
1

Getting the Most from OpenCL™ 1.2:
How to Increase Performance by Minimizing Buffer
Copies on Intel® Processor Graphics

Adam Lake

2

Table of Contents
Introduction .. 3

Key Takeaway .. 3

Motivation... 3

Definitions ... 3

Intel® Processor Graphics with Shared Physical Memory .. 4

Benefits of Zero Copy .. 5

Memory Buffers in OpenCL ... 5

Creating Buffers with clCreateBuffer() ... 5

Accessing the Buffer on the Host .. 7

Accessing the Buffer on the Device .. 7

Use clEnqueueMapBuffer() and clEnqueueUnmapMemObject() .. 7

Caveats on Other Platforms .. 7

An Observation about the Virtual Address Space... 7

Validating Zero Copy Behavior .. 8

A Zero Copy Example .. 8

Sample File and Directory Structure ... 8

Source Files: .. 8

Microsoft Visual Studio 2012 Configuration: .. 9

Building and Running the Examples .. 9

What’s Coming in OpenCL 2.0: Shared Virtual Memory (SVM) .. 11

Acknowledgements ... 11

References .. 11

About the Author .. 12

Legal Information .. 13

3

Introduction
This document provides guidance to OpenCL™ developers who want to optimize applications running on

Intel® processor graphics. Specifically, this document shows you how to minimize the memory footprint

of applications and reduce the amount of copying on buffers in the shared physical memory system of

an Intel® System on Chip (SoC) solution. It also provides working source code to demonstrate these

principles.

The OpenCL 1.2 Specification includes memory allocation flags and API functions that developers can

use to create applications with minimal memory footprint and maximum performance. This is

accomplished by eliminating extra copies during execution, referred to as zero copy behavior. This

document augments the OpenCL API specification by giving guidance specific to Intel processor graphics.

Key Takeaway
To create zero copy buffers, do one of the following:

 Use CL_MEM_ALLOC_HOST_PTR and let the runtime handle creating a zero copy allocation

buffer for you

 If you already have the data and want to load the data into an OpenCL buffer object, then use

CL_MEM_USE_HOST_PTR with a buffer allocated at a 4096 byte boundary (aligned to a page

and cache line boundary) and a total size that is a multiple of 64 bytes (cache line size).

When reading or writing data to these buffers from the host, use clEnqueueMapBuffer(), operate on

the buffer, then call clEnqueueUnmapMemObject(). This paper contains code samples to demonstrate

the best known practices on Intel® platforms.

Motivation
Memory management within the GPU driver has a complicated set of memory usage scenarios that

need to be considered. Applications can inform the driver of their usage by specifying flags during

memory allocation as well as through specific memory access or transfer APIs called during runtime.

Sometimes driver implementations need to create or manage internal copies of memory buffers to

facilitate servicing these API calls. For example, internal memory buffer copies might be created to

support the memory layout preferred by the CPU or GPU or to improve caching behavior. Such copies

may be necessary in these scenarios, but they can detrimentally impact performance. Application

developers need device-specific knowledge in order to know how to avoid these copies.

Definitions
Before going into the technical details, here are some definitions of terms used in this article.

 Host memory: Memory accessible on the OpenCL host.

 Device memory: Memory accessible on the OpenCL device.

 Zero copy: Refers to the concept of using the same copy of memory between the host, in this

case the CPU, and the device, in this case the integrated GPU, with the goal of increasing

performance and reducing the overall memory footprint of the application by reducing the

number of copies of data.

4

 Zero copy buffers: Buffers created via the clCreateBuffer() API that follow the rules for zero

copy. This is implementation dependent so the rules on one device may be different than

another.

 Shared Physical Memory: The host and the device share the same physical DRAM. This is

different from shared virtual memory, when the host and device share the same virtual

addresses, and is not the subject of this paper. The key hardware feature that enables zero copy

is the fact that the CPU and GPU have shared physical memory. Shared physical and shared

virtual memories are not mutually exclusive.

 Virtual Memory: The memory model used by the operating system to give the process

perceived ownership of its own dedicated memory space. Pointers that programmers operate

on are not physical memory addresses but instead virtual addresses that are part of a virtual

address space. The platform handles conversions between these virtual addresses and the

physical memory address.

 Intel processor graphics: The term used when referring to current Intel graphics solutions.

Product names for Intel GPUs integrated in SoC include Intel® Iris™ graphics, Intel® Iris™ Pro

graphics, or Intel® HD Graphics depending on the exact SoC. For additional hardware

architecture details see the Intel® Gen 7.5 Compute Architecture document referenced at the

end of this document or http://ark.intel.com/.

Intel® Processor Graphics with Shared Physical Memory
Intel processor graphics shares memory with the CPU. Figure 1 shows their relationship. While not

shown in this figure, several architectural features exist that enhance the memory subsystem. For

example, cache hierarchies, samplers, support for atomics, and read and write queues are all utilized to

get maximum performance from the memory subsystem.

Intel® CPU
Intel® processor

graphics

Main Memory (DRAM)

Figure 1. Relationship of the CPU, Intel® processor graphics, and main memory. Notice a single
pool of memory is shared by the CPU and GPU, unlike discrete GPUs that have their own dedicated

memory that must be managed by the driver.

http://ark.intel.com/

5

Benefits of Zero Copy
With Intel processor graphics, using zero copy always results in better performance relative to the

alternative of creating a copy on the host or the device. Unlike other architectures with non-uniform

memory architectures, memory shared between the CPU and GPU can be efficiently accessed by both

devices.

Memory Buffers in OpenCL
The performance of buffer operations in OpenCL can be different on different OpenCL implementations.

Here, we clarify the behavior on Intel processor graphics.

Creating Buffers with clCreateBuffer()
One use case for OpenCL is when memory is already populated on the host and you want the device to

read this data. In this case use the flag CL_MEM_USE_HOST_PTR to create the buffer. This may be the

case when we are using OpenCL with existing codebases. When using the CL_MEM_USE_HOST_PTR

flag, if we want to guarantee a zero copy buffer on Intel processor graphics, we need to ensure that we

adhere to two device-dependent alignment and size rules. We must create a buffer that is aligned to a

4096 byte boundary and have a size that is a multiple of 64 bytes. Also note that if we write into this

buffer, we will overwrite the original contents of the buffer. For clarity we include a short code sequence

at the end of this section to test a buffer to determine if it meets this criteria.

CL_MEM_USE_HOST_PTR: Use this when a buffer is already allocated as page-aligned with

_aligned_malloc() instead of malloc() and a size that is a multiple of 64 bytes:

int *pbuf = (int *)_aligned_malloc(sizeof(int) * 1024, 4096);

Using _aligned_malloc() requires the use of _aligned_free() when deallocating. On Linux*, Android*,

and Mac OS* see documentation for mem_align() or posix_memalign(). Do not use free() on memory

allocated with _aligned_malloc(). Create the buffer and its associated cl_mem object using:

cl_mem myZeroCopyCLMemObj = clCreateBuffer(ctx,…CL_MEM_USE_HOST_PTR…);

A second case is when the data will be generated on the device but may be read back on the host. In this

case leverage the CL_MEM_ALLOC_HOST_PTR flag to create the data. Do not worry about using the

example code below to test that the memory is sized and allocated at a proper base address, the

runtime will handle this for you.

A third case is when data is generated on the host but your application is in control of the initialization

of the buffer. In this case you create the buffer, then initialize it. For example, suppose you are reading

in input from a file. The difference between this case and the use of CL_MEM_USE_HOST_PTR is if the

buffer has already been populated. To initialize the contents of the buffer, use the OpenCL map and

unmap API functions described later.

CL_MEM_ALLOC_HOST_PTR: Use this flag when you have not yet allocated the memory and want

OpenCL to ensure that you have a zero copy buffer.

buf = clCreateBuffer(ctx, ….CL_MEM_ALLOC_HOST_PTR, ….)

6

Table 1. Different application scenarios showing which flags to pass to clCreateBuffer() to enable the use

of zero copy buffers on Intel® processor graphics

Flag(s) When to use the flag(s) to enable a zero copy scenario
CL_MEM_USE_HOST_PTR Buffer was already created in existing application code and the

alignment and size rules were followed when the buffer was allocated,
or you want control over the buffer allocation and do not want to rely
on OpenCL.

 In cases when you don’t want to incur the cost of a copy that would
take place with CL_MEM_ALLOC_HOST_PTR |
CL_MEM_COPY_HOST_PTR.

 In cases when data can be safely overwritten by OpenCL or you know
the data will not be overwritten because your application controls any
writes to the buffer.

CL_MEM_ALLOC_HOST_PTR You want the OpenCL runtime to handle the alignment and size
requirements.

 In cases when you may be reading data from a file or another I/O
stream.

 A brand new application being written to use OpenCL and not a port
from existing code.

 Buffer will be initialized in host or device code and not by a library
decoupled from your control.

 Don’t forget to map and unmap the buffer during initialization.

CL_MEM_ALLOC_HOST_PTR |
CL_MEM_COPY_HOST_PTR

 You want the OpenCL runtime to handle the size and alignment
requirements.

 In cases when you may be reading or writing data from a file or another
I/O stream and aren’t allowed to write to the buffer you are given.

 Buffer is not already in a properly aligned and sized allocation and you
want it to be.

 You are okay with the performance cost of the copy relative to the
length of time your application executes, for example at initialization.

 Porting existing application code where you don’t know if it has been
aligned and sized properly.

 The buffer used to create the OpenCL buffer needs the data to be
unmodified and you want to write to the buffer

In summary, most cases can use CL_MEM_ALLOC_HOST_PTR on Intel processor graphics. Do not forget

when initializing the buffer contents to first map the buffer, write to the buffer, and then unmap the

buffer. In some cases the data may already be in an aligned and properly sized allocation, allowing you

to use CL_MEM_USE_HOST_PTR.

This short function in C verifies that the pointer and size of the allocation adheres to the alignment and

size rules:

unsigned int verifyZeroCopyPtr(void *ptr, unsigned int sizeOfContentsOfPtr)

{

 int status; //so we only have one exit point from function

 if((uintptr_t)ptr % 4096 == 0) //page alignment and cache alignment

 {

 if(sizeOfContentsOfPtr % 64 == 0) //multiple of cache size

 {

 status = 1;

 }

 else status = 0;

7

 }

 else status = 0;

 return status;

Accessing the Buffer on the Host
When directly accessing any buffer on the host, zero copy buffer or not, you are required to map and

unmap the buffer in OpenCL 1.2. See below and the sample code for details.

Accessing the Buffer on the Device
Accessing the buffer on the device is no different than any other buffer; no code change is required. You

only need to worry about the host-side interaction and the map and unmap APIs.

Use clEnqueueMapBuffer() and clEnqueueUnmapMemObject()
The APIs clEnqueueReadBuffer(), clEnqueueWriteBuffer(), and clEnqueueCopyBuffer() are not

recommended, especially for large buffers since they require the contents of the buffer to be copied.

Sometimes, however, these APIs might be beneficial, for example, if you are reading the contents out of

the buffer because you want to reuse it immediately on the GPU in a double buffering scenario. In this

case, it is useful to make a host-side copy and let the device continue to operate on the original buffer.

To facilitate host read or write access to a memory buffer that has been shared with Intel processor

graphics, use the APIs clEnqueueMapBuffer() and clEnqueueUnmapMemObject().

Example use of clEnqueueMapBuffer():

mappedBuffer = (float *)clEnqueueMapBuffer(queue, cl_mem_image, CL_TRUE,

CL_MAP_READ, 0, imageSize, 0, NULL, NULL, NULL);

Example use of clEnqueueUnmapMemObject():

clEnqueueUnmapMemObject(queue, cl_mem_image, mappedBuffer, 0, NULL, NULL);

Caveats on Other Platforms
The behavior described above may not be the same on all platforms. It is best to check the vendor’s

documentation. The OpenCL API specification provides a vendor the ability to create zero copy buffers.

It does not guarantee to always return a zero copy buffer. In fact, the specification actually states that a

copy may be created. In the documentation for CL_MEM_USE_HOST_PTR:

“OpenCL implementations are allowed to cache the buffer contents pointed to by host_ptr in device
memory. This cached copy can be used when kernels are executed on a device.”

An Observation about the Virtual Address Space
You may notice that the address you are validating to be on a 4096 byte page boundary is a virtual

address boundary and not a physical address. Is this a problem? While in theory it could be an issue,

after all the OS could have mapped a virtual address to any physical address, this does not happen in our

implementation. You are assured that if the virtual address is page aligned, then the physical address is

page aligned. More details on how and why this works is beyond the scope of this article.

8

Validating Zero Copy Behavior
One downside of the OpenCL 1.2 API is there is no runtime mechanism to validate that a copy has or has

not occurred. For example, when a clEnqueueMapBuffer() executes, was a copy created or not? The

way we verified these samples was to time a short program that declared the output buffer with

_aligned_malloc() and compare the result when using malloc() with an image of size 1024x1024 over

several iterations to verify that the aligned allocation was significantly faster from just before the map to

just after the unmap. These timings also include driver overhead. We have left the timing code in the

sample if you want to verify this yourself.

A Zero Copy Example
We ported to OpenCL a well-known BSD licensed codebase that simulates ambient occlusion called

AOBench available at: https://code.google.com/p/aobench/. We start with a straightforward mapping

to OpenCL, the way any reasonable programmer would do as a first attempt. Next we show two

different versions where we create the computed ambient occlusion resultant image as a zero copy

buffer. The first shows the code when you want to allocate the buffer and pass this buffer to the OpenCL

runtime. This might be common when you already have an existing application that makes use of

CL_MEM_USE_HOST_PTR. The second is further simplified and is useful when you want the OpenCL

runtime to handle the buffer allocation and uses CL_MEM_ALLOC_HOST_PTR. We have left it up to you

to implement the third possibility: a short, but useful, exercise to create the buffer using

CL_MEM_ALLOC_HOST_PTR, map the pointer, populate the buffer on the host, then unmap the

pointer. We focus on the output image buffer for this example; other buffers could be treated similarly.

Sample File and Directory Structure
This section contains details on how this code is partitioned. The emphasis was to create a simple C

example and not a product quality implementation. Most of the code is common across all of the

samples.

Source Files:

 Common/host_common.cpp: Boilerplate to start up and manage an OpenCL context, compile

the source, create queues, and handle general cleanup.

 Common/kernels.cl: OpenCL kernel code for this particular example. The contents of this file

are of no significance other than demonstrating a complete application.

 Include/host_common.h: header file for host_common.cpp, various initialization values, and

function and variable declarations.

 Include/scene.h: scene graph functions and variables used in this sample.

 NotZeroCopy/main.c: source file that contains the functions for doing a straightforward port of

the sample code. The functions we are interested in are initializeDeviceData() and

runClKernels(). In initializeDeviceData() we used a standard malloc() without forcing an

alignment, resulting in a surface that will not support zero copy. Also, in runCLKernels() we used

the standard API call clEnqueueReadBuffer(). Functionally, this is 100% correct, however it is

not optimal for performance.

 ZeroCopyUseHostPtr/main.c: source file that contains functions that demonstrate modifications

to NotZeroCopy. Notice the use of _aligned_malloc() instead of malloc() from NotZeroCopy in

https://code.google.com/p/aobench/

9

initializeDeviceData(). Also, when we call clCreateBuffer() we use the flag

CL_MEM_USE_HOST_PTR.

 ZeroCopyAllocHostPtr/main.c: source file that contains functions that demonstrate the

modifications required when using the allocation mechanism of the runtime. Specifically, notice

the fact that now we do not even need to call _aligned_malloc() as we did in the

ZeroCopyUseHostPtr example. Instead, we simply pass the flag CL_MEM_ALLOC_HOST_PTR

and pass the size of the buffer we want to allocate.

The other files and directories are generated automatically by the Microsoft Visual Studio* IDE.

Microsoft Visual Studio 2012 Configuration:
The Microsoft Visual Studio 2012 solution, OpenCLZeroCopy.sln, has three projects:

NotZeroCopy.vcxproj, ZeroCopyAllocHostPtr.vcxproj, and ZeroCopyUsedHostPtr.vcxproj. The

OpenCLZeroCopy.props property sheet holds the settings specific to this project. These settings include:

the system path to the cl.h header file, the pointer to the OpenCL.lib library to link to, and the pointer to

the local include directory for this example. You may need to change these settings for your build

environment.

Building and Running the Examples

Build Requirements

First, make sure you have downloaded and installed the Intel® SDK for OpenCL™ Applications available

here: https://software.intel.com/en-us/vcsource/tools/opencl-sdk. Also, be sure to install Microsoft

Visual Studio 2012 (MSVC 2012) IDE. Next, open the solution file OpenCLZeroCopy.sln in MSVC 2012.

Paths in the Property Sheet

Instead of making changes for each build of each executable, MSVC supports the use of property sheets.

If you change a property sheet, the change propagates to all builds that include this property sheet in

their build settings. We have included figures here that show the path names on our system if you

decide you need to change them. Alternatively, you can use the environment variable:

$(INTELOCLSDKROOT), which defaults to C:\Program Files (x86)\Intel\OpenCL SDK\3.0\. You may have a

more recent version. We have a relative path for the include files used across each of the executables

and use the default installation location for the Intel OpenCL SDK. For more information on property

sheets consult the MSDN documentation: http://msdn.microsoft.com/en-

us/library/z1f703z5(v=vs.90).aspx .

https://software.intel.com/en-us/vcsource/tools/opencl-sdk
http://msdn.microsoft.com/en-us/library/z1f703z5(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/z1f703z5(v=vs.90).aspx

10

Figure 2. Additional include directories used in this code sample.

You can access the property manager from the View menu and select the Property Manager Menu item.

Figure 3. Additional library directories used in this code sample.

11

Figure 4. Notice the opencl.lib file is added as an additional library.

Running the Example

Build this sample code by selecting Build->Build Solution from the main menu. All of the executables

should be generated. You can run them within Visual Studio directly or go to the Debug and/or Release

directories that are located in the same location as the OpenCLZeroCopy solution file.

What’s Coming in OpenCL 2.0: Shared Virtual Memory (SVM)
This paper has focused on understanding the use of buffers that can be shared on platforms that

support shared physical memory (SPM) such as the Intel CPUs and Intel processor graphics. OpenCL 2.0

will have APIs to expose shared virtual memory on architectures that can support it. This will allow you

to not just have a shared buffer for writing, but also to share virtual addresses on the CPU and GPU. For

example, you could leverage SVM to update a scene graph on the CPU using a physics simulation then

use the GPU to calculate the final image.

Acknowledgements
Lots of folks have encouraged the development of this and other collateral. Some provided feedback

and some helped create the space to get it done: Stephen Junkins, Murali Sundaresan, David Blythe,

Aaron Kunze, Allen Hux, Mike Macpherson, Pavan Lanka, Girish Ravunnikutty, Ben Ashbaugh, Sergey

Lyalin, Maxim Shevstov, Arnon Peleg, Vadim Kartoshkin, Deepti Joshi, Uri Levy, and Shiri Manor.

References
1. OpenCL 1.2 specification: https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

2. OpenCL 2.0 specification, composed of three books: the OpenCL C Language specification, the

OpenCL Runtime API, and the OpenCL extensions: https://www.khronos.org/registry/cl/specs/

3. AOBench: https://code.google.com/p/aobench/

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/
https://code.google.com/p/aobench/

12

4. Stephen Junkins’ whitepaper: Intel® Gen 7.5 Compute Architecture:

https://software.intel.com/sites/default/files/managed/f3/13/Compute_Architecture_of_Intel_Proc

essor_Graphics_Gen7dot5_Aug2014.pdf. A must-read for anybody using OpenCL on Intel Processor

Graphics platforms.

About the Author
Adam Lake – Adam works in the Visual Products Group as a Senior Graphics Architect and Voting

Representative to the Khronos OpenCL Standards Body. He has worked on GPGPU programming for 12+

years. Previously he has worked in VR, 3D, graphics, and stream programming language compilers.

https://software.intel.com/sites/default/files/managed/f3/13/Compute_Architecture_of_Intel_Processor_Graphics_Gen7dot5_Aug2014.pdf
https://software.intel.com/sites/default/files/managed/f3/13/Compute_Architecture_of_Intel_Processor_Graphics_Gen7dot5_Aug2014.pdf

13

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS
OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY
OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Intel, the Intel logo, Core, Iris, and Iris Pro are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

Copyright © 2014, Intel Corporation. All rights reserved.

