;
 if (pred(x[i])) {
 s = a[i + b]; // unit stride vector load
 }
 else {
 s = a[i]; // unit stride vector load
 }
 sum += s;
}

14 Reducing gathers with two unit-stride loads + blend in the loop

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 75

Summary and Future Work
We’ve looked at several new simd language extensions for Intel AVX-512 support in Intel Compilers 18.0
for Intel Xeon Scalable processors. We shared and discussed a set of performance optimization and tuning
practices for achieving optimal performance with AVX-512. We provided performance results based on
microkernels to demonstrate the effectiveness of these new simd extensions and tuning practices. In the
future, there are several new simd extensions for C/C++ under consideration for taking full advantage of
AVX-512 through OpenMP and the C++ Parallel STL, including inclusive-scan, exclusive-scan, range-based
C++ loops, and lambda expression support.

Learn More
• Intel Advanced Vector Extensions 512 >
• Intel Xeon Scalable processors >

References
1. M. Corden. “Getting the Most out of your Intel® Compiler with the New Optimization Reports,” Intel

Developer Zone, 2014.
2. R. Krishnaiyer. “Data Alignment to Assist Vectorization,” Intel Developer Zone, 2015.
3. H. Saito, S. Preis, N. Panchenko, and X. Tian. “Reducing the Functionality Gap between Auto-Vectorization

and Explicit Vectorization.” In Proceedings of the International Workshop on OpenMP (IWOMP),
LNCS9903, pp. 173-186, Springer, 2016.

4. H. Saito, S. Preis, A. Cherkasov, and X. Tian. “Obtaining the Last Values of Conditionally Assigned
Privates,” OpenMPCon Developer Conference, 2016.

5. H. Saito, “Extending LoopVectorizer: OpenMP4.5 SIMD and Outer Loop Auto-Vectorization,” presentation
at LLVM Developer Conference, 2016.

6. X. Tian. H. Saito, M. Girkar, S. Preis, S. Kozhukhov, A. Duran. “Putting Vector Programming to Work with
OpenMP* SIMD,” The Parallel Universe magazine, Issue 22, September 2015.

7. X. Tian, R. Geva, B. Valentine. “Unleash the Power of AVX-512 through Architecture, Compiler and Code
Modernization,” ACM Parallel Architecture and Compiler Technology, September 11-15, 2016, Haifa, Israel.

8. X. Tian, H. Saito, M. Girkar, S. Preis, S. Kozhukhov, A. G. Cherkasov, C. Nelson, N. Panchenko, R. Geva.
Compiling C/C++ SIMD Extensions for Function and Loop Vectorizaion on Multicore-SIMD Processors.
IEEE IPDPS Workshops 2012: 2349-23

9. Intel Corporation. “Conflict Detection” In Section 13.16 of Intel® 64 and IA-32 Architectures
Optimization Reference Manual, July 2017.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-platform.html
https://software.intel.com/en-us/articles/getting-the-most-out-of-your-intel-compiler-with-the-new-optimization-reports
https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization
http://openmpcon.org/wp-content/uploads/openmpcon2016-hideki-saito.pdf
http://openmpcon.org/wp-content/uploads/openmpcon2016-hideki-saito.pdf
https://www.youtube.com/watch?v=XXAvdUwO7kQ
http://www.greymatter.com/corporate/wp-content/themes/gm/showcases/intel/resources/TheParallelUniverse_Issue_22.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

lifT yoUr
Coding To The
neXT level
It’s easier to build great
things with our free code
samples. To get started,
just tell us your interest,
tool, or hardware.

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
© Intel Corporation

geT sTarTed >
Software

https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/code-samples

effeCTively Using yoUr whole ClUsTer
Rama Kishan Malladi, Technical Marketing Engineer, Intel Corporation

Intel is a leading provider of both hardware and software for datacenter users―such as the latest
Intel® Xeon® and Intel® Xeon Phi™ processors. However, many high-performance computing (HPC)
applications don’t make full use of the processors’ advanced capabilities. In this article, we’ll provide a
step-by-step methodology to improve the performance of SPECFEM3D_GLOBE*, a software package
that simulates three-dimensional global and regional seismic wave propagation and performs full
waveform imaging (FWI) or adjoint tomography based on the spectral element method (SEM). All
SPECFEM3D_GLOBE software is written in Fortran* 2003 with full portability in mind, and conforms
strictly to the 2003 standard. The package uses the Message Passing Interface (MPI) to express
distributed-memory parallelism. Recently, OpenMP* shared-memory parallel constructs were
introduced in the solver source code.

Optimizing SPECFEM3D_GLOBE* Performance on Intel® Architecture

< The Parallel Universe 77

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://www.intel.com/content/www/us/en/products/processors/xeon-phi.html
https://geodynamics.org/cig/software/specfem3d_globe/
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Follow these steps to quickly get started building and running this code:

< The Parallel Universe 78

$ cd specfem3d_globe

$./configure FC=ifort MPIFC=mpiifort CC=icc CXX=icpc FCFLAGS=”-O3 -xMIC-AVX512 -qopenmp”

$ cp EXAMPLES/small_benchmark_run_to_test_more_complex_Earth/Par_file DATA

$ make -j 8 xcreate_header_file xmeshfem3D xspecfem3D

$ cd EXAMPLES/small_benchmark_run_to_test_more_complex_Earth

$./run_this_example.sh

Notes
• Download SPECFEM3D_GLOBE from https://geodynamics.org/cig/software/specfem3d_globe/.
• The test benchmark being executed is small_benchmark_run_to_test_more_complex_Earth in the EXAMPLES directory.
• The Intel® compilers and MPI library are used for this build. Hence, the ‘icc’, ‘icpc’, ‘ifort’, and ‘mpiifort’ configuration options.
• The build/run machine contains Intel Xeon Phi (Knights Landing) processors so the compiler flag ‘-xMIC-AVX512’ is used.
• The ‘-qopenmp’ flag builds the package with OpenMP threads enabled.
• Performance of the solver code is measured by the time taken to simulate ‘n”’time-steps for a given mesh volume.
• The steps to edit model resolution, parameters, and number of MPI processes are available in the SPECFEM3D_GLOBE documentation.

Assuming that the solver ran successfully, we need to know if it executed efficiently, making the best use
of the resources available. A profile of the runtime execution will give us a sneak peek at the time spent
in various subroutines of the solver code. We can collect such a profile across multiple cluster nodes to
monitor MPI behavior plus each node’s execution statistics. Tools like Intel® MPI Performance Snapshot
and Intel® Trace Analyzer and Collector have features to collect an MPI execution profile. In addition,
single-node profiles can be collected using Intel® VTune™ Amplifier and Intel® Advisor. SPECFEM3D_
GLOBE has excellent MPI scalability with its asynchronous MPI communication/computation overlap, so
our focus will be on per-node application profiling and optimization.

A general exploration profile collected using Intel VTune Amplifier shows that this code is backend-
bound with further classification showing it has a memory (DRAM) latency issue. The summary view of
general exploration is shown in Figure 1. Drilling down to hotspots and then the source code gives us the
profile shown in Figure 2. The etax arrays, accessed in the compute_element_iso subroutine, have
a dimension of 125 x N. The INDEX_IJK increments from 1 to 125 and the index ispec is arbitrary—
hence, an indirect access. Tools such as Intel Advisor give you insight into the randomness of this access
and also vectorization of the code (compiler generated). Figure 3 shows such a profile.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://geodynamics.org/cig/software/specfem3d_globe/
https://software.intel.com/en-us/intel-trace-analyzer
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 79

1 Intel® VTune™ Amplifier general exploration

2 Intel VTune Amplifier drill-down showing hotspots, source code

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 80

3 Intel Advisor: Unit/random stride distribution, source drill-down, vector intensity/code-generated

Intel Advisor shows information about memory access strides―including whether they are unit, random,
or fixed stride―and their distribution. Also, it gives information about compiler code generation and
the vector length used for a loop execution, the instruction set, and vectorization gain. This profile helps
determine if an application benefits from the vector features and the newer instructions in the processor.
Sometimes, a loop may be vectorized by the compiler to utilize the full vector width of the processor
(e.g., AVX-512*) but a corresponding speedup in the loop execution isn’t observed. One reason could be
that it is bandwidth-limited. Intel VTune Amplifier allows for such a profiling (Figure 4). It’s important to
understand that optimizations to improve vector performance of loops that are bandwidth-bound (high
utilization) will be less fruitful. The low-bandwidth utilization loops and code regions could be executing
non-vector instructions and/or suffering from memory access latency issues. This needs to be fixed.

After analyzing the execution profile of SPECFEM3D_GLOBE, we attempted some code changes to
improve performance on Intel® processors.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

4 Intel VTune Amplifier memory bandwidth analysis

Mitigate Memory Access Latency Issues
An indirect (random) access was transformed into a unit-stride access. Much of the mesh data in the
SPECFEM3D_GLOBE solver is invariant over time/solver steps. Hence, it is a valid transformation to copy
data and make it a linear access.

< The Parallel Universe 81

subroutine compute_element_tiso(ispec,
...
 c13 = 0.125_CUSTOM_REAL*cosphisq*(rhovphsq + six_eta_aniso*rhovphsq \
...

Original Code

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 82

prepare_timerun (...)
...
 do ispec_p = 1,num_elements
 ele_num = ele_num + 1
...
 ia_c1store(idx6+3,tiso_ele_num) = c13

subroutine compute_element_tiso(ispec, ele_num, &
...
 c13 = ia_c1store(idx7+3,tiso_ele_num)
...

Initialization/Startup Code

This code modification copies all nine arrays—’xix,’ ‘xiy … gammzl’—into one array, ‘ia_arr’. This
will help alleviate bandwidth pressure for these accesses (because only one array access needs to be done
(instead of nine) but is less vector-friendly (because the elements of each array aren’t contiguous). For
cases where bandwidth pressure isn’t much of a concern, a user can create nine arrays corresponding to
the original code and get vectorization benefit. The best option must be determined by experiment.

Compiler Vectorization/Loop Fission
The compute loops ‘iso’ and ‘tiso’ are huge. The compiler is unable to vectorize these loops. So, a
manual loop fission was done. A similar effect can be realized by using ‘!DIR$ DISTRIBUTE POINT’
syntax supported by Intel® compilers for loop distribution/fission.

Data Alignment/Padding
The compute loops ‘iso’ and ‘tiso’ are invoked for each element in the mesh and are invoked from
either an MPI or a thread region. These loops have trip count of 125. Since the arrays accessed in the loop
have the dimensions 125 x N, another optimization applied to this code was to make it aligned to a 2n
boundary. A padding of three elements was applied to make it a 128 x N array.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

Optimized Code

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 83

subroutine compute_element_tiso(ispec,
...
 c13 = 0.125_CUSTOM_REAL*cosphisq*(rhovphsq + six_eta_aniso*rhovphsq \
...

Original Code

prepare_timerun (...)
...
 do ispec_p = 1,num_elements
 ele_num = ele_num + 1
...
 ia_c1store(idx6+3,tiso_ele_num) = c13

subroutine compute_element_tiso(ispec, ele_num, &
...
 c13 = ia_c1store(idx7+3,tiso_ele_num)
...

Optimized Code

Replace Redundant Computation with Lookup Tables
The ‘tiso’ loop has some computations that invoke transcendental functions. These computations are
invariant with solver execution time-steps. The same can be replaced with lookup tables.

IVDEP or SIMD Directives
Some hotspots in the SPECFEM3D_GLOBE solver are nested loops with trip counts 5 x 5 and 5 x 25. These
are ‘m x m’ matrix-matrix multiplications. The compiler optimization reports (use -qopt-report flag)
indicated that not all these loops were vectorized. Using IVDEP or SIMD directives helped the compiler to
generate vector code for these loops.

In conclusion, some simple code changes (and data transformations) improved the performance of
SPECFEM3D_GLOBE solver by approximately 2.1X on an Intel Xeon Phi processor-based system. There’s
room for further optimization—and it’s being explored.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 84

Configuration and Tools Used
• Intel Parallel Studio XE 2017
• Self-boot system with Intel Xeon Phi 7250 processor, 96GB DDR memory
• MCDRAM on Intel Xeon Phi processor configured to FLAT mode. Mesh interconnect in QUAD mode.
• OS version: CentOS* Linux* release 7.3.1611 (kernel 3.10.0-514.10.2.el7.x86_64, glibc 2.17-157.

el7_3.1.x86_64)

References
• # SPECFEM3D_GLOBE: Komatitsch and Tromp 1999; Komatitsch and Vilotte (1998): https://

geodynamics.org/cig/software/specfem3d_globe/
• Intel Software tools/manuals: https://software.intel.com/en-us/intel-parallel-studio-xe
• Intel® 64 and IA-32 Architectures Software Developer Manuals: https://software.intel.com/en-us/

articles/intel-sdm
• Ahmad Yasin. “A Top-Down Method for Performance Analysis and Counters Architecture.” IEEE Xplore:

26 June 2014. Electronic ISBN: 978-1-4799-3606-9.

inTel® vTUne™ amPlifier
Modern Processor Performance Analysis

download
a free Trial

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://geodynamics.org/cig/software/specfem3d_globe/
https://geodynamics.org/cig/software/specfem3d_globe/
https://software.intel.com/en-us/intel-parallel-studio-xe
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://registrationcenter.intel.com/en/forms/?productid=2993https://registrationcenter.intel.com/en/forms/?productid=2993
https://registrationcenter.intel.com/en/forms/?productid=2993https://registrationcenter.intel.com/en/forms/?productid=2993
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

is yoUr ClUsTer healThy?
Brock A. Taylor, HPC Solution Architect, Intel Corporation

Intel® Cluster Checker is a powerful tool for quickly identifying and solving issues in high-performance
computing (HPC) clusters. Subtle and sometimes simple issues on a system can impact cluster
performance and blunt the efforts of fine-tuning and parallelizing an application. Often, the first signs of
a system issue appear when applications run too slowly―or simply stop running altogether. Intel Cluster
Checker provides a methodical way to help quickly determine if the underlying reason an application is
experiencing problems is actually a problem with the cluster.

Cluster Systems Expertise in a Tool
Intel Cluster Checker captures best-known methods and system diagnostics in a single tool. Introduced
in 2007 as part of the Intel® Cluster Ready Program, a key goal was to provide a tool that would assist a
broad range of people who design, deploy, and manage clusters.

Must-Have Cluster Diagnostics in Intel® Cluster Checker

< The Parallel Universe 85

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-cluster-checker
https://clusterready.intel.com/
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 86

Building and managing HPC clusters is far more complex than managing single systems. By their nature,
the most powerful systems in the world, the TOP500, are custom-built systems with dedicated staff to
operate them. Many of these environments grew organically over years, maintained by solution architects
with deep knowledge in this space.

The problem is that the approach of large HPC data centers doesn’t necessarily scale down to smaller
systems. The high level of expertise required can intimidate small and medium businesses. Even
larger enterprises considering moving to HPC clusters must weigh the time and effort it takes to ramp
capabilities. The learning curve can look like a mountain too steep to climb―even though the return on
investment for using HPC is substantial. [Editor’s note: According to a study by Hyperion Research, every
dollar invested in HPC yields $551 of revenue growth and $52 of profit. (Sources: IDC Economic Models
Linking HPC and ROI and Hyperion (IDC) Paints a Bullish Picture of HPC Future)] Intel Cluster Checker
provides expertise in a tool to lower the intimidation factor for people ramping HPC capabilities.

Intel Cluster Checker works like a clinical system. It looks for signs that an issue exists and then examines
the signs holistically to diagnose issues―and potentially even suggest remedies. Data providers
encapsulate common diagnostic tools and functions, and the tool uses these providers to collect
information about the cluster. A rules-based expert system then analyzes the information to produce
signs that may indicate issues. A combination of different signs can lead to a diagnosis, and the tool
can often suggest a remedy. In this way, Intel Cluster Checker models an expert analysis of cluster
functionality and makes it easier to resolve issues quickly.

What Does It Check?
Intel Cluster Checker includes a broad range of data providers and rules that target common issues that
cause system failures or performance degradations. At a high level, Intel Cluster Checker looks at elements
of individual nodes and basic functionality, stepping up cluster-wide functionality. It’s not feasible to list
everything it checks, but here are some examples:

• It checks if the user running the tool has SSH keys set properly for executing message-passing
interface (MPI) parallel applications.

• It verifies that the firmware version of the add-in network card is the same on each node of the
system, examining library version and software consistency across the cluster.

• It finds differences in processor steppings, memory, and hardware components.
• It uncovers differences in configurations of both hardware and software components.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://www.top500.org/
http://www.hpcuserforum.com/ROI/
http://www.hpcuserforum.com/ROI/
https://www.hpcwire.com/2017/04/20/hyperion-idc-paints-bullish-picture-hpc-future/
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

It also uses some common benchmarks to try to gauge how actual performance compares to expected
performance. These functions are valuable at deployment time to declare a system ready for use. They
also play a role in maintaining overall system health. There are hundreds of aspects of a cluster examined
today, and the list of available checks keeps growing with update releases of the tool.

Over the operational lifetime of a cluster, subtle changes may be introduced with replacement parts,
expansion of nodes, and reconfigurations of software or hardware. For example, a replacement network
card could be plugged into a different PCIe* slot than before. New nodes added to the cluster could have a
different Intel® Xeon® processor than the other nodes. Someone could have accidentally skipped updating
the new BIOS settings on one of the nodes.

Over the operational lifetime of a cluster, subtle changes may be introduced with

replacement parts, expansion of nodes, and reconfigurations of software or hardware.

Intel Cluster Checker helps find these issues and calls attention to them. None of them may actually be a
problem for a particular system or application, but the tool highlights items to examine. Using Intel Cluster
Checker can make running clusters less daunting for those who don’t have deep knowledge of cluster
administration and management, and it can augment the toolset for those who do.

In addition to cluster health, Intel Cluster Checker can also verify that a cluster provides the application
compatibility described in the Intel® Scalable System Framework (Intel® SSF) reference architecture.
The Intel SSF reference architecture describes system requirements that define a minimum level of
system characteristics. Some of these characteristics include elements of the system software for
Linux*-based clusters as well as minimum requirements for system hardware. Clusters that comply
with the specification provide a common platform interface that application developers can target.
Applications that build on this common layer execute on any system that complies with the reference
architecture. This pairing of applications and systems enables interoperability that also simplifies the
ramp to using HPC clusters.

Extending and Embedding Functionality
The technologies and components that comprise clusters are constantly evolving―which increases the
potential for new types of problems. Because of this, extensibility is a key feature for Intel Cluster Checker

< The Parallel Universe 87

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://www.intel.com/content/www/us/en/high-performance-computing/product-solutions.html
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

to keep pace with the scope of issues users face. Once a particular type of problem is known, capturing
and adding the mechanisms to detect and resolve these new issues makes checking for them routine.
Users can even create their own data providers and checks and include them in the same fashion.
Intel Cluster Checker 2018 provides the capability to group data collection and analysis functions into
frameworks. These frameworks allow flexibility in how the tool operates and provide a quick way to drop
in new checks to extend capabilities.

Application developers can also embed Intel Cluster Checker functionality directly into their applications
using an API to control data collection and analysis. Embedding functionality provides a range of options
that developers can take advantage of, similar to running Intel Cluster Checker from the command
line. Applications can check general health or compliance with the Intel SSF architecture. It also means
developers can add customized rules that look for aspects of the system that are specific to the application’s
needs. It provides a programmatic mechanism to perform system checking and debugging from the
application’s point of view. The application can find underlying issues on a cluster and inform the user of
potential problems. Examples of using the API are included in the online documentation for the tool.

Focus on Productivity
Variations in configurations, a mix of hardware and software components, or the state of system health
can all manifest as problems for an HPC application. Using Intel Cluster Checker helps identify when
systems are in a known, healthy state. That promotes a better out-of-the-box application experience for
users. If problems do exist, the tool can quickly direct users to potential resolutions. Ultimately, this lowers
the expertise barrier of running HPC clusters and opens doors for more users running cluster applications
to achieve bigger and better results.

Intel Cluster Checker is currently available as part of Intel® Parallel Studio XE Cluster Edition. It’s also
provided on systems using Intel® HPC Orchestrator and may be included in solutions that comply with
the Intel SSF reference architectures for classic HPC clusters.

Learn more about Intel Cluster Checker >

< The Parallel Universe 88

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

inTel® ClUsTer CheCker
Must-Have Cluster Diagnostics geT iT

https://software.intel.com/en-us/intel-parallel-studio-xe
https://www.intel.com/content/www/us/en/high-performance-computing/hpc-orchestrator-overview.html
https://software.intel.com/en-us/intel-cluster-checker
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-cluster-checker/try-buy

oPTimizing hPC ClUsTers
Michael Hebenstreit, Data Center Engineer, Intel Corporation

Since around 2000, most high-performance computing (HPC) systems have been set up as clusters based
on commodity x86 hardware. These clusters consist of one- or two-socket servers to perform the actual
computations, plus storage systems and administrative nodes.

Modern Intel® Xeon® processor-based systems, as well as the Linux* kernel, provide many ways to optimize
both hardware and operating system (OS) for a specific application. It’s easy to do if your cluster is only used
for a specific workflow―but for more complex usages, it’s beyond the ability of most cluster managers.

There is a way to perform complex optimizations on a per-job basis. Intel tested this idea in its
benchmarking data center, which has approximately 500 compute nodes. The cluster, known as Endeavor,

Enabling On-Demand BIOS Configuration Changes in HPC Clusters

< The Parallel Universe 89

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://www.intel.com/content/www/us/en/products/processors/xeon.html
https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 90

is rebuilt on a regular basis with the latest hardware and has been listed among the TOP500
SuperComputer Sites since 2006. Figure 1 shows the layout of Endeavor.

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

1 Layout of Intel’s Endeavor cluster

Users typically connect to one of several login nodes, package up their workloads in the form of job scripts,
and submit those jobs to a cluster manager. The cluster manager (e.g., Altair PBS Pro*, Bright Cluster Manager*,
IBM LSF*, or Slurm*) is a scheduling tool trying to allocate the cluster resources as efficiently as possible. For
the cluster manager, each job is simply a request to use X compute nodes for a Y amount of time.

When a user submits a job, the system checks to see if all necessary parameters are within sensible limits,
and then waits until enough resources of the required type become free (Figure 2). Once the cluster
manager can assign enough nodes, it runs a special program called the prologue (Figure 3). This program
is usually executed on the first node (also called the headnode) assigned to the job. The purpose of the
prologue varies, but it might be used to check that all nodes assigned to a job are in good health. Once the
prologue successfully completes, the cluster manager starts the actual job on the nodes. In most cases,
this is a shell script executed on the headnode. Once this script terminates in any way, the cluster manager
cleans up the nodes, running an epilogue program and preparing the nodes for the next job.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://www.top500.org/
https://www.top500.org/
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 91

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

2 LSF job flow chart on Intel’s Endeavor cluster

3 Prologue program

This workflow, implemented by most cluster managers, faces a problem when it becomes necessary to
reboot nodes as part of the prologue process. Rebooting might be necessary because:

• The Intel® Xeon Phi™ processor is equipped with fast on-socket MCDRAM memory, usable either
as a standard memory block or as a fourth-level cache. Using it as a cache will speed up programs
automatically, but using it as standard memory might be even faster. Switching between those modes
requires changing a BIOS option and rebooting the system.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
This workflow, implemented by most cluster managers, faces a problem when it becomes necessary to reboot nodes as part of the prologue process. This might be necessary because:•	The Intel® Xeon Phi™ processor is equipped with fast on-socket MCDRAM memory, usable either as a standard memory block or as a fourth-level cache. Using it as a cache will speed up programs automatically, but optimizing code using standard memory might be even faster. Switching between those modes requires changing a BIOS option and rebooting the system.

< The Parallel Universe 92

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

• The Intel® Xeon® processor uses a mesh to communicate among the cores, cache, memory, and the
PCIe controller. The BIOS Option Sub Numa Cluster allows a user to reconfigure the CPU and split it into
virtual sockets.

• Modern Linux* kernels know the concept of NO_HZ cores. Normally, cores are interrupted every 100
to 1,000 ms to do kernel work and task switching. For typical HPC workloads, this behavior is counter-
productive. With the NO_HZ parameter, one can configure the kernel to schedule only one interrupt per
second. This decreases OS noise, increases scalability, and can improve performance but requires kernel
changes and a system reboot.

With the standard approach of prologue scripts, the requirement of a reboot leads to a dilemma. The
moment the headnode reboots, the cluster manager will assume the prologue has terminated, stop
preprocessing of the job, and then reschedule it. A new set of nodes will be allocated for the job, a new
headnode will be selected, and the prologue will execute―with exactly the same results.

Finding a Solution
Intel’s HPC benchmarking cluster, Endeavor, currently uses IBM LSF*. The only simple and portable solution
we could find was to add a master control node (MCN) to each job (Figure 4). This MCN would automatically
become the headnode of a job. It would execute the prologue, use syscfg to make any changes to the BIOS
configuration, and reboot the compute nodes using the Intelligent Platform Management Interface (IPMI). It
would then wait for the nodes to come back up, check that everything is correct, and finish the prologue. If
the prologue completes successfully, the job will start.

4 Master control node

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/products/processors/xeon.html

< The Parallel Universe 93

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

Users would now see a small difference. Normally, they would request a number of nodes of the same type
including the headnode. But for a reconfig-job, the headnode will be of a different type. The user now has
two options:

1. Login to the first node in the nodelist, then continue to work as usual.
2. Use an option in modern MPI versions to exclude the headnode from the list of nodes used for

job processing.

The latter approach has some advantages:

• Typically, the headnode of an MPI program has to start up additional processes―for example, an
ssh process for every MPI process in the program. Since this additional load remains on the MCN, all
compute nodes will have an identical system load.

• Specific to Intel Xeon Phi processor-based clusters, if the MCN is a standard Intel Xeon processor-based server,
startup scripts and MPI initialization will process faster than on an Intel Xeon Phi processor-based system.

Implementation
On Endeavor, the prologue and epilogue not only check node health. The system also allows users to
change parameters requiring root privileges. Since most of the code for the prologue and epilogue is identi-
cal, we use the same script in both cases, switching codepaths when necessary.

Prerequisites

Job Submission
We wanted to stay close to standard LSF syntax, so we wrote a small wrapper script around bsub, extending
the command with a -l option. All special requests are translated into unique environment variables, since
LSF transfers the environment of the user not only into the job, but also to the prologue and epilogue.

If necessary, the wrapper would automatically extend the resource requirements to include the control nodes:

 $ bsub -R ‘2*{select[ekf]span[ptile=1]}’ -l KNL_MEMMODE=1 run.sh

 Warning ‘-l KNL_MEMMODE=1’ will reboot compute nodes

 Resource_List_KNL_MEMMODE=1

 bsub.orig -R ‘1*{select[rebootctrl]} + 2*{select[ekf] span[ptile=1]}’ run.sh

 …

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 94

The user requests two nodes of the type ekf. The script sets the corresponding environment variable. The
selection string is expanded to include the control node type. With those two changes, the original LSF
binary (renamed bsub.orig) is called.

Remotely Booting Nodes
To reboot nodes via the network, we use the IPMI.

Booting Cluster Nodes via Preboot Execution Environment (PXE)
PXE is already used in most clusters. For reconfiguration purposes, we made use of the way the pxelinux.0
binary queries the tftp server for boot configuration files (Figure 5).

5 Preboot execution environment

The first query is for a file named after the MAC address (01-00-1e-67-94-a0-8f). The second query is for
a file named after the IP address assigned by the DHCP server coded in hexadecimal (2465220A). We use
the second query for default boots and can therefore―temporarily―create a suitable file of the first type to
override boot configurations for a specific job.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 95

For this to work, we depend on a systematic PXE configuration. For each node a link nodename points to its
IP address coded in hexadecimal. This second file is again a link pointing to the default configuration.

 emhtest329 -> 2465220A

 2465220A -> ol7u3_sda6

We allow users only specific combinations prepared as special1, special2, and so on. The PXE boot directory
contains next to the default configuration:

 ol7u3_sda6

Files like:

 ol7u3_sda6-k229sp0

 ol7u3_sda6-k514sp1

 ol7u3_sda6-k514sp2

 …

Each represents a boot configuration. In this case, k229 and k514 indicate different kernel versions,
sp1,2,3… all have special kernel options (e.g., NOHZ_full). If the user requests a specific configuration,
the corresponding file for this node has to be present. So, in our example, the node emhtest329 could be
rebooted into the configuration k515sp2 because the file ol7u3_sda6-k514sp2 is present. But asking for
k514x5 would fail.

Changing BIOS Options
Intel provides the syscfg utility for Intel-manufactured motherboards, which allows reading and modifying
BIOS parameters from Linux. Not all OEMs provide similar tools.

Integration Into the Cluster Manager
The integration into LSF is now straightforward. The prologue is automatically executed by LSF on the master
control node. Early in the prologue, before any other checking or setup is done, the reconfiguration script
needs to be executed on all compute nodes of the job (not on the control node itself). If a node declares that a
reboot is needed, the prologue can use IPMI to reset it. It then waits until the reboot is complete. A maximum
wait time ensures that nodes failing to boot will not wreck this scheme. During epilogue, the similar jobflow
reestablishes node settings to their default values and, if necessary, reboots the nodes.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 96

Anatomy of the Reconfiguration Script
The script is executed by the prologue on each node and reacts to a number of environment variables:

 Prologue # 1 if prologue is executed

 # user requirements from bsub

 Resource_List_KNL_MEMMODE

 Resource_List_KNL_CLUSTERMODE

 Resource_List_Sub_NUMA_Cluster

 Resource_List_SPECIAL_KERNEL

Intialization shows where the critical syscfg binary is and where the files are stored. We track if the node
needs a reboot in the REBOOT variable:

 SYSCFG=/usr/local/bin/syscfg

 SAFEDIR=/var/lib/icsmoke3/safe

 CURRENTDIR=/var/lib/icsmoke3/current

 PXEDIR=/admin/tftpboot/3.0/pxelinux/pxelinux.cfg

 REBOOT=no

 HOSTNAME=`hostname`

The helper function helps when output from the syscfg command is not always directly usable as input. The
sed command below will transform a line from syscfg.INI in the form:

 Cluster Mode=Quadrant;Options: All2All=00: SNC-2=01: SNC-4=02: Hemisphere=03:

 Quadrant=04: Auto=05

into its associated numerical value. It requires the variable $I to be set correctly.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

< The Parallel Universe 97

 convert_syscfg()

 {

 echo “$1” | sed -e “s,${I}=Cache.*,0,” -e “s,${I}=Flat.*,1,” -e

 “s,${I}=All2All.*,0,” -e “s,${I}=SNC-2.*,1,” -e “s,${I}=SNC-

 4.*,2,” -e “s,${I}=Hemisphere.*,3,” -e “s,${I}=Quadrant.*,4,” -e

 “s,${I}=Disabled.*,0,” -e “s,${I}=Enabled.*,1,”

 }

Dump the current BIOS configuration to get all current settings:

 cd $CURRENTDIR

 /bin/rm syscfg.INI

 $SYSCFG /s INI

After a job completes, the epilogue should run on all nodes.

 if [“$prologue” != “1”]

 then

We first check if a special PXE configuration already exists. If so, it should be removed. If it’s not possible to
remove the file, the script will fail with an error:

 # this is the PXE link used to boot to special kernel

 ADDR=”01-`sed -e ‘s,:,-,g’ /sys/class/net/eth0/address`”

 ADDRFILE=”/admin/tftpboot/3.0/pxelinux/pxelinux.cfg/$ADDR”

 if [-e “$ADDRFILE”]

 then

 /bin/rm $ADDRFILE

 sleep 1 # wait for the cluster file system to catch up

 if [-e “$ADDRFILE”]

 then

 badmin hclose -C “wrong bootimage, fix $ADDRFILE” $HOSTNAME

 REBOOT=error

 exit 1

 fi

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/intel-parallel-universe-magazine

Check current values for BIOS options against expected values in $SAFEDIR/syscfg.INI and correct any
differences. If there are any differences, set the variable $REBOOT=yes.

 for I in “Memory Mode” “Cluster Mode” “Sub_NUMA Cluster” “IMC Interleaving”
 do

 CURRENT=`egrep “$I” $ CURRENTDIR/syscfg.INI`

 SAFE=`egrep “$I” $ SAFEDIR/syscfg.INI`

 if [“$CURRENT” != “$SAFE”]

 then

 VAL=`convert_syscfg “$SAFE”`

 $SYSCFG /bcs “” “$I” “$VAL”

 REBOOT=yes

 fi

 done

Our kernel command lines contain a hint to whether the node is running the default kernel or anything
special in need of a reboot.

 grep -q “CRTBOOT=default” /proc/cmdline || REBOOT=yes

The rest of the script is only processed during prologue:

 else

For every BIOS option, we check if the user supplied allowable values. Then the current configuration is
compared against the one requested by the user. If a configuration change is necessary, we use syscfg to set
the new value, and set the $REBOOT variable to indicate that rebooting is necessary, e.g.:

 case “$Resource_List_KNL_MEMMODE” in 0|1)

 I=”Memory Mode”

 CURRENT=`egrep “$I” $CURRENTDIR/syscfg.INI`

 SAFE=`egrep “$I” $SAFEDIR/syscfg.INI`

 VAL=`convert_syscfg “$CURRENT”`

 test -n “$SAFE” && test “$VAL” != “$Resource_List_KNL_MEMMODE”

 && { $SYSCFG /bcs “” “$I” “$Resource_List_KNL_MEMMODE” ;

 REBOOT=yes; }

 esac

< The Parallel Universe 98

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 99

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

For logging purposes, we display the current values of all settings:

 # display current settigns

 $SYSCFG /d BIOSSETTINGS “Memory Mode”

 $SYSCFG /d BIOSSETTINGS “Cluster Mode”

 $SYSCFG /d BIOSSETTINGS “Sub_NUMA Cluster”

To configure a different kernel, the script first locates the standard PXE-config file for this node in $PXEDIR.
That name is expanded by $Resource_List_SPECIAL_KERNEL. If the requested configuration file exists, a
link with the name 01-MACADDRESS is created, and will take precedence on the next boot. The $REBOOT
variable is set to “yes.”

 if [-n “$Resource_List_SPECIAL_KERNEL”]

 then

 echo “configuring for Kernel $Resource_List_SPECIAL_KERNEL”

 if ! `grep -q “CRTBOOT=${Resource_List_SPECIAL_KERNEL}” /proc/cmdline`

 then

 DEFAULT=`readlink -f $PXEDIR/$HOSTNAME`

 DIR=`dirname $DEFAULT`

 BASE=`basename $DEFAULT`

 if [-e “$DIR/${BASE}-${Resource_List_SPECIAL_KERNEL}”]

 then

 cd $DIR

 ln -s ${BASE}-${Resource_List_SPECIAL_KERNEL} “$ADDR”

 echo “created $DIR/$ADDR”

 ls -l “$DIR/$ADDR”

 REBOOT=yes

 else

 echo “can not set kernel to $DIR/${BASE}-${Resource_List_SPECIAL_KERNEL}”

 fi

 fi

 fi

fi

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

< The Parallel Universe 100

Sign up for future issues For more complete information about compiler optimizations, see our Optimization Notice.

The script ends, producing an output of either “REBOOT=yes” or “REBOOT=no”.

 echo “REBOOT=$REBOOT”

The prologue script running on the control node will parse the output and, depending on this output, issue a
reboot sequence via IPMI.

Optimizing Your Cluster
Modern Intel Xeon processor-based systems, as well as the Linux kernel, provide many options for
optimizing the hardware and OS for a specific application. We’ve outlined a way to perform complex
optimizations on a per-job basis. There’s a price to pay in the form of added complexity and job startup
times, but for Intel’s HPC benchmarking cluster, Endeavor, this feature became a very important way to boost
performance over the last year. Your gains might be even higher.

Blog highlighTs

Read more >

Boost Quality and Performance of Media Applications with the Latest
Intel HEVC Encoder/Decoder
BY TERRY DEEM, INTEL CORPORATION

Media and video application developers can tune for even more brilliant visual quality and fast
performance with new HEVC technology inside the just released Intel® Media Server Studio
Professional Edition (2017 R3). In this new edition, key analysis tools’ enhancements provide
better and deeper data insights on application performance characteristics so devs can save time
targeting and fixing optimization areas. The Intel Media Server Professional Edition includes easy-
to-use video encoding and decoding APIs, and visual quality and performance analysis tools that
help media applications to deliver higher resolutions and frame rates.

https://software.intel.com/en-us/intel-parallel-universe-magazine
https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://software.intel.com/en-us/articles/use-intel-hevc-encoderdecoder-to-amp-quality-and-performance-of-media-applications

Software

The Parallel
Universe

 Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation.
 Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer, or learn more at www.intel.com.
 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured

using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to www.
intel.com/performance.

 Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced
Web sites or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for
purchase.

 This document and the information given are for the convenience of Intel’s customer base and are provided “AS IS” WITH NO WARRANTIES WHATSOEVER, EXPRESS OR IMPLIED, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. Receipt or possession of this docu-
ment does not grant any license to any of the intellectual property described, displayed, or contained herein. Intel® products are not intended for use in medical, lifesaving, life-sustaining, critical
control, or safety systems, or in nuclear facility applications.

 Copyright © 2017 Intel Corporation. All rights reserved. Intel, Xeon, Xeon Phi, VTune, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
 * Other names and brands may be claimed as the property of others. Printed in USA 1017/SS Please Recycle

