
Intel® oneAPI DPC++/C++ Compiler
Developer Guide and Reference

Disclaimer and Legal Information



Contents
Notices and Disclaimers..................................................................... 13
Intel® oneAPI DPC++/C++ Compiler Developer Guide and

Reference....................................................................................... 14

Part I: Intel® oneAPI DPC++/C++ Compiler Introduction
Feature Requirements .............................................................................. 15
Get Help and Support .............................................................................. 16
Related Information................................................................................. 17
Notational Conventions ............................................................................ 17

Part II: Compiler Setup
Use the Command Line ............................................................................ 21

Specify the Location of Compiler Components ..................................... 21
Invoke the Compiler ........................................................................ 23
Use the Command Line on Windows .................................................. 25
File Extensions................................................................................ 25
Use Makefiles for Compilation ........................................................... 26
Use CMake with the Intel® oneAPI DPC++/C++ Compiler ..................... 27
Use Compiler Options ...................................................................... 28
Specify Compiler Files...................................................................... 31
Convert Projects to Use a Selected Compiler ....................................... 32

Use Eclipse ............................................................................................ 33
Add the Compiler to Eclipse .............................................................. 33
Multi-version Compiler Support ......................................................... 33
Use Cheat Sheets............................................................................ 34
Create a Simple Eclipse Project ......................................................... 34
Makefiles ....................................................................................... 37
Use Intel Libraries with Eclipse.......................................................... 38

Use Microsoft Visual Studio ....................................................................... 39
Create a New Project ....................................................................... 40
Use the Intel® oneAPI DPC++/C++ Compiler ...................................... 41
Select the Compiler Version .............................................................. 42
Specify a Base Platform Toolset......................................................... 42
Use Property Pages ......................................................................... 43
Use Intel® Libraries with Microsoft Visual Studio*................................. 43
Include MPI Support ........................................................................ 45
Dialog Box Help .............................................................................. 45

Options: Compilers dialog box .................................................. 45
Use Intel® oneAPI DPC++/C++ Compiler dialog box .................... 46
Options: Intel Libraries for oneAPI dialog box ............................. 46
Options: Converter dialog box .................................................. 47

Part III: Compiler Reference
C/C++/SYCL Calling Conventions .............................................................. 48
Compiler Options..................................................................................... 52

Alphabetical Option List.................................................................... 53
General Rules for Compiler Options.................................................... 64
What Appears in the Compiler Option Descriptions............................... 66
Optimization Options ....................................................................... 66

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

2



fast....................................................................................... 66
fbuiltin, Oi.............................................................................. 68
foptimize-sibling-calls .............................................................. 68
GF ........................................................................................ 69
nolib-inline............................................................................. 70
O.......................................................................................... 71
Od ........................................................................................ 73
Ofast..................................................................................... 74
Os ........................................................................................ 75
Ot......................................................................................... 75
Ox ........................................................................................ 76

Code Generation Options.................................................................. 77
arch ...................................................................................... 77
ax, Qax ................................................................................. 79
EH ........................................................................................ 83
fasynchronous-unwind-tables ................................................... 84
fdata-sections, Gw .................................................................. 85
fexceptions ............................................................................ 85
ffunction-sections, Gy.............................................................. 86
fomit-frame-pointer, Oy........................................................... 87
Gd ........................................................................................ 88
Gr......................................................................................... 89
GR........................................................................................ 90
guard .................................................................................... 91
Gv ........................................................................................ 92
Gz ........................................................................................ 93
m ......................................................................................... 94
m32, m64, Q32, Q64 .............................................................. 95
m80387................................................................................. 96
march ................................................................................... 97
masm ................................................................................... 99
mbranches-within-32B-boundaries, Qbranches-within-32B-

boundaries....................................................................... 100
mintrinsic-promote, Qintrinsic-promote.................................... 101
momit-leaf-frame-pointer....................................................... 102
mregparm............................................................................ 103
mtune, tune......................................................................... 104
regcall, Qregcall.................................................................... 107
x, Qx................................................................................... 108
xHost, QxHost ...................................................................... 111

Interprocedural Optimization Options............................................... 114
ipo, Qipo.............................................................................. 114

Advanced Optimization Options....................................................... 115
ffreestanding, Qfreestanding .................................................. 115
fjump-tables ........................................................................ 116
fvec-peel-loops, Qvec-peel-loops............................................. 117
fvec-remainder-loops, Qvec-remainder-loops............................ 118
fvec-with-mask, Qvec-with-mask ............................................ 119
ipp-link, Qipp-link ................................................................. 119
qactypes, Qactypes ............................................................... 121
qdaal, Qdaal......................................................................... 122
qipp, Qipp............................................................................ 123
qmkl, Qmkl .......................................................................... 124
qopt-assume-no-loop-carried-dep, Qopt-assume-no-loop-

carried-dep ..................................................................... 126

Contents

3



qopt-dynamic-align, Qopt-dynamic-align .................................. 127
qopt-for-throughput, Qopt-for-throughput ................................ 128
qopt-multiple-gather-scatter-by-shuffles, Qopt-multiple-gather-

scatter-by-shuffles ............................................................ 129
qopt-streaming-stores, Qopt-streaming-stores.......................... 130
qtbb, Qtbb ........................................................................... 131
unroll, Qunroll ...................................................................... 132
use-intel-optimized-headers, Quse-intel-optimized-headers ........ 133
vec, Qvec ............................................................................ 134
vec-threshold, Qvec-threshold ................................................ 135

Optimization Report Options ........................................................... 136
qopt-report, Qopt-report ....................................................... 136
qopt-report-file, Qopt-report-file ............................................. 137

Offload Compilation, OpenMP*, and Parallel Processing Options ........... 138
device-math-lib .................................................................... 138
fintelfpga ............................................................................. 139
fiopenmp, Qiopenmp ............................................................. 140
fno-sycl-libspirv .................................................................... 141
foffload-static-lib .................................................................. 142
fopenmp.............................................................................. 143
fopenmp-declare-target-scalar-defaultmap, Qopenmp-declare-

target-scalar-defaultmap.................................................... 144
fopenmp-device-lib ............................................................... 146
fopenmp-target-buffers, Qopenmp-target-buffers...................... 147
fopenmp-targets, Qopenmp-targets ........................................ 149
fsycl.................................................................................... 150
fsycl-add-targets .................................................................. 151
fsycl-dead-args-optimization .................................................. 152
fsycl-device-code-split ........................................................... 152
fsycl-device-lib ..................................................................... 154
fsycl-device-only................................................................... 155
fsycl-early-optimizations ........................................................ 156
fsycl-enable-function-pointers................................................. 157
fsycl-esimd-force-stateless-mem............................................. 157
fsycl-explicit-simd ................................................................. 159
fsycl-help............................................................................. 160
fsycl-host-compiler................................................................ 160
fsycl-host-compiler-options .................................................... 161
fsycl-id-queries-fit-in-int ........................................................ 162
fsycl-instrument-device-code.................................................. 163
fsycl-link.............................................................................. 164
fsycl-link-targets................................................................... 166
fsycl-max-parallel-link-jobs .................................................... 167
fsycl-targets......................................................................... 168
fsycl-unnamed-lambda .......................................................... 170
fsycl-use-bitcode .................................................................. 171
nolibsycl .............................................................................. 171
qopenmp, Qopenmp.............................................................. 172
qopenmp-lib, Qopenmp-lib ..................................................... 173
qopenmp-link, Qopenmp-link.................................................. 175
qopenmp-simd, Qopenmp-simd .............................................. 176
qopenmp-stubs, Qopenmp-stubs ............................................ 177
reuse-exe ............................................................................ 178
Wno-sycl-strict ..................................................................... 179
Xopenmp-target ................................................................... 180

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

4



Xs....................................................................................... 181
Xsycl-target ......................................................................... 182

Floating-Point Options.................................................................... 184
ffp-contract.......................................................................... 184
fimf-absolute-error, Qimf-absolute-error................................... 185
fimf-accuracy-bits, Qimf-accuracy-bits ..................................... 186
fimf-arch-consistency, Qimf-arch-consistency............................ 188
fimf-domain-exclusion, Qimf-domain-exclusion ......................... 190
fimf-force-dynamic-target, Qimf-force-dynamic-target ............... 194
fimf-max-error, Qimf-max-error .............................................. 195
fimf-precision, Qimf-precision ................................................. 197
fimf-use-svml, Qimf-use-svml................................................. 199
fma, Qfma ........................................................................... 201
fp-model, fp ......................................................................... 202
fp-speculation, Qfp-speculation............................................... 204
pc, Qpc................................................................................ 205

Inlining Options ............................................................................ 206
fgnu89-inline........................................................................ 206
finline.................................................................................. 207
finline-functions.................................................................... 207

Output, Debug, and Precompiled Header Options............................... 208
c ........................................................................................ 208
debug (Linux* ).................................................................... 209
debug (Windows*) ................................................................ 211
Fa....................................................................................... 213
fasm-blocks ......................................................................... 214
FD ...................................................................................... 214
Fe....................................................................................... 215
Fo....................................................................................... 216
Fp....................................................................................... 217
ftrapuv, Qtrapuv ................................................................... 218
fverbose-asm ....................................................................... 219
g ........................................................................................ 219
gdwarf ................................................................................ 221
grecord-gcc-switches............................................................. 222
gsplit-dwarf.......................................................................... 222
o ........................................................................................ 223
RTC..................................................................................... 224
S ........................................................................................ 225
use-msasm .......................................................................... 226
Y- ....................................................................................... 226
Yc....................................................................................... 227
Yu....................................................................................... 228
Zi, Z7, ZI............................................................................. 230

Preprocessor Options..................................................................... 231
B ........................................................................................ 231
C ........................................................................................ 232
D........................................................................................ 233
dD, QdD .............................................................................. 234
dM, QdM.............................................................................. 234
E ........................................................................................ 235
EP....................................................................................... 236
FI ....................................................................................... 236
H, QH.................................................................................. 237
I......................................................................................... 238

Contents

5



I-........................................................................................ 238
idirafter ............................................................................... 239
imacros ............................................................................... 240
iprefix ................................................................................. 240
iquote ................................................................................. 241
isystem ............................................................................... 242
iwithprefix ........................................................................... 242
iwithprefixbefore................................................................... 243
Kc++, TP............................................................................. 243
M, QM ................................................................................. 244
MD, QMD ............................................................................. 245
MF, QMF .............................................................................. 245
MG, QMG............................................................................. 246
MM, QMM............................................................................. 247
MMD, QMMD ........................................................................ 247
MQ ..................................................................................... 248
MT, QMT .............................................................................. 249
nostdinc++.......................................................................... 249
P ........................................................................................ 250
pragma-optimization-level...................................................... 251
U........................................................................................ 251
undef .................................................................................. 252
X ........................................................................................ 253

Component Control Options............................................................ 254
Qoption ............................................................................... 254

Language Options ......................................................................... 255
ansi .................................................................................... 255
fno-gnu-keywords................................................................. 256
fno-operator-names .............................................................. 256
fno-rtti ................................................................................ 257
fpermissive .......................................................................... 257
fshort-enums ....................................................................... 258
fsyntax-only......................................................................... 259
funsigned-char ..................................................................... 259
J......................................................................................... 260
std, Qstd ............................................................................. 261
strict-ansi ............................................................................ 263
vd....................................................................................... 264
vmg.................................................................................... 264
x (type option) ..................................................................... 265
Zc....................................................................................... 266
Zg ...................................................................................... 267
Zp ...................................................................................... 268
Zs....................................................................................... 269

Data Options ................................................................................ 269
align ................................................................................... 269
fcommon ............................................................................. 271
fkeep-static-consts, Qkeep-static-consts .................................. 271
fmath-errno ......................................................................... 272
fpack-struct ......................................................................... 273
fpascal-strings...................................................................... 274
fpic ..................................................................................... 274
fpie..................................................................................... 275
freg-struct-return.................................................................. 276
fstack-protector .................................................................... 277

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

6



fstack-security-check............................................................. 278
fvisibility.............................................................................. 279
fzero-initialized-in-bss, Qzero-initialized-in-bss ......................... 280
GA...................................................................................... 281
Gs ...................................................................................... 282
GS...................................................................................... 283
malign-double ...................................................................... 284
mcmodel ............................................................................. 284
Qlong-double ....................................................................... 286

Compiler Diagnostic Options ........................................................... 288
w........................................................................................ 288
w0...w5, W0...W5 ................................................................. 289
Wabi ................................................................................... 290
Wall .................................................................................... 290
Wcheck-unicode-security ....................................................... 291
Wcomment .......................................................................... 292
Wdeprecated........................................................................ 293
Weffc++, Qeffc++ ................................................................ 293
Werror, WX .......................................................................... 294
Werror-all ............................................................................ 295
Wextra-tokens...................................................................... 296
Wformat .............................................................................. 296
Wformat-security .................................................................. 297
Wmain ................................................................................ 298
Wmissing-declarations........................................................... 298
Wmissing-prototypes............................................................. 299
Wpointer-arith...................................................................... 299
Wreorder ............................................................................. 300
Wreturn-type ....................................................................... 301
Wshadow............................................................................. 301
Wsign-compare .................................................................... 302
Wstrict-aliasing..................................................................... 303
Wstrict-prototypes ................................................................ 303
Wtrigraphs........................................................................... 304
Wuninitialized....................................................................... 304
Wunknown-pragmas.............................................................. 305
Wunused-function ................................................................. 306
Wunused-variable ................................................................. 306
Wwrite-strings...................................................................... 307

Compatibility Options..................................................................... 307
gcc-toolchain........................................................................ 308
vmv .................................................................................... 308

Linking or Linker Options................................................................ 309
Bdynamic ............................................................................ 309
Bstatic................................................................................. 310
Bsymbolic ............................................................................ 310
Bsymbolic-functions .............................................................. 311
dynamic-linker ..................................................................... 312
F (Windows*)....................................................................... 313
fixed ................................................................................... 314
Fm...................................................................................... 314
fuse-ld ................................................................................ 315
l ......................................................................................... 316
L ........................................................................................ 317
LD ...................................................................................... 317

Contents

7



link ..................................................................................... 318
MD ..................................................................................... 319
MT...................................................................................... 320
no-libgcc ............................................................................. 321
nodefaultlibs ........................................................................ 321
no-intel-lib........................................................................... 322
nostartfiles........................................................................... 323
nostdlib ............................................................................... 324
pie...................................................................................... 324
pthread ............................................................................... 325
shared................................................................................. 326
shared-intel ......................................................................... 327
shared-libgcc........................................................................ 328
static .................................................................................. 328
static-intel ........................................................................... 329
static-libgcc ......................................................................... 330
static-libstdc++.................................................................... 331
T ........................................................................................ 332
u (Linux* OS)....................................................................... 333
v ........................................................................................ 333
Wa...................................................................................... 334
Wl ...................................................................................... 335
Wp ..................................................................................... 335
Xlinker ................................................................................ 336
Zl ....................................................................................... 337

Miscellaneous Options.................................................................... 338
dryrun................................................................................. 338
dumpmachine ...................................................................... 338
dumpversion ........................................................................ 339
help .................................................................................... 340
nologo................................................................................. 341
save-temps, Qsave-temps...................................................... 341
showIncludes ....................................................................... 342
sox ..................................................................................... 343
sysroot................................................................................ 344
Tc ....................................................................................... 345
TC ...................................................................................... 345
Tp....................................................................................... 346
version ................................................................................ 347
watch.................................................................................. 347

Deprecated and Removed Compiler Options...................................... 349
Display Option Information............................................................. 354
Alternate Compiler Options............................................................. 354
Portability and GCC*-Compatible Warning Options ............................. 355

Floating-Point Operations ....................................................................... 361
Programming Tradeoffs in Floating-point Applications ......................... 361
Use the -fp-model, /fp Option ......................................................... 363
Denormal Numbers ....................................................................... 363
Set the FTZ and DAZ Flags ............................................................. 364
Tuning Performance....................................................................... 364
IEEE Floating-point Operations........................................................ 366

Attributes............................................................................................. 367
align............................................................................................ 367
align_value .................................................................................. 368
allow_cpu_features ....................................................................... 368

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

8



concurrency_safe .......................................................................... 370
const........................................................................................... 371
cpu_dispatch, cpu_specific ............................................................. 371
mpx ............................................................................................ 373
target.......................................................................................... 373

Intrinsics.............................................................................................. 374
Libraries............................................................................................... 375

Create Libraries ............................................................................ 375
Use Intel Shared Libraries .............................................................. 376
Manage Libraries........................................................................... 377
Redistribute Libraries When Deploying Applications............................ 378
Resolve References to Shared Libraries ............................................ 379
Intel's Memory Allocator Library ...................................................... 380
SIMD Data Layout Templates .......................................................... 381

Function Calls and Containers ................................................. 383
Construct an n_container............................................... 384
Bounds........................................................................ 386

User-Level Interface.............................................................. 388
SDLT Primitives ............................................................ 388
soa1d_container........................................................... 390
aos1d_container........................................................... 392
n_container ................................................................. 396
Bounds........................................................................ 403
Accessors .................................................................... 413
Proxy Objects............................................................... 419
Number Representation ................................................. 422
Indexes....................................................................... 427
Convenience and Correctness......................................... 433

Examples............................................................................. 434
Efficiency with Structure of Arrays Example...................... 434
Complex SDLT Primitive Construction Example.................. 437
Forward Dependency Example........................................ 438
Use of Offsets and Methods on a SDLT Primitive Example ... 439
RGB to YUV Conversion Example .................................... 441

Intel® C++ Class Libraries .............................................................. 442
C++ Classes and SIMD Operations.......................................... 443
Capabilities of C++ SIMD Classes ........................................... 446
Integer Vector Classes........................................................... 448

Terms and Syntax......................................................... 448
Rules for Operators....................................................... 449
Assignment Operator .................................................... 451
Logical Operators.......................................................... 452
Addition and Subtraction Operators................................. 453
Multiplication Operators ................................................. 455
Shift Operators............................................................. 456
Comparison Operators................................................... 457
Conditional Select Operators .......................................... 459
Debug Operations......................................................... 461
Unpack Operators ......................................................... 463
Pack Operators............................................................. 466
Clear MMX™ State Operator ............................................ 467
Integer Functions for Intel® Streaming SIMD Extensions .... 467
Conversions between Fvec and Ivec ................................ 468

Floating-point Vector Classes.................................................. 469
Fvec Syntax and Notation .............................................. 469

Contents

9



Data Alignment ............................................................ 470
Conversions ................................................................. 470
Constructors and Initialization ........................................ 470
Arithmetic Operators..................................................... 472
Minimum and Maximum Operators .................................. 476
Logical Operators.......................................................... 477
Compare Operators....................................................... 478
Conditional Select Operators for Fvec Classes ................... 481
Cacheability Support Operators ...................................... 484
Debug Operations......................................................... 485
Load and Store Operators .............................................. 486
Unpack Operators ......................................................... 486
Move Mask Operators.................................................... 486

Classes Quick Reference ........................................................ 487
Programming Example........................................................... 493
Intel's valarray Implementation .............................................. 494

Intel's C++ Asynchronous I/O Extensions for Windows....................... 496
Intel's C++ Asynchronous I/O Library for Windows.................... 496

aio_read...................................................................... 497
aio_write ..................................................................... 498
Example for aio_read and aio_write Functions .................. 498
aio_suspend ................................................................ 501
Example for aio_suspend Function .................................. 502
aio_error ..................................................................... 503
aio_return ................................................................... 503
Example for aio_error and aio_return Functions ................ 504
aio_fsync..................................................................... 505
aio_cancel ................................................................... 506
Example for aio_cancel Function ..................................... 506
lio_listio ...................................................................... 507
Example for lio_listio Function ........................................ 508
Asynchronous I/O Function Errors................................... 509

Intel's C++ Asynchronous I/O Class for Windows ...................... 511
Template Class async_class............................................ 511
get_last_operation_id.................................................... 512
wait ............................................................................ 512
get_status ................................................................... 512
get_last_error .............................................................. 513
get_error_operation_id.................................................. 513
stop_queue.................................................................. 514
resume_queue ............................................................. 514
clear_queue................................................................. 514
Example for Using async_class Template Class.................. 514

IEEE 754-2008 Binary Floating-Point Conformance Library.................. 516
Intel® IEEE 754-2008 Binary Floating-Point Conformance Library

and Usage ....................................................................... 516
Function List ........................................................................ 519
Homogeneous General-Computational Operations Functions ....... 522
General-Computational Operations Functions............................ 525
Quiet-Computational Operations Functions ............................... 530
Signaling-Computational Operations Functions.......................... 531
Non-Computational Operations Functions ................................. 536

Intel's Numeric String Conversion Library ......................................... 541
Use Intel's Numeric String Conversion Library........................... 541
Function List ........................................................................ 542

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

10



Macros................................................................................................. 548
ISO Standard Predefined Macros ..................................................... 548
Additional Predefined Macros .......................................................... 548
Use Predefined Macros to Specify Intel® Compilers............................. 554

Pragmas............................................................................................... 556
Intel-Specific Pragma Reference ...................................................... 557

block_loop/noblock_loop........................................................ 557
distribute_point .................................................................... 559
inline, noinline, forceinline...................................................... 561
ivdep .................................................................................. 562
loop_count........................................................................... 563
nofusion .............................................................................. 565
novector .............................................................................. 565
omp target variant dispatch ................................................... 566
prefetch/noprefetch............................................................... 567
unroll/nounroll...................................................................... 568
unroll_and_jam/nounroll_and_jam.......................................... 570
vector ................................................................................. 571

Intel-supported Pragma Reference................................................... 573
Error Handling ...................................................................................... 578

Part IV: Compilation
Compilation Overview ............................................................................ 579
Supported Environment Variables ............................................................ 580
Pass Options to the Linker ...................................................................... 605
Specify Alternate Tools and Paths ............................................................ 606
Use Configuration Files........................................................................... 607
Use Response Files ................................................................................ 608
Global Symbols and Visibility Attributes for Linux* ..................................... 609
Save Compiler Information in Your Executable........................................... 610
Link Debug Information.......................................................................... 610
Ahead of Time Compilation ..................................................................... 611
Device Offload Compilation Considerations ............................................... 615
Use a Third-Party Compiler as a Host Compiler for SYCL Code ..................... 615

Part V: Optimization and Programming
Extensions............................................................................................ 617
OpenMP* Support.................................................................................. 617

Add OpenMP* Support ................................................................... 618
Parallel Processing Model................................................................ 619
Worksharing Using OpenMP* .......................................................... 622
Control Thread Allocation ............................................................... 630
OpenMP* Pragmas ........................................................................ 631
OpenMP* Library Support............................................................... 636

OpenMP* Run-time Library Routines........................................ 636
Intel® Compiler Extension Routines to OpenMP* ........................ 646
OpenMP* Support Libraries .................................................... 650
Use the OpenMP Libraries ...................................................... 652
Thread Affinity Interface ........................................................ 656
OpenMP* Memory Spaces and Allocators.................................. 675

OpenMP* Advanced Issues ............................................................. 678
OpenMP* Implementation-Defined Behaviors .................................... 680
OpenMP* Examples ....................................................................... 681

Intel® oneAPI Level Zero......................................................................... 683
Intel® oneAPI Level Zero Switch ...................................................... 683

Contents

11



Intel® oneAPI Level Zero Backend Specification ................................. 686
Programming with the Intel® oneAPI Level Zero Backend .................... 694

Vectorization......................................................................................... 698
Automatic Vectorization ................................................................. 698

Vectorization Programming Guidelines ..................................... 699
Use Automatic Vectorization ................................................... 704
Vectorization and Loops ......................................................... 709
Loop Constructs.................................................................... 711

Explicit Vector Programming .......................................................... 715
User-mandated or SIMD Vectorization...................................... 715
SIMD-Enabled Functions ........................................................ 717
SIMD-Enabled Function Pointers.............................................. 727
Vectorize a Loop Using the _Simd Keyword............................... 732
Function Annotations and the SIMD Directive for Vectorization .... 733
Explicit SIMD SYCL Extension ................................................. 735

High-Level Optimization ......................................................................... 739
Interprocedural Optimization................................................................... 739

Use Interprocedural Optimization .................................................... 741
Performance and Large Program Considerations ................................ 742
Create a Library from IPO Objects ................................................... 744
Inline Expansion of Functions.......................................................... 744

Methods to Optimize Code Size ............................................................... 747
Intel® oneAPI DPC++/C++ Compiler Math Library...................................... 752

Use the Intel® oneAPI DPC++/C++ Compiler Math Library.................. 753
Math Function List ......................................................................... 757
Trigonometric Functions ................................................................. 762
Hyperbolic Functions ..................................................................... 767
Exponential Functions .................................................................... 769
Special Functions .......................................................................... 774
Nearest Integer Functions .............................................................. 778
Remainder Functions ..................................................................... 781
Miscellaneous Functions ................................................................. 782
Complex Functions ........................................................................ 787
C99 Macros .................................................................................. 791

Part VI: Compatibility and Portability
Standards Conformance ......................................................................... 793
GCC Compatibility and Interoperability ..................................................... 793
Microsoft Compatibility........................................................................... 795
Port from Microsoft Visual C++* to the Intel® oneAPI DPC++/C++ Compiler . 797

Modify Your makefile ..................................................................... 798
Other Considerations ..................................................................... 800

Port from GCC* to the Intel® oneAPI DPC++/C++ Compiler ........................ 802
Modify Your makefile ..................................................................... 803
Other Considerations ..................................................................... 805

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

12



Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

The products described may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Notices and Disclaimers

13

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Intel® oneAPI DPC++/C++ Compiler
Developer Guide and Reference
This document is for version 2022.2 of the compilers.

This guide provides information about the Intel® oneAPI DPC++/C++ Compiler (icx, icpx, dpcpp,
dpcpp-cl) and runtime environment.

The Intel® oneAPI DPC++/C++ Compiler is available as part of the Intel® oneAPI Base Toolkit, Intel® oneAPI
HPC Toolkit, Intel® oneAPI IoT Toolkit, or as a standalone compiler.

Refer to the Intel® oneAPI DPC++/C++ Compiler product page and the Release Notes for more information
about features, specifications, and downloads.

Use this guide to learn about:

• Compiler Setup: How to invoke the compiler on the command line or from within an IDE.
• Compiler Options: Information about options you can use to affect optimization, code generation, and

more.
• Pragmas: Information about directives to provide the compiler with instructions for specific tasks,

including splitting large loops into smaller ones, enabling or disabling optimization for code, or offloading
computation to the target.

• OpenMP* Support: Compiler support for OpenMP 5.0 Version TR4 features and some OpenMP Version
5.1 features.

For more information, refer to Introducing the Intel® oneAPI DPC++/C++ Compiler.

For information about Intel intrinsics, visit Intel® Intrinsics Guide.

Notices and Important Information
• To use Microsoft Visual C++ (MSVC) compatible options with SYCL, use dpcpp-cl.
• In this document, you may see features labeled as experimental. An experimental feature is one that

requires further testing and possible refinement. Depending on testing results, such features may be fully
defined and implemented or they may be removed in a future release.

• The Intel® oneAPI DPC++/C++ Compiler (icx, icpx, dpcpp, dpcpp-cl) does not support macOS*.
For macOS or Xcode* support use Intel® C++ Compiler Classic. For more information, visit the Intel® C++
Compiler Classic Developer Guide and Reference.

Using the Compiler Documentation
• Context Sensitive/F1 Help: To use the Context Sensitive/F1 Help feature, visit the Download

Documentation: Intel® Compiler (Current and Previous) page and follow the provided instructions.
• Previous Versions of the Developer Guide and Reference: Visit the Download Documentation: Intel®

Compiler (Current and Previous) page to download PDF or FAR HTML versions of previous compiler
documentation.

NOTE When searching HTML files, use a Google Chrome* or Internet Explorer* browser to view your
downloaded copy of the Developer Guide and Reference.
If you use Mozilla Firefox*, you may encounter an issue where the Search tab does not work. As a
workaround, you can use the Contents and Index tabs or a third-party search tool to find your
content.

  Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

14

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/iot-toolkit.html
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#dpcpp-cpp
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/intel-oneapi-dpc-c-compiler-release-notes.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html
https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-compiler-current-and-previous.html
https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-compiler-current-and-previous.html
https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-compiler-current-and-previous.html
https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-compiler-current-and-previous.html


Intel® oneAPI DPC++/C++ Compiler
Introduction

Part

I
Using the Intel® oneAPI DPC++/C++ Compiler, you can compile and generate applications that can run on
Intel® 64 architecture. You can also create programs for the IA-32 architecture on Windows* and Linux*.

NOTE IA-32 applications do not apply for SYCL.

Intel® 64 architecture applications can run on the following:

• Windows operating systems for Intel® 64 architecture-based systems.
• Linux operating systems for Intel® 64 architecture-based systems.

IA-32 architecture applications can run on the following:

• Supported Windows operating systems
• Supported Linux operating systems

Unless specified otherwise, assume the information in this document applies to all supported architectures
and all operating systems.

You can use the compiler in the command-line or in a supported Integrated Development Environment (IDE):

• Microsoft Visual Studio* (Windows only)
• Eclipse*/CDT (Linux only)

See the Release Notes for complete information on supported architectures, operating systems, and IDEs for
this release.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Feature Requirements
To use these tools and features, you need licensed versions of the tools and you must have an appropriately
supported version of the product edition. For more information, check the product release notes.

NOTE Some features may require additional product installation.

The following table shows components (tools) and where to find additional information on them.

Component More Information

Intel® oneAPI DPC++/C++ Compiler More information on tools and features can be
found on the Intel® Developer Zone and the 
Software Development Tools pages.Intel® Advisor

Intel® oneAPI DPC++/C++ Compiler Introduction   

15

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://software.intel.com/content/www/us/en/develop/home.html
https://software.intel.com/content/www/us/en/develop/tools.html


Component More Information

Intel® Inspector

Intel® Trace Analyzer and Collector

Intel® VTune™ Profiler

The following table lists dependent features and their corresponding required products. For certain compiler
options, the compilation may fail if the option is specified but the required product is not installed. In this
case, remove the option from the command line and recompile.

Feature Requirements

Feature Requirement

Intel® oneAPI Threading Building Blocks (oneTBB) The -tbb, -qtbb, and /Qtbb options require a
oneTBB install.

Intel® oneAPI Math Kernel Library (oneMKL) The -qmkl, -mkl, and /Qmkl options require a
oneMKL install.

Intel® oneAPI Data Analytics Library (oneDAL) The -daal, -qdaal, and /Qdaal options require a
oneDAL install.

Intel® Integrated Performance Primitives (Intel®
IPP)

The -ipp, -qipp, and /Qipp options require an
Intel® IPP install.

Intel® Integrated Performance Primitives
Cryptography (Intel® IPP Cryptography)

Use crypto to link to the Intel® IPP Cryptography
library.

Thread Checking Intel® Inspector

Trace Analyzing and Collecting Intel® Trace Analyzer and Collector

Compiler options related to this feature may require
a set-up script. For further information, see the
product documentation.

Refer to the Release Notes for detailed information about system requirements, late changes to the products,
supported architectures, operating systems, and Integrated Development Environments (IDEs).

Get Help and Support
Intel® Software Documentation
You can find product documentation for many released products at the Explore Our Documentation page.

Product Website and Support
To find product information, register your product, or contact Intel, visit the Get Help page. At the support
site, you will find comprehensive product information, including:

• Links to Get Started, Documentation, Individual Support, and Registration.
• Links to information such as white papers, articles, and user forums.
• Links to product information.
• Links to news and events.

Online Service Center
For more information about the Online Service Center visit the Support page.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

16

https://software.intel.com/content/www/us/en/develop/documentation.html
https://software.intel.com/content/www/us/en/develop/support.html
https://supporttickets.intel.com/servicecenter


NOTE To access support, you must register your product at the Intel Registration Center.

Release Notes
For detailed information on system requirements, late changes to the products, supported architectures,
operating systems, and Integrated Development Environments (IDE) see the Release Notes for the product.

Forums
You can find helpful information in the Intel Software user forums. You can also submit questions to the
forums. To see the list of the available forums, go to the Software Development Tools forum for general
information, or visit a specific forum for:

• Intel® C++ Compilers
• Intel® oneAPI Data Parallel C++

Related Information
Recommended Additional Reading
You are strongly encouraged to read the following books for in-depth understanding of threading. Each book
discusses general concepts of parallel programming by explaining a particular programming technology:

• For information on Intel® Threading Building Blocks (Intel® TBB): Reinders, James. Intel Threading
Building Blocks: Outfitting C++ for Multi-core Processor Parallelism. O'Reilly, July 2007

• For information on OpenMP technology: Chapman, Barbara, Gabriele Jost, Ruud van der Pas, and David J.
Kuck (foreword). Using OpenMP: Portable Shared Memory Parallel Programming. MIT Press, October 2007

• For information on Microsoft Win32 Threading (for Windows users): Akhter, Shameem, and Jason Roberts.
Multi-Core Programming: Increasing Performance through Software Multithreading, Intel Press, April 2006

Intel does not endorse these books or recommend them over other books on the same subjects.

Additional Product Information
For additional technical product information including white papers, forums, and documentation, visit https://
software.intel.com/content/www/us/en/develop/tools.html

Additional Language Information
• For information on SYCL and for programming of heterogeneous systems using C++ and SYCL, visit 

https://link.springer.com/book/10.1007/978-1-4842-5574-2 for a book download.
• For information about the C++ standards, visit http://www.isocpp.org/.
• For information about the C standards, visit http://www.open-std.org/jtc1/sc22/wg14/.
• For information about the OpenMP standards, visit http://www.openmp.org/

Notational Conventions
Information in this documentation applies to all supported operating systems and architectures unless
otherwise specified. This documentation uses the following conventions:

Related Information   

17

https://registrationcenter.intel.com/en/products/
https://community.intel.com/t5/Software-Development-Tools/ct-p/software-dev-tools
https://community.intel.com/t5/Intel-C-Compiler/bd-p/c-compiler
https://community.intel.com/t5/Intel-oneAPI-Data-Parallel-C/bd-p/oneapi-data-parallel-c
https://software.intel.com/content/www/us/en/develop/tools.html
https://software.intel.com/content/www/us/en/develop/tools.html
https://link.springer.com/book/10.1007/978-1-4842-5574-2
http://www.isocpp.org/
http://www.open-std.org/jtc1/sc22/wg14/
http://www.openmp.org/


Notational Conventions

THIS TYPE Indicates language keywords.

this type Indicates command-line or option arguments.

This type Indicates a code example.

This type Indicates what you type as input.

This type Indicates menu names, menu items, button names,
dialog window names, and other user-interface
items.

File > Open Menu names and menu items joined by a greater
than (>) sign to indicate a sequence of actions. For
example, Click File > Open indicates that in the
File menu, you would click Open to perform this
action.

{value | value} Indicates a choice of items or values. You can
usually only choose one of the values in the braces.

[item] Indicates items that are optional.

item [, item ]... Indicates that the item preceding the ellipsis (...)
can be repeated.

Intel® C++ This term refers to the name of the common
compiler language supported by the Intel® oneAPI
DPC++/C++ Compiler.

compiler or the compiler These terms are used when information is not
limited to only one specific compiler, or when it is
not necessary to indicate a specific compiler.

Windows or Windows operating system These terms refer to all supported Microsoft
Windows operating systems.

Linux or Linux operating system These terms refer to all supported Linux operating
systems.

* An asterisk at the end of a word or name indicates
it is a third-party product trademark.

compiler option This term refers to Linux or Windows options, which
are used by the compiler to compile applications.

Additional Conventions Used for Compiler Options

compiler option name shortcuts The following conventions are used as shortcuts
when referencing compiler option names in
descriptions:

• No initial – or /

This shortcut is used for option names that are
the same for Linux and Windows except for the
initial character.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

18



For example, Fa denotes:

• Linux: -Fa
• Windows: /Fa

• [Q]option-name

This shortcut is used for option names that only
differ because the Windows form starts with a Q.

For example, [Q]ipo denotes:

• Linux: -ipo
• Windows: /Qipo

• [q or Q]option-name

This shortcut is used for option names that only
differ because the Linux form starts with a q and
the Windows form starts with a Q.

For example, [q or Q]opt-report denotes:

• Linux: -qopt-report
• Windows: /Qopt-report

More dissimilar compiler option names are shown in
full.

/option or

-option
A slash before an option name indicates the option
is available on Windows. A dash before an option
name indicates the option is available on Linux
systems. For example:

• Linux : -help
• Windows: /help

NOTE If an option is available on all supported
operating systems, no slash or dash appears in
the general description of the option. The slash
and dash will only appear where the option
syntax is described.

/option:argument or

-option=argument
Indicates that an option requires an argument
(parameter).

/option:keyword or

-option=keyword
Indicates that an option requires one of the
keyword values.

/option[:keyword ] or

-option[=keyword ]

Indicates that the option can be used alone or with
an optional keyword.

option[n] or

option[:n] or

option[=n]

Indicates that the option can be used alone or with
an optional value. For example, in -unroll[=n],
the n can be omitted or a valid value can be
specified for n.

Intel® oneAPI DPC++/C++ Compiler Introduction   

19



option[-] Indicates that a trailing hyphen disables the option.
For example, /Qglobal_hoist- disables the
Windows option /Qglobal_hoist.

[no]option or

[no-]option
Indicates that no or no- preceding an option
disables the option. For example:

In the Linux option -[no-]global_hoist,
-global_hoist enables the option, while
-no-global_hoist disables it.

In some options, the no appears later in the option
name. For example, -fno-common disables the
-fcommon option.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

20



Compiler Setup

Part

II
You can use the Intel® oneAPI DPC++/C++ Compiler from the command line, Eclipse, or Microsoft Visual
Studio.

These IDEs are described in further detail in their corresponding sections.

See Also
Use the Command Line 
Use Eclipse 
Use Microsoft Visual Studio 

Use the Command Line
This section provides information about the Command Line Interface (CLI).

Specify the Location of Compiler Components
Before you invoke the compiler, you may need to set certain environment variables that define the location of
compiler-related components. The compiler includes environment configuration scripts to configure your build
and development environment variables:

• On Linux, the file is a shell script called setvars.sh.
• On Windows, the file is a batch file called setvars.bat.

NOTE The Intel oneAPI DPC++/C++ Compiler is designed and tested only for use on 64-bit Linux and
Windows operating systems, 32-bit operating systems are not supported. Additionally, the macOS
operating system is not supported by the compiler.

Linux
Set the environment variables before using the compiler by sourcing the shell script setvars.sh. Depending
on the shell, you can use the source command or a . (dot) to source the shell script, according to the
following rules for a .sh script:

Using source:

source /<install-dir>/setvars.sh <arg1> <arg2> … <argn> 
Example:

source /opt/intel/oneapi/setvars.sh intel64
Using . (dot):

. /<install-dir>/setvars.sh <arg1> <arg2> … <argn>

Compiler Setup   

21



Example:

. /opt/intel/oneapi/setvars.sh intel64
Use source /<install-dir>/setvars.sh --help for more setvars usage information.

The compiler environment script file accepts an optional target architecture argument <arg>:

• intel64: Generate code and use libraries for Intel® 64 architecture-based targets.
• ia32: Generate code and use libraries for IA-32 architecture-based targets.

If you want the setvars.sh script to run automatically in all of your terminal sessions, add the source
setvars.sh command to your startup file. For example, inside your .bash_profile entry for Intel® 64
architecture targets.

If the proper environment variables are not set, errors similar to the following may appear when attempting
to execute a compiled program:

./a.out: error while loading shared libraries:
libimf.so: cannot open shared object file: No such file or directory

Windows
Under normal circumstances, you do not need to run the setvars.bat batch file. The terminal shortcuts in
the Windows Start menu, Intel oneAPI command prompt for <target architecture> for Visual Studio
<year>, set these variables automatically.

For additional information, see Use the Command Line on Windows.

You need to run the setvars batch file if a command line is opened without using one of the provided
Command Prompt menu items in the Start menu, or if you want to use the compiler from a script of your
own.

The setvars batch file inserts DLL directories used by the compiler and libraries at the beginning of the
existing Path. Because these directories appear first, they are searched before any directories that were part
of the original Path provided by Windows (and other applications). This is especially important if the original
Path includes directories with files that have the same names as those added by the compiler and libraries.

The setvars batch file takes multiple optional arguments; the following two arguments are recognized for
compiler and library initialization:

<install-dir>\setvars.bat [<arg1>] [<arg2>]
Where <arg1> is optional and can be one of the following:

• intel64: Generate code and use libraries for Intel® 64 architecture (host and target).
• ia32: Generate code and use libraries for IA-32 architecture (host and target).

The <arg2> is optional. If specified, it is one of the following:

• vs2022: Microsoft Visual Studio 2022
• vs2019: Microsoft Visual Studio 2019
• vs2017: Microsoft Visual Studio 2017.

NOTE Support for Microsoft Visual Studio 2017 is deprecated as of the Intel® oneAPI 2022.1 release
and will be removed in a future release.

If <arg1> is not specified, the script uses the intel64 argument by default. If <arg2> is not specified, the
script uses the highest installed version of Microsoft Visual Studio detected during the installation procedure.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

22



See Also
oneAPI Development Environment Setup 

Configure Your CPU or GPU System 

Invoke the Compiler

Requirements Before Using the Command Line
You may need to set certain environment variables before using the command line. For more information,
see Specify the Location of Compiler Components.

Different Compilers and Drivers
The table below provides the different compiler front-end and driver information.

Compiler Notes Linux Driver Windows Driver

Intel® DPC++
Compiler

A C++ and SYCL
compiler with a
Clang front-end.

To use Microsoft
Visual C++
(MSVC) compatible
options, use
dpcpp-cl.

dpcpp dpcpp (clang compatible)

dpcpp-cl (clang-cl
compatible)

Intel® C++
Compiler

A C++ compiler
with a Clang front-
end, that supports
an OpenMP
offload.

icx for C

icpx for C++

icx

Use the Compiler from the Command Line
Use the compiler with the OS/language specific invocations below.

Linux

Invoke the compiler using icx/icpx or dpcpp to compile C/C++/DPC++ source files.

• When you invoke the compiler with dpcpp the compiler builds C++ source files with SYCL using SYCL
libraries and SYCL include files. If you use dpcpp with a C source file, it is compiled as a SYCL file. Use
dpcpp to link SYCL object files.

• When you invoke the compiler with icx the compiler builds C source files using LLVM C libraries and C
include files. If you use icx with a C++ source file, it is compiled as a C++ file. Use icx to link C object
files.

• When you invoke the compiler with icpx the compiler builds C++ source files using C++ libraries and C+
+ include files. If you use icpx with a C source file, it is compiled as an C++ file. Use icpx to link C++
object files.

The icx, icpx, or dpcpp command:

• Compiles and links the input source file(s).
• Produces one executable file, a.out, in the current directory.

Compiler Setup   

23

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/oneapi-development-environment-setup.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-intel-oneapi-base-linux/top/before-you-begin.html#before-you-begin_GUID-338EB548-7DB6-410E-B4BF-E65C017389C4


Windows

You can invoke the compiler on the command line using icx or dpcpp-cl. This command:

• Compiles and links the input source file(s).
• Produces object file(s) and assigns the names of the respective source file(s), but with a .obj extension.
• Produces one executable file and assigns it the name of the first input file on the command line, but with

a .exe extension.
• Places all the files in the current directory.

When compilation occurs with the compiler, many tools may be called to complete the task that may
reproduce diagnostics unique to the given tool. For instance, the linker may return a message if it cannot
resolve a global reference.

Command Line Syntax
The syntax to invoke the compiler is:

Linux

icpx [option] file1 [file2...]
Windows

icx [option] file1 [file2...]

Argument Description

option Indicates one or more command line options. On Linux systems, the compiler
recognizes one or more letters preceded by a hyphen (-). On Windows, options are
preceded by a hyphen (-) or slash (/). This includes linker options.

Options are not required when invoking the compiler. The default behavior of the
compiler implies that some options are ON by default when invoking compiler.

file1, file2... Indicates one or more files to be processed by the compiler.

/link (Windows) All options following /link are passed to the linker. Compiler options must precede
link if they are not to be passed to the linker.

Other Methods for Using the Command Line to Invoke the Compiler
• Using makefiles from the Command Line: Use makefiles to specify a number of files with various

paths and to save this information for multiple compilations. For more information on using makefiles, see 
Use Makefiles to Compile Your Application.

• Using a Batch File from the Command Line: Create and use a .bat file to execute the compiler with a
desired set of options instead of retyping the command each time you need to recompile.

See Also
Specify the Location of Compiler Components
Understand File Extensions
Use Eclipse
Use Microsoft Visual Studio
Use Makefiles to Compile Your Application
watch compiler option

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

24



Use the Command Line on Windows
The compiler provides a shortcut to access the command line with the appropriate environment variables
already set.

To invoke the compiler from the command line:

1. Open the Windows Start menu.
2. Scroll down the list of apps (programs) in the Start menu and find the Intel oneAPI 2021 folder.
3. Left click on the folder name and select your component. The command prompts shown are dependent

on the versions of Microsoft Visual Studio you have installed on your machine.
4. Right click on the command prompt icon to pin it to your taskbar. This step is optional.
5. The command line opens.

You can use any command recognized by the Windows command prompt, plus some additional commands.

Because the command line runs within the context of Windows, you can easily switch between the command
line and other applications for Windows or have multiple instances of the command line open simultaneously.

When you are finished working in a command line, use the exit command to close and end the session.

File Extensions

Input File Extensions
The Intel® oneAPI DPC++/C++ Compiler recognizes input files with the extensions listed in the following
table:

File Name Interpretation Action

file.c C source file Passed to compiler

file.C
file.CC
file.cc
file.cpp
file.cxx

C++ source file Passed to compiler

file.lib
(Windows)

file.a
file.so (Linux)

Library file Passed to linker

file.i Preprocessed file Passed to compiler

file.obj
(Windows)

file.o (Linux)

Object file Passed to linker

file.asm
(Windows)

file.s (Linux) 

file.S (Linux)

Assembly file Passed to assembler

Compiler Setup   

25



Output File Extensions
The Intel® oneAPI DPC++/C++ Compiler produces output files with the extensions listed in the following
table:

File Name Description

file.i Preprocessed file: Produced with the -E option.

file.o (Linux)

file.obj
(Windows)

Object file: Produced with the -c (Linux and Windows) object. The /Fo (Windows)
or -o (Linux) option allows you to rename the output object file.

file.s (Linux)

file.asm
(Windows)

Assembly language file: Produced with the -S option. The /Fa (Windows) or -s
(Linux) option allows you to rename the output assembly file.

a.out (Linux)

file.exe
(Windows)

Executable file: Produced by the default compilation.
The /Fe (Windows) or -o (Linux) option allows you to rename the output executable file.

See Also
Invoke the Compiler
Specify Compiler Files

Use Makefiles for Compilation
This topic describes the use of makefiles to compile your application. You can use makefiles to specify a
number of files with various paths, and to save this information for multiple compilations.

Use Makefiles to Store Information for Compilation on Linux
To run make from the command line using the compiler, make sure that /usr/bin and /usr/local/bin are
in your PATH environment variable.

If you use the C shell, you can edit your .cshrc file and add the following:

setenv PATH /usr/bin:/usr/local/bin:$PATH
To use the compiler, your makefile must include the setting CC=icx, CC=icpx, or CC=dpcpp. Use the same
setting on the command line to instruct the makefile to use the compiler. If your makefile is written for GCC,
you need to change the command line options that are not recognized by the compiler. Run make, using the
following syntax:

make -f yourmakefile
Where -f is the make command option to specify a particular makefile name.

Use Makefiles to Store Information for Compilation on Windows
To use a makefile to compile your source files, use the nmake command with the following syntax:

nmake /f [makefile_name.mak] CPP=[compiler_name] [LINK32=[linker_name]
Example:

nmake /f your_project.mak CPP=icx LINK32=link

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

26



NOTE If you have link/xilink specific options that are not accepted by dpcpp-cl, ensure any linker
specific options are placed after the /link option. For example: dpcpp test.obj <compiler
options> /link <linker options>

Argument Description

/f The nmake option to specify a makefile.

your_project.mak The makefile used to generate object and executable files.

CPP The preprocessor/compiler that generates object and executable files.
(The name of this macro may be different for your makefile.)

LINK32 The linker that is used.

The nmake command creates object files (.obj) and executable files () from the information specified in the
your_project.mak makefile.

See Also
Modify Your makefile (Linux) 
Modify Your makefile (Windows) 

Use CMake with the Intel® oneAPI DPC++/C++ Compiler

Linux
Using CMake with the compiler on Linux is supported. When you are using CMake, the compiler is enabled
using the icx (variant) binary. You may need to set your CC/CXX or CMAKE_C_COMPILER /
CMAKE_CXX_COMPILER string to icx/icpx. For example:

cmake -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx …

Windows
Using CMake with the compiler on Windows is supported. When you are using CMake, the compiler is enabled
using the icx (variant) binary. You may need to set your CC/CXX or CMAKE_C_COMPILER /
CMAKE_CXX_COMPILER string to icx. The supported generator in the Windows environment is Ninja. For
example:

cmake -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -GNinja … 

NOTE If your Microsoft Visual Studio default CMake version is older than 3.21, you need to install
CMake 3.21 (or above) and update Microsoft Visual Studio with the new CMake executable. Edit the
CMakeSettings.json file for this update.

Support
Use the following steps to enable the compiler for your project:

1. Add the following snippets to your project’s CMakeLists.txt:

cmake_minimum_required(VERSION 3.21.0)

Compiler Setup   

27



And:

find_package(IntelDPCPP REQUIRED)
The second snippet enables the dpcpp compiler. The heterogeneous compilation configuration package
(IntelDPCPPConfig.cmake) is shipped with the compiler. The package directory is found in the parent
directory of the icx bin directory.

2. Select the appropriate compilers for C or C++. See the Linux and Windows sections above for specific
settings.

3. Run CMake and build your applications as normal.
4. The heterogeneous compilation configuration package exposes other variables that may be required.

Refer to the package for more information.

Use Compiler Options
A compiler option is a case-sensitive, command line expression used to change the compiler's default
operation. Compiler options are not required to compile your program, but they can control different aspects
of your application, such as:

• Code generation
• Optimization
• Output file (type, name, location)
• Linking properties
• Size of the executable
• Speed of the executable

Linux
When you specify compiler options on the command line, the following syntax applies:

[invocation] [option] [@response_file] file1 [file2...]            
The invocation is icx, icpx, or dpcpp.

The option represents zero or more compiler options and the file is any of the following:

• C or C++ source file (.C, .c, .cc, .cpp, .cxx, .c++, .i, .ii)
• Assembly file (.s, .S)
• Object file (.o)
• Static library (.a)

When compiling C language sources, invoke the compiler with icx. When compiling C++ language sources or
a combination of C and C++, invoke the compiler with icpx. When compiling SYCL-based sources, invoke the
compiler with dpcpp.

Windows
When you specify compiler options on the command line, the following syntax applies:

[invocation] [option] [@response_file] file1 [file2 ...] [/link linker_option]
The invocation is icx or dpcpp-cl.

The option represents zero or more compiler options, the linker_option represents zero or more linker
options, and the file is any of the following:

• C or C++ source file (.c, .cc, .ccp, .cxx, .i)
• Assembly file (.asm)
• Object (.obj)
• Static library (.lib)

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

28



The optional response_file is a text file that lists the compiler options you want to include during compilation.
See Use Response Files for additional information.

Default Operation
The compiler invokes many options by default. In this example, the compiler includes the option O2 (and
other default options) in the compilation. Using C++ as an example:

Linux

icpx main.c
Windows

icx main.c
Each time you invoke the compiler, options listed in the corresponding configuration file override any
competing default options. For example, if your configuration file includes the O3 option, the compiler uses
O3 rather than the default O2 option. Use the configuration file to list the options for the compiler to use for
every compilation. See Using Configuration Files.

NOTE The default .cfg files are not valid for the compiler. You can use the -config<name> option
instead of a default .cfg file. <name> can be a configuration file that is in the bin directory, or you
can use the full path your selected .cfg file.

Options specified in the command line environment variable override any competing default options and
options listed in the configuration file.

Finally, options used on the command line override any competing options that may be specified elsewhere
(default options, options in the configuration file, and options specified in the command line environment
variable). If you specify the option O1 this option setting takes precedence over competing option defaults
and competing options in the configuration files, in addition to the competing options in the command line
environment variable.

Certain #pragma statements in your source code can override competing options specified on the command
line. If a function in your code is preceded by #pragma optimize("", off), then optimization for that
function is turned off. The override is valid even when the O2 optimization is on by default, the O3 is listed in
the configuration file, and the O1 is specified on the command line for the rest of the program.

Use Competing Options
The compiler reads command line options from left to right. If your compilation includes competing options,
then the compiler uses the one furthest to the right. Using C++ as an example:

Linux

icpx –xSSSE3 main.c file1.c –xSSE4.2 file2.c
Windows

icx /QxSSSE3 main.c file1.c /QxSSE4.2 file2.c
You can compile for SYCL by adding -fsycl after icpx.

The compiler sees [Q]xSSSE3 or O1 and [Q]xSSE4.2 or O2 as two forms of the same option, where only one
form can be used. Since [Q]xSSE4.2 or O2 are last (furthest to the right), they are used.

All options specified on the command line are used to compile each file. The compiler does not compile
individual files with specific options.

A rare exception to this rule is the -x type option on Linux. Using C++ as an example:

Compiler Setup   

29



Linux

icpx -x c file1 -x c++ file2 -x assembler file3
The type argument identifies each file type for the compiler.

Use Options with Arguments
Compiler options can be as simple as a single letter, such as the option E. Many options accept or require
arguments. The O option, for example, accepts a single-value argument that the compiler uses to determine
the degree of optimization. Other options require at least one argument and can accept multiple arguments.
For most options that accept arguments, the compiler warns you if your option and argument are not
recognized. If you specify O9, the compiler issues a warning, then ignores the unrecognized option O9, and
proceeds with the compilation.

The O option does not require an argument, but there are other options that must include an argument. The
I option requires an argument that identifies the directory to add to the include file search path. If you use
this option without an argument, the compiler will not finish its compilation.

Other Forms of Options
You can toggle some options on or off by using the negation convention. For example, the [Q]ipo option
(and many others) includes negation forms, -no-ipo (Linux) and /Qipo- (Windows), to change the state of
the option.

Option Categories
When you invoke the Intel oneAPI DPC++/C++ Compiler and specify a compiler option, you have a wide
range of choices to influence the compiler's default operation. Intel oneAPI DPC++/C++ Compiler options
typically correspond to one or more of the following categories:

• Advanced Optimization
• Code Generation
• Compatibility
• Compiler Diagnostics
• Component Control (Not available for device compilation.)
• Data
• Floating Point
• Inlining
• Interprocedural Optimizations (IPO)
• Language
• Linking/Linker
• Miscellaneous
• Offload Compilation, OpenMP, and Parallel Processing
• OpenMP and Parallel Processing
• Optimization
• Optimization Report
• Output
• Preprocessor

See Also
qopt-report, Qopt-report 
Use Configuration Files 

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

30



Specify Compiler Files

Specify Include Files
The compiler searches the default system areas for include files and items specified by the I compiler option.
The compiler searches directories for include files in the following order:

1. Directories specified by the I option.
2. Directories specified in the environment variables.
3. Default include directories.

Use the -nostdinc (Linux) or X (Windows) option to remove the default directories from the include file
search path.

For example, to direct the compiler to search the path /alt/include instead of the default path, use the
following:

Linux

icpx -nostdinc -I/alt/include prog1.cpp
Windows

icx /X /I\alt\include prog1.cpp 

Specify Assembly Files
You can use the -S and -o options (Linux) or /Fa option (Windows) to specify an alternate name for an
assembly file. The compiler generates an assembly file named myasm.s (Linux) or myasm.asm (Windows):

Linux

icpx -S -o myasm.s x.cpp 
Windows

icx /Famyasm x.cpp  

Specify Object Files
You can use the -c and -o options (Linux) or /Fo option (Windows) to specify an alternate name for an
object file. In this example, the compiler generates an object file name myobj.o (Linux) or myobj.obj
(Windows):

Linux

icpx -c -o myobj.o x.cpp
Windows

icx /Fomyobj x.cpp 

See Also
-c  compiler option
/Fa  compiler option
/Fo  compiler option
I compiler option
-o  compiler option
-S  compiler option
X compiler option

Compiler Setup   

31



Supported Environment Variables

Convert Projects to Use a Selected Compiler
You can use the command-line interface ICProjConvert<version>.exe to transform your Intel® C++
projects into Microsoft Visual C++ projects, or vice versa. The syntax is:

ICProjConvert<version>.exe <sln_file | prj_files> </VC[:"VCtoolset name"] | /IC[:"ICtoolset 
name"]> [/q] [/nologo] [/msvc] [/s] [/f]

Where:

Parameter Description

version The ICProjConvert version number. Values are: 191 or 192.

sln_file A path to the solution file, which should be modified to use a specified
project system.

prj_files A space separated list of project files (or wildcard), which should be
modified to use specified project system.

/VC Convert to use the Microsoft Visual C++ project system.

VCtoolset name The possible values are v141 (Microsoft Visual Studio 2017), v142
(Microsoft Visual Studio 2019), or v143 (Microsoft Visual Studio 2022).

NOTE Support for Microsoft Visual Studio 2017 is deprecated as of the Intel®
oneAPI 2022.1 release, and will be removed in a future release.

/IC Convert to use the Intel® C++ project system.

ICtoolset name Such as Intel C++ Compiler 2021.1
Depending on the integration version, the supported name values may be
different.

/q Starts quiet mode, all information messages (except errors) are hidden.

/nologo Suppresses the startup banner.

/msvc Sets the compiler to Microsoft Visual C++.

/s Searches the project files through all subdirectories.

/f Forces an update to the project even if it has an unsupported type or
unsupported properties.

/? or /h Shows help.

Example
To convert all Intel® C++ project files to use Microsoft Visual C++ in your current directory and its
subdirectories, use the command:

ICProjConvert<version>.exe *.icproj /s /VC

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

32



NOTE If you uninstall the Intel® oneAPI DPC++/C++ Compiler, ICProjConvert<version>.exe
remains in the folder Program Files (x86)\Common Files\Intel\shared files\ia32\Bin. You
can use it to transform Intel® C++ projects back into Microsoft Visual C++.

Use Eclipse
The Intel® oneAPI DPC++/C++ Compiler for Linux provides integrations for the compiler to Eclipse and C/C+
+ Development Tooling (CDT) that let you develop, build, and debug your Intel oneAPI DPC++/C++
Compiler projects in an integrated development environment (IDE).

Eclipse is an open source software development project dedicated to providing a robust, full-featured,
commercial-quality, industry platform for the development of highly integrated tools. It is an extensible, open
source integrated development environment (IDE). CDT is a complete C/C++ IDE for the Eclipse platform,
which allows you to develop, build, and run projects in a visual, interactive environment. CDT is layered on
Eclipse and provides a C/C++ development environment perspective.

NOTE
Eclipse and CDT are not bundled with the Intel® oneAPI DPC++/C++ Compiler. They must be obtained
separately.

If you used sudo sh ./<installer>.sh to install the Intel® oneAPI toolkits, use sudo ./eclipse to
open Eclipse as a root user.

If you used sh ./<installer>.sh to install the Intel® oneAPI toolkits, use ./eclipse to open
Eclipse as a current user.

If you attempt to open Eclipse as a current user after installing as a root user, the integration will not
be available.

Add the Compiler to Eclipse
This step is needed only if you are manually installing the Intel® oneAPI DPC++/C++ Compiler plug-in for
Eclipse.

To add the Intel oneAPI DPC++/C++ Compiler product extension to your Eclipse configuration:

1. Start Eclipse.
2. Select Help > Install New Software.
3. Next to the Work with field, click the Add button. The Add Repository dialog box opens.
4. Click the Archive button and browse to the <install_dir>/compiler/<version>/linux/

ide_support directory. Select the .zip file that starts with com.intel.compiler for C/C++ or
com.intel.dpcpp.compiler for DPC++, then click OK.

5. Select Intel® Software Development Tools > Intel® C++ Compiler Integration for C/C++ or
Intel® oneAPI DPC++ Compiler Integration > Intel® oneAPI DPC++ Compiler Integration for
DPC++, then click OK.

6. Follow the installation instructions.
7. When asked if you want to restart Eclipse, select Yes.

When Eclipse restarts, you can create and work with CDT projects that use the Intel oneAPI DPC++/C++
Compiler.

Multi-version Compiler Support
You can select different versions of the Intel® oneAPI DPC++/C++ Compiler for compiling projects with the
Eclipse Integrated Development Environment (IDE). For a list of the currently supported compiler versions by
platform, refer to the Release Notes.

Use Eclipse    

33



If multiple versions of the compiler are installed on the system, Eclipse uses the latest version by default. To
select the version of the compiler to build your project:

1. Right click the project and open Properties.
2. In the properties dialog box, select C/C++ Build > Settings.
3. Select the Intel(R) oneAPI DPC++ Compiler for a DPC++ project, or the Intel® C++ Compiler for

a C++ project tab.
4. Select the row with the desired compiler version.
5. Click Use Selected. Alternatively, click Use Latest to select the latest version of compiler.
6. Click Apply.

The corresponding compiler environment is configured automatically for your project.

Use Settings and Tool Chain Editor to select tools to be used within the toolchain, or set distinct project
properties, like compiler options, to be used with different versions of the compiler.

For any project, you can set the compiler environment by specifying it within Eclipse; this overrides any other
environment specifications for the compiler.

Use Cheat Sheets
The Intel® oneAPI DPC++/C++ Compiler integration includes several Eclipse* cheat sheets that can guide
you through various compilation and debugging tasks.

To view a list of available cheat sheets and select one:

1. Select Help  > Cheat Sheets.
The Cheat Sheet Selection dialog box opens, displaying a list of available cheat sheets.

2. Select a cheat sheet. Cheat sheets located outside of the Eclipse* integration can be entered in the
Select a cheat sheet from a file or Enter the URL of a cheat sheet.
Intel cheat sheets are located under Intel(R) C++ Compiler. A description of the cheat sheet appears
in the lower pane.

3. To open a cheat sheet, click OK.

The Cheat Sheets view opens in the Eclipse window.

Create a Simple Eclipse Project
The sections below show you how to create a simple project using Eclipse.

Create a New Eclipse Project
To create an Eclipse project:

1. Select File > New > Project... The New Project wizard opens.
2. Expand the C/C++ Project tab and select the appropriate project type. Click Next to continue.
3. For Project name, enter hello_world. Deselect the Use default location to specify a directory for the

new project.
4. In the Project Type list, expand the Executable project type and select Hello World C++ Project

for C++ or Hello World DPC++ Project for DPC++.
5. In the Toolchains list, select Intel(R) oneAPI DPC++ Compiler for a DPC++ project, or the Intel C

++ Compiler for a C++ project. Click Next.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

34



NOTE

• If you need to see the toolchains for the compilers that are not locally installed, uncheck Show
project types and toolchains only if they are supported on the platform. You are only able
to view and configure these toolchains if the proper compilers are installed.

• If you have multiple versions of the compiler installed, they appear in the project’s properties under
C/C++ Build > Settings on the Intel(R) oneAPI DPC++ Compiler tab for a DPC++ project, or
the Intel C++ Compiler tab for a C++ project.

6. The Basic Settings page allows specifying template information, including Author and Copyright
notice, which appear as a comment at the top of the generated source file. After entering desired
fields, click Next.

7. The Select Configurations page allows specifying deployment platforms and configurations. By
default, a Debug and Release configuration is created for the selected toolchain. Select no (Deselect
all), multiple, or all (Select all) configurations. To edit project properties, click the Advanced settings
button. Click Finish to create the hello_world project. Configurations can be created after the project
is created by selecting Project > Properties.

8. If the view is not the C/C++ Development Perspective (default), an Open Associated
Perspective dialog box opens. In the C/C++ Perspective, click Yes to proceed.

An entry for your hello_world project appears in the Project Explorer view.

Add a C Source File
To add a source file to the hello_world project:

1. Select the hello_world project in the Project Explorer view.
2. Select File  > New  > Source File. The New Source File dialog box opens. The dialog box

automatically populates the source folder for the source file to be created. You can change this by
entering a new location or selecting Browse.

3. Enter new_source_file.c in the Source File field.
4. Select a Template from the drop-down list or Configure a new template.
5. Click Finish to add the file to the hello_world project.
6. In the Editor view, add your code for new_source_file.c.
7. When your code is complete, Save your file.

Set Options for a Project or File
You can specify compiler, linker, and archiver options at the project and source file level. Follow these steps
to set options for a project or file:

1. Right-click a project or source file in the Project Explorer.
2. Select Properties. The property pages dialog box opens.
3. Select C/C++ Build > Settings.
4. Select the Tool Settings tab and click an option category for Intel C Compiler, Intel C++ Compiler,

or Intel C++ Linker for a C++ project, or select Intel® oneAPI DPC++ Compiler or Intel® oneAPI
DPC++ Linker for a DPC+++ project.

5. Set the options to apply to the project or file.

Compiler Setup   

35



NOTE

• Some properties use check boxes, drop-down boxes, or dialog boxes to specify compiler options.
For a description on options properties, hover over the option to display a tooltip. After setting the
desired options in command line syntax, select Apply.

• To specify an option that is not available from the Properties dialog, use C/C++ Build Settings
> Settings > <Compiler> > Command Line. Enter the command line options in the Additional
Options field using command-line syntax and select Apply.

• You can specify option settings for one or more configurations by using the Configuration drop-
down menu.

6. Click Apply and Close.

The compiler applies the selected options, using the selected configurations, when building. To restore default
settings to all properties for the selected configuration, click the Restore Defaults button on any property
page.

Exclude Source Files from a Build
To exclude a source file from a build:

1. Right-click a file or folder in the Project Explorer.
2. Select Resource Configurations > Exclude from build. The Exclude from build dialog box opens.
3. Select one or more build configurations to exclude the file or folder from.
4. Click OK.

The compiler excludes that file or folder when it builds using the selected project configuration.

Build a Project
To build your project:

1. Select the hello_world project in the Project Explorer view.
2. Select Project  > Build Project.

See the Build results in the Console view.

For a C/C++ project, use:

**** Build of configuration Debug for project hello_world ****
make all 
Building file: ../src/hello_world.cpp
Invoking: Intel C++ Compiler
icpx -g -O0 -MMD -MP -MF"src/hello_world.d" -MT"src/hello_world.d" -c -o "src/hello_world.o" 
"../src/hello_world.cpp"
Finished building: ../src/hello_world.cpp
 
Building target: hello_world
Invoking: Intel C++ Linker
icpx -O0 -o "hello_world"  ./src/hello_world.o   
Finished building target: hello_world
 
Build Finished. 0 errors, 0 warnings.

For a DPC++ project, use:

**** Build of configuration Debug for project DPCPPhelloworld ****
make all 
Building file: ../main.cpp
Invoking: Intel(R) oneAPI DPC++ Compiler
dpcpp -g -Wall -O0 -I/home/sys_idebuilder/eclipse-workspace/DPCPPhelloworld -MMD -MP -c -o 

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

36



"main.o" "../main.cpp"
Finished building: ../main.cpp
 
Building target: DPCPPhelloworld
Invoking: Linker
dpcpp  -o "DPCPPhelloworld"  ./main.o   -lsycl -lOpenCL
Finished building target: DPCPPhelloworld

Build Finished. 0 errors, 0 warnings.
Detailed descriptions of errors, warnings, and other output can be viewed by selecting the Problems tab.

Run a Project
After building a project, you can run your project by following these steps:

1. Select the hello_world project in the Project Explorer view.
2. Select Run As > Local C/C++ Application.

When the executable runs, the output appears in the Console view.

Error Parser
The Error Parser (selected by default) lets you track compile-time errors in Eclipse. To confirm that the Error
Parser is active:

1. Select the hello_world project in the Project Explorer view.
2. Select Project > Properties.
3. In the Properties dialog box, select C/C++ Build > Settings.
4. Click the Error Parsers tab. Make sure that Intel C++ Error Parser is checked, and CDT Visual C

Error Parser or Microsoft Visual C Error Parser are not checked.
5. Click OK to update your choices, if you have changed any settings.

Use the Error Parser
The Error Parser automatically detects and manages the diagnostics generated by the Intel® oneAPI
DPC++/C++ Compiler.

If an error occurring in the hello_world.c program is compiled, for example, #include <xstdio.h>, the
error is reported in the Problems view next to an error marker.

You can double-click each error in the Problems view to highlight the source line, which causes the error in
the Editor view.

Correct the error, then rebuild your project.

Makefiles
This section provides information about makefile project types and exporting makefiles.

Project Types and Makefiles
When you create a new project in Eclipse*, there are Executable, Shared Library, Static Library, or
Makefile project types available for your selection.

• Select Makefile Project if the project already includes a makefile.
• Use Executable, Shared Library, or Static Library Project to build a makefile using options assigned

from property pages specific to the Intel® oneAPI DPC++/C++ Compiler.

Compiler Setup   

37



Export Makefiles
Eclipse can build a makefile that includes Intel® oneAPI DPC++/C++ Compiler options for created
Executables, Shared Libraries, or Static Library Projects. When the project is complete, export the
makefile and project source files to another directory, and then build the project from the command line
using make.

To export the makefile:

1. Select the project in the Eclipse Project Explorer view.
2. Select File  > Export to launch the Export Wizard. The Export dialog box opens, showing the Select

screen.
3. Select General  > File system, then click Next. The File System screen opens.
4. Check both the hello_world and Release directories in the left-hand pane. Ensure all project sources

are checked in the right-hand pane.

NOTE Some files in the right-hand pane may be deselected, such as the hello_world.o object file
and the hello_world executable. Create directory structure for files in the Options section must
be selected to successfully create the export directory. This process applies to project files in the
hello_world directory.

5. Use the Browse button to target the export to an existing directory. Eclipse can create a directory for
full paths entered in the To directory text box. For example, if the /code/makefile is specified as the
export directory, Eclipse creates two new subdirectories:

• /code/makefile/hello_world
• /code/makefile/hello_world/Release

6. Click Finish to complete the export.

Run Make
From the command line, change to your project directory and run make with:

make clean all
You should see the following output:

rm -rf  ./new_source_file.o  ./new_source_file.d  hello_world
 
Building file: ../new_source_file.c
Invoking: Intel C++ Compiler
icx -O2 -MMD -MP -MF"new_source_file.d" -MT"new_source_file.d" -c -o "new_source_file.o" "../
new_source_file.c"
Finished building: ../new_source_file.c
 
Building target: hello_world
Invoking: Intel C++ compiler
icx  -o "hello_world"  ./new_source_file.o   
Finished building target: hello_world

This process generates the hello_world executable in the project directory.

Use Intel Libraries with Eclipse
You can use the compiler with the following Intel Libraries, which that may be included as a part of the
product:

• Intel® oneAPI Data Analytics Library (oneDAL)
• Intel® Integrated Performance Primitives (Intel® IPP)
• Intel® oneAPI Math Kernel Library (oneMKL)
• Intel® oneAPI Threading Building Blocks (oneTBB)

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

38



To access these libraries in Eclipse, use the property pages:

1. Select your project.
2. Open the property pages from Project > Properties and select C/C++ Build > Settings.
3. Select Intel C/C++ Compiler > Performance Library Build Components

for C++ projects, or Intel® oneAPI DPC++ Compiler > Performance Library Build Components
for DPC++ projects.

The Use Intel® oneAPI Data Analytics Library (oneDAL) property allows enabling the library and bringing
in the associated headers.

• None: Disable Use of oneDAL.
• Use threaded Intel® oneDAL: Link using the threaded version of the library.
• Use non-threaded Intel® oneDAL: Link using the non-threaded version of the library.

The Use Intel® Integrated Performance Primitives Libraries property provides the following options in a
drop-down menu:

• None: Disable use of Intel® IPP.
• Use main libraries set: Link using the main libraries set.
• Use non-pic version of libraries: Link using the version of the libraries that do not have position-

independent code.
• Use main libraries and cryptography library: Link using main or cryptography libraries.

The Use Intel® oneAPI Math Kernel Library property provides the following options in a drop-down menu:

• None: Disables the use of the oneMKL.
• Use threaded Intel® oneMKL library: Link using the threaded version of the library.
• Use non-threaded Intel® oneMKL library: Link using the non-threaded version of the library.
• Use Intel® oneMKL Cluster and sequential Intel® oneMKL libraries: Link using the oneMKL Cluster

Edition libraries and the sequential oneMKL libraries.

NOTE The option value Use Intel® oneMKL Cluster and sequential Intel® oneMKL libraries is
only available for Intel C Compiler or Intel C++ Compiler.

The Use Intel® oneAPI Threading Building Blocks on the Property page allows enabling the library and
bringing in the associated headers.

For more information, see the oneDAL, Intel® IPP, oneMKL, and oneTBB documentation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Use Microsoft Visual Studio
You can use the Intel® oneAPI DPC++/C++ Compiler within the Microsoft Visual Studio integrated
development environment (IDE) to develop C++ or DPC++ applications, including static library (.LIB),
dynamic link library (.DLL), and main executable (.EXE) applications. This environment makes it easy to
create, debug, and execute programs. You can build your source code into several types of programs and
libraries, using the IDE or from the command line.

The IDE offers these major advantages:

• Makes application development quicker and easier by providing a visual development environment.
• Provides integration with the native Microsoft Visual Studio debugger.
• Makes other IDE tools available.

Use Microsoft Visual Studio   

39

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Find Product Information
To access the product information for the Intel® oneAPI DPC++ Compiler:

1. Open Help > About Microsoft Visual Studio
2. In the left pane, select Intel® oneAPI DPC++ Compiler - Package ID: [_package ID_].
3. In the bottom pane, product details will show: Intel® oneAPI DPC++ Compiler - toolkit version

[_toolkit version_], extension version [_extension version_], Package ID: [_package ID_],
Copyright © [_copyright year_] Intel Corporation. All rights reserved. Other names and brands
may be claimed as the property of others.

To access the product information for the Intel® C++ Compiler:

1. Open Help > About Microsoft Visual Studio
2. In the left pane, select Intel® C++ Compiler - Package ID: [_package ID_].
3. In the bottom pane, product details will show: Intel® C++ Compiler - toolkit version [_toolkit

version_], extension version [_extension version_], Package ID: [_package ID_], Copyright
© [_copyright year_] Intel Corporation. All rights reserved. Other names and brands may be
claimed as the property of others.

To access the product information for the Intel Libraries for oneAPI:

1. Open Help > About Microsoft Visual Studio
2. In the left pane, select Intel Libraries for oneAPI - Package ID: [_package ID_].
3. In the bottom pane, product details will show: Intel Libraries for oneAPI - toolkit version [_toolkit

version_], extension version [_extension version_], Package ID: [_package ID_], Copyright
© [_copyright year_] Intel Corporation. All rights reserved. Other names and brands may be
claimed as the property of others.

Create a New Project

Create a New Project
When you create a project, Microsoft Visual Studio automatically creates a corresponding solution to contain
it. To create a new Intel® oneAPI DPC++/C++ project using Microsoft Visual Studio:

NOTE Exact steps may vary depending on the version of Microsoft Visual Studio in use.

For a C/C++ project:

1. Select File > New > Project.
2. In the left pane, expand Visual C++ and select Windows Desktop.
3. In the right pane, select Windows Console Application.
4. Accept or specify a project name in the Name field. For this example, use hello32 as the project name.
5. Accept or specify the Location for the project directory. Click OK.

For a DPC++ project:

1. Select File > New > Project.
2. In the left pane, expand DPC++ and select Console Application.
3. In the right pane, select DPC++ Console Application.
4. Accept or specify a project name in the Name field. For this example, use hello_dpcpp as the project

name.
5. Accept or specify the Location for the project directory. Click OK.

The hello32 (for C++) or hello_dpcpp (for DPC++) project assumes focus in the Solution Explorer view.
The default Microsoft Visual Studio solution is also named hello32 (for C++) or hello_dpcpp (for DPC++).

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

40



Use the Intel® oneAPI DPC++/C++ Compiler
To use the compiler with Microsoft Visual C++ (MSVC):

1. Create a MSVC project, or open an existing project.
2. In Solution Explorer, select the project(s) to build with Intel® oneAPI DPC++/C++ Compiler.
3. Open Project > Properties.
4. In the left pane, expand the Configuration Properties category and select the General property

page.
5. In the right pane, change the Platform Toolset to <compiler selection>. Alternatively, you can change

the toolset by selecting Project > Intel Compiler > Use Intel oneAPI DPC++/C++ Compiler. This
sets whichever version of the compiler that you specify as the toolset for all supported platforms and
configurations.

NOTESelect Intel(R) oneAPI DPC++ Compiler to invoke dpcpp-cl. Select Intel C++ Compiler
<major version> (example 2021) to invoke icx or Intel C++ Compiler <major.minor> (example
19.2) to invoke icl.

6. To add options, go to Project > Properties > C/C++ > Command Line and add new options to the
Additional Options field. Alternatively, you can select options from Intel specific properties. Refer to
complete list of options in the Compiler Options section in this documentation.

7. Rebuild, using either Build > Project only > Rebuild for a single project, or Build > Rebuild
Solution for a solution.

Switch Back to the MSVC Compiler
If your project is using the Intel® oneAPI DPC++/C++ Compiler, you can switch back to MSVC:

1. Select your project.
2. Right-click and select Intel Compiler > Use Visual C++ from the context menu.

Enable an Intel® oneAPI DPC++ Compiler Runtime Environment when using the MSVC Compiler
There are two ways to enable the Intel® oneAPI DPC++ Compiler runtime environment for an MSVC project.

Enable for a Current Configuration

1. Select your project, then select Project > Properties.
2. In the left pane, select Configuration Properties > Debugging.
3. In the right pane, set Enable Intel® oneAPI DPC++ Compiler Runtime Environment to Yes.

Enable for All Configurations

1. Select your project.
2. There are two ways to enable the runtime environment:

• From the main menu, select Project > Enable Intel® oneAPI DPC++ Compiler Runtime
Environment.

• Right-click and select Enable DPC++ Runtime Environment from the context menu.

Verify Use of the Intel® oneAPI DPC++/C++ Compiler
To verify the use of the Intel® oneAPI DPC++/C++ Compiler:

1. Go to Project > Properties  > C/C++ > General.
2. Set Suppress Startup Banner to No. Click OK.
3. Rebuild your application.
4. Look at the Output window.

Compiler Setup   

41



You should see a message similar to the following when using the Intel® oneAPI DPC++/C++ Compiler:

Intel(R) oneAPI DPC++/C++ Compiler for applications running on XXXX, Version XX.X.X

Unsupported MSVC Project Types
The following project types are not supported:

• Class Library
• CLR Console Application
• CLR Empty Project
• Windows Forms Application
• Windows Forms Control Library

Tips for Use
• Create a separate configuration for building with Intel® oneAPI DPC++/C++ Compiler:

• After you have created your project and specified it as an Intel project, create a new configuration (for
example, rel_intelc based on Release configuration or debug_intelc based on Debug
configuration).

• Add any special optimization options offered by Intel® oneAPI DPC++/C++ Compiler only to this new
configuration (for example, rel_intelc or debug_intelc) through the project property page.

• Build with Intel® oneAPI DPC++/C++ Compiler.

Select the Compiler Version
If you have multiple versions of the Intel® oneAPI DPC++/C++ Compiler installed, you can select which
version you want from the Compiler Selection dialog box:

1. Select a project, then go to Tools > Options > Intel Compilers and Libraries > <compiler> >
Compilers.

NOTE The <compiler> values are C++ or DPC++.

2. Use the Selected Compiler drop-down menu to select the appropriate version of the compiler.
3. Click OK.

See Also
Use Intel® C++ dialog box 

Specify a Base Platform Toolset
By default, when your project uses the Intel® oneAPI DPC++/C++ Compiler, the Base Platform Toolset
property is set to use that compiler with the build environment. This environment includes paths, libraries,
included files, etc., of the toolset specific to the version of Microsoft Visual Studio* you are using.

You can set the general project level property Base Platform Toolset to use one of the non-Intel installed
platform toolsets as the base.

For example, if you are using Microsoft Visual Studio 2019, and you selected the Intel® oneAPI DPC++/C++
Compiler in the Platform Toolset property, then the Base Platform Toolset uses the Microsoft Visual Studio
2019 environment (v142). If you want to use other environments from Microsoft Visual Studio along with
the Intel® oneAPI DPC++/C++ Compiler, set the Base Platform Toolset property to:

• v141 for Microsoft Visual Studio 2017
• v142 for Microsoft Visual Studio 2019

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

42



• v143 for Microsoft Visual Studio 2022

NOTE
Support for Microsoft Visual Studio 2017 is deprecated as of the Intel® oneAPI 2022.1 release, and will
be removed in a future release.

This property displays all installed toolsets, not including Intel toolsets.

To set the Base Platform Toolset:

• Using property pages:
1.Select the project and open Project  > Properties.
2. In the left pane, select Configuration Properties  > General.
3. In the right pane, find Intel Specific  > Base Platform Toolset.
4.Select a value from the pop-up menu.

• Using the msbuild.exe command line tool, use the /p:PlatformToolset
and /p:BasePlatformToolset options.
Example: When the Platform Toolset property is already set to use the Intel® oneAPI DPC++/C++
Compiler, to build a project using the Microsoft Visual Studio 2019 environment use the following
command:

Msbuild.exe myproject.vcxproj /p:BasePlatformToolset=v142
Example: To set the Platform Toolset property to use the Intel® oneAPI DPC++/C++ Compiler and build a
project using the Microsoft Visual Studio 2019 environment use the following command:

Msbuild.exe myproject.vcxproj /p:PlatformToolset="Intel C++ Compiler 2021" /
p:BasePlatformToolset=v142

For possible values for the /p:BasePlatformToolset property, see the properties described above.

The next time you build your project with the Intel® oneAPI DPC++/C++ Compiler, the option you selected is
used to specify the build environment.

Use Property Pages
The Intel® oneAPI DPC++/C++ Compiler includes support for Property Pages to manage both Intel-specific
and general compiler options.

To set compiler options in Microsoft Visual Studio*:

1. Right-click on a project or source file in the Solution Explorer view.
2. Select Properties from the pop-up menu.
3. In the Property Pages dialog box, expand the C/C++ (for C++), or DPC++ (for DPC++) section to

view the categories of compiler options.
4. Click OK to complete your selection.

The option you selected is used in the compilation the next time you build your project.

Use Intel® Libraries with Microsoft Visual Studio*
You can use the compiler with the following Intel® Libraries, which may be included as a part of the product:

• Intel® oneAPI Data Analytics Library (oneDAL)
• Intel® Integrated Performance Primitives (Intel® IPP)
• Intel® oneAPI Threading Building Blocks (oneTBB)
• Intel® oneAPI Math Kernel Library (oneMKL)

Use the property pages to specify Intel Libraries to use with the selected project configuration. The
functionality supports Intel® C++, Intel® oneAPI DPC++, and Microsoft Visual C++* project types.

Compiler Setup   

43



To specify Intel Libraries, select Project > Properties. In Configuration Properties, select Intel
Libraries for oneAPI, then do the following:

1. To use oneDAL change the Use oneDAL settings as follows:

• No: Disable Use of oneDAL.
• Default Linking Method: Use parallel dynamic oneDAL libraries.
• Multi-threaded Static Library: Use parallel static oneDAL libraries.
• Single-threaded Static Library: Use sequential static oneDAL libraries.
• Multi-threaded DLL: Use parallel dynamic oneDAL libraries.
• Single-threaded DLL: Use sequential dynamic oneDAL libraries.

2. To use Intel® Integrated Performance Primitives, change the Use Intel® IPP settings as follows:

• No: Disable use of Intel® IPP libraries.
• Default Linking Method: Use dynamic Intel® IPP libraries.
• Static Library: Use static Intel® IPP libraries.
• Dynamic Library: Use dynamic Intel® IPP libraries.

3. To use oneTBB in your project, change the Use oneTBB settings as follows:

• No: Disable use of oneTBB libraries.
• Use oneTBB: Set to Yes to use oneTBB in the application.
• Instrument for use with Analysis Tools: Set to Yes to analyze your release mode application

(not required for debug mode).
4. To use oneMKL in your project, change the Use oneMKL property settings as follows:

• No: Disable use of oneMKL libraries.
• Parallel: Use parallel oneMKL libraries.
• Sequential: Use sequential oneMKL libraries.
• Cluster: Use cluster libraries.

The target platform of an Intel® oneAPI DCP++ project is set to x64, so a final selection appears: Use
interface. If selected, the corresponding ilp oneMKL libraries are added to the linker command line.
Additionally, the MKL_ILP64 preprocessor definition is added to the compiler command line. If you do
not make this selection, the Ip oneMKL libraries are used.

Additional settings for use with the Microsoft Visual C++* Platform Toolset are available on the Intel
Libraries for oneAPI category, found at Tools > Options.

Change the Selected Intel Libraries for oneAPI
If you have installed multiple versions of the Intel Libraries for oneAPI, you can specify which version to use
with the Microsoft Visual C++* compiler. To do this:

1. Select Tools > Options.
2. In the left pane, select Intel Compilers and Libraries > Intel Libraries for oneAPI.
3. Select the desired library version from the drop-down boxes in the right pane.

For more information, see the Intel® oneAPI Data Analytics Library (oneDAL), Intel® Integrated Performance
Primitives (Intel® IPP), Intel® oneAPI Threading Building Blocks (oneTBB), and Intel® oneAPI Math Kernel
Library (oneMKL) documentation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

44

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Include MPI Support
To specify the type of message-passing interface (MPI) support you want:

1. Open the project's property pages and select Configuration Properties > Intel Libraries for
oneAPI.

2. Set the property Use oneMKL to Cluster.
3. Set the property Use MPI Library to one of the following values:

• Intel® MPI Library
• MS-MPI

4. Build the project.

The next time you build your project with the Intel® oneAPI DPC++/C++ Compiler or Microsoft Visual C++
compiler, it will include support for the version of MPI that you specified.

Dialog Box Help
This section provides information about access to dialog boxes and information about compilers, libraries,
and converter dialog boxes.

Options: Compilers dialog box
To access the Compilers page:

1. Open Tools > Options.
2. In the left pane, select Intel Compilers and Libraries > C++ > Compilers for icx or Intel

Compilers and Libraries > DPC++ > Compilers for dpcpp-cl.

Compiler Selection for C++
Target Platform: Select your target platform.

Platform Toolset/Selected Compiler: Select your compiler for your platform toolset. The left column lists
the platform toolset names. The right column lists combo boxes, which are used to select a compiler. The
default value for all combo boxes in current table is <Latest>.

NOTE The left column contains Intel® C++ Compiler Classic and Intel® oneAPI DPC++/C++ Compiler
options. The Intel C++ Compiler <major.minor> (example 19.2) selects the Intel® C++ Compiler
Classic (icc). The Intel C++ Compiler <major> (example 2021) selects the Intel® oneAPI DPC+
+/C++ Compiler (icx).

Default Options: Sets the default options for a selected compiler. You may specify this setting for each
selected compiler.

Environment: Sets custom environment variables. You may specify this setting for each selected compiler.

NOTE The Environment selection is only available for icx.

Compiler Information: Shows the detail description of the selected compiler.

Reset All: Sets all contents back to the default value on the dialog.

Compiler Setup   

45



Compiler Selection for Intel® oneAPI DPC++ Compiler
Platform Toolset/Selected Compiler: Select your compiler for your platform toolset. The left column lists
the platform toolset names. The right column lists combo boxes, which are used to select a compiler. The
default value for all combo boxes in current table is <Latest>.

Default Options: Sets the default options for a selected compiler. You may specify this setting for each
selected compiler.

Environment: Sets custom environment variables. You may specify this setting for each selected compiler.

NOTE The Environment selection is only available for icx.

Compiler Information: Shows the detail description of the selected compiler.

Reset All: Sets all contents back to the default value on the dialog.

See Also

Use Intel® oneAPI DPC++/C++ Compiler dialog box
To access the Use Intel oneAPI DPC++/C++ Compiler dialog box:

1. Select one or more files in the Solution Explorer.
2. Right-click and select Intel Compiler > Use Intel oneAPI DPC++/C++ Compiler for selected

file(s)...

Use this dialog box to change the compiler for one or more selected files to the Intel® oneAPI DPC++/C++
Compiler.

To use the Select the configuration(s) to update:

1. Select your desired configuration.
2. Choose from Active configuration or All configurations.

If you select All configurations, the compiler is changed in all configurations for the currently selected
file(s).

To use the Select the Platform Toolset:

1. Select your desired toolset.

This only applies if you have multiple platform toolsets installed.

See Also
Use the Intel® oneAPI DPC++/C++ Compiler

Options: Intel Libraries for oneAPI dialog box
Use the Intel Libraries for oneAPI dialog box to specify standalone library versions to use with the
Microsoft Visual C++* compiler.

To access the Intel Libraries for oneAPI dialog box:

1. Open Tools > Options.
2. Select Intel Compilers and Libraries > Intel Libraries for oneAPI.

In the dialog box, you can select your desired library version from the drop-down box with one of the
following values:

• oneDAL
• Intel IPP
• oneTBB

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

46



• oneMKL
• Reset All: Use the latest libraries (default)

NOTE To enable or disable the Intel Libraries for oneAPI, use the property pages located in the
Configuration Properties category.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Use Intel® Libraries for oneAPI 

Options: Converter dialog box
To access the Converter page:

1. Click Tools  > Options.
2. select Intel Compilers and Libraries > C++ > Converter.

Use the Converter page to specify which platform toolset to use when upgrading an Intel® C++ solution
(.icproj) from an older version of Microsoft Visual Studio to a C++ project supported by Microsoft Visual
Studio 2017 or later (.vcxproj). Once a solution is upgraded, the .icproj file is not used and can be
deleted.

NOTE Support for Microsoft Visual Studio 2017 is deprecated as of the Intel® oneAPI 2022.1 release,
and will be removed in a future release.

Win32: Select the desired compiler version to be used when converting projects based on IA-32
architecture.

X64: Select the desired compiler version to be used when converting projects based on x64 architecture.

Reset All: Click this button to use the default platform toolsets.

Compiler Setup   

47

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Compiler Reference

Part

II
I

This section contains compiler reference information. For example, it contains information about compiler
options, compiler limits, and libraries.

C/C++/SYCL Calling Conventions
There are a number of calling conventions that set the rules on how arguments are passed to a function and
how the values are returned from the function.

NOTE IA-32 applications do not apply for SYCL.

Calling Conventions on Linux
The following table summarizes the supported calling conventions on Linux:

Calling Convention Compiler Option Description

__attribute((cdecl)) None Default calling convention for C/C
++/SYCL programs. Can be
specified on a function with
variable arguments.

__attribute((stdcall)) None Calling convention that specifies
the arguments are passed on the
stack. Cannot be specified on a
function with variable arguments.

__attribute((regparm
(number))

None On systems based on IA-32
architecture, the regparm
attribute causes the compiler to
pass up to number arguments in
registers EAX, EDX, and ECX
instead of on the stack. Functions
that take a variable number of
arguments will continue to pass
all of their arguments on the
stack.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

48



Calling Convention Compiler Option Description

__attribute__((regcall)) -regcall specifies that
__regcall is the default calling
convention for functions in the
compilation, unless another
calling convention is specified on
a declaration.

Intel oneAPI DPC++/C++
Compiler calling convention that
specifies that as many arguments
as possible are passed in
registers; likewise, __regcall
uses registers whenever possible
to return values. This calling
convention is ignored if specified
on a function with variable
arguments.

__attribute__((vectorcall)
)

None Calling convention that specifies
that a function passing vector
type arguments should use
vector registers.

Calling Conventions on Windows
The following table summarizes the supported calling conventions on Windows:

Calling Convention Compiler Option Description

__cdecl /Gd This is the default calling convention for C/C
++/SYCL programs. It can be specified on a
function with variable arguments.

__stdcall /Gz Standard calling convention used for Win32
API functions.

__fastcall /Gr Fast calling convention that specifies that
arguments are passed in registers rather
than on the stack.

__regcall /Qregcall specifies that
__regcall is the default
calling convention for
functions in the compilation,
unless another calling
convention is specified on a
declaration.

Intel® oneAPI DPC++/C++ Compiler calling
convention that specifies that as many
arguments as possible are passed in
registers; likewise, __regcall uses
registers whenever possible to return
values. This calling convention is ignored if
specified on a function with variable
arguments.

For more information about the Intel-
compatible vector functions ABI, download
the Vector Function Application Binary
Interface PDF.

__thiscall None Default calling convention used by C++
member functions that do not use variable
arguments.

__vectorcall /Gv Calling convention that specifies that a
function passing vector type arguments
should use vector registers.

Compiler Reference   

49

https://cdrdv2.intel.com/v1/dl/getContent/679047?explicitVersion=true&wapkw=Vector%20Function%20Application%20Binary%20Interface
https://cdrdv2.intel.com/v1/dl/getContent/679047?explicitVersion=true&wapkw=Vector%20Function%20Application%20Binary%20Interface


The __regcall Calling Convention
The __regcall calling convention is unique to the Intel oneAPI DPC++/C++ Compiler and requires some
additional explanation.

To use __regcall, place the keyword before a function declaration. For example:

Linux

__attribute__((regcall)) foo (int I, int j);
Windows

__regcall int foo (int i, int j);

Available __regcall Registers
All registers in a __regcall function can be used for parameter passing/returning a value, except those that
are reserved by the compiler. The following table lists the registers that are available in each register class
depending on the default ABI for the compilation. The registers are used in the order shown below.

Register Class/
Architecture

IA-32 for
Linux

IA-32 for
Windows

Intel® 64 for
Linux

Intel® 64 for
Windows

GPR EAX, ECX,
EDX, EDI,
ESI

ECX, EDX, EDI,
ESI

RAX, RCX, RDX,
RDI, RSI, R8,
R9, R10, R11,
R12, R14, R15

RAX, RCX, RDX,
RDI, RSI, R8, R9,
R11, R12, R14, R15

FP ST0 ST0 ST0 ST0

MMX None None None None

XMM XMM0 - XMM7 XMM0 - XMM7 XMM0 - XMM15 XMM0 - XMM15

YMM YMM0 - YMM7 YMM0 - YMM7 YMM0 - YMM15 YMM0 - YMM15

ZMM ZMM0 - ZMM7 ZMM0 - ZMM7 ZMM0 - YMM15 ZMM0 - YMM15

__regcall Data Type Classification
Parameters and return values for __regcall are classified by data type and are passed in the registers of the
classes shown in the following table.

NOTE
All types assigned to XMM, YMM, or ZMM in a non-SSE target are passed in the stack.

Type (Signed and Unsigned) IA-32 Intel® 64

bool, char, int, enum,
_Decimal32, long, pointer

GPR GPR

short, __mmask{8,16,32,64} GPR GPR

long long, __int64 See Structured Data Type
Classification Rules

GPR

_Decimal64 XMM GPR

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

50



Type (Signed and Unsigned) IA-32 Intel® 64

long double FP FP

float, double, float128,
_Decimal128

XMM XMM

__m128, __m128i, __m128d XMM XMM

__m256, __m256i, __m256d YMM YMM

__m512, __m512i, __m512d ZMM ZMM

complex type, struct,
union

See Structured Data Type
Classification Rules

See Structured Data Type
Classification Rules

NOTE
For the purpose of structured types, the classification of GPR class is used.

On systems based on IA-32 architecture, these 64-bit integer types (long long, __int64) get
classified to the GPR class and are passed in two registers, as if they were implemented as a structure
of two 32-bit integer fields.

Types that are smaller in size than registers of their associated class are passed in the lower part of those
registers; for example, float is passed in the lower four bytes of an XMM register.

__regcall Structured Data Type Classification Rules
Structures/unions and complex types are classified similarly to what is described in the x86_64 ABI, with the
following exceptions:

• There is no limitation on the overall size of a structure.
• The register classes for basic types are given in Data Type Classifications.
• For systems based on the IA-32 architecture, classification is performed on four-bytes. For systems based

on other architectures, classification is performed on eight-bytes.

__regcall Placement in Registers or on the Stack
After the classification described in Data Type Classifications and Structured Data Type Classification Rules,
__regcall parameters and return values are either put into registers specified in Available Registers or placed
in memory, according to the following:

• Each chunk (eight bytes on systems based on Intel® 64 architecture or four-bytes on systems based on
IA-32 architecture of a value of Data Type is assigned a register class. If enough registers from Available
Registers are available, the whole value is passed in registers, otherwise the value is passed using the
stack.

• If the classification were to use one or more register classes, then the registers of these classes from the
table in Available Registers are used, in the order given there.

• If no more registers are available in one of the required register classes, then the whole value is put on
the stack.

__regcall Registers That Preserve Their Values
The following registers preserve their values across a __regcall call, as long as they were not used for
passing a parameter or returning a value:

Compiler Reference   

51



Register Class/ABI IA-32 Intel® 64 for Linux Intel® 64 for Windows

GPR ESI, EDI, EBX,
EBP, ESP

R12 - R15, RBX,
RBP, RSP

R12 - R15, RBX, RBP, RSP

FP None None None

MMX None None None

XMM XMM4 - XMM7 XMM8 - XMM15 XMM8 - XMM15

YMM XMM4 - XMM7 XMM8 - XMM15 XMM8 - XMM15

ZMM XMM4 - XMM7 XMM8 - XMM15 XMM8 - XMM15

All other registers do not preserve their values across this call.

See Also
Structured Data Type Classification Rules
Data Type Classifications
Available Registers

Compiler Options
This compiler supports many compiler options you can use in your applications.

In this section, we provide the following:

• An alphabetical list of compiler options that includes their short descriptions
• A list of deprecated options for SYCL and lists of deprecated and removed options for C++
• General rules for compiler options and the conventions we use when referring to options
• Details about what appears in the compiler option descriptions
• A description of each compiler option. The descriptions appear under the option's functional category.

Within each category, the options are listed in alphabetical order.

Clang compiler options are supported for this compiler. We do not document these options, but you can check
-help on the command line to see if a particular option is supported. For more information about Clang
options, see the Clang documentation.

NOTE
On Windows, two compilers are available: dpcpp and dpcpp-cl.

If you want to use Linux-style option syntax, where options start with dash (-), you should continue to
use the dpcpp compiler.

If you want to use Microsoft Visual C++ (MSVC)-compatible option syntax, where options start with /,
you should use the dpcpp-cl compiler.

NOTEmacOS* is not supported for the icx/icpx, dpcpp, or dpcpp-cl compilers. For macOS or
Xcode* support, visit the icc compiler: Intel® C++ Compiler Classic Developer Guide and Reference.

For details about new functionality, such as new compiler options, see the Release Notes for the product.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

52

https://clang.llvm.org/
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top.html


Alphabetical Option List
The following table lists all the current compiler options in alphabetical order.

align Determines whether variables and arrays are naturally aligned.

ansi Enables language compatibility with the gcc option ansi.

arch Tells the compiler which features it may target, including which
instruction sets it may generate.

ax, Qax Tells the compiler to generate multiple, feature-specific auto-dispatch
code paths for Intel® processors if there is a performance benefit.

B Specifies a directory that can be used to find include files, libraries, and
executables.

Bdynamic Enables dynamic linking of libraries at run time.

Bstatic Enables static linking of a user's library.

Bsymbolic Binds references to all global symbols in a program to the definitions
within a user's shared library.

Bsymbolic-functions Binds references to all global function symbols in a program to the
definitions within a user's shared library.

C Places comments in preprocessed source output.

c Prevents linking.

D Defines a macro name that can be associated with an optional value.

dD, QdD Same as option -dM, but outputs #define directives in preprocessed
source.

debug (Linux*) Enables or disables generation of debugging information.

debug (Windows*) Enables or disables generation of debugging information.

device-math-lib Enables or disables certain device libraries. This is a deprecated option
that may be removed in a future release.

dM, QdM Tells the compiler to output macro definitions in effect after
preprocessing.

dryrun Specifies that driver tool commands should be shown but not executed.

dumpmachine Displays the target machine and operating system configuration.

dumpversion Displays the version number of the compiler.

dynamic-linker Specifies a dynamic linker other than the default.

E Causes the preprocessor to send output to stdout.

EH Specifies the model of exception handling to be performed.

EP Causes the preprocessor to send output to stdout, omitting #line
directives.

F (Windows*) Specifies the stack reserve amount for the program.

Fa Specifies that an assembly listing file should be generated.

Compiler Reference   

53



fasm-blocks Enables the use of blocks and entire functions of assembly code within a
C or C++ file.

fast Maximizes speed across the entire program.

fasynchronous-unwind-tables Determines whether unwind information is precise at an instruction
boundary or at a call boundary.

fbuiltin, Oi Enables or disables inline expansion of intrinsic functions.

fcommon Determines whether the compiler treats common symbols as global
definitions.

fdata-sections, Gw Places each data item in its own COMDAT section.

FD Generates file dependencies related to the Microsoft* C/C++ compiler.

Fe Specifies the name for a built program or dynamic-link library.

fexceptions Enables exception handling table generation.

ffp-contract Controls when the compiler is permitted to form fused floating-point
operations, such as fused multiply-add (FMA). Fused operations are
allowed to produce more precise results than performing the individual
operations separately.

ffreestanding , Qfreestanding Ensures that compilation takes place in a freestanding environment.

ffunction-sections, Gy Places each function in its own COMDAT section.

fgnu89-inline Tells the compiler to use C89 semantics for inline functions when in C99
mode.

fimf-absolute-error, Qimf-
absolute-error

Defines the maximum allowable absolute error for math library function
results.

fimf-accuracy-bits, Qimf-
accuracy-bits

Defines the relative error for math library function results, including
division and square root.

fimf-arch-consistency, Qimf-
arch-consistency

Ensures that the math library functions produce consistent results across
different microarchitectural implementations of the same architecture.

fimf-domain-exclusion, Qimf-
domain-exclusion

Indicates the input arguments domain on which math functions must
provide correct results.

fimf-force-dynamic-target,
Qimf-force-dynamic-target

Instructs the compiler to use run-time dispatch in calls to math functions.

fimf-max-error, Qimf-max-
error

Defines the maximum allowable relative error for math library function
results, including division and square root.

fimf-precision, Qimf-precision Lets you specify a level of accuracy (precision) that the compiler should
use when determining which math library functions to use.

fimf-use-svml, Qimf-use-svml Instructs the compiler to use the Short Vector Math Library (SVML) rather
than the Intel® oneAPI DPC++/C++ Compiler Math Library (LIBM) to
implement math library functions.

finline Tells the compiler to inline functions declared with __inline and perform C
++ inlining .

finline-functions Enables function inlining for single file compilation.

fintelfpga Lets you perform ahead-of-time (AOT) compilation for the Field
Programmable Gate Array (FPGA).

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

54



fiopenmp, Qiopenmp Enables recognition of OpenMP* features, such as parallel, simd, and
offloading directives. This is an alternate option for compiler option [Q or
q]openmp.

FI Tells the preprocessor to include a specified file name as the header file.

fixed Causes the linker to create a program that can be loaded only at its
preferred base address.

fjump-tables Determines whether jump tables are generated for switch statements.

fkeep-static-consts , Qkeep-
static-consts

Tells the compiler to preserve allocation of variables that are not
referenced in the source.

Fm Tells the linker to generate a link map file. This is a deprecated option
that may be removed in a future release.

fma, Qfma Determines whether the compiler generates fused multiply-add (FMA)
instructions if such instructions exist on the target processor.

fmath-errno Tells the compiler that errno can be reliably tested after calls to standard
math library functions.

fno-gnu-keywords Tells the compiler to not recognize typeof as a keyword.

fno-operator-names Disables support for the operator names specified in the standard.

fno-rtti Disables support for run-time type information (RTTI).

fno-sycl-libspirv Disables the check for libspirv (the SPIR-V* tools library).

Fo Specifies the name for an object file.

foffload-static-lib Tells the compiler to link with a fat (multi-architecture) static library. This
is a deprecated option that may be removed in a future release.

fomit-frame-pointer , Oy Determines whether EBP is used as a general-purpose register in
optimizations.

fopenmp Option -fopenmp is a deprecated option that will be removed in a future
release.

fopenmp-declare-target-
scalar-defaultmap, Qopenmp-
declare-target-scalar-
defaultmap

Determines which implicit data-mapping/sharing rules are applied for a
scalar variable referenced in a target pragma.

fopenmp-device-lib Enables or disables certain device libraries for an OpenMP* target.

fopenmp-target-buffers,
Qopenmp-target-buffers

Enables a way to overcome the problem where some OpenMP* offload
SPIR-V* devices produce incorrect code when a target object is larger
than 4GB.

fopenmp-targets, Qopenmp-
targets

Enables offloading to a specified GPU target if OpenMP* features have
been enabled.

foptimize-sibling-calls Determines whether the compiler optimizes tail recursive calls.

Fp Lets you specify an alternate path or file name for precompiled header
files.

fpack-struct Specifies that structure members should be packed together.

fpascal-strings Tells the compiler to allow for Pascal-style string literals.

Compiler Reference   

55



fpermissive Tells the compiler to allow for non-conformant code.

fpic Determines whether the compiler generates position-independent code.

fpie Tells the compiler to generate position-independent code. The generated
code can only be linked into executables.

fp-model, fp Controls the semantics of floating-point calculations.

fp-speculation, Qfp-
speculation

Tells the compiler the mode in which to speculate on floating-point
operations.

freg-struct-return Tells the compiler to return struct and union values in registers when
possible.

fshort-enums Tells the compiler to allocate as many bytes as needed for enumerated
types.

fstack-protector Enables or disables stack overflow security checks for certain (or all)
routines.

fstack-security-check Determines whether the compiler generates code that detects some
buffer overruns.

fsycl Enables a program to be compiled as a SYCL* program rather than as
plain C++11 program.

fsycl-add-targets Lets you add arbitrary device binary images to the fat SYCL* binary when
linking. This is a deprecated option that may be removed in a future
release.

fsycl-dead-args-optimization Enables elimination of SYCL dead kernel arguments.

fsycl-device-code-split Specifies a SYCL* device code module assembly.

fsycl-device-lib Enables or disables certain device libraries for a SYCL* target.

fsycl-device-only Tells the compiler to generate a device-only binary.

fsycl-early-optimizations Enables LLVM-related optimizations before SPIR-V* generation.

fsycl-enable-function-pointers Enables function pointers and support for virtual functions for SYCL
kernels and device functions. This is an experimental feature.

fsycl-esimd-force-stateless-
mem

Determines whether the compiler enforces stateless memory accesses
within ESIMD kernels on the target device. This is an experimental
feature.

fsycl-explicit-simd Enables or disables the experimental "Explicit SIMD" SYCL* extension.
This is a deprecated option that may be removed in a future release.

fsycl-help Causes help information to be emitted from the device compiler backend.

fsycl-host-compiler Tells the compiler to use the specified compiler for the host compilation of
the overall offloading compilation that is performed.

fsycl-host-compiler-options Passes options to the compiler specified by option fsycl-host-compiler.

fsycl-id-queries-fit-in-int Tells the compiler to assume that SYCL ID queries fit within MAX_INT.

fsycl-instrument-device-code Enables or disables linking of the Instrumentation and Tracing Technology
(ITT) device libraries for VTune™.

fsycl-link Tells the compiler to perform a partial link of device binaries to be used
with Field Programmable Gate Array (FPGA).

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

56



fsycl-link-targets Tells the compiler to link only device code. This is a deprecated option
that may be removed in a future release.

fsycl-max-parallel-link-jobs Tells the compiler that it can simultaneously spawn up to the specified
number of processes to perform actions required to link SYCL
applications. This is an experimental feature.

fsycl-targets Tells the compiler to generate code for specified device targets.

fsycl-unnamed-lambda Enables unnamed SYCL* lambda kernels.

fsycl-use-bitcode Tells the compiler to produce device code in LLVM Intermediate
Representation (IR) bitcode format into fat objects.

fsyntax-only Tells the compiler to check only for correct syntax.

ftrapuv , Qtrapuv Initializes stack local variables to an unusual value to aid error detection.

funsigned-char Change default char type to unsigned.

fuse-ld Tells the compiler to use a different linker instead of the default linker
(ld).

fvec-peel-loops, Qvec-peel-
loops

Enables peel loop vectorization.

fvec-remainder-loops, Qvec-
remainder-loops

Enables remainder loop vectorization.

fvec-with-mask, Qvec-with-
mask

Enables vectorization for short trip-count loops with masking.

fverbose-asm Produces an assembly listing with compiler comments, including options
and version information.

fvisibility Specifies the default visibility for global symbols or the visibility for
symbols in declarations, functions, or variables.

fzero-initialized-in-bss, Qzero-
initialized-in-bss

Determines whether the compiler places in the DATA section any
variables explicitly initialized with zeros.

g Tells the compiler to generate a level of debugging information in the
object file.

GA Enables faster access to certain thread-local storage (TLS) variables.

gcc-toolchain Lets you specify the location of the base toolchain.

Gd Makes __cdecl the default calling convention.

gdwarf Lets you specify a DWARF Version format when generating debug
information.

GF Enables read-only string-pooling optimization.

GR Enables or disables C++ Run Time Type Information (RTTI).

Gr Makes __fastcall the default calling convention.

grecord-gcc-switches Causes the command line options that were used to invoke the compiler
to be appended to the DW_AT_producer attribute in DWARF debugging
information.

GS Determines whether the compiler generates code that detects some
buffer overruns.

Compiler Reference   

57



Gs Lets you control the threshold at which the stack checking routine is
called or not called.

gsplit-dwarf Creates a separate object file containing DWARF debug information.

guard Enables the control flow protection mechanism.

Gv Tells the compiler to use the vector calling convention (__vectorcall) when
passing vector type arguments.

Gz Makes __stdcall the default calling convention.

H, QH Tells the compiler to display the include file order and continue
compilation.

help Displays a list of supported compiler options in alphabetical order.

I Specifies an additional directory to search for include files.

I- Splits the include path.

idirafter Adds a directory to the second include file search path.

imacros Allows a header to be specified that is included in front of the other
headers in the translation unit.

ipo, Qipo Enables interprocedural optimization between files.

ipp-link, Qipp-link Controls whether the compiler links to static or dynamic threaded Intel®
Integrated Performance Primitives (Intel® IPP) run-time libraries.

iprefix Lets you indicate the prefix for referencing directories that contain header
files.

iquote Adds a directory to the front of the include file search path for files
included with quotes but not brackets.

isystem Specifies a directory to add to the start of the system include path.

iwithprefix Appends a directory to the prefix passed in by -iprefix and puts it on the
include search path at the end of the include directories.

iwithprefixbefore Similar to -iwithprefix except the include directory is placed in the same
place as -I command-line include directories.

J Sets the default character type to unsigned.

Kc++, TP Tells the compiler to process all source or unrecognized file types as C++
source files. This is a deprecated option that may be removed in a future
release.

l Tells the linker to search for a specified library when linking.

L Tells the linker to search for libraries in a specified directory before
searching the standard directories.

LD Specifies that a program should be linked as a dynamic-link (DLL) library.

link Passes user-specified options directly to the linker at compile time.

m Tells the compiler which features it may target, including which
instruction set architecture (ISA) it may generate.

M, QM Tells the compiler to generate makefile dependency lines for each source
file.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

58



m32, m64 , Qm32, Qm64 Tells the compiler to generate code for a specific architecture. Option m32
(and Qm32) is deprecated and will be removed in a future release.

m80387 Specifies whether the compiler can use x87 instructions.

malign-double Determines whether double, long double, and long long types are
naturally aligned. This option is equivalent to specifying option align.

march Tells the compiler to generate code for processors that support certain
features.

masm Tells the compiler to generate the assembler output file using a selected
dialect.

mbranches-within-32B-
boundaries, Qbranches-
within-32B-boundaries

Tells the compiler to align branches and fused branches on 32-byte
boundaries for better performance.

mcmodel Tells the compiler to use a specific memory model to generate code and
store data.

MD Tells the linker to search for unresolved references in a multithreaded,
dynamic-link run-time library.

MD, QMD Preprocess and compile, generating output file containing dependency
information ending with extension .d.

MF, QMF Tells the compiler to generate makefile dependency information in a file.

MG, QMG Tells the compiler to generate makefile dependency lines for each source
file.

mintrinsic-promote,
Qintrinsic-promote

Enables functions containing calls to intrinsics that require a specific CPU
feature to have their target architecture automatically promoted to allow
the required feature.

MM, QMM Tells the compiler to generate makefile dependency lines for each source
file.

MMD, QMMD Tells the compiler to generate an output file containing dependency
information.

momit-leaf-frame-pointer Determines whether the frame pointer is omitted or kept in leaf functions.

MQ Changes the default target rule for dependency generation.

mregparm Lets you control the number registers used to pass integer arguments.

MT Tells the linker to search for unresolved references in a multithreaded,
static run-time library.

MT, QMT Changes the default target rule for dependency generation.

mtune, tune Performs optimizations for specific processors but does not cause
extended instruction sets to be used (unlike -march).

nodefaultlibs Prevents the compiler from using standard libraries when linking.

no-intel-lib, Qno-intel-lib Disables linking to specified Intel® libraries, or to all Intel® libraries.

no-libgcc Prevents the linking of certain gcc-specific libraries.

nolib-inline Disables inline expansion of standard library or intrinsic functions.

nolibsycl Disables linking of the SYCL* runtime library.

Compiler Reference   

59



nologo Tells the compiler to not display compiler version information.

nostartfiles Prevents the compiler from using standard startup files when linking.

nostdinc++ Do not search for header files in the standard directories for C++, but
search the other standard directories.

nostdlib Prevents the compiler from using standard libraries and startup files when
linking.

O Specifies the code optimization for applications.

o Specifies the name for an output file.

Od Disables all optimizations.

Ofast Sets certain aggressive options to improve the speed of your application.

Os Enables optimizations that do not increase code size; it produces smaller
code size than O2.

Ot Enables all speed optimizations.

Ox Enables maximum optimizations.

P Tells the compiler to stop the compilation process and write the results to
a file.

pc, Qpc Enables control of floating-point significand precision.

pie Determines whether the compiler generates position-independent code
that will be linked into an executable.

pragma-optimization-level Specifies which interpretation of the optimization_level pragma should be
used if no prefix is specified.

pthread Tells the compiler to use pthreads library for multithreading support.

qactypes, Qactypes Tells the compiler to include the Algorithmic C (AC) data type folder for
header searches and link to the AC data types libraries for Field
Programmable Gate Array (FPGA) and CPU compilations.

qdaal, Qdaal Tells the compiler to link to certain libraries in the Intel® oneAPI Data
Analytics Library ( oneDAL ).

qipp, Qipp Tells the compiler to link to some or all of the Intel® Integrated
Performance Primitives (Intel® IPP) libraries.

Qlong-double Changes the default size of the long double data type.

qmkl, Qmkl Tells the compiler to link to certain libraries in the Intel® oneAPI Math
Kernel Library ( oneMKL ) . On Windows systems, you must specify this
option at compile time.

qopenmp, Qopenmp Enables recognition of OpenMP* features and tells the parallelizer to
generate multi-threaded code based on OpenMP* directives.

qopenmp-lib, Qopenmp-lib Lets you specify an OpenMP* run-time library to use for linking.

qopenmp-link Controls whether the compiler links to static or dynamic OpenMP* run-
time libraries.

qopenmp-simd, Qopenmp-
simd

Enables or disables OpenMP* SIMD compilation.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

60



qopenmp-stubs, Qopenmp-
stubs

Enables compilation of OpenMP* programs in sequential mode.

Qoption Passes options to a specified tool.

qopt-assume-no-loop-carried-
dep, Qopt-assume-no-loop-
carried-dep

Lets you set a level of performance tuning for loops.

qopt-dynamic-align, Qopt-
dynamic-align

Enables or disables dynamic data alignment optimizations.

qopt-for-throughput, Qopt-
for-throughput

Determines how the compiler optimizes for throughput depending on
whether the program is to run in single-job or multi-job mode.

qopt-multiple-gather-scatter-
by-shuffles, Qopt-multiple-
gather-scatter-by-shuffles

Enables or disables the optimization for multiple adjacent gather/scatter
type vector memory references.

qopt-report, Qopt-report Enables the generation of a YAML file that includes optimization
transformation information.

qopt-report-file, Qopt-report-
file

Specifies whether the output for the generated optimization report goes
to a file, stderr, or stdout.

qopt-streaming-stores, Qopt-
streaming-stores

Enables generation of streaming stores for optimization.

qtbb, Qtbb Tells the compiler to link to the Intel® oneAPI Threading Building Blocks
( oneTBB ) libraries.

regcall, Qregcall Tells the compiler that the __regcall calling convention should be used for
functions that do not directly specify a calling convention.

reuse-exe Tells the compiler to speed up Field Programmable Gate Array (FPGA)
target compile time by reusing a previously compiled FPGA hardware
image.

RTC Enables checking for certain run-time conditions.

S Causes the compiler to compile to an assembly file only and not link.

save-temps , Qsave-temps Tells the compiler to save intermediate files created during compilation.

shared Tells the compiler to produce a dynamic shared object instead of an
executable.

shared-intel Causes Intel-provided libraries to be linked in dynamically.

shared-libgcc Links the GNU libgcc library dynamically.

showIncludes Tells the compiler to display a list of the include files.

sox, Qsox Tells the compiler to save the compilation options in the executable file.

static Prevents linking with shared libraries.

static-intel Causes Intel-provided libraries to be linked in statically.

static-libgcc Links the GNU libgcc library statically.

static-libstdc++ Links the GNU libstdc++ library statically.

std, Qstd Tells the compiler to conform to a specific language standard.

strict-ansi Tells the compiler to implement strict ANSI conformance dialect.

Compiler Reference   

61



sysroot Specifies the root directory where headers and libraries are located.

T Tells the linker to read link commands from a file.

Tc Tells the compiler to process a file as a C source file.

TC Tells the compiler to process all source or unrecognized file types as C
source files.

Tp Tells the compiler to process a file as a C++ source file.

U Undefines any definition currently in effect for the specified macro .

u (Linux*) Tells the compiler the specified symbol is undefined.

undef Disables all predefined macros .

unroll , Qunroll Tells the compiler the maximum number of times to unroll loops.

use-intel-optimized-headers,
Quse-intel-optimized-headers

Determines whether the performance headers directory is added to the
include path search list.

use-msasm Enables the use of blocks and entire functions of assembly code within a
C or C++ file.

v Specifies that driver tool commands should be displayed and executed.

vd Enables or suppresses hidden vtordisp members in C++ objects.

vec, Qvec Enables or disables vectorization.

vec-threshold, Qvec-threshold Sets a threshold for the vectorization of loops.

version Tells the compiler to display GCC-style version information.

vmg Selects the general representation that the compiler uses for pointers to
members.

vmv Enables pointers to members of any inheritance type.

w Disables all warning messages.

w, W Specifies the level of diagnostic messages to be generated by the
compiler.

Wa Passes options to the assembler for processing.

Wabi Determines whether a warning is issued if generated code is not C++ ABI
compliant.

Wall Enables warning and error diagnostics.

watch Tells the compiler to display certain information to the console output
window.

Wcheck-unicode-security Determines whether the compiler performs source code checking for
Unicode vulnerabilities.

Wcomment Determines whether a warning is issued when /* appears in the middle of
a /* */ comment.

Wdeprecated Determines whether warnings are issued for deprecated C++ headers.

Weffc++, Qeffc++ Enables warnings based on certain C++ programming guidelines.

Werror, WX Changes all warnings to errors.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

62



Werror-all Causes all warnings and currently enabled remarks to be reported as
errors.

Wextra-tokens Determines whether warnings are issued about extra tokens at the end of
preprocessor directives.

Wformat Determines whether argument checking is enabled for calls to printf,
scanf, and so forth.

Wformat-security Determines whether the compiler issues a warning when the use of
format functions may cause security problems.

Wl Passes options to the linker for processing.

Wmain Determines whether a warning is issued if the return type of main is not
expected.

Wmissing-declarations Determines whether warnings are issued for global functions and
variables without prior declaration.

Wmissing-prototypes Determines whether warnings are issued for missing prototypes.

Wno-sycl-strict Disables warnings that enforce strict SYCL* language compatibility.

Wp Passes options to the preprocessor.

Wpointer-arith Determines whether warnings are issued for questionable pointer
arithmetic.

Wreorder Tells the compiler to issue a warning when the order of member
initializers does not match the order in which they must be executed.

Wreturn-type Determines whether warnings are issued when a function is declared
without a return type, when the definition of a function returning void
contains a return statement with an expression, or when the closing
brace of a function returning non-void is reached.

Wshadow Determines whether a warning is issued when a variable declaration hides
a previous declaration.

Wsign-compare Determines whether warnings are issued when a comparison between
signed and unsigned values could produce an incorrect result when the
signed value is converted to unsigned.

Wstrict-aliasing Determines whether warnings are issued for code that might violate the
optimizer's strict aliasing rules.

Wstrict-prototypes Determines whether warnings are issued for functions declared or defined
without specified argument types.

Wtrigraphs Determines whether warnings are issued if any trigraphs are encountered
that might change the meaning of the program.

Wuninitialized Determines whether a warning is issued if a variable is used before being
initialized.

Wunknown-pragmas Determines whether a warning is issued if an unknown #pragma directive
is used.

Wunused-function Determines whether a warning is issued if a declared function is not used.

Wunused-variable Determines whether a warning is issued if a local or non-constant static
variable is unused after being declared.

Compiler Reference   

63



Wwrite-strings Issues a diagnostic message if const char * is converted to (non-const)
char *.

X Removes standard directories from the include file search path.

x (type option) All source files found subsequent to -x type will be recognized as a
particular type.

x, Qx Tells the compiler which processor features it may target, including which
instruction sets and optimizations it may generate.

xHost, QxHost Tells the compiler to generate instructions for the highest instruction set
available on the compilation host processor.

Xlinker Passes a linker option directly to the linker.

Xopenmp-target Enables options to be passed to the specified tool in the device
compilation tool chain for the target.

Xs Passes options to the backend tool.

Xsycl-target Enables options to be passed to the specified tool in the device
compilation tool chain for the target.

Y- Tells the compiler to ignore all other precompiled header files.

Yc Tells the compiler to create a precompiled header file.

Yu Tells the compiler to use a precompiled header file.

Zc Lets you specify ANSI C standard conformance for certain language
features.

Zg Tells the compiler to generate function prototypes. This is a deprecated
option that may be removed in a future release.

Zi, Z7 , ZI Tells the compiler to generate full debugging information in either an
object (.obj) file or a project database (PDB) file.

Zl Causes library names to be omitted from the object file.

Zp Specifies alignment for structures on byte boundaries.

Zs Tells the compiler to check only for correct syntax.

General Rules for Compiler Options
This section describes general rules for compiler options and it contains information about how we refer to
compiler option names in descriptions.

General Rules for Compiler Options
Compiler options may be case sensitive, and may have different meanings depending on their case. For
example, option c prevents linking, but option C places comments in preprocessed source output.

Options specified on the command line apply to all files named on the command line.

Options can take arguments in the form of file names, strings, letters, or numbers. If a string includes
spaces, the string must be enclosed in quotation marks.

Compiler options can appear in any order.

Unless you specify certain options, the command line will both compile and link the files you specify.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

64



You can abbreviate some option names, entering as many characters as are needed to uniquely identify the
option.

Certain options accept one or more keyword arguments following the option name. For example, architecture
option x option accepts several keywords.

To specify multiple keywords, you typically specify the option multiple times.

To disable an option, specify the negative form of the option if one exists.

If there are enabling and disabling versions of an option on the command line, the last one on the command
line takes precedence.

Compiler options remain in effect for the whole compilation unless overridden by a compiler #pragma.

Linux

You cannot combine options with a single dash. For example, this form is incorrect: -Ec; this form is correct:
-E -c
Windows

You cannot combine options with a single slash. For example: This form is incorrect: /Ec; this form is
correct: /E /c
All compiler options must precede /link options, if any, on the command line.

Compiler options remain in effect for the whole compilation unless overridden by a compiler #pragma.

You can disable one or more optimization options by specifying option /Od last on the command line.

NOTE
The /Od option is part of a mutually-exclusive group of options that includes /Od, /O1, /O2, /O3,
and /Ox. The last of any of these options specified on the command line will override the previous
options from this group.

How We Refer to Compiler Option Names in Descriptions
Within documentation, compiler option names that are very different are spelled out in full.

However, many compiler option names are very similar except for initial characters. For these options, we
use the following shortcuts when referencing their names in descriptions:

• No initial – or /

This shortcut is used for option names that are the same for Linux and Windows except for the initial
character.

For example, Fa denotes:

• Linux: -Fa
• Windows: /Fa

• [Q]option-name

This shortcut is used for option names that only differ because the Windows form starts with a Q.

For example, [Q]ipo denotes:

• Linux: -ipo
• Windows: /Qipo

• [q or Q]option-name

Compiler Reference   

65



This shortcut is used for option names that only differ because the Linux form starts with a q and the
Windows form starts with a Q.

For example, [q or Q]opt-report denotes:

• Linux: -qopt-report
• Windows: /Qopt-report

What Appears in the Compiler Option Descriptions
This section contains details about what appears in the option descriptions.

Following sections include individual descriptions of all the current compiler options. The option descriptions
are arranged by functional category. Within each category, the option names are listed in alphabetical order.

Each option description contains the following information:

• The primary name for the option and a short description of the option.
• Architecture Restrictions: This section only appears if there is a known architecture restriction for the

option. Restrictions can appear for any of the following architectures:

• IA-32 architecture (does not apply to SYCL)
• Intel® 64 architecture

Certain operating systems are not available on all the above architectures. For the latest information,
check your Release Notes.

• Syntax: This section shows the syntax on Linux systems and the syntax on Windows systems. If the
option is not valid on a particular operating system, it will specify None.

• Arguments: This section shows any arguments (parameters) that are related to the option. If the option
has no arguments, it will specify None.

• Default: This section shows the default setting for the option.
• Description: This section shows the full description of the option. It may also include further information

on any applicable arguments.
• IDE Equivalent: This section shows information related to the Intel® Integrated Development Environment

(Intel® IDE) Property Pages on Linux and Windows systems. It shows on which Property Page the option
appears, and under what category it's listed. The Windows IDE is Microsoft Visual Studio .NET. If the
option has no IDE equivalent, it will specify None.

• Alternate Options (does not apply to SYCL): This section lists any options that are synonyms for the
described option. If there are no alternate option names, it will show None. Some alternate option names
are deprecated and may be removed in future releases. Many options have an older spelling where
underscores ("_") instead of hyphens ("-") connect the main option names. The older spelling is a valid
alternate option name.

Some option descriptions may also have the following:

• Example (or Examples): This section shows one or more examples that demonstrate the option.
• See Also: This section shows where you can get further information on the option or it shows related

options.

Optimization Options
This section contains descriptions for compiler options that pertain to optimization. They are listed in
alphabetical order.

fast
Maximizes speed across the entire program.

Syntax

Linux OS:

-fast

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

66



Windows OS:

/fast

Arguments

None

Default

OFF The optimizations that maximize speed are not enabled.

Description

This option maximizes speed across the entire program.

Linux

It sets the following options:

-ipo, -O3, -static, -fp-model fast=2
Windows

It sets the following options:

/O3, /Qipo, /Qprec-div-, /fp:fast=2

NOTE
Option fast sets some aggressive optimizations that may not be appropriate for all
applications. The resulting executable may not run on processor types different from the one
on which you compile. You should make sure that you understand the individual
optimization options that are enabled by option fast.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fp-model, fp  compiler option
xHost, QxHost
 compiler option

x, Qx

Compiler Reference   

67

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


 compiler option

fbuiltin, Oi
Enables or disables inline expansion of intrinsic
functions.

Syntax

Linux OS:

-fbuiltin[-name]
-fno-builtin[-name]
Windows OS:

/Oi[-]
/Qno-builtin-name

Arguments

name Is a list of one or more intrinsic functions. If there is more than one
intrinsic function, they must be separated by commas.

Default

ON Inline expansion of intrinsic functions is enabled.

Description

This option enables or disables inline expansion of one or more intrinsic functions.

If -fno-builtin-name or /Qno-builtin-name is specified, inline expansion is disabled for the named
functions. If name is not specified, -fno-builtin or /Oi- disables inline expansion for all intrinsic functions.

For a list of built-in functions affected by -fbuiltin, search for "built-in functions" in the appropriate gcc*
documentation.

For a list of built-in functions affected by /Oi, search for "/Oi" in the appropriate Microsoft* Visual C/C++*
documentation.

IDE Equivalent

Windows

Visual Studio: Optimization > Enable Intrinsic Functions (/Oi)

Linux

Eclipse: None

Alternate Options

None

foptimize-sibling-calls
Determines whether the compiler optimizes tail
recursive calls.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

68



Syntax

Linux OS:

-foptimize-sibling-calls
-fno-optimize-sibling-calls
Windows OS:

None

Arguments

None

Default

-foptimize-sibling-calls The compiler optimizes tail recursive calls.

Description

This option determines whether the compiler optimizes tail recursive calls. It enables conversion of tail
recursion into loops.

If you do not want to optimize tail recursive calls, specify -fno-optimize-sibling-calls.

Tail recursion is a special form of recursion that doesn't use stack space. In tail recursion, a recursive call is
converted to a GOTO statement that returns to the beginning of the function. In this case, the return value of
the recursive call is only used to be returned. It is not used in another expression. The recursive function is
converted into a loop, which prevents modification of the stack space used.

IDE Equivalent

None

Alternate Options

None

GF
Enables read-only string-pooling optimization.

Syntax

Linux OS:

None
Windows OS:

/GF

Arguments

None

Default

OFF Read/write string-pooling optimization is enabled.

Compiler Reference   

69



Description

This option enables read only string-pooling optimization.

IDE Equivalent

Windows

Visual Studio: Code Generation > Enable String Pooling

Linux

Eclipse: None

Alternate Options

None

nolib-inline
Disables inline expansion of standard library or
intrinsic functions.

Syntax

Linux OS:

-nolib-inline
Windows OS:

None

Arguments

None

Default

OFF The compiler inlines many standard library and intrinsic functions.

Description

This option disables inline expansion of standard library or intrinsic functions. It prevents the unexpected
results that can arise from inline expansion of these functions.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Optimization > Disable Intrinsic Inline Expansion

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

70



Alternate Options

None

O
Specifies the code optimization for applications.

Syntax

Linux OS:

-O[n]

Windows OS:

/O[n]

Arguments

n Is the optimization level. Possible values are 1, 2, or 3. On Linux*
systems, you can also specify 0.

Default

O2 Optimizes for code speed. This default may change depending on which other compiler options
are specified. For details, see below.

Description

This option specifies the code optimization for applications.

Option Description

O (Linux*) This is the same as specifying O2.

O0 (Linux) Disables all optimizations.

This option may set other options. This is determined by the compiler,
depending on which operating system and architecture you are using. The
options that are set may change from release to release.

O1 Enables optimizations for speed and disables some optimizations that
increase code size and affect speed.
To limit code size, this option:

• Enables global optimization; this includes data-flow analysis, code
motion, strength reduction and test replacement, split-lifetime
analysis, and instruction scheduling.

• Disables inlining of some intrinsics.

This option may set other options. This is determined by the compiler,
depending on which operating system and architecture you are using. The
options that are set may change from release to release.

The O1 option may improve performance for applications with very large
code size, many branches, and execution time not dominated by code
within loops.

O2 Enables optimizations for speed. This is the generally recommended
optimization level.

Compiler Reference   

71



Option Description

Vectorization is enabled at O2 and higher levels.

This content does not apply to SYCL.
On systems using IA-32 architecture: Some basic loop optimizations such
as Distribution, Predicate Opt, Interchange, multi-versioning, and scalar
replacements are performed.

This option also enables:

• Inlining of intrinsics
• Intra-file interprocedural optimization, which includes:

• inlining
• constant propagation
• forward substitution
• routine attribute propagation
• variable address-taken analysis
• dead static function elimination
• removal of unreferenced variables

• The following capabilities for performance gain:

• constant propagation
• copy propagation
• dead-code elimination
• global register allocation
• global instruction scheduling and control speculation
• loop unrolling
• optimized code selection
• partial redundancy elimination
• strength reduction/induction variable simplification
• variable renaming
• exception handling optimizations
• tail recursions
• peephole optimizations
• structure assignment lowering and optimizations
• dead store elimination

This option may set other options, especially options that optimize for
code speed. This is determined by the compiler, depending on which
operating system and architecture you are using. The options that are set
may change from release to release.

This content does not apply to SYCL.
On Linux systems, the -debug inline-debug-info option will be
enabled by default if you compile with optimizations (option -O2 or
higher) and debugging is enabled (option -g).

Many routines in the shared libraries are more highly optimized for Intel®
microprocessors than for non-Intel microprocessors.

O3 Performs O2 optimizations and enables more aggressive loop
transformations such as Fusion, Block-Unroll-and-Jam, and collapsing IF
statements.

This option may set other options. This is determined by the compiler,
depending on which operating system and architecture you are using. The
options that are set may change from release to release.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

72



Option Description

The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.

The O3 option is recommended for applications that have loops that
heavily use floating-point calculations and process large data sets.

Many routines in the shared libraries are more highly optimized for Intel®
microprocessors than for non-Intel microprocessors.

The last O option specified on the command line takes precedence over any others.

IDE Equivalent

Windows

Visual Studio: Optimization > Optimization

Linux

Eclipse: General > Optimization Level

Alternate Options

O0 Linux: None
Windows: /Od

See Also
Od  compiler option

Od
Disables all optimizations.

Syntax

Linux OS:

None
Windows OS:

/Od

Arguments

None

Default

OFF The compiler performs default optimizations.

Description

This option disables all optimizations. It can be used for selective optimizations, such as a combination of /Od
and /Ob1 (disables all optimizations, but enables inlining).

This content does not apply to SYCL. On IA-32 architecture, this option sets the /Oy- option.

Compiler Reference   

73



IDE Equivalent

Visual Studio

Visual Studio: Optimization > Optimization

Eclipse

Eclipse: None

Alternate Options

Linux: -O0
Windows: None

See Also
O  compiler option (see O0)

Ofast
Sets certain aggressive options to improve the speed
of your application.

Syntax

Linux OS:

-Ofast
Windows OS:

None

Arguments

None

Default

OFF The aggressive optimizations that improve speed are not enabled.

Description

This option improves the speed of your application.

This option is provided for compatibility with gcc.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

74



See Also
O  compiler option
fast  compiler option
fp-model, fp  compiler option

Os
Enables optimizations that do not increase code size;
it produces smaller code size than O2.

Syntax

Linux OS:

-Os
Windows OS:

/Os

Arguments

None

Default

OFF Optimizations are made for code speed. However, if O1 is specified, Os is the default.

Description

This option enables optimizations that do not increase code size; it produces smaller code size than O2. It
disables some optimizations that increase code size for a small speed benefit.

This option tells the compiler to favor transformations that reduce code size over transformations that
produce maximum performance.

IDE Equivalent

Visual Studio

Visual Studio: Optimization > Favor Size or Speed

Eclipse

Eclipse: None

Alternate Options

None

See Also
O  compiler option
Ot  compiler option

Ot
Enables all speed optimizations.

Compiler Reference   

75



Syntax

Linux OS:

None

Windows OS:

/Ot

Arguments

None

Default

/Ot Optimizations are made for code speed.

If Od is specified, all optimizations are disabled. If O1 is specified, Os is the default.

Description

This option enables all speed optimizations.

IDE Equivalent

Windows

Visual Studio: Optimization > Favor Size or Speed

Linux

Eclipse: None

Alternate Options

None

See Also
O  compiler option
Os  compiler option

Ox
Enables maximum optimizations.

Syntax

Linux OS:

None

Windows OS:

/Ox

Arguments

None

Default

OFF The compiler does not enable optimizations.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

76



Description

The compiler enables maximum optimizations by combining the following options:

• /Oi
• /Ot
• C++ only: /Oy

IDE Equivalent

Windows

Visual Studio: Optimization > Optimization

Linux

Eclipse: None

Alternate Options

None

Code Generation Options
This section contains descriptions for compiler options that pertain to code generation. They are listed in
alphabetical order.

arch
Tells the compiler which features it may target,
including which instruction sets it may generate.

Syntax

Linux OS:

None
Windows OS:

/arch:code

Arguments

code Indicates to the compiler a feature set that it may target, including which instruction sets it
may generate. Many of the following descriptions refer to Intel® Streaming SIMD Extensions
(Intel® SSE) and Supplemental Streaming SIMD Extensions (SSSE). Possible values are:

ALDERLAKE
AMBERLAKE
BROADWELL
CANNONLAKE
CASCADELAKE
COFFEELAKE
COOPERLAKE
GOLDMONT
GOLDMONT-PLUS
HASWELL
ICELAKE-CLIENT (or ICELAKE)
ICELAKE-SERVER

May generate instructions for processors that support the
specified Intel® processor or microarchitecture code name.

Keyword ICELAKE is deprecated and may be removed in a
future release.

Compiler Reference   

77



IVYBRIDGE
KABYLAKE
KNL
KNM
ROCKETLAKE
SANDYBRIDGE
SAPPHIRERAPIDS
SILVERMONT
SKYLAKE
SKYLAKE-AVX512
TIGERLAKE
TREMONT
WHISKEYLAKE
CORE-AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel®

AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions.

CORE-AVX-I May generate Float-16 conversion instructions and the
RDRND instruction, Intel® Advanced Vector Extensions
(Intel® AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions.

AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel®
AVX2), Intel® AVX, Intel® SSE4.2, SSE4.1, SSE3, SSE2,
SSE, and SSSE3 instructions.

AVX May generate Intel® Advanced Vector Extensions (Intel®
AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

SSE4.2 May generate Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE,
and SSSE3 instructions.

SSE4.1 May generate Intel® SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

SSSE3 May generate SSSE3 instructions and Intel® SSE3, SSE2,
and SSE instructions.

SSE3 May generate Intel® SSE3, SSE2, and SSE instructions.

SSE2 May generate Intel® SSE2 and SSE instructions. This
setting is only supported for C++ (icx).

SSE This option has been deprecated; it is now the same as
specifying IA32.

IA32 Generates x86/x87 generic code that is compatible with
IA-32 architecture. Disables any default extended
instruction settings, and any previously set extended
instruction settings. It also disables all feature-specific
optimizations and instructions.

This value is only available on IA-32 architecture.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

78



Default

varies If option arch is not specified, the default target architecture supports
Intel® SSE2 instructions.

Description

This option tells the compiler which features it may target, including which instruction sets it may generate.

Code generated with these options should execute on any compatible, non-Intel processor with support for
the corresponding instruction set.

Options /arch and /Qx are mutually exclusive. If both are specified, the compiler uses the last one specified
and generates a warning.

If you specify both the /Qax and /arch options, the compiler will not generate Intel-specific instructions.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Enable Enhanced Instruction Set

Eclipse

Eclipse: None

Xcode

Xcode: None

Alternate Options

None

See Also
x, Qx  compiler option
xHost, QxHost  compiler option
ax, Qax  compiler option
arch  compiler option
march  compiler option
m  compiler option
m32, m64  compiler option

ax, Qax
Tells the compiler to generate multiple, feature-
specific auto-dispatch code paths for Intel® processors
if there is a performance benefit.

Compiler Reference   

79



Syntax

Linux OS:

-axcode
Windows OS:

/Qaxcode

Arguments

code Indicates to the compiler a feature set that it may target, including which instruction sets it
may generate. The following descriptions refer to Intel® Streaming SIMD Extensions (Intel®
SSE) and Supplemental Streaming SIMD Extensions (SSSE). Possible values are:

ALDERLAKE
AMBERLAKE
BROADWELL
CANNONLAKE
CASCADELAKE
COFFEELAKE
COOPERLAKE
GOLDMONT
GOLDMONT-PLUS
HASWELL
ICELAKE-CLIENT (or ICELAKE)
ICELAKE-SERVER
IVYBRIDGE
KABYLAKE
KNL
KNM
ROCKETLAKE
SANDYBRIDGE
SAPPHIRERAPIDS
SILVERMONT
SKYLAKE
SKYLAKE-AVX512
TIGERLAKE
TREMONT
WHISKEYLAKE

May generate instructions for processors that support the
specified Intel® processor or microarchitecture code name.

Keywords KNL and SILVERMONT are only available on
Windows* and Linux* systems.

Keyword ICELAKE is deprecated and may be removed in a
future release.

COMMON-AVX512 May generate Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), as well as the
instructions enabled with CORE-AVX2.

CORE-AVX512 May generate Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), Intel® AVX-512
Doubleword and Quadword Instructions (DQI), Intel®
AVX-512 Byte and Word Instructions (BWI) and Intel®
AVX-512 Vector Length extensions, as well as the
instructions enabled with CORE-AVX2.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

80



CORE-AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel®
AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions for Intel® processors.

CORE-AVX-I May generate Float-16 conversion instructions and the
RDRND instruction, Intel® Advanced Vector Extensions
(Intel® AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions for Intel® processors.

AVX May generate Intel® Advanced Vector Extensions (Intel®
AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions for Intel® processors.

SSE4.2 May generate Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE,
and SSSE3 instructions for Intel processors.

SSE4.1 May generate Intel® SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions for Intel® processors.

SSSE3 May generate SSSE3 instructions and Intel® SSE3, SSE2,
and SSE instructions for Intel® processors. This replaces
value T, which is deprecated.

SSE3 May generate Intel® SSE3, SSE2, and SSE instructions for
Intel® processors.

SSE2 May generate Intel® SSE2 and SSE instructions for Intel®
processors.

You can specify more than one code value. When specifying more than one code value, each value must be
separated with a comma. See the Examples section below.

Default

OFF No auto-dispatch code is generated. Feature-specific code is generated and is controlled by the
setting of the following compiler options:

• Linux*: -m and -x
• Windows*: /arch and /Qx

Description

This option tells the compiler to generate multiple, feature-specific auto-dispatch code paths for Intel®
processors if there is a performance benefit. It also generates a baseline code path. The Intel feature-specific
auto-dispatch path is usually more optimized than the baseline path. Other options, such as O3, control how
much optimization is performed on the baseline path.

The baseline code path is determined by the architecture specified by options -m or -x (Linux*) or
options /arch or /Qx (Windows*). While there are defaults for the [Q]x option that depend on the operating
system being used, you can specify an architecture and optimization level for the baseline code that is higher
or lower than the default. The specified architecture becomes the effective minimum architecture for the
baseline code path.

If you specify both the [Q]ax and [Q]x options, the baseline code will only execute on Intel® processors
compatible with the setting specified for the [Q]x.

If you specify both the -ax and -m options (Linux) or the /Qax and /arch options (Windows), the baseline
code will execute on non-Intel® processors compatible with the setting specified for the -m or /arch option.

Compiler Reference   

81



A Non-Intel® baseline and an Intel® baseline have the same set of optimizations enabled, and the default for
both is SSE4.2 for x86-based architectures.

If you specify both the -ax and -march options (Linux), or the /Qax and /arch options (Windows), the
compiler will not generate Intel-specific instructions. This is because specifying -march disables -ax and
specifying /arch disables /Qax.

The [Q]ax option tells the compiler to find opportunities to generate separate versions of functions that take
advantage of features of the specified instruction features.

If the compiler finds such an opportunity, it first checks whether generating a feature-specific version of a
function is likely to result in a performance gain. If this is the case, the compiler generates both a feature-
specific version of a function and a baseline version of the function. At run time, one of the versions is
chosen to execute, depending on the Intel® processor in use. In this way, the program can benefit from
performance gains on more advanced Intel processors, while still working properly on older processors and
non-Intel processors. A non-Intel processor always executes the baseline code path.

You can use more than one of the feature values by combining them. For example, you can specify
-axSSE4.1,SSSE3 (Linux) or /QaxSSE4.1,SSSE3 (Windows). You cannot combine the old style, deprecated
options and the new options. For example, you cannot specify -axSSE4.1,T (Linux) or /QaxSSE4.1,T
(Windows).

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Add Processor-Optimized Code Path

Eclipse

Eclipse: Code Generation > Add Processor-Optimized Code Path

Xcode

Xcode: Code Generation > Add Processor-Optimized Code Path

Alternate Options

None

Examples
The following shows an example of how to specify this option:

The following shows an example of how to specify more than one code value:

Note that the comma-separated list must have no spaces between the names.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

82

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


See Also
x, Qx  compiler option
xHost, QxHost  compiler option
march  compiler option
arch  compiler option
m  compiler option

EH
Specifies the model of exception handling to be
performed.

Syntax

Linux OS:

None
Windows OS:

/EHtype
/EHtype-

Arguments

type Specifies the exception handling model. Possible values are:

a Specifies the asynchronous C++ exception
handling model.

s Specifies the synchronous C++ exception
handling model.

c Tells the compiler to assume that extern "C"
functions do not throw exceptions.

r Tells the compiler to always generate
runtime termination checks for all noexcept
functions. IT forces runtime termination
checks in all functions that have a noexcept
attribute.

If you specify c, you must also specify a or s.

Default

OFF Some exception handling is performed by default.

Description

This option specifies the model of exception handling to be performed.

If you specify the negative form of the option, it disables the exception handling performed by type or the
last type if there are two. For example, if you specify /EHsc-, it is interpreted as /EHs.

For more details about option /EH, see the Microsoft documentation.

Compiler Reference   

83



IDE Equivalent

Windows

Visual Studio: Code Generation > Enable C++ Exceptions

Linux

Eclipse: None

Alternate Options

/EHsc Linux: None

Windows: /GX

fasynchronous-unwind-tables
Determines whether unwind information is precise at
an instruction boundary or at a call boundary.

Syntax

Linux OS:

-fasynchronous-unwind-tables
-fno-asynchronous-unwind-tables
Windows OS:

None

Arguments

None

Default

Intel® 64 architecture:
-fasynchronous-unwind-tables

The unwind table generated is precise at an instruction boundary,
enabling accurate unwinding at any instruction.

C++: IA-32 architecture (Linux*
only):
-fno-asynchronous-unwind-tables

The unwind table generated is precise at call boundaries only.

Description

This option determines whether unwind information is precise at an instruction boundary or at a call
boundary. The compiler generates an unwind table in DWARF2 or DWARF3 format, depending on which
format is supported on your system.

If -fno-asynchronous-unwind-tables is specified, the unwind table is precise at call boundaries only. In
this case, the compiler will avoid creating unwind tables for routines such as the following:

• A C++ routine that does not declare objects with destructors and does not contain calls to routines that
might throw an exception.

• A C/C++ or Fortran routine compiled without -fexceptions.
• A C/C++ or Fortran routine compiled with -fexceptions that does not contain calls to routines that

might throw an exception.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

84



IDE Equivalent

None

Alternate Options

None

See Also
fexceptions  compiler option

fdata-sections, Gw
Places each data item in its own COMDAT section.

Syntax

Linux OS:

-fdata-sections
Windows OS:

/Gw

Arguments

None

Default

OFF The compiler does not separate functions into COMDATs.

Description

This option places each data item in its own COMDAT section.

When using this compiler option, you can add the linker option -Wl,--gc-sections (LInux)
or /link /OPT:REF (Windows), which will remove all unused code.

NOTE
When you put each data item in its own section, it enables the linker to reorder the sections
for other possible optimization.

Alternate Options

None

See Also
ffunction-sections, Gy  compiler option

fexceptions
Enables exception handling table generation.

Syntax

Linux OS:

-fexceptions

Compiler Reference   

85



-fno-exceptions
Windows OS:

None

Arguments

None

Default

-fexceptions Exception handling table generation is enabled. Default for C++.

-fno-exceptions Exception handling table generation is disabled. Default for C.

Description

This option enables exception handling table generation. The -fno-exceptions option disables exception
handling table generation, resulting in smaller code. When this option is used, any use of exception handling
constructs (such as try blocks and throw statements) will produce an error. Exception specifications are
parsed but ignored. It also undefines the preprocessor symbol __EXCEPTIONS.

IDE Equivalent

None

Alternate Options

None

ffunction-sections, Gy
Places each function in its own COMDAT section.

Syntax

Linux OS:

-ffunction-sections
Windows OS:

/Gy

Arguments

None

Default

OFF The compiler does not separate functions into COMDATs.

Description

This option places each function in its own COMDAT section.

When using this compiler option, you can add the linker option -Wl,--gc-sections (LInux)
or /link /OPT:REF (Windows), which will remove all unused code.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

86



NOTE
When you put each function in its own section, it enables the linker to reorder the sections
for other possible optimization.

IDE Equivalent

Windows

Visual Studio: Code Generation > Enable Function-Level Linking

Linux

Eclipse: None

Alternate Options

None

See Also
fdata-sections, Gw  compiler option

fomit-frame-pointer, Oy
Determines whether EBP is used as a general-purpose
register in optimizations.

Architecture Restrictions

Option /Oy[-] is only available on IA-32 architecture. IA-32 architecture is only supported for C++.

Syntax

Linux OS:

-fomit-frame-pointer
-fno-omit-frame-pointer
Windows OS:

/Oy (C++ only)
/Oy- (C++ only)

Arguments

None

Default

-fomit-frame-pointer
C++: or /Oy

EBP is used as a general-purpose register in optimizations.

However, the default can change depending on the following:

Linux

If option -O0 or -g is specified, the default is -fno-omit-frame-pointer.

Windows

C++: If option /Od is specified, the default is /Oy- .

Compiler Reference   

87



Description

These options determine whether EBP is used as a general-purpose register in optimizations. Option
-fomit-frame-pointer and option /Oy allows this use. Option -fno-omit-frame-pointer and
option /Oy- disallows it.

Some debuggers expect EBP to be used as a stack frame pointer, and cannot produce a stack backtrace
unless this is so. The -fno-omit-frame-pointer and the /Oy- option directs the compiler to generate code
that maintains and uses EBP as a stack frame pointer for all functions so that a debugger can still produce a
stack backtrace without doing the following:

• For -fno-omit-frame-pointer: turning off optimizations with -O0
• This content does not apply to SYCL.

C++: For /Oy-: turning off /O1, /O2, or /O3 optimizations

The -fno-omit-frame-pointer option is set when you specify option -O0 or the -g option. The
-fomit-frame-pointer option is set when you specify option -O1, -O2, or -O3.

For C++, the /Oy option is set when you specify the /O1, /O2, or /O3 option. Option /Oy- is set when you
specify the /Od option.

Using the -fno-omit-frame-pointer or /Oy- option reduces the number of available general-purpose
registers by 1, and can result in slightly less efficient code.

NOTE
Linux
There is currently an issue with GCC 3.2 exception handling. Therefore, the compiler ignores this
option when GCC 3.2 is installed for C++ and exception handling is turned on (the default).

IDE Equivalent

Windows

Visual Studio: Optimization > Omit Frame Pointers

Linux

Eclipse: Optimization > Provide Frame Pointer

Alternate Options

Linux: -fp (this is a deprecated option)

Windows: None

See Also
momit-leaf-frame-pointer  compiler option

Gd
Makes __cdecl the default calling convention.

Architecture Restrictions

Not available on IA-32 architecture. IA-32 architecture is only supported for C++.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

88



Syntax

Linux OS:

None
Windows OS:

/Gd

Arguments

None

Default

ON The default calling convention is __cdecl.

Description

This option makes __cdecl the default calling convention.

IDE Equivalent

Windows

Visual Studio: Advanced > Calling Convention

Linux

Eclipse: None

Alternate Options

None

See Also
C C++ Calling Conventions

Gr
Makes __fastcall the default calling convention.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

None
Windows OS:

/Gr

Arguments

None

Compiler Reference   

89



Default

OFF The default calling convention is __cdecl

Description

This option makes __fastcall the default calling convention.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Advanced > Calling Convention

Linux

Eclipse: None

Alternate Options

None

See Also
C C++ Calling Conventions

GR
Enables or disables C++ Run Time Type Information
(RTTI).

Syntax

Linux OS:

None
Windows OS:

/GR
/GR-

Arguments

None

Default

/GR C++ Run Time Type Information (RTTI) is enabled.

Description

This option enables or disables C++ Run Time Type Information (RTTI).

To disable C++ Run Time Type Information (RTTI), specify option /GR-.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

90



IDE Equivalent

Windows

Visual Studio: Language > Enable Run-Time Type Information

Linux

Eclipse: None

Alternate Options

None

guard
Enables the control flow protection mechanism.

Syntax

Linux OS:

None
Windows OS:

/guard:keyword

Arguments

keyword Specifies the the control flow protection mechanism. Possible values are:

cf[-] Tells the compiler to analyze control flow of valid targets for indirect calls and to insert
code to verify the targets at runtime.

To explicitly disable this option, specify /guard:cf-.

Default

OFF The control flow protection mechanism is disabled.

Description

This option enables the control flow protection mechanism. It tells the compiler to analyze control flow of
valid targets for indirect calls and inserts a call to a checking routine before each indirect call to verify the
target of the given indirect call.

The /guard:cf option must be passed to both the compiler and linker.

Code compiled using /guard:cf can be linked to libraries and object files that are not compiled using the
option.

This option has been added for Microsoft compatibility. It uses the Microsoft implementation.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Compiler Reference   

91



IDE Equivalent

Windows

Visual Studio: Code Generation > Control Flow Guard

Linux

Eclipse: None

Alternate Options

None

Gv
Tells the compiler to use the vector calling convention
(__vectorcall) when passing vector type arguments.

Syntax

Linux OS:

None
Windows OS:

/Gv

Arguments

None

Default

OFF The default calling convention is __cdecl.

Description

This option tells the compiler to use the vector calling convention (__vectorcall) when passing vector type
arguments.

It causes each function in the module to compile as __vectorcall unless the function is declared with a
conflicting attribute, or the name of the function is main.

This option has been added for Microsoft compatibility.

For more details about the __vectorcall calling convention, see the Microsoft documentation.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Advanced > Calling Convention

Linux

Eclipse: None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

92



Alternate Options

None

See Also
C C++ Calling Conventions

Gz
Makes __stdcall the default calling convention.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

None
Windows OS:

/Gz

Arguments

None

Default

OFF The default calling convention is __cdecl.

Description

This option makes __stdcall the default calling convention.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Advanced > Calling Convention

Linux

Eclipse: None

Alternate Options

None

See Also
C C++ Calling Conventions

Compiler Reference   

93



m
Tells the compiler which features it may target,
including which instruction set architecture (ISA) it
may generate.

Syntax

Linux OS:

-mcode
Windows OS:

None

Arguments

code Indicates to the compiler a feature set that it may target, including which instruction sets it
may generate. Many of the following descriptions refer to Intel® Streaming SIMD Extensions
(Intel® SSE) and Supplemental Streaming SIMD Extensions (SSSE). Possible values are:

avx May generate Intel® Advanced Vector Extensions (Intel®
AVX), SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

sse4.2 May generate Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE,
and SSSE3 instructions.

sse4.1 May generate Intel® SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

ssse3 May generate SSSE3 instructions and Intel® SSE3, SSE2,
and SSE instructions.

sse3 May generate Intel® SSE3, SSE2, and SSE instructions.

sse2 May generate Intel® SSE2 and SSE instructions.

sse This setting has been deprecated; it is the same as
specifying ia32.

ia32 Generates x86/x87 generic code that is compatible with
IA-32 architecture. Disables any default extended
instruction settings, and any previously set extended
instruction settings. It also disables all feature-specific
optimizations and instructions.

This value is only available on Linux* systems using IA-32
architecture.

This compiler option also supports many of the -m option settings available with gcc. For
more information on gcc settings for -m, see the gcc documentation.

Default

varies If option arch is not specified, the default target architecture supports
Intel® SSE2 instructions.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

94



Description

This option tells the compiler which features it may target, including which instruction sets it may generate.

Code generated with these options should execute on any compatible, non-Intel processor with support for
the corresponding instruction set.

For compatibility with gcc, the compiler allows the following options but they have no effect. You will get a
warning error, but the instructions associated with the name will not be generated. You should use the
suggested replacement options.

gcc Compatibility Option Suggested Replacement Option

-mfma -march=core-avx2

-mbmi, -mavx2, -mlzcnt -march=core-avx2

-mmovbe -march=atom -minstruction=movbe

-mcrc32, -maes, -mpclmul, -mpopcnt -march=corei7

-mvzeroupper -march=corei7-avx

-mfsgsbase, -mrdrnd, -mf16c -march=core-avx-i

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
x, Qx  compiler option
xHost, QxHost  compiler option
ax, Qax  compiler option
arch  compiler option
march  compiler option
m32, m64  compiler option

m32, m64, Qm32, Qm64
Tells the compiler to generate code for a specific
architecture. Option m32 (and Qm32) is deprecated
and will be removed in a future release.

Syntax

Linux OS:

-m32 (C++ only)
-m64

Compiler Reference   

95



Windows OS:

/Qm32 (C++ only)
/Qm64 (C++ only)
Windows OS:

None (SYCL only)

Arguments

None

Default

OFF The compiler's behavior depends on the host system.

Description

These options tell the compiler to generate code for a specific architecture.

Option Description

C++: -m32 or /Qm32 Tells the compiler to generate code for IA-32
architecture.

-m64
C++: or /Qm64

Tells the compiler to generate code for Intel® 64
architecture.

On Linux* systems, these options are provided for compatibility with gcc.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

m80387
Specifies whether the compiler can use x87
instructions.

Syntax

Linux OS:

-m80387
-mno-80387
Windows OS:

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

96



Arguments

None

Default

-m80387 The compiler may use x87 instructions.

Description

This option specifies whether the compiler can use x87 instructions.

If you specify option -mno-80387, it prevents the compiler from using x87 instructions. If the compiler is
forced to generate x87 instructions, it issues an error message.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

-m[no-]x87

march
Tells the compiler to generate code for processors that
support certain features.

Syntax

Linux OS:

-march=processor
Windows OS:

None

Arguments

processor Tells the compiler the code it can generate. Possible values are:

alderlake
broadwell
cannonlake
cascadelake
cooperlake
goldmont
goldmont-plus
haswell
icelake-client
icelake-server
ivybridge
knl

May generate instructions for processors that support
the specified Intel® processor or microarchitecture code
name.

Keywords knl and silvermont are only available on
Linux* systems.

Compiler Reference   

97



knm
rocketlake
sandybridge
sapphirerapids
silvermont
skylake
skylake-avx512
tigerlake
tremont
core-avx2 Generates code for processors that support Intel®

Advanced Vector Extensions 2 (Intel® AVX2), Intel®
AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

core-avx-i Generates code for processors that support Float-16
conversion instructions and the RDRND instruction,
Intel® Advanced Vector Extensions (Intel® AVX), Intel®
SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

corei7-avx Generates code for processors that support Intel®
Advanced Vector Extensions (Intel® AVX), Intel®
SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

corei7 Generates code for processors that support Intel® SSE4
Efficient Accelerated String and Text Processing
instructions. May also generate code for Intel® SSE4
Vectorizing Compiler and Media Accelerator, Intel®
SSE3, SSE2, SSE, and SSSE3 instructions.

atom Generates code for processors that support MOVBE
instructions. May also generate code for SSSE3
instructions and Intel® SSE3, SSE2, and SSE
instructions.

core2 Generates code for the Intel® Core™2 processor family.

pentium4m Generates for Intel® Pentium® 4 processors with MMX
technology.

pentium-m
pentium4
pentium3
pentium

Generates code for Intel® Pentium® processors. Value
pentium3 is only available on Linux* systems.

Default

pentium4 If no architecture option is specified, value pentium4 is used by the compiler to
generate code.

Description

This option tells the compiler to generate code for processors that support certain features.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

98



Options -x and -march are mutually exclusive. If both are specified, the compiler uses the last one specified
and generates a warning.

For compatibility, a number of historical processor values are also supported, but the generated code will not
differ from the default.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

-march=pentium3 Linux: -xSSE
Windows: None

-march=pentium4
-march=pentium-m

Linux: -xSSE2
Windows: None

-march=core2 Linux: -xSSSE3
Windows: None

See Also
xHost, QxHost  compiler option
x, Qx  compiler option
ax, Qax  compiler option
arch  compiler option
m  compiler option

masm
Tells the compiler to generate the assembler output
file using a selected dialect.

Syntax

Linux OS:

-masm=dialect
Windows OS:

None

Compiler Reference   

99

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Arguments

dialect Is the dialect to use for the assembler output file. Possible values are:

att Tells the compiler to generate the assembler
output file using AT&T* syntax.

intel Tells the compiler to generate the assembler
output file using Intel syntax.

Default

-masm=att The compiler generates the assembler output file using AT&T* syntax.

Description

This option tells the compiler to generate the assembler output file using a selected dialect.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

mbranches-within-32B-boundaries, Qbranches-within-32B-boundaries
Tells the compiler to align branches and fused
branches on 32-byte boundaries for better
performance.

Syntax

Linux OS:

-mbranches-within-32B-boundaries
-mno-branches-within-32B-boundaries
Windows OS:

/Qbranches-within-32B-boundaries
/Qbranches-within-32B-boundaries-

Arguments

None

Default

-mno-branches-within-32B-boundaries
or /Qbranches-within-32B-boundaries-

Branches and fused branches are not aligned on 32-
byte boundaries.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

100



Description

This option tells the compiler to align branches and fused branches on 32-byte boundaries for better
performance.

NOTE
When you use this option, it may affect binary utilities usage experience, such as
debugability.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

mintrinsic-promote, Qintrinsic-promote
Enables functions containing calls to intrinsics that
require a specific CPU feature to have their target
architecture automatically promoted to allow the
required feature.

Syntax

Linux OS:

-mintrinsic-promote
Windows OS:

/Qintrinsic-promote

Arguments

None

Default

OFF If this option is not specified and you call an intrinsic that requires a CPU feature not provided by
the specified (or default) target processor, an error will be reported.

Description

This option enables functions containing calls to intrinsics that require a specific CPU feature to have their
target architecture automatically promoted to allow the required feature.

All code within the function will be compiled with that target architecture, and the resulting code for such
functions will not execute correctly on processors that do not support the required feature.

You are responsible for guarding the execution path at run time so that such functions are not dynamically
reachable when the program is run on processors that do not support the required feature.

Compiler Reference   

101



NOTE
We recommend that you use __attribute__((target(<required target>))) to mark functions
that are intended to be executed on specific target architectures instead of using this option.
This attribute will provide significantly better compile time error checking.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

momit-leaf-frame-pointer
Determines whether the frame pointer is omitted or
kept in leaf functions.

Syntax

Linux OS:

-momit-leaf-frame-pointer
-mno-omit-leaf-frame-pointer

Windows OS:

None

Arguments

None

Default

Varies If you specify option -fomit-frame-pointer (or it is set by default), the default is
-momit-leaf-frame-pointer. If you specify option -fno-omit-frame-pointer, the default is
-mno-omit-leaf-frame-pointer.

Description

This option determines whether the frame pointer is omitted or kept in leaf functions. It is related to option
-f[no-]omit-frame-pointer and the setting for that option has an effect on this option.

Consider the following option combinations:

Option Combination Result

-fomit-frame-pointer -momit-leaf-frame-pointer
or

-fomit-frame-pointer -mno-omit-leaf-frame-pointer

Both combinations are the same as
specifying -fomit-frame-pointer.
Frame pointers are omitted for all
routines.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

102



Option Combination Result

-fno-omit-frame-pointer -momit-leaf-frame-pointer In this case, the frame pointer is
omitted for leaf routines, but other
routines will keep the frame pointer.

This is the intended effect of option
-momit-leaf-frame-pointer.

-fno-omit-frame-pointer -mno-omit-leaf-frame-pointer In this case,
-mno-omit-leaf-frame-pointer is
ignored since
-fno-omit-frame-pointer retains
frame pointers in all routines .

This combination is the same as
specifying
-fno-omit-frame-pointer.

This option is provided for compatibility with gcc.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Optimization > Omit frame pointer for leaf routines

Alternate Options

None

See Also
fomit-frame-pointer, Oy  compiler option

mregparm
Lets you control the number registers used to pass
integer arguments.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

-mregparm=n
Windows OS:

None

Compiler Reference   

103



Arguments

n Specifies the number of registers to use when passing integer
arguments. You can specify at most 3 registers. If you specify a
nonzero value for n, you must build all modules, including startup
modules, and all libraries, including system libraries, with the same
value.

Default

OFF The compiler does not use registers to pass arguments.

Description

Control the number registers used to pass integer arguments. This option is provided for compatibility with
gcc.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

mtune, tune
Performs optimizations for specific processors but
does not cause extended instruction sets to be used
(unlike -march).

Syntax

Linux OS:

-mtune=processor
Windows OS:

/tune:processor

Arguments

processor Is the processor for which the compiler should perform optimizations. Possible values
are:

generic Optimizes code for the compiler's default behavior.

alderlake
amberlake
broadwell
cannonlake
cascadelake

Optimizes code for processors that support the
specified Intel® processor or microarchitecture code
name.

Keywords knl and silvermont are only available on
Windows and Linux systems.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

104



coffeelake
cooperlake
goldmont
goldmont-plus
haswell
icelake-client (or
icelake)
icelake-server
ivybridge
kabylake
knl
knm
rocketlake
sandybridge
sapphirerapids
silvermont
skylake
skylake-avx512
tigerlake
tremont
whiskeylake

Keyword icelake is deprecated and may be removed
in a future release.

core-avx2 Optimizes code for processors that support Intel®
Advanced Vector Extensions 2 (Intel® AVX2), Intel®
AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

core-avx-i Optimizes code for processors that support Float-16
conversion instructions and the RDRND instruction,
Intel® Advanced Vector Extensions (Intel® AVX), Intel®
SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

corei7-avx Optimizes code for processors that support Intel®
Advanced Vector Extensions (Intel® AVX), Intel®
SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions.

corei7 Optimizes code for processors that support Intel® SSE4
Efficient Accelerated String and Text Processing
instructions. May also generate code for Intel® SSE4
Vectorizing Compiler and Media Accelerator, Intel®
SSE3, SSE2, SSE, and SSSE3 instructions.

atom Optimizes code for processors that support MOVBE
instructions. May also generate code for SSSE3
instructions and Intel® SSE3, SSE2, and SSE
instructions.

core2 Optimizes for the Intel® Core™2 processor family,
including support for MMX™, Intel® SSE, SSE2, SSE3,
and SSSE3 instruction sets.

Compiler Reference   

105



pentium-mmx Optimizes for Intel® Pentium® Processor with MMX
technology.

pentiumpro Optimizes for Intel® Pentium® Pro, Intel Pentium II, and
Intel Pentium III processors.

pentium4m Optimizes for Intel® Pentium® 4 processors with MMX
technology.

pentium-m
pentium4
pentium3
pentium

Optimizes code for Intel® Pentium® processors. Value
pentium3 is only available on Linux systems.

Default

generic Code is generated for the compiler's default behavior.

Description

This option performs optimizations for specific processors but does not cause extended instruction sets to be
used (unlike -march).

The resulting executable is backwards compatible and generated code is optimized for specific processors.
For example, code generated with -mtune=core2 or /tune:core2 runs correctly on 4th Generation Intel®
Core™ processors, but it might not run as fast as if it had been generated using -mtune=haswell
or /tune:haswell. Code generated with -mtune=haswell (/tune:haswell) or -mtune=core-avx2
(/tune:core-avx2) will also run correctly on Intel® Core™2 processors, but it might not run as fast as if it
had been generated using -mtune=core2 or /tune:core2. This is in contrast to code generated with
-march=core-avx2, which will not run correctly on older processors such as Intel® Core™2 processors.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Windows

Visual Studio: Code Generation [Intel C++] >Intel Processor Microarchitecture-Specific
Optimization

Linux

Eclipse: Code Generation > Intel Processor Microarchitecture-Specific Optimization

OS X

Xcode: Code Generation > Intel Processor Microarchitecture-Specific Optimization

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

106

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Alternate Options

-mtune Linux: -mcpu (this is a deprecated option)

Windows: None

See Also
march  compiler option

regcall, Qregcall
Tells the compiler that the __regcall calling convention
should be used for functions that do not directly
specify a calling convention.

Syntax

Linux OS:

-regcall
Windows OS:

/Qregcall

Arguments

None

Default

OFF The __regcall calling convention will only be used if a function explicitly specifies it.

Description

This option tells the compiler that the __regcall calling convention should be used for functions that do not
directly specify a calling convention. This calling convention ensures that as many values as possible are
passed or returned in registers.

It ensures that __regcall is the default calling convention for functions in the compilation, unless another
calling convention is specified in a declaration.

This calling convention is ignored if it is specified for a function with variable arguments.

Note that all __regcall functions must have prototypes.

IDE Equivalent

None

Alternate Options

None

See Also
C/C++ Calling Conventions

Compiler Reference   

107



x, Qx
Tells the compiler which processor features it may
target, including which instruction sets and
optimizations it may generate.

Syntax

Linux OS:

-xcode
Windows OS:

/Qxcode

Arguments

code Specifies a feature set that the compiler can target, including which instruction sets and
optimizations it may generate. Many of the following descriptions refer to Intel® Streaming
SIMD Extensions (Intel® SSE) and Supplemental Streaming SIMD Extensions (Intel® SSSE).
Possible values are:

ALDERLAKE
AMBERLAKE
BROADWELL
CANNONLAKE
CASCADELAKE
COFFEELAKE
COOPERLAKE
GOLDMONT
GOLDMONT-PLUS
HASWELL
ICELAKE-CLIENT (or ICELAKE)
ICELAKE-SERVER
IVYBRIDGE
KABYLAKE
KNL
KNM
ROCKETLAKE
SANDYBRIDGE
SAPPHIRERAPIDS
SILVERMONT
SKYLAKE
SKYLAKE-AVX512
TIGERLAKE
TREMONT
WHISKEYLAKE

May generate instructions for processors that support the
specified Intel® processor or microarchitecture code name.
Optimizes for the specified Intel® processor or
microarchitecture code name.

Keywords KNL and SILVERMONT are only available on
Windows and Linux systems.

Keyword ICELAKE is deprecated and may be removed in a
future release.

COMMON-AVX512 May generate Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), as well as the
instructions enabled with CORE-AVX2. Optimizes for Intel®
processors that support Intel® AVX-512 instructions.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

108



CORE-AVX512 May generate Intel® Advanced Vector Extensions 512
(Intel® AVX-512) Foundation instructions, Intel® AVX-512
Conflict Detection Instructions (CDI), Intel® AVX-512
Doubleword and Quadword Instructions (DQI), Intel®
AVX-512 Byte and Word Instructions (BWI) and Intel®
AVX-512 Vector Length Extensions (VLE), as well as the
instructions enabled with CORE-AVX2. Optimizes for Intel®
processors that support Intel® AVX-512 instructions.

CORE-AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel®
AVX2), Intel® AVX, SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions for Intel® processors. Optimizes for
Intel® processors that support Intel® AVX2 instructions.

CORE-AVX-I May generate Float-16 conversion instructions and the
RDRND instruction, Intel® Advanced Vector Extensions
(Intel® AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and
SSSE3 instructions for Intel® processors. Optimizes for
Intel® processors that support Float-16 conversion
instructions and the RDRND instruction.

AVX May generate Intel® Advanced Vector Extensions (Intel®
AVX), Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE, and SSSE3
instructions for Intel® processors. Optimizes for Intel
processors that support Intel® AVX instructions.

SSE4.2 May generate Intel® SSE4 Efficient Accelerated String and
Text Processing instructions, Intel® SSE4 Vectorizing
Compiler and Media Accelerator, and Intel® SSE3, SSE2,
SSE, and SSSE3 instructions for Intel® processors.
Optimizes for Intel processors that support Intel® SSE4.2
instructions.

SSE4.1 May generate Intel® SSE4 Vectorizing Compiler and Media
Accelerator instructions for Intel® processors. May generate
Intel® SSE4.1, SSE3, SSE2, SSE, and SSSE3 instructions
for Intel processors that support Intel® SSE4.1 instructions.

ATOM_SSE4.2 May generate MOVBE instructions for Intel® processors,
depending on the setting of option -minstruction (Linux)
or /Qinstruction (Windows). May also generate Intel®
SSE4.2, SSE3, SSE2, and SSE instructions for Intel
processors. Optimizes for Intel Atom® processors that
support Intel® SSE4.2 and MOVBE instructions.

This keyword is only available on Windows and Linux
systems.

ATOM_SSSE3 May generate MOVBE instructions for Intel® processors,
depending on the setting of option -minstruction (Linux)
or /Qinstruction (Windows). May also generate SSSE3,
Intel® SSE3, SSE2, and SSE instructions for Intel
processors. Optimizes for Intel Atom® processors that
support Intel® SSE3 and MOVBE instructions.

Compiler Reference   

109



This keyword is only available on Windows and Linux
systems.

SSSE3 May generate SSSE3 and Intel® SSE3, SSE2, and SSE
instructions for Intel® processors. Optimizes for Intel
processors that support SSSE3 instructions.

SSE3 May generate Intel® SSE3, SSE2, and SSE instructions for
Intel® processors. Optimizes for Intel processors that
support Intel® SSE3 instructions.

SSE2 May generate Intel® SSE2 and SSE instructions for Intel®
processors. Optimizes for Intel processors that support
Intel® SSE2 instructions. This setting is only supported for
C++ (icx).

Default

varies On Windows systems, if neither /Qx nor /arch is specified, the default
target architecture supports Intel® SSE2 instructions.

On Linux systems, if neither -x nor -m is specified, the default target
architecture supports Intel® SSE2 instructions.

Description

This option tells the compiler which processor features it may target, including which instruction sets and
optimizations it may generate. It also enables optimizations in addition to Intel feature-specific optimizations.

The specialized code generated by this option may only run on a subset of Intel® processors.

The resulting executables created from these option code values can only be run on Intel® processors that
support the indicated instruction set.

The binaries produced by these code values will run on Intel® processors that support the specified features.

Do not use code values to create binaries that will execute on a processor that is not compatible with the
targeted processor. The resulting program may fail with an illegal instruction exception or display other
unexpected behavior.

Compiling the function main() with any of the code values produces binaries that display a fatal runtime error
if they are executed on unsupported processors, including all non-Intel processors.

Compiler options m and arch produce binaries that should run on processors not made by Intel that
implement the same capabilities as the corresponding Intel® processors.

The -x and /Qx options enable additional optimizations not enabled with options -m or /arch.

Linux

Options -x and -m are mutually exclusive. If both are specified, the compiler uses the last one specified and
generates a warning.

Windows

Options /Qx and /arch are mutually exclusive. If both are specified, the compiler uses the last one specified
and generates a warning.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

110



NOTE
All settings except SSE2 do a CPU check. However, if you specify option -O0 (Linux) or
option /Od (Windows), no CPU check is performed.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Intel Processor-Specific Optimization

Eclipse

Eclipse: Code Generation > Intel Processor-Specific Optimization

Xcode

Xcode: Code Generation > Intel Processor-Specific Optimization

Alternate Options

None

See Also
xHost, QxHost  compiler option
ax, Qax  compiler option
arch  compiler option
march  compiler option
m  compiler option

xHost, QxHost
Tells the compiler to generate instructions for the
highest instruction set available on the compilation
host processor.

Syntax

Linux OS:

-xHost
Windows OS:

/QxHost

Compiler Reference   

111

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Arguments

None

Default

varies On Windows systems, if neither /Qx nor /arch is specified, the default
target architecture supports Intel® SSE2 instructions.

On Linux systems, if neither -x nor -m is specified, the default target
architecture supports Intel® SSE2 instructions.

Description

This option tells the compiler to generate instructions for the highest instruction set available on the
compilation host processor.

The instructions generated by this compiler option differ depending on the compilation host processor.

The following table describes the effects of specifying the [Q]xHost option and it tells whether the resulting
executable will run on processors different from the host processor.

Descriptions in the table refer to Intel® Advanced Vector Extensions 2 (Intel® AVX2), Intel® Advanced Vector
Extensions (Intel® AVX), Intel® Streaming SIMD Extensions (Intel® SSE), and Supplemental Streaming SIMD
Extensions (SSSE).

Instruction Set
of Host
Processor

Effects When the -xHost or /QxHost Compiler Option is Specified

Intel® AVX2 When compiling on Intel® processors:

Corresponds to option [Q]xCORE-AVX2. The generated executable will not run on
non-Intel processors and it will not run on Intel® processors that do not support
Intel® AVX2 instructions.

When compiling on non-Intel processors:

Corresponds to option -march=core-avx2 (Linux*) or /arch:CORE-AVX2
(Windows*). The generated executable will run on Intel® processors and non-Intel
processors that support at least Intel® AVX2 instructions.. You may see a run-time
error if the run-time processor does not support Intel® AVX2 instructions.

Intel® AVX When compiling on Intel® processors:

Corresponds to option [Q]xAVX. The generated executable will not run on non-Intel
processors and it will not run on Intel® processors that do not support Intel® AVX
instructions.

When compiling on non-Intel processors:

Corresponds to option -mavx (Linux) or /arch:AVX (Windows). The generated
executable will run on Intel® processors and non-Intel processors that support at
least Intel® AVX instructions. You may see a run-time error if the run-time processor
does not support Intel® AVX instructions.

Intel® SSE4.2 When compiling on Intel® processors:

Corresponds to option [Q]xSSE4.2. The generated executable will not run on non-
Intel processors and it will not run on Intel® processors that do not support Intel®
SSE4.2 instructions.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

112



Instruction Set
of Host
Processor

Effects When the -xHost or /QxHost Compiler Option is Specified

When compiling on non-Intel processors:

Corresponds to option -msse4.2 (Linux) or /arch:SSE4.2 (Windows). The
generated executable will run on Intel® processors and non-Intel processors that
support at least Intel® SSE4.2 instructions. You may see a run-time error if the run-
time processor does not support Intel® SSE4.2 instructions.

Intel® SSE4.1 When compiling on Intel® processors:

Corresponds to option [Q]xSSE4.1. The generated executable will not run on non-
Intel processors and it will not run on Intel® processors that do not support Intel®
SSE4.1 instructions.

When compiling on non-Intel processors:

Corresponds to option -msse4.1 (Linux) or /arch:SSE4.1 (Windows). The
generated executable will run on Intel® processors and non-Intel processors that
support at least Intel® SSE4.1 instructions. You may see a run-time error if the run-
time processor does not support Intel® SSE4.1 instructions.

SSSE3 When compiling on Intel® processors:

Corresponds to option [Q]xSSSE3. The generated executable will not run on non-
Intel processors and it will not run on Intel® processors that do not support SSSE3
instructions.

When compiling on non-Intel processors:

Corresponds to option -mssse3 (Linux) or /arch:SSSE3 (Windows). The generated
executable will run on Intel® processors and non-Intel processors that support at
least SSSE3 instructions. You may see a run-time error if the run-time processor
does not support SSSE3 instructions.

Intel® SSE3 When compiling on Intel® processors:

Corresponds to option [Q]xSSE3. The generated executable will not run on non-Intel
processors and it will not run on Intel® processors that do not support Intel® SSE3
instructions.

When compiling on non-Intel processors:

Corresponds to option -msse3 (Linux) or /arch:SSE3 (Windows). The generated
executable will run on Intel® processors and non-Intel processors that support at
least Intel® SSE3 instructions. You may see a warning run-time error if the run-time
processor does not support Intel® SSE3 instructions.

Intel® SSE2 When compiling on Intel® processors or non-Intel processors:

Corresponds to option -msse2 (Linux) or /arch:SSE2 (Windows). The generated
executable will run on Intel® processors and non-Intel processors that support at
least Intel® SSE2 instructions. You may see a run-time error if the run-time
processor does not support Intel® SSE2 instructions.

For more information on other settings for option [Q]x, see that option description.

Compiler Reference   

113



NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Intel Processor-Specific Optimization

Eclipse

Eclipse: Code Generation > Intel Processor-Specific Optimization

Alternate Options

None

See Also
x, Qx  compiler option
ax, Qax  compiler option
m  compiler option
arch  compiler option

Interprocedural Optimization Options
This section contains descriptions for compiler options that pertain to interprocedural optimization.

ipo, Qipo
Enables interprocedural optimization between files.

Syntax

Linux OS:

-ipo[n]
-no-ipo
Windows OS:

/Qipo[n]
/Qipo-

Arguments

n Is an optional integer that specifies the number of object files the
compiler should create. The integer must be greater than or equal to
0.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

114

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Default

-no-ipo or /Qipo- Multifile interprocedural optimization is not enabled.

Description

This option enables interprocedural optimization between files. This is also called multifile interprocedural
optimization (multifile IPO) or Whole Program Optimization (WPO).

When you specify this option, the compiler performs inline function expansion for calls to functions defined in
separate files.

You cannot specify the names for the files that are created.

If n is 0, the compiler decides whether to create one or more object files based on an estimate of the size of
the application. It generates one object file for small applications, and two or more object files for large
applications.

If n is greater than 0, the compiler generates n object files, unless n exceeds the number of source files (m),
in which case the compiler generates only m object files.

If you do not specify n, the default is 0.

NOTE
When you specify option [Q]ipo with option [q or Q]opt-report, IPO information is
generated in the compiler optimization report at link time. After linking, you will see a report
named ipo_out.optrpt in the folder where you linked all of the object files.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Optimization > Interprocedural Optimization

Linux

Eclipse: Optimization > Enable Whole Program Optimization

Alternate Options

None

Advanced Optimization Options
This section contains descriptions for compiler options that pertain to advanced optimization. They are listed
in alphabetical order.

ffreestanding, Qfreestanding
Ensures that compilation takes place in a freestanding
environment.

Compiler Reference   

115



Syntax

Linux OS:

-ffreestanding
Windows OS:

/Qfreestanding

Arguments

None

Default

OFF Standard libraries are used during compilation.

Description

This option ensures that compilation takes place in a freestanding environment. The compiler assumes that
the standard library may not exist and program startup may not necessarily be at main. This environment
meets the definition of a freestanding environment as described in the C and C++ standard.

An example of an application requiring such an environment is an OS kernel.

NOTE
When you specify this option, the compiler will not assume the presence of compiler-specific
libraries. It will only generate calls that appear in the source code.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

fjump-tables
Determines whether jump tables are generated for
switch statements.

Syntax

Linux OS:

-fjump-tables
-fno-jump-tables
Windows OS:

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

116



Arguments

None

Default

-fjump-tables The compiler may use jump tables for switch statements.

Description

This option determines whether jump tables are generated for switch statements.

Option -fno-jump-tables prevents the compiler from generating jump tables for switch statements. This
action is performed unconditionally and independent of any generated code performance consideration.

Option -fno-jump-tables also prevents the compiler from creating switch statements internally as a result
of optimizations.

Use -fno-jump-tables with -fpic when compiling objects that will be loaded in a way where the jump
table relocation cannot be resolved.

IDE Equivalent

None

Alternate Options

None

See Also
fpic  compiler option

fvec-peel-loops, Qvec-peel-loops
Enables peel loop vectorization.

Syntax

Linux OS:

-fvec-peel-loops
-fno-vec-peel-loops
Windows OS:

/Qvec-peel-loops
/Qvec-peel-loops-

Arguments

None

Default

-fno-vec-peel-loops
or /Qvec-peel-loops-

No peel loop vectorization occurs.

Description

This option enables vectorization of peeling loops created during loop vectorization. It causes the compiler to
perform additional steps to vectorize a peel loop that was created to improve alignment of memory
references in the main vectorized loop.

Compiler Reference   

117



The peel loop can be vectorized only when the masked mode of vectorization is enabled by specifying option
-fvec-with-mask or /Qvec-with-mask.

The vectorization of a peel loop cannot be enforced because the compiler uses the cost model to determine
whether it should be done.

IDE Equivalent

None

Alternate Options

None

See Also
fvec-with-mask, Qvec-with-mask  compiler option
fvec-remainder-loops, Qvec-remainder-loops  compiler option

fvec-remainder-loops, Qvec-remainder-loops
Enables remainder loop vectorization.

Syntax

Linux OS:

-fvec-remainder-loops
-fno-vec-remainder-loops
Windows OS:

/Qvec-remainder-loops
/Qvec-remainder-loops-

Arguments

None

Default

-fno-vec-remainder-loops
or /Qvec-remainder-loops-

No remainder loop vectorization occurs.

Description

This option enables vectorization of remainder loops created during loop vectorization. It causes the compiler
to perform additional steps to vectorize the remainder loop that was created for the vectorized main loop.

The compiler uses the cost model to determine vector factor and mode of vectorization for remainder loops.

The vectorization of remainder can be enforced using #pragma vector vecremainder on the loop.

IDE Equivalent

None

Alternate Options

None

See Also
fvec-vec-peel-loops, Qvec-peel-loops  compiler option

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

118



fvec-with-mask, Qvec-with-mask  compiler option
pragma vector

fvec-with-mask, Qvec-with-mask
Enables vectorization for short trip-count loops with
masking.

Syntax

Linux OS:

-fvec-with-mask
-fno-vec-with-mask
Windows OS:

/Qvec-with-mask
/Qvec-with-mask-

Arguments

None

Default

-fno-vec-with-mask
or /Qvec-with-mask-

No vectorization for short trip-count loops with masking occurs.

Description

This option enables a special mode of vectorization, which is applicable for loops with small number of
iterations known at compile time. The peeling and remainder loops created during vectorization also fit into
this category.

In this mode, the compiler uses a vector factor that is the lowest power-of-two integer greater than the
known (maximum) number of loop iterations. Usually, such vectorized loops have one iteration with most of
operations masked.

IDE Equivalent

None

Alternate Options

None

See Also
fvec-vec-peel-loops, Qvec-peel-loops  compiler option
fvec-remainder-loops, Qvec-remainder-loops  compiler option

ipp-link, Qipp-link
Controls whether the compiler links to static or
dynamic threaded Intel® Integrated Performance
Primitives (Intel® IPP) run-time libraries.

Compiler Reference   

119



Syntax

Linux OS:

-ipp-link[=lib]
Windows OS:

/Qipp-link[:lib]

Arguments

lib Specifies the Intel® IPP library to use. Possible values are:

static Tells the compiler to link to the set of static
run-time libraries.

dynamic Tells the compiler to link to the set of
dynamic threaded run-time libraries.

Default

dynamic The compiler links to the Intel® IPP set of dynamic run-time libraries.
However, if Linux* option -static is specified, the compiler links to the set
of static run-time libraries.

Description

This option controls whether the compiler links to static or dynamic threaded Intel® Integrated Performance
Primitives (Intel® IPP) run-time libraries.

To use this option, you must also specify the [Q]ipp option.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
ipp, Qipp  compiler option

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

120

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


qactypes, Qactypes
Tells the compiler to include the Algorithmic C (AC)
data type folder for header searches and link to the
AC data types libraries for Field Programmable Gate
Array (FPGA) and CPU compilations.

Syntax

Linux OS:

-qactypes
Windows OS:

/Qactypes

Arguments

None

Default

OFF The compiler does not search the Algorithmic C (AC) data type folders for headers and doesn’t
link to AC data type libraries for FPGA and CPU compilations. As a result, AC data types cannot be
used in the source program.

Description

This option tells the compiler to include the Algorithmic C (AC) data type folder when searching for headers,
and to link to the AC data types libraries for Field Programmable Gate Array (FPGA) and CPU compilations.

AC data types provide support for arbitrary precision integers, fixed precision integers and arbitrary precision
floating-point data types. They are built on top of the _ExtInt extended-integer type class.

When you specify option [q or Q]actypes, dynamic linking is the default. You cannot link to the AC data
type libraries statically.

Linux

The driver must add the library names explicitly to the link command. You must use option -qactypes to
perform the link to pull in the dependent libraries.

Windows

This option adds directives to the compiled code, which the linker then reads without further input from the
driver. You do not need to specify a separate link command.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Compiler Reference   

121



qdaal, Qdaal
Tells the compiler to link to certain libraries in the
Intel® oneAPI Data Analytics Library (oneDAL).

Syntax

Linux OS:

-qdaal[=lib]
Windows OS:

/Qdaal[:lib]

Arguments

lib Indicates which oneDAL library files should be linked. Possible values
are:

parallel Tells the compiler to link using the threaded
oneDAL libraries. This is the default if the
option is specified with no lib.

sequential Tells the compiler to link using the non-
threaded oneDAL libraries.

Default

OFF The compiler does not link to the oneDAL.

Description

This option tells the compiler to link to certain libraries in the Intel® oneAPI Data Analytics Library (oneDAL).

On Linux* systems, the associated oneDAL headers are included when you specify this option.

NOTE
On Windows* systems, this option adds directives to the compiled code, which the linker
then reads without further input from the driver. You do not need to specify a separate link
command.

On Linux* systems, the driver must add the library names explicitly to the link command. You must
use option -qdaal to perform the link to pull in the dependent libraries.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

122

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Eclipse

Eclipse: Performance Library Build Components -> Use Intel® oneAPI Data Analytics Library

Alternate Options

Linux: -daal (this is a deprecated option)

See Also
Using Intel® Performance Libraries

qipp, Qipp
Tells the compiler to link to some or all of the Intel®
Integrated Performance Primitives (Intel® IPP)
libraries.

Syntax

Linux OS:

-qipp[=lib]
Windows OS:

/Qipp[:lib]

Arguments

lib Indicates the Intel® IPP libraries that the compiler should link to.
Possible values are:

common Tells the compiler to link using the main
libraries set. This is the default if the option
is specified with no lib.

crypto Tells the compiler to link using the Intel®
Integrated Performance Primitives
Cryptography (Intel® IPP Cryptography)
libraries.

nonpic (Linux* only) Tells the compiler to link using the version of
the libraries that do not have position-
independent code.

nonpic_crypto (Linux
only)

Tells the compiler to link using the Intel® IPP
Cryptography libraries. It uses the version of
the libraries that do not have position-
independent code.

Default

OFF The compiler does not link to the Intel® IPP libraries.

Description

The option tells the compiler to link to some or all of the Intel® IPP libraries and include the Intel® IPP
headers.

The [Q]ipp-link option controls whether the compiler links to static, dynamic threaded, or static threaded
Intel® IPP runtime libraries.

Compiler Reference   

123



NOTE
On Windows* systems, this option adds directives to the compiled code, which the linker
then reads without further input from the driver. You do not need to specify a separate link
command.

On Linux* systems, the driver must add the library names explicitly to the link command. You must
use option qipp to perform the link to pull in the dependent libraries.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: Performance Library Build Components > Use Intel(R) Integrated Performance Primitives
Libraries

Alternate Options

Linux: -qipp (this is a deprecated option)

See Also
ipp-link, Qipp-link  compiler option

qmkl, Qmkl
Tells the compiler to link to certain libraries in the
Intel® oneAPI Math Kernel Library (oneMKL). On
Windows systems, you must specify this option at
compile time.

Syntax

Linux OS:

-qmkl[=lib]
Windows OS:

/Qmkl[:lib]

Arguments

lib Indicates which oneMKL library files should be linked. Possible values are:

parallel Tells the compiler to link using the threaded libraries in
oneMKL. This is the default if the option is specified with no
lib.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

124

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


sequential Tells the compiler to link using the sequential libraries in
oneMKL.

cluster Tells the compiler to link using the cluster-specific libraries
and the sequential libraries in oneMKL.

Default

OFF The compiler does not link to the oneMKL library.

Description

This option tells the compiler to link to certain libraries in the Intel® oneAPI Math Kernel Library (oneMKL).

On Linux* systems, dynamic linking is the default when you specify -qmkl.

On C++ systems, to link with oneMKL statically, you must specify:

-qmkl -static-intel
On Windows* systems, static linking is the default when you specify /Qmkl. To link with oneMKL dynamically,
you must specify:

/Qmkl /MD 
For more information about using oneMKL libraries, see the article titled: Intel® oneAPI Math Kernel Library
Link Line Advisor.

NOTE
On Windows* systems, this option adds directives to the compiled code, which the linker
then reads without further input from the driver. You do not need to specify a separate link
command.

On Linux* systems, the driver must add the library names explicitly to the link command. You must
use option -qmkl to perform the link to pull in the dependent libraries.

NOTE
If you specify option [q or Q]mkl, or -qmkl=parallel or /Qmkl:parallel, and you also
specify option [Q]tbb, the compiler links to the standard threaded version of oneMKL.

However, if you specify [q or Q]mkl, or -qmkl=parallel or /Qmkl:parallel, and you also specify
option [Q]tbb and option [q or Q]openmp, the compiler links to the OpenMP* threaded version of
oneMKL.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: Performance Library Build Components > Use Intel® oneAPI Math Kernel Library

Alternate Options

None

Compiler Reference   

125

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-advisor.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-advisor.html


See Also
static-intel  compiler option
MD  compiler option

qopt-assume-no-loop-carried-dep, Qopt-assume-no-loop-carried-dep
Lets you set a level of performance tuning for loops.

Syntax

Linux OS:

-qopt-assume-no-loop-carried-dep[=n]
Windows OS:

/Qopt-assume-no-loop-carried-dep[=n]

Arguments

n Is the action for loop-carried dependencies. Possible values are:

0 The compiler does not assume there are no
loop carried dependencies. This is the default
if this option is not specified.

1 Tells the compiler to assume there are no
loop-carried dependencies for innermost
loops. This is the default if the option is used
but n is not specified.

2 Tells the compiler to assume there are no
loop-carried dependencies for all loop levels.

Default

[q or Q]qopt-assume-no-loop-carried-dep=0 The compiler does not assume there are no loop
carried dependencies.

Description

This option lets you set a level of performance tuning for loops.

It is useful for C/C++ applications and benchmarks where pointers and arguments could be aliased. This is
because when you specify level 1 or level 2, more loops will be vectorized or benefit from loop
transformations.

This option is applied to all loops in the file. It does not apply to code outside loops.

IDE Equivalent

None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

126



Examples
The following loop will not be vectorized because of data dependency. Specifying
[q or Q]opt-assume-no-loop-carried-dep=1 tells the compiler to assume no data dependence will
occur in this loop and it allows this loop to be vectorized:

  void   sub   (float *A,  float *B,  int* M ) {
   for (int i =0; i< 10000 ; i++) {
      A[i]  += B[M[i]] + 1;
     }
   }

In the following example, this matrix multiply kernel will not be optimized because of dependency in all loop
nests. Specifying [q or Q]opt-assume-no-loop-carried-dep=2 will result in loop transformations such
as blocking, unroll and jam, and vectorization:

  void matmul(double *a, double *b,    double *c) {
   int i, j, k;
   int n = 1024;
   for (i = 0; i < 1024; i++) {
      for (j = 0; j < 1024; j++) {
         for (k = 0; k < 1024; k++) {
           c[i * n + j] += a[i * n + k] * b[k * n + j];
         }
        }
      }
   }

qopt-dynamic-align, Qopt-dynamic-align
Enables or disables dynamic data alignment
optimizations.

Syntax

Linux OS:

-qopt-dynamic-align
-qno-opt-dynamic-align
Windows OS:

/Qopt-dynamic-align
/Qopt-dynamic-align-

Arguments

None

Default

-qno-opt-dynamic-align
or /Qopt-dynamic-align-

The compiler does not generate code dynamically
dependent on alignment.

Description

This option enables or disables dynamic data alignment optimizations.

Compiler Reference   

127



If you specify -qno-opt-dynamic-align or /Qopt-dynamic-align-, the compiler generates no code
dynamically dependent on alignment. It will not do any optimizations based on data location and results will
depend on the data values themselves.

When you specify [q or Q]qopt-dynamic-align, the compiler may implement conditional optimizations
based on dynamic alignment of the input data. These dynamic alignment optimizations may result in
different bitwise results for aligned and unaligned data with the same values.

Dynamic alignment optimizations can improve the performance of some vectorized code, especially for long
trip count loops, but there is an associated cost of increased code size and compile time. Disabling such
optimizations can improve the performance of some other vectorized code. It may also improve bitwise
reproducibility of results, factoring out data location from possible sources of discrepancy.

IDE Equivalent

None

Alternate Options

None

qopt-for-throughput, Qopt-for-throughput
Determines how the compiler optimizes for throughput
depending on whether the program is to run in single-
job or multi-job mode.

Syntax

Linux OS:

-qopt-for-throughput[=value]
Windows OS:

/Qopt-for-throughput[:value]

Arguments

value Is one of the values "multi-job" or "single-job". If no value is specified,
the default is "multi-job".

Default

OFF If this option is not specified, the compiler will not optimize for throughput performance.

Description

This option determines whether throughput performance optimization occurs for a program that is run as a
single job or one that is run in a multiple job environment.

The memory optimizations for a single job versus multiple jobs can be tuned in different ways by the
compiler. For example, the cost model for loop tiling and prefetching are different for a single job versus
multiple jobs. When a single job is running, more memory is available and the tunings will be different.

IDE Equivalent

None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

128



qopt-multiple-gather-scatter-by-shuffles, Qopt-multiple-gather-scatter-by-shuffles
Enables or disables the optimization for multiple
adjacent gather/scatter type vector memory
references.

Syntax

Linux OS:

-qopt-multiple-gather-scatter-by-shuffles
-qno-opt-multiple-gather-scatter-by-shuffles
Windows OS:

/Qopt-multiple-gather-scatter-by-shuffles
/Qopt-multiple-gather-scatter-by-shuffles-

Arguments

None

Default

varies When this option is not specified, the compiler uses default heuristics for
optimization.

Description

This option controls the optimization for multiple adjacent gather/scatter type vector memory references.
This optimization hint is useful for performance tuning. It tries to generate more optimal software sequences
using shuffles.

If you specify this option, the compiler will apply the optimization heuristics. If you specify
-qno-opt-multiple-gather-scatter-by-shuffles
or /Qopt-multiple-gather-scatter-by-shuffles-, the compiler will not apply the optimization.

NOTE
Optimization is affected by optimization compiler options, such as [Q]x, -march (Linux*),
and /arch (Windows*).

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

Compiler Reference   

129

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


See Also
x, Qx  compiler option
march  compiler option
arch  compiler option

qopt-streaming-stores, Qopt-streaming-stores
Enables generation of streaming stores for
optimization.

Syntax

Linux OS:

-qopt-streaming-stores=keyword
-qno-opt-streaming-stores
Windows OS:

/Qopt-streaming-stores:keyword
/Qopt-streaming-stores-

Arguments

keyword Specifies whether streaming stores are generated. Possible values are:

always Enables generation of streaming stores for
optimization. The compiler optimizes under
the assumption that the application is
memory bound.

When this option setting is specified, it is
your responsibility to also insert any memory
barriers (fences) as required to ensure
correct memory ordering within a thread or
across threads. See the Examples section for
one way to do this.

never Disables generation of streaming stores for
optimization. Normal stores are performed.

This setting has the same effect as
specifying -qno-opt-streaming-stores
or /Qopt-streaming-stores-.

auto Lets the compiler decide which instructions
to use.

Default

-qopt-streaming-stores=auto
or /Qopt-streaming-stores:auto

The compiler decides whether to use streaming stores
or normal stores.

Description

This option enables generation of streaming stores for optimization. This method stores data with
instructions that use a non-temporal buffer, which minimizes memory hierarchy pollution.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

130



This option may be useful for applications that can benefit from streaming stores.

IDE Equivalent

None

Alternate Options

None

Example
The following example shows one way to insert fences when specifying -qopt-streaming-stores=always
or /Qopt-streaming-stores:always. It inserts a _mm_sfence() intrinsic call just after the loops (such as
the initialization loop) where the compiler may insert streaming store instructions.

void simple1(double * restrict a, double * restrict b, double * restrict c, double *d, int n)
{
    int i, j;

#pragma omp parallel for
      for (j=0; j<n; j++) {
        a[j] = 1.0;
        b[j] = 2.0;
        c[j] = 0.0;
        }

      _mm_sfence(); // OR _mm_mfence();

#pragma omp parallel for
    for (i=0; i<n; i++)
        a[i] = a[i] + c[i]*b[i];
}

See Also
x, Qx  compiler option

qtbb, Qtbb
Tells the compiler to link to the Intel® oneAPI
Threading Building Blocks (oneTBB) libraries.

Syntax

Linux OS:

-qtbb
Windows OS:

/Qtbb

Arguments

None

Default

OFF The compiler does not link to the oneTBB libraries.

Compiler Reference   

131



Description

This option tells the compiler to link to the Intel® oneAPI Threading Building Blocks (oneTBB) libraries and
include the oneTBB headers.

NOTE
On Windows* systems, this option adds directives to the compiled code, which the linker
then reads without further input from the driver. You do not need to specify a separate link
command.

On Linux* systems, the driver must add the library names explicitly to the link command. You must
use option -qtbb to perform the link to pull in the dependent libraries.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: Performance Library Build Components > Use Intel® oneAPI Threading Building Blocks

Alternate Options

Linux: -tbb (this is a deprecated option)

unroll, Qunroll
Tells the compiler the maximum number of times to
unroll loops.

Syntax

Linux OS:

-unroll[=n]
Windows OS:

/Qunroll[:n] (C++ only)

Arguments

n Is the maximum number of times a loop can be unrolled. To disable loop enrolling, specify 0.

Default

-unroll
or /Qunroll (C++ only)

The compiler uses default heuristics when unrolling loops.

Description

This option tells the compiler the maximum number of times to unroll loops.

If you do not specify n, the optimizer determines how many times loops can be unrolled.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

132



IDE Equivalent

Windows

Visual Studio: Optimization > Loop Unrolling

Linux

Eclipse: Optimization > Loop Unroll Count

Alternate Options

Linux: -funroll-loops
Windows: None

use-intel-optimized-headers, Quse-intel-optimized-headers
Determines whether the performance headers
directory is added to the include path search list.

Syntax

Linux OS:

-use-intel-optimized-headers
Windows OS:

/Quse-intel-optimized-headers

Arguments

None

Default

-no-use-intel-optimized-headers
or /Quse-intel-optimized-headers-

The performance headers directory is not added to
the include path search list.

Description

This option determines whether the performance headers directory is added to the include path search list.

The performance headers directory is added if you specify [Q]use-intel-optimized-headers. Appropriate
libraries are also linked in, as needed, for proper functionality.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Windows

Visual Studio: Optimization > Use Intel Optimized Headers

Linux

Eclipse: Preprocessor > Use Intel Optimized Headers

Compiler Reference   

133

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Alternate Options

None

See Also
Intel's valarray Implementation

vec, Qvec
Enables or disables vectorization.

Syntax

Linux OS:

-vec
-no-vec
Windows OS:

/Qvec
/Qvec-

Arguments

None

Default

-vec
or /Qvec

Vectorization is enabled if option O2 or higher is in effect.

Description

This option enables or disables vectorization.

To disable vectorization, specify -no-vec (Linux*) or /Qvec- (Windows*).

NOTE
Using this option enables vectorization at default optimization levels for both Intel®
microprocessors and non-Intel microprocessors. Vectorization may call library routines that
can result in additional performance gain on Intel microprocessors than on non-Intel
microprocessors.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

134



vec-threshold, Qvec-threshold
Sets a threshold for the vectorization of loops.

Syntax

Linux OS:

-vec-threshold[n]
Windows OS:

/Qvec-threshold[[:]n]

Arguments

n Is an integer whose value is the threshold for the vectorization of
loops. Possible values are 0 through 100.

If n is 0, loops get vectorized always, regardless of computation work
volume.

If n is 100, loops get vectorized when performance gains are predicted
based on the compiler analysis data. Loops get vectorized only if
profitable vector-level parallel execution is almost certain.

The intermediate 1 to 99 values represent the percentage probability
for profitable speed-up. For example, n=50 directs the compiler to
vectorize only if there is a 50% probability of the code speeding up if
executed in vector form.

Default

-vec-threshold100
or /Qvec-threshold100

Loops get vectorized only if profitable vector-level parallel execution is
almost certain. This is also the default if you do not specify n.

Description

This option sets a threshold for the vectorization of loops based on the probability of profitable execution of
the vectorized loop in parallel.

This option is useful for loops whose computation work volume cannot be determined at compile-time. The
threshold is usually relevant when the loop trip count is unknown at compile-time.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads versus the
amount of work available to be shared amongst the threads.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Optimization > Threshold For Vectorization

Compiler Reference   

135



Linux

Eclipse: Optimization > Enable Maximum Vector-level Parallelism

OS X

Xcode: Optimization > Enable Maximum Vector-level Parallelism

Alternate Options

None

Optimization Report Options
This section contains descriptions for compiler options that pertain to optimization reports.

qopt-report, Qopt-report
Enables the generation of a YAML file that includes
optimization transformation information.

Syntax

Linux OS:

-qopt-report[=arg]

Windows OS:

/Qopt-report[=arg]

Arguments

arg Determines the level of detail in the report. Possible values are:

0 Disables generation of an optimization report. This is the default when
the option is not specified.

1 or min Tells the compiler to create a report with minimum details.

2 or med Tells the compiler to create a report with medium details. This is the
default if you do not specify arg.

3 or max Tells the compiler to create a report with maximum details.

Levels 1, 2, and 3 (min, med, and max) include all the information of the previous level, as
well as potentially some additional information.

Default

OFF No optimization report is generated.

Description

This option enables the generation of a YAML file that includes optimization transformation information.

The YAML-formatted file provides the optimization information for the source file being compiled. For
example:

icx -fiopenmp -qopt-report foo.c
This command will generate a file called foo.opt.yaml containing the optimization report messages.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

136



Use opt-viewer.py (from llvm/tools/opt-viewer) to create html files from the YAML file. For example:

opt-viewer.py foo.opt.yaml 
You can use any web-browser to open the html file to see the opt-report messages displayed inline with the
original. For example:

Firefox html/foo.c.html source code
For SYCL compilations, you can also use this option to detail the variables passed to the OpenCL kernel in the
optimization report. For example:

icpx -fsycl -qopt-report foo.cpp
The above command will generate a YAML-formatted optimization report that contains optimization remarks
for the SYCL pass. These remarks will list the OpenCL kernel arguments generated by the compiler for the
user-defined SYCL kernels in foo.cpp. The remarks will also provide additional information like name, type,
and size for the OpenCL kernel arguments.

You can then use opt-viewer.py to create html files from the YAML file, and use any web-browser to open the
html file to see the opt-report remarks

Note that the YAML file is used to drive the community llvm-opt-report tool.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
qopt-report-file, Qopt-report-file  compiler option

qopt-report-file, Qopt-report-file
Specifies whether the output for the generated
optimization report goes to a file, stderr, or stdout.

Syntax

Linux OS:

-qopt-report-file=keyword

Windows OS:

/Qopt-report-file:keyword

Arguments

keyword Specifies where the output for the report goes. You can specify one of the following:

filename Specifies the name of the file where the generated report should go.

stderr Indicates that the generated report should go to stderr.

Compiler Reference   

137



stdout Indicates that the generated report should go to stdout.

This setting can also be specified as -qopt-report-stdout (Linux)
or /Qopt-report-stdout (Windows).

Default

OFF No optimization report is generated.

Description

This option specifies whether the output for the generated optimization report goes to a file, stderr, or stdout.

If you use this option, you do not have to specify option [q or Q]opt-report.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: Diagnostics > Optimization Diagnostic File

Diagnostics > Emit Optimization Diagnostic to File

Eclipse

Eclipse: Compilation Diagnostics > Emit Optimization Diagnostics to File

Compilation Diagnostics > Optimization Diagnostics File

Alternate Options

None

See Also
qopt-report, Qopt-report  compiler option

Offload Compilation, OpenMP*, and Parallel Processing
Options
This section contains descriptions for compiler options that pertain to offload compilation, OpenMP*, or
parallel processing. They are listed in alphabetical order.

device-math-lib
Enables or disables certain device libraries. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS:

-device-math-lib=library

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

138



-no-device-math-lib=library
Windows OS:

/device-math-lib:library
/no-device-math-lib:library

Arguments

library Possible values are:

fp32 Links the fp32 device math library.

fp64 Links the fp64 device math library.

To link more than one library, include a comma between the library names.

For example, if you want to link both the fp32 and fp64 device libraries, specify: fp32,
fp64

Default

fp32, fp64 Both the fp32 and fp64 device libraries are linked.

Description

This option enables or disables certain device libraries.

This is a deprecated option that may be removed in a future release. There is no replacement option.

IDE Equivalent

None

Alternate Options

None

See Also
fopenmp-device-lib  compiler option

fintelfpga
Lets you perform ahead-of-time (AOT) compilation for
the Field Programmable Gate Array (FPGA).

Syntax

Linux OS:

-fintelfpga
Windows OS:

-fintelfpga

Arguments

None

Compiler Reference   

139



Default

OFF The ahead-of-time (AOT) compilation is not performed.

Description

This option lets you perform ahead-of-time (AOT) compilation for the FPGA.

It is functionally equivalent to specifying the following, which is compiled with dependency and debug
information enabled:

-fsycl-targets=spir64-unknown-unknown  

IDE Equivalent

Visual Studio

Visual Studio: DPC++ > General > Enable FPGA workflows

Eclipse

Eclipse: Intel(R) oneAPI DPC++ Compiler > General > Enable FPGA workflows

Alternate Options

None

See Also
fsycl-targets  compiler option
fsycl-link  compiler option
Xs  compiler option

fiopenmp, Qiopenmp
Enables recognition of OpenMP* features, such as
parallel, simd, and offloading directives. This is an
alternate option for compiler option [Q or q]openmp.

Syntax

Linux OS:

-fiopenmp
Windows OS:

/Qiopenmp

Arguments

None

Default

OFF If this option is not specified, OpenMP* features are not transformed in LLVM*.

Description

This option enables recognition of OpenMP* features, such as parallel, simd, and offloading directives. This is
an alternate option for compiler option [Q or q]openmp.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

140



The -fiopenmp and /Qiopenmp options enable Intel's implementation of OpenMP* in the compiler back end.
The compiler front end produces an intermediate representation that preserves the parallelism exposed by
OpenMP* directives. The back end uses the exposed parallelism to do more advanced optimizations, such as
SIMD vectorization.

NOTE
To enable offloading to a specified GPU target, you must also specify option
fopenmp-targets (Linux*) or /Qopenmp-targets (Windows).

NOTE
Option -fopenmp is not the same as option -fiopenmp. Option -fopenmp will not do
offloading.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Windows

Visual Studio: DPC++ > Language > OpenMP Support

C/C++ > Language [Intel C++] > OpenMP Support

Intel(R) oneAPI DPC++ Compiler > Language > OpenMP Support

Intel C++ Compiler > Language > OpenMP Support

Linux

Eclipse: Intel(R) oneAPI DPC++ Compiler > Language > OpenMP Support

Intel C++ Compiler > Language >  OpenMP Support

Alternate Options

Linux: -qopenmp
Windows: /Qopenmp

See Also
qopenmp, Qopenmp  compiler option
fopenmp-targets, Qopenmp-targets  compiler option

fno-sycl-libspirv
Disables the check for libspirv (the SPIR-V* tools
library).

Syntax

Linux OS:

-fno-sycl-libspirv

Compiler Reference   

141

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Windows OS:

-fno-sycl-libspirv

Arguments

None

Default

OFF The check for libspirv is enabled.

Description

This option disables the check for libspirv (the SPIR-V* tools library).

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

foffload-static-lib
Tells the compiler to link with a fat (multi-
architecture) static library. This is a deprecated option
that may be removed in a future release.

Syntax

Linux OS:

-foffload-static-lib=file
Windows OS:

-foffload-static-lib=file

Arguments

file Is the name of the fat static library to use. It can include the path
where the library is located.

Default

OFF No linking occurs to a fat static library.

Description

This option tells the compiler to link with a fat (multi-architecture) static library.

The filename specified is treated as a "fat" static library of device code - an archive of fat objects. When
linking, the compiler will extract the device code from the objects contained in the library and link it with
other device objects coming from the individual fat objects passed on the command line.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

142



NOTE
If you try to pass libraries by using compiler option l, there can be dynamic libraries and
partial linking with dynamic libraries, which may lead to a crash.

IDE Equivalent

None

Alternate Options

None

fopenmp
Option -fopenmp is a deprecated option that will be
removed in a future release.

Syntax

Linux OS:

-fopenmp
Windows OS:

None

Arguments

None

Default

OFF No OpenMP* multi-threaded code is generated by the compiler.

Description

Enables recognition of OpenMP* features and tells the parallelizer to generate multi-threaded code based on
OpenMP* directives.

This option is meant for advanced users who prefer to use OpenMP* as it is implemented by the LLVM
community. You can get most of that functionality by using this option and option -fopenmp-simd.

Option -fopenmp is a deprecated option that will be removed in a future release. For most users, we
recommend that you instead use option qopenmp, Qopenmp.

NOTE
Option -fopenmp is not the same as option -fiopenmp. If you want to get full advantage of
SIMD vectorization or offloading, you must use option -qopenmp.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Compiler Reference   

143



IDE Equivalent

None

Alternate Options

None

fopenmp-declare-target-scalar-defaultmap, Qopenmp-declare-target-scalar-defaultmap
Determines which implicit data-mapping/sharing rules
are applied for a scalar variable referenced in a target
pragma.

Syntax

Linux OS:

-fopenmp-declare-target-scalar-defaultmap=keyword
Windows OS:

/Qopenmp-declare-target-scalar-defaultmap:keyword

Arguments

keyword Is the rule to be applied for a scalar variable referenced in a target pragma.TARGET
directive.. Possible values are:

default Specifies that the compiler should apply implicit data-mapping/sharing
rules according to the OpenMP* specification.

Thus, if a scalar variable referenced in a target construct appears in a to
or link clause in a declare target pragma that does not have a
device_type (nohost) clause, and the target construct's clauses do not
define explicit data-mapping/sharing rules for this variable, then the
compiler should treat it as if it had appeared in a map clause with a map-
type of tofrom.

firstprivate Specifies that when a scalar variable referenced in a target construct
appears in a to or link clause in a declare target pragma that does
not have a device_type (nohost) clause, and the target construct's
clauses do not define explicit data-mapping/sharing rules for this
variable, then the scalar variable should not be mapped, but instead it
has an implicit data-sharing attribute of firstprivate.

Default

-fopenmp-declare-target-scalar-defaultmap=default
or
/Qopenmp-declare-target-scalar-defaultmap:default

The compiler applies implicit data-mapping/
sharing rules according to OpenMP specification.

Description

This option determines which implicit data-mapping/sharing rules are applied for a scalar variable referenced
in a target pragma, when that scalar variable appears in a declare target pragma that has a to or link
clause, but not clause device_type (nohost).

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

144



It tells the compiler to assume that a scalar declare target variable with implicit data-mapping/sharing
referenced in a target construct has the same value before the target construct (in the host environment)
and at the beginning the target region (in the device environment). This may enable some optimizations in
the host code invoking the target region for execution.

The option only affects data-mapping/sharing rules for scalar variables referenced in a target construct that
do not appear in one of the target clauses map, is_device_ptr, or has_device_addr.

For more information about implicit data-mapping/sharing rules, see the OpenMP 5.2 specification. For
example, see section 5.8.1 in that specification.

IDE Equivalent

None

Alternate Options

None

Examples
Consider the following:

#pragma omp declare target
int N;
#pragma omp end declare target
...
void program() {
#pragma omp target teams distribute parallel for
  for (int i = 0; i < N; ++i) ...
}

Specifying -fopenmp-declare-target-scalar-defaultmap=firstprivate
(or /Qopenmp-declare-target-scalar-defaultmap:firstprivate) or an explicit 'firstprivate(N)' lets
the compiler generate efficient host code that issues the most appropriate number of teams and threads to
execute the iterations of the distribute parallel for loop, assuming that N does not change its value between
the beginning of the target region and the beginning of the distribute parallel for region.

If the compiler option (or 'firstprivate(N)') is not used, then the value of N in the host code (before the target
construct) may be different from the value of N in the for statement. To compute the right number of teams/
threads on the host the value of N must be transferred from the device to the host, which may result in a
performance penalty.

The option may not behave correctly for all OpenMP programs. In particular, it may behave incorrectly for
programs that allow different values of the same declare target scalar variables on entry to target regions.

For example, consider the following:

#include <stdio.h>

#pragma omp declare target
int x = 0; /* host 'x' is 0, target 'x' is 0 */
#pragma omp end declare target

int main() {
  x = -1;

  /* host 'x' is -1, target 'x' is 0 */
#pragma omp target
  x = 1;

  /* host 'x' is -1, target 'x' is 1 */

Compiler Reference   

145

https://www.openmp.org/specifications/


#pragma omp target
  printf("target: %d == 1\n", x);

#pragma omp target update from(x)

  /* host 'x' is 1, target 'x' is 1 */
  printf("host: %d == 1\n", x);

  return 0;
}

The following is the correct output for the above code:

target: 1 == 1
host: 1 == 1

However, this is the output when option -fopenmp-declare-target-scalar-defaultmap=firstprivate
(or /Qopenmp-declare-target-scalar-defaultmap:firstprivate) is specified:

target: -1 == 1
host: 0 == 1

fopenmp-device-lib
Enables or disables certain device libraries for an
OpenMP* target.

Syntax

Linux OS:

-fopenmp-device-lib=library[,library,...]
-fno-openmp-device-lib=library[,library,...]
Windows OS:

-fopenmp-device-lib=library[,library,...]
-fno-openmp-device-lib=library[,library,...]

Arguments

library Possible values are:

libm-fp32 Enables linking to the fp32 device math
library.

libm-fp64 Enables linking to the fp64 device math
library.

libc Enables linking to the C library.

all Enables linking to libraries libm-fp32, libm-
fp-64, and libc.

To link more than one library, include a comma between the library
names. For example, if you want to link both the libm-fp32 device
library and the C library, specify: libm-fp32,libc.

Do not add spaces between library names.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

146



Note that if you specify "all", it supersedes any additional value you
may specify.

Default

OFF Disables linking to device libraries for this target.

Description

This option enables or disables certain device libraries for an OpenMP* target.

If you specify fno-openmp-device-lib=library, linking to the specified library is disabled for the
OpenMP* target.

NOTE
When OpenMP* offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Linker > General > Enable linking of the device libraries for OpenMP offload

Linker > General > Disable linking of the device libraries for OpenMP offload

Linux

Eclipse: Linker > Libraries > Enable linking of the device libraries for OpenMP offload

Linker > Libraries > Disable linking of the device libraries for OpenMP offload

Alternate Options

None

fopenmp-target-buffers, Qopenmp-target-buffers
Enables a way to overcome the problem where some
OpenMP* offload SPIR-V* devices produce incorrect
code when a target object is larger than 4GB.

Syntax

Linux OS:

-fopenmp-target-buffers=keyword
Windows OS:

/Qopenmp-target-buffers:keyword

Arguments

keyword Possible values are:

default Tells the compiler to use default heuristics. This may produce incorrect
code on some OpenMP* offload SPIR-V* devices when a target object is
larger than 4GB.

Compiler Reference   

147



4GB Tells the compiler to generate code to prevent the issue described by
default. OpenMP* offload programs that access target objects of size
larger than 4GB in target code require this option.

This setting applies to the following:

• Target objects declared in OpenMP* target regions or inside OpenMP*
declare target functions

• Target objects that exist in the OpenMP* device data environment
• Objects that are mapped and/or allocated by means of OpenMP* APIs

(such as omp_target_alloc)

Default

default If you do not specify this option, the compiler may produce incorrect code on some OpenMP*
offload SPIR-V* devices when a target object is larger than 4GB.

Description

This option enables a way to overcome the problem where some OpenMP* offload SPIR-V* devices produce
incorrect code when a target object is larger than 4GB (4294959104 bytes).

However, note that when -fopenmp-target-buffers=4GB (or /Qopenmp-target-buffers:4GB) is
specified on Intel® GPUs, there may be a decrease in performance.

To use this option, you must also specify option -fopenmp-targets (Linux*) or /Qopenmp-targets
(Windows*).

NOTE
This option may have no effect for some OpenMP* offload SPIR-V* devices, and for
OpenMP* offload targets different from SPIR*.

NOTE
When OpenMP* offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

Windows

Visual Studio: DPC++ > Language > Specify buffer size for OpenMP offload kernel access
limitations (DPC++)

Windows

Visual Studio: C/C++ > Language [Intel C++] > Specify buffer size for OpenMP offload kernel
access limitations (C++)

Linux

Eclipse: Intel(R) oneAPI DPC++ Compiler > Language > Specify buffer size for OpenMP offload
kernel access limitations (DPC++)

Linux

Eclipse: Intel C++ Compiler > Language > Specify buffer size for OpenMP offload kernel access
limitations (C++)

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

148



Alternate Options

None

See Also
fopenmp-targets, Qopenmp-targets  compiler option

fopenmp-targets, Qopenmp-targets
Enables offloading to a specified GPU target if
OpenMP* features have been enabled.

Syntax

Linux OS:

-fopenmp-targets=keyword

Windows OS:

/Qopenmp-targets:keyword

Arguments

keyword The only supported value for this argument is spir64.

When you specify spir64, the compiler generates an x86 + SPIR64
(64-bit Standard Portable Intermediate Representation) fat binary for
Intel® GPU devices.

Default

OFF If this option is not specified, no x86 + SPIR64 fat binary is created.

Description

This option enables offloading to a specified GPU target if OpenMP* features have been enabled.

To use this option, you must enable recognition of OpenMP* features by specifying one of the following
options:

Linux

• -qopenmp
• -fiopenmp
• -fopenmp (deprecated; it is equivalent to -qopenmp)

Windows

• /Qopenmp
• /Qiopenmp
The following shows an example:

  icx (or icpx) -fiopenmp -fopenmp-targets=spir64 matmul_offload.cpp -o matmul
When you specify -fopenmp-targets or /Qopenmp-targets, C++ exception handling is disabled for target
compilations.

Linux

For host compilations, if you want to disable C++ exception handling, you must specify option
-fno-exceptions.

Compiler Reference   

149



NOTE
When OpenMP* offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

Windows

Visual Studio: DPC++ > Language > Enable OpenMP Offloading

C/C++ > Language [Intel C++] > Enable OpenMP Offloading

Intel(R) oneAPI DPC++ Compiler > Language > Enable OpenMP Offloading

Intel C++ Compiler > Language > Enable OpenMP Offloading

Linux

Eclipse: Intel(R) oneAPI DPC++ Compiler > Language > Enable OpenMP Offloading

Intel C++ Compiler > Language >  Enable OpenMP Offloading

Alternate Options

None

See Also
fiopenmp, Qiopenmp  compiler option
qopenmp, Qopenmp  compiler option

fsycl
Enables a program to be compiled as a SYCL program
rather than as plain C++11 program.

Syntax

Linux OS:

-fsycl
Windows OS:

-fsycl

Arguments

None

Default

SYCL: ON A C++ program is compiled as a SYCL program.

C++: OFF A C++ program is compiled as a C++11 program.

Description

This option enables a program to be compiled as a SYCL program rather than as plain C++11 program.

IDE Equivalent

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

150



Alternate Options

None

See Also
fsycl-targets  compiler option

fsycl-add-targets
Lets you add arbitrary device binary images to the fat
SYCL* binary when linking. This is a deprecated option
that may be removed in a future release.

Syntax

Linux OS:

-fsycl-add-targets=T1:file1,...,Tn:filen
Windows OS:

-fsycl-add-targets=T1:file1,...,Tn:filen

Arguments

T Is a target triple for the device binary image.

file Is the location of the device binary image.

You can specify one or more pair of T:file.

Default

OFF Arbitrary device images are not added to any fat SYCL* binary being linked.

Description

This option lets you add arbitrary device binary images to the fat SYCL* binary when linking.

NOTE
When using the icx/icpx compiler driver for this option, you must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
fsycl-link-targets  compiler option

Compiler Reference   

151



fsycl-dead-args-optimization
Enables elimination of SYCL dead kernel arguments.

Syntax

Linux OS:

-fsycl-dead-args-optimization
-fno-sycl-dead-args-optimization
Windows OS:

-fsycl-dead-args-optimization
-fno-sycl-dead-args-optimization

Arguments

None

Default

OFF SYCL dead kernel arguments are not eliminated. This default may change in the future.

Description

This option enables elimination of SYCL dead kernel arguments. This optimization can improve performance.

If you specify -fno-sycl-dead-args-optimization, this optimization is disabled.

NOTE
When using the icx/icpx compiler driver for option -fsycl-dead-args-optimization, you
must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

fsycl-device-code-split
Specifies a SYCL* device code module assembly.

Syntax

Linux OS:

-fsycl-device-code-split[=value]

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

152



Windows OS:

-fsycl-device-code-split[=value]

Arguments

value Can be only one of the following:

per_kernel Creates a separate device code module for
each SYCL* kernel. Each device code module
will contain a kernel and all its dependencies,
such as called functions and used variables.

per_source Creates a separate device code module for
each source (translation unit).

Each device code module will contain a
collection of kernels grouped on per-source
basis and all their dependencies, such as all
used variables and called functions, including
the SYCL_EXTERNAL macro-marked
functions from other translation units.

off Creates a single module for all kernels.

auto The compiler will use a heuristic to select the
best way of splitting device code. This is the
same as specifying
fsycl-device-code-split with no value.

Default

auto This is the default whether you do not specify the compiler option or you do specify the compiler
option, but omit a value. The compiler will use a heuristic to select the best way of splitting device
code.

Description

This option specifies a SYCL* device code module assembly.

NOTE
When using the icx/icpx compiler driver for this option, you must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Compiler Reference   

153



fsycl-device-lib
Enables or disables certain device libraries for a SYCL*
target.

Syntax

Linux OS:

-fsycl-device-lib=library[,library,...]
-fno-sycl-device-lib=library[,library,...]
Windows OS:

-fsycl-device-lib=library[,library,...]
-fsycl-device-lib=library[,library,...]

Arguments

library Possible values are:

libm-fp32 Enables linking to the fp32 device math
library.

libm-fp64 Enables linking to the fp64 device math
library.

libc Enables linking to the C library.

all Enables linking to libraries libm-fp32, libm-
fp-64, and libc.

To link more than one library, include a comma between the library
names. For example, if you want to link both the libm-fp32 device
library and the C library, specify: libm-fp32,libc.

Do not add spaces between library names.

Note that if you specify "all", it supersedes any additional value you
may specify.

Default

OFF Disables linking to device libraries for this target.

Description

This option enables or disables certain device libraries for a SYCL* target.

If you specify fno-sycl-device-lib=library, linking to the specified library is disabled for the SYCL*
target.

NOTE
When using the icx/icpx compiler driver for option -fsycl-device-lib, you must also specify
option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

154



NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Linker > General > Enable linking of the device libraries

Linker > General > Disable linking of the device libraries

Linux

Eclipse: Linker > Libraries > Enable linking of the device libraries

Linker > Libraries > Disable linking of the device libraries

Alternate Options

None

fsycl-device-only
Tells the compiler to generate a device-only binary.

Syntax

Linux OS:

-fsycl-device-only
Windows OS:

-fsycl-device-only

Arguments

None

Default

OFF No device-only binary is generated.

Description

This option tells the compiler to generate a device-only binary.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Compiler Reference   

155



fsycl-early-optimizations
Enables LLVM-related optimizations before SPIR-V*
generation.

Syntax

Linux OS:

-fsycl-early-optimizations
-fno-sycl-early-optimizations
Windows OS:

-fsycl-early-optimizations
-fno-sycl-early-optimizations

Arguments

None

Default

ON LLVM-related optimizations are enabled before SPIR-V* generation.

Description

This option enables LLVM-related optimizations before SPIR-V* generation. These optimizations can improve
performance.

If you specify -fno-sycl-early-optimizations, these optimizations are disabled.

NOTE
When using the icx/icpx compiler driver for option -fsycl-early-optimizations, you must
also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: DPC++ > Optimization > Enable/Disable DPC++ early optimization before
generation of SPIR-V code

Eclipse

Eclipse: Intel(R) oneAPI DPC++ Compiler > Optimization > Enable/Disable DPC++ early
optimization before generation of SPIR-V code

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

156



fsycl-enable-function-pointers
Enables function pointers and support for virtual
functions for SYCL kernels and device functions. This
is an experimental feature.

Syntax

Linux OS:

-fsycl-enable-function-pointers
Windows OS:

-fsycl-enable-function-pointers

Arguments

None

Default

OFF Function pointers are not enabled and virtual functions for SYCL kernels and device functions are
not supported.

Description

This option enables function pointers and support for virtual functions for SYCL kernels and device functions.
This is an experimental feature.

This enhanced support is limited to CPU-device only and cannot currently be used for GPU devices.

NOTE
When using the icx/icpx compiler driver for this option, you must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

fsycl-esimd-force-stateless-mem
Determines whether the compiler enforces stateless
memory accesses within ESIMD kernels on the target
device. This is an experimental feature.

Compiler Reference   

157



Syntax

Linux OS:

-fsycl-esimd-force-stateless-mem
-fno-sycl-esimd-force-stateless-mem
Windows OS:

-fsycl-esimd-force-stateless-mem
-fno-sycl-esimd-force-stateless-mem

Arguments

None

Default

OFF Memory accesses that are stateful are not converted to stateless.

Description

This option determines whether the compiler enforces stateless memory accesses within ESIMD kernels on
the target device. This is an experimental feature.

Option -fsycl-esimd-force-stateless-mem uses SYCL* accessors to convert stateful memory to
stateless memory. SIMD intrinsics that cannot be automatically converted are disabled and reported during
the compilation phase.

In cases where a target does not support stateful accesses, option -fsycl-esimd-force-stateless-mem
may be helpful to avoid issues caused by the 4Gb-per-surface limitation in programs written with SYCL
accessors.

If you specify -fno-sycl-esimd-force-stateless-mem, the compiler does not enforce stateless memory
accesses.

NOTE
When using the icx/icpx compiler driver for option -fsycl-esimd-force-stateless-mem, you
must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

158



fsycl-explicit-simd
Enables or disables the experimental "Explicit SIMD"
SYCL* extension. This is a deprecated option that may
be removed in a future release.

Syntax

Linux OS:

-fsycl-explicit-simd
-fno-sycl-explicit-simd
Windows OS:

-fsycl-explicit-simd
-fno-sycl-explicit-simd

Arguments

None

Default

-fno-sycl-explicit-simd The explicit SIMD SYCL* extension is disabled.

Description

This option enables or disables the experimental "Explicit SIMD" SYCL* extension.

If you specify option -fsycl-explicit-simd, it enables the experimental "Explicit SIMD" SYCL* extension
for lower-level Intel GPU programming. It allows you to write explicitly vectorized device code. Note that APIs
for this feature may change in the future.

NOTE
When using the icx/icpx compiler driver for option -fsycl-explicit-simd, you must also
specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
Explicit SIMD SYCL* Extension

Compiler Reference   

159



fsycl-help
Causes help information to be emitted from the device
compiler backend.

Syntax

Linux OS:

-fsycl-help[=arg]
Windows OS:

-fsycl-help[=arg]

Arguments

arg Can be one of "x86_64", "fpga", "gen", or "all". Option
-fsycl-help=all outputs help for "x86_64", "fpga", and "gen".

Specifying "all" is the same as specifying fsycl-help with no arg.

Default

OFF No help information is emitted from the device compiler backend.

Description

This option causes help information to be emitted from the device compiler backend.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

fsycl-host-compiler
Tells the compiler to use the specified compiler for the
host compilation of the overall offloading compilation
that is performed.

Syntax

Linux OS:

-fsycl-host-compiler=arg
Windows OS:

-fsycl-host-compiler=arg

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

160



Arguments

arg Is the compiler that will be the host for compilation.

It can be the name of a compiler or the specific path to the compiler.

Default

OFF The host compilation will be performed by the Intel® DPC++ Compiler.

Description

This option tells the compiler to use the specified compiler for the host compilation of the overall offloading
compilation that is performed.

NOTE
When using the icx/icpx compiler driver for this option, you must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

IDE Equivalent

None

Alternate Options

None

Example
Consider the following:

-fsycl-host-compiler=g++              // the compiler looks for g++ in the current path
-fsycl-host-compiler=/usr/bin/g++     // the compiler looks for g++ in the explicit path

See Also
fsycl  compiler option
fsycl-host-compiler-options  compiler option

fsycl-host-compiler-options
Passes options to the compiler specified by option
fsycl-host-compiler.

Syntax

Linux OS:

-fsycl-host-compiler-options="opts"
Windows OS:

-fsycl-host-compiler-options="opts"

Compiler Reference   

161



Arguments

opts Is a string of compatible compiler options to be passed. The string
must appear within quotes.

If there is more than one compiler option, a space must appear
between each option name.

Default

OFF No options are passed to the compiler specified by -fsycl-host-compiler.

Description

This option tells the compiler to pass options to the compiler specified by option fsycl-host-compiler. The
options must be compatible with the compiler specified by fsycl-host-compiler.

NOTE
Specifying any kind of phase limiting options (such as -c, -E, or -S) may interfere with the
expected output set during the host compilation. This can cause undefined behavior.

NOTE
When using the icx/icpx compiler driver for this option, you must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

IDE Equivalent

None

Alternate Options

None

See Also
fsycl-host-compiler  compiler option

fsycl-id-queries-fit-in-int
Tells the compiler to assume that SYCL ID queries fit
within MAX_INT.

Syntax

Linux OS:

-fsycl-id-queries-fit-in-int
-fno-sycl-id-queries-fit-in-int
Windows OS:

-fsycl-id-queries-fit-in-int
-fno-sycl-id-queries-fit-in-int

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

162



Arguments

None

Default

ON The compiler assumes that SYCL ID queries fit within MAX_INT.

Description

This option tells the compiler to assume that SYCL ID queries fit within MAX_INT. It assumes that the
following values fit within MAX_INT:

• id class get() member function and operator[]
• item class get_id() member function and operator[]
• nd_item class get_global_id()/get_global_linear_id() member functions

For more information about these values, see the Khronos* Group SYCL* 1.2.1 Specification.

If you need to use a larger number of work items, use the OFF setting for this option, which is
-fno-sycl-id-queries-fit-in-int.

Caution
You should carefully evaluate whether you should use the OFF setting when you have a
larger number of work items. Truncating to data type int is often incorrect in such
circumstances. If the OFF setting is used when the values fit within MAX_INT, it can lead to
unexpected performance issues.

NOTE
When using the icx/icpx compiler driver for option -fsycl-id-queries-fit-in-int, you
must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

fsycl-instrument-device-code
Enables or disables linking of the Instrumentation and
Tracing Technology (ITT) device libraries for VTune™.

Syntax

Linux OS:

-fsycl-instrument-device-code-split

Compiler Reference   

163



-fno-sycl-instrument-device-code-split
Windows OS:

-fsycl-instrument-device-code-split
-fno-sycl-instrument-device-code-split

Arguments

None

Default

ON The device libraries needed for Instrumentation and Tracing Technology (ITT) are enabled.

Description

This option enables or disables linking of the Instrumentation and Tracing Technology (ITT) device libraries
for VTune™. This provides annotations to intercept various events inside kernels generated by Just in Time
(JIT) compilation.

If you specify -fno-sycl-instrument-device-code-split, no linking occurs to the Instrumentation and
Tracing Technology (ITT) device libraries.

NOTE
When using the icx/icpx compiler driver for option -fsycl-instrument-device-code-split,
you must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

fsycl-link
Tells the compiler to perform a partial link of device
binaries to be used with Field Programmable Gate
Array (FPGA).

Syntax

Linux OS:

-fsycl-link[=value]
Windows OS:

-fsycl-link[=value]

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

164



Arguments

value Can be one of the following:

early Tells the compiler to generate an HTML
report when the partial link is created. This
capability lets you check the program if need
be.

You can resume from this point and generate
an FPGA image by specifying option
-fintelfpga with the generated binary.

image Tells the compiler to generate an FPGA
bitstream. It will then be ready to be linked
and used on an FPGA board.

image takes much longer to generate than does early.

Default

OFF No partial link of device binaries is performed.

Description

This option tells the compiler to perform a partial link of device binaries to be used with FPGA.

This partial link is then wrapped by the offload wrapper, allowing the device binaries to be linked by the host
compiler or linker.

If you do not specify a value, the following occurs:

• When used with just -fsycl (-fsycl -fsycl-link), the driver will generate a host linkable device
object.

• When also used with -fintelfpga (-fsycl -fintelfpga -fsycl-link), the behavior is the same as
specifying -fsycl-link=early.

NOTE
When using the icx/icpx compiler driver for this option, you must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: Linker > General > Generate partially linked device object to be used with the host
link

Eclipse

Eclipse: Linker > General > Generate partially linked device object to be used with the host link

Compiler Reference   

165



Alternate Options

None

See Also
fintelfpga
 compiler option

fsycl-link-targets
Tells the compiler to link only device code. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS:

-fsycl-link-targets=T1,...,Tn
Windows OS:

-fsycl-link-targets=T1,...,Tn

Arguments

T Is a target triple for the device code. You can specify more than one T.

Default

OFF No link is performed.

Description

This option tells the compiler to link only device code. It is used in a link step.

It tells the compiler to link device code for the given target triples, and output multiple linked device code
images. It does not produce fat binary.

NOTE
You should be familiar with ahead-of-time (AOT) compilation when using this option.

NOTE
When using the icx/icpx compiler driver for this option, you must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

166



Alternate Options

None

Example
The following command-line sequence demonstrates a way to use this option:

dpcpp -fsycl-targets=spir64 -c a.cpp -o a.o
dpcpp -fsycl-targets=spir64 -c b.cpp -o b.o
dpcpp -fsycl-link-targets=spir64 a.o b.o -o linked.spv
aoc linked.spv -o linked.aocx
dpcpp -fsycl-add-targets=fpga:linked.aocx a.o b.o -o final.out -lOpenCL -lsycl

See Also
fsycl  compiler option
fsycl-add-targets  compiler option
fsycl-targets  compiler option
Ahead of Time Compilation

fsycl-max-parallel-link-jobs
Tells the compiler that it can simultaneously spawn up
to the specified number of processes to perform
actions required to link SYCL applications. This is an
experimental feature.

Syntax

Linux OS:

-fsycl-max-parallel-link-jobs=n
Windows OS:

-fsycl-max-parallel-link-jobs=n

Arguments

n Is the number of processes to spawn to.

Default

-fsycl-max-parallel-link-jobs=1 One process is simultaneously spawned to perform actions
necessary to link SYCL applications.

Description

This option tells the compiler that it can simultaneously spawn up to the specified number of processes to
perform actions required to link SYCL applications. This is an experimental feature.

This option has no effect if compiler options such as c or E are specified.

NOTE
If you specify a large number of processes, it can cause performance issues and compilation
crashes due to excessive RAM consumption.

Compiler Reference   

167



NOTE
When using the icx/icpx compiler driver for this option, you must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Example
The following shows examples of using this option on Linux*:

dpcpp -fsycl-max-parallel-link-jobs=4 a.cpp b.cpp c.cpp d.cpp -o a.out
dpcpp -fsycl-max-parallel-link-jobs=8 a.o b.o c.o d.so e.a -o b.out

See Also
fsycl  compiler option

fsycl-targets
Tells the compiler to generate code for specified
device targets.

Syntax

Linux OS:

-fsycl-targets=T1,...,Tn
Windows OS:

-fsycl-targets=T1,...,Tn

Arguments

T Is a target triple device name. If you specify more than one T, they must be separated by
commas. The following triplets are supported:

spir64 Tells the compiler to use default heuristics
for SPIR64-based devices. This is the
default. You can also specify this value as
spir64-unknown-unknown.

spir64_x86_64 Tells the compiler to generate code for
Intel® CPUs. You can also specify this value
as spir64_x86_64-unknown-unknown.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

168



x86_64 Tells the compiler to generate code ahead
of time for x86_64 CPUs; it provides better
debuggability. This triplet can also be
specified as x86_64-unknown-unknown.

spir64_fpga Tells the compiler to generate code for
Intel® FPGA. You can also specify this value
as spir64_fpga-unknown-unknown.

spir64_gen Tells the compiler to generate code for
Intel® Processor Graphics. You can also
specify this value as spir64_gen-unknown-
unknown.

Default

spir64 The compiler will use default heuristics for
SPIR64-based devices.

Description

This option tells the compiler to generate code for specified device targets.

NOTE
The long syntax values that include -sycldevice, such as spir64-unknown-unknown-
sycldevice, are still supported, but they are deprecated.

NOTE
When using the icx/icpx compiler driver for this option, you must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: DPC++ > General > Specify SYCL offloading targets for AOT compilation

Eclipse

Eclipse: Intel(R) oneAPI DPC++ Compiler > General > Specify SYCL offloading targets for AOT
compilation

Alternate Options

None

Compiler Reference   

169



fsycl-unnamed-lambda
Enables unnamed SYCL* lambda kernels.

Syntax

Linux OS:

-fsycl-unnamed-lambda
-fno-sycl-unnamed-lambda
Windows OS:

-fsycl-unnamed-lambda
-fno-sycl-unnamed-lambda

Arguments

None

Default

ON Unnamed SYCL lambda kernels are enabled.

Description

This option enables unnamed SYCL kernels that are defined as lambdas.

If you specify -fno-sycl-unnamed-lambda, unnamed SYCL lambda kernels are disabled.

NOTE
When using the icx/icpx compiler driver for option -fsycl-unnamed-lambda, you must also
specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: DPC++ > General > Allow unnamed SYCL lambda kernels

Eclipse

Eclipse: Intel(R) oneAPI DPC++ Compiler > Language > Allow unnamed SYCL lambda kernels

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

170



fsycl-use-bitcode
Tells the compiler to produce device code in LLVM
Intermediate Representation (IR) bitcode format into
fat objects.

Syntax

Linux OS:

-fsycl-use-bitcode

Windows OS:

-fsycl-use-bitcode

Arguments

None

Default

ON LLVM IR bitcode format is emitted.

Description

This option tells the compiler to produce device code in LLVM Intermediate Representation (IR) bitcode
format into fat objects.

NOTE
When using the icx/icpx compiler driver for this option, you must also specify option -fsycl.
When using the dpcpp compiler driver, option -fsycl is implied by default.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

nolibsycl
Disables linking of the SYCL* runtime library.

Syntax

Linux OS:

-nolibsycl

Windows OS:

-nolibsycl

Compiler Reference   

171



Arguments

None

Default

OFF The SYCL* runtime library is linked.

Description

This option disables linking of the SYCL* runtime library.

When using the icx/icpx compiler driver, this option is only effective if you have specified option -fsycl.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

qopenmp, Qopenmp
Enables recognition of OpenMP* features and tells the
parallelizer to generate multi-threaded code based on
OpenMP* directives.

Syntax

Linux OS:

-qopenmp
-qno-openmp
Windows OS:

/Qopenmp
/Qopenmp-

Arguments

None

Default

-qno-openmp or /Qopenmp- No OpenMP* multi-threaded code is generated by the compiler.

Description

This option enables recognition of OpenMP* features and tells the parallelizer to generate multi-threaded
code based on OpenMP* directives. The code can be executed in parallel on both uniprocessor and
multiprocessor systems.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

172



This option works with any optimization level. Specifying no optimization (-O0 on Linux* or /Od on
Windows*) helps to debug OpenMP applications.

This option can also be specified as -fopenmp on Linux* systems.

NOTE
To enable offloading to a specified GPU target, you must also specify option
fopenmp-targets (Linux*) or /Qopenmp-targets (Windows).

NOTE
Option -fopenmp is not the same as option -qopenmp. Option -fopenmp will not do offloading.

NOTE
Options that use OpenMP* API are available for both Intel® microprocessors and non-Intel
microprocessors, but these options may perform additional optimizations on Intel®
microprocessors than they perform on non-Intel microprocessors. The list of major, user-
visible OpenMP constructs and features that may perform differently on Intel®
microprocessors versus non-Intel microprocessors include: locks (internal and user visible),
the SINGLE construct, barriers (explicit and implicit), parallel loop scheduling, reductions,
memory allocation, thread affinity, and binding.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Language > OpenMP* Support

Eclipse

Eclipse: Language > Process OpenMP Directives

Alternate Options

Linux: -fiopenmp
Windows: /Qiopenmp

See Also
fopenmp-targets, Qopenmp-targets  compiler option
fiopenmp, Qiopenmp  compiler option

qopenmp-lib, Qopenmp-lib
Lets you specify an OpenMP* run-time library to use
for linking.

Compiler Reference   

173

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Syntax

Linux OS:

-qopenmp-lib=type
Windows OS:

/Qopenmp-lib:type

Arguments

type Specifies the type of library to use; it implies compatibility levels. Currently, the only
possible value is:

compat Tells the compiler to use the compatibility OpenMP* run-
time library (libiomp). This setting provides compatibility
with object files created using Microsoft* and GNU*
compilers.

Default

-qopenmp-lib=compat
or /Qopenmp-lib:compat

The compiler uses the compatibility OpenMP* run-time library
(libiomp).

Description

This option lets you specify an OpenMP* run-time library to use for linking.

The compatibility OpenMP run-time libraries are compatible with object files created using the Microsoft*
OpenMP run-time library (vcomp) or the GNU OpenMP run-time library (libgomp).

To use the compatibility OpenMP run-time library, compile and link your application using the compat setting
for option [q or Q]openmp-lib. To use this option, you must also specify one of the following compiler
options:

• Linux* systems: -qopenmp or -qopenmp-stubs
• Windows* systems: /Qopenmp or /Qopenmp-stubs
Linux

The compatibility Intel OpenMP* run-time library lets you combine OpenMP* object files compiled with the
GNU* gcc or gfortran compilers with similar OpenMP* object files compiled with the Intel® C, Intel® C++, or
Intel® Fortran Compiler. The linking phase results in a single, coherent copy of the run-time library.

This option is processed by the compiler driver command that initiates linking, adding library names explicitly
to the link command.

Windows

The compatibility OpenMP* run-time library lets you combine OpenMP* object files compiled with the
Microsoft* C/C++ compiler with OpenMP* object files compiled with the Intel® C, Intel® C++, or Intel®
Fortran compilers. The linking phase results in a single, coherent copy of the run-time library.

This option is processed by the compiler, which adds directives to the compiled object file that are processed
by the linker.

NOTE The compatibility OpenMP run-time library is not compatible with object files created
using versions of the Intel compilers earlier than 10.0.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

174



NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
qopenmp, Qopenmp  compiler option
qopenmp-stubs, Qopenmp-stubs  compiler option

qopenmp-link
Controls whether the compiler links to static or
dynamic OpenMP* run-time libraries.

Syntax

Linux OS:

-qopenmp-link=library
Windows OS:

None

Arguments

library Specifies the OpenMP library to use. Possible values are:

static Tells the compiler to link to static OpenMP
run-time libraries. Note that static OpenMP
libraries are deprecated.

dynamic Tells the compiler to link to dynamic OpenMP
run-time libraries.

Default

-qopenmp-link=dynamic The compiler links to dynamic OpenMP* run-time libraries.
However, if Linux* option -static is specified, the compiler
links to static OpenMP run-time libraries.

Description

This option controls whether the compiler links to static or dynamic OpenMP* run-time libraries.

To link to the static OpenMP run-time library (RTL) and create a purely static executable, you must specify
-qopenmp-link=static. However, we strongly recommend you use the default setting,
-qopenmp-link=dynamic.

Option -qopenmp-link=dynamic cannot be used in conjunction with option -static. If you try to specify
both options together, an error will be displayed.

Compiler Reference   

175



NOTE
Compiler options -static-intel and -shared-intel (Linux*) have no effect on which
OpenMP run-time library is linked.

NOTE
On Linux systems, the OpenMP runtime library depends on using libpthread and libc (libgcc
when compiled with gcc). Libpthread and libc (libgcc) must both be static or both be
dynamic.

If both libpthread and libc (libgcc) are static, then the static version of the OpenMP runtime should be
used. If both libpthread and libc (libgcc) are dynamic, then either the static or dynamic version of the
OpenMP runtime may be used.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

qopenmp-simd, Qopenmp-simd
Enables or disables OpenMP* SIMD compilation.

Syntax

Linux OS:

-qopenmp-simd
-qno-openmp-simd
Windows OS:

/Qopenmp-simd
/Qopenmp-simd-

Arguments

None

Default

-qno-openmp-simd or /Qopenmp-simd- OpenMP* SIMD compilation is disabled.

Description

This option enables or disables OpenMP* SIMD compilation.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

176



You can use this option if you want to enable or disable the SIMD support with no impact on other OpenMP
features. In this case, no OpenMP runtime library is needed to link and the compiler does not need to
generate OpenMP runtime initialization code.

When you specify [q or Q]openmp, it implies [q or Q]openmp-simd.

If you specify this option with the [q or Q]openmp option, it can impact other OpenMP features.

Option -qopenmp-simd is equivalent to option -fiopenmp-simd; option /Qopenmp-simd is equivalent to
option /Qiopenmp-simd.

NOTE
Advanced users who prefer to use OpenMP* as it is implemented by the LLVM community,
can get most of that functionality by using options -fopenmp and -fopenmp-simd.

IDE Equivalent

None

Alternate Options

Linux: -fiopenmp-simd

Windows /Qiopenmp-simd

Example
The lines in the following example are equivalent to specifying only [q or Q]openmp-simd. In this case,
only SIMD support is provided, the OpenMP* library is not linked, and only the !$OMP directives related to
SIMD are processed:

Linux

-qno-openmp -qopenmp-simd   
Windows

/Qopenmp- /Qopenmp-simd     
In the following example, SIMD support is provided, the OpenMP library is linked, and OpenMP runtime
initialization code is generated:

Linux

-qopenmp -qopenmp-simd       
Windows

/Qopenmp /Qopenmp-simd       

See Also
qopenmp, Qopenmp  compiler option
O  compiler option

qopenmp-stubs, Qopenmp-stubs
Enables compilation of OpenMP* programs in
sequential mode.

Compiler Reference   

177



Syntax

Linux OS:

-qopenmp-stubs
Windows OS:

/Qopenmp-stubs

Arguments

None

Default

OFF The library of OpenMP* function stubs is not linked.

Description

This option enables compilation of OpenMP* programs in sequential mode. The OpenMP directives are
ignored and a stub OpenMP library is linked.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Language > OpenMP Support

Linux

Eclipse: Language > Process OpenMP Directives

Alternate Options

None

See Also
qopenmp, Qopenmp  compiler option

reuse-exe
Tells the compiler to speed up Field Programmable
Gate Array (FPGA) target compile time by reusing a
previously compiled FPGA hardware image.

Syntax

Linux OS:

-reuse-exe=exe-filename
Windows OS:

-reuse-exe=exe-filename

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

178



Arguments

exe-filename Is a previously compiled SYCL* binary.

Default

OFF There is no potential compile-time speed up by reusing the executable for the FPGA target.

Description

This option tells the compiler to speed up FPGA target compile time by reusing a previously compiled FPGA
hardware image. This option is useful only when compiling for hardware.

It lets you minimize or avoid long Intel® Quartus® Prime Software compile times for FPGA targets when the
device code is unchanged.

NOTE
When offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Wno-sycl-strict
Disables warnings that enforce strict SYCL* language
compatibility.

Syntax

Linux OS:

-Wno-sycl-strict
Windows OS:

-Wno-sycl-strict

Arguments

None

Default

OFF Warnings that enforce strict SYCL* language compatibility are enabled.

Description

This option disables warnings that enforce strict SYCL* language compatibility.

IDE Equivalent

None

Compiler Reference   

179



Alternate Options

None

Xopenmp-target
Enables options to be passed to the specified tool in
the device compilation tool chain for the target.

Syntax

Linux OS:

-Xopenmp-target-tool=T "options"
Windows OS:

-Xopenmp-target-tool=T "options"

Arguments

tool Can be one of the following:

frontend Indicates the frontend + middle end of the Standard
Portable Intermediate Representation (SPIR-V*)-based
device compiler for target triple T.

The middle end is the part of a SPIR-V*-based device
compiler that generates SPIR-V*. This SPIR-V* is then
passed by the dpcpp driver to the backend of target T.

backend Indicates Ahead of Time (AOT) compilation for target triple
T and Just in Time (JIT) compilation for target T at
runtime.

linker Indicates the device code linker for target triple T.

Some targets may have frontend and backend in one component; in that case, options are
merged.

T Is the target triple device.

options Are the options you want to pass to tool.

Default

OFF No options are passed to a tool.

Description

This option enables options to be passed to the specified tool in the device compilation tool chain for the
target.

NOTE
When OpenMP* offloading is enabled, this option only applies to device-specific compilation.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

180



IDE Equivalent

Windows

Visual Studio: Linker > General > Pass <arg> to the backend of target device compiler specified by
<triple> for OpenMP offload

DPC++ > Language > Pass <arg> to the frontend of target device compiler for OpenMP offload

C/C++ > Language [Intel C++] > Pass <arg> to the frontend of target device compiler for
OpenMP offload

Linker > General > Pass <arg> to the device code linker for OpenMP offload

Linux

Eclipse: Linker(Or Intel C++ Linker) > General > Pass <arg> to the backend of target device
compiler specified by <triple> for OpenMP offload

Intel(R) oneAPI DPC++ Compiler > Language > Pass <arg> to the frontend of target device
compiler for OpenMP offload

Intel C++ Compiler > Language > Pass <arg> to the frontend of target device compiler for
OpenMP offload     

Linker(Or Intel C++ Linker) > General > Pass <arg> to the device code linker for OpenMP offload

Alternate Options

None

Xs
Passes options to the backend tool.

Syntax

Linux OS:

-Xs -option or -Xsoption
Windows OS:

-Xs -option or -Xsoption

Arguments

option Is the option that you want to pass to the backend tool in device
compilation.

To see the values you can use for option, specify compiler option
-fsycl-help to display the help information for the offline tools.

Default

OFF No options are passed to the backend tool.

Description

This option passes options to the backend tool. It is a shortcut for option Xsycl-target-backend.

For example, the following option (using syntax form -Xsoption):

  -Xsversion

Compiler Reference   

181



and the following option (using syntax form -Xs -option):

  -Xs -version
are both equivalent to specifying:

  -Xsycl-target-backend -version

NOTE
When using Ahead of Time (AOT) compilation, the options passed with -Xs are not compiler
options.

To see a list of the options you can pass with -Xs when using AOT, specify -fsycl-help=gen,
-fsycl-help=x86_64, or -fsycl-help=fpga on the command line.

NOTE
When offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: Linker > General > Enable FPGA hardware build

Eclipse

Eclipse: Linker > General > Enable FPGA hardware build

Alternate Options

None

See Also
Xsycl-target
 compiler option

Xsycl-target
Enables options to be passed to the specified tool in
the device compilation tool chain for the target.

Syntax

Linux OS:

-Xsycl-target-tool=T "options"
Windows OS:

-Xsycl-target-tool=T "options"

Arguments

tool Can be one of the following:

frontend Indicates the frontend + middle end of the Standard
Portable Intermediate Representation (SPIR-V*)-based
device compiler for target triple T.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

182



The middle end is the part of a SPIR-V*-based device
compiler that generates SPIR-V*. This SPIR-V* is then
passed by the dpcpp driver to the backend of target T.

backend Indicates Ahead of Time (AOT) compilation for target triple
T and Just in Time (JIT) compilation for target T at
runtime.

linker Indicates the device code linker for target triple T.

Some targets may have frontend and backend in one component; in that case, options are
merged.

T Is the target triple device.

options Are the options you want to pass to tool.

Default

OFF No options are passed to a tool.

Description

This option enables options to be passed to the specified tool in the device compilation tool chain for the
target.

NOTE
When SYCL offloading is enabled, this option only applies to device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: Linker > General > Pass <arg> to the backend of target device compiler specified by
<triple> (target-backend)

DPC++ > General > Pass <arg> to the frontend of target device compiler (target-frontend)

Linker > General > Pass <arg> to the device code linker (target-linker)

Eclipse

Eclipse: Linker > General > Pass <arg> to the backend of target device compiler specified by
<triple> (target-backend)

Intel(R) oneAPI DPC++ Compiler > General > Pass <arg> to the frontend of target device
compiler (target-frontend)

Linker > General > Pass <arg> to the device code linker (target-linker)

Alternate Options

None.

See Also
Xs
 compiler option

Compiler Reference   

183



Floating-Point Options
This section contains descriptions for compiler options that pertain to floating-point calculations. They are
listed in alphabetical order.

ffp-contract
Controls when the compiler is permitted to form fused
floating-point operations, such as fused multiply-add
(FMA). Fused operations are allowed to produce more
precise results than performing the individual
operations separately.

Syntax

Linux OS:

-ffp-contract=keyword
Windows OS:

None

Arguments

keyword Possible values are:

fast Fuses floating-point operations across statements.

on Fuses floating-point operations within the same statement.

off Does not fuse floating-point operations.

Default

-ffp-contract=fast Fuses floating-point operations across statements.

However, if option -fp-model=strict is specified, the default is
-ffp-contract=off.

Description

This option controls when the compiler is permitted to form fused floating-point operations, such as fused
multiply-add (FMA). Fused operations are allowed to produce more precise results than performing the
individual operations separately.

IDE Equivalent

None

Alternate Options

None

See Also
fp-model, fp  compiler option

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

184



fimf-absolute-error, Qimf-absolute-error
Defines the maximum allowable absolute error for
math library function results.

Syntax

Linux OS:

-fimf-absolute-error=value[:funclist]
Windows OS:

/Qimf-absolute-error:value[:funclist]

Arguments

value Is a positive, floating-point number. Errors in math library function results may exceed
the maximum relative error (max-error) setting if the absolute-error is less than or
equal to value.

The format for the number is [digits] [.digits] [ { e | E }[sign]digits]

funclist Is an optional list of one or more math library functions to which the attribute should
be applied. If you specify more than one function, they must be separated with
commas.

Precision-specific variants like sin and sinf are considered different functions, so you
would need to use -fimf-absolute-error=0.00001:sin,sinf
(or /Qimf-absolute-error:0.00001:sin,sinf) to specify the maximum allowable
absolute error for both the single-precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides, symbol / to
denote double-precision divides, symbol /l to denote extended-precision divides, and
symbol /q to denote quad-precision divides. For example you can specify
-fimf-absolute-error=0.00001:/ or /Qimf-absolute-error: 0.00001:/.

Default

Zero ("0") An absolute-error setting of 0 means that the function is bound by the relative error
setting. This is the default behavior.

Description

This option defines the maximum allowable absolute error for math library function results.

This option can improve run-time performance, but it may decrease the accuracy of results.

This option only affects functions that have zero as a possible return value, such as log, sin, asin, etc.

The relative error requirements for a particular function are determined by options that set the maximum
relative error (max-error) and precision. The return value from a function must have a relative error less
than the max-error value, or an absolute error less than the absolute-error value.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-absolute-error=0.00001:sin
or /Qimf-absolute-error:0.00001:sin, or -fimf-absolute-error=0.00001:sqrtf
or /Qimf-absolute-error:0.00001:sqrtf.

Compiler Reference   

185



If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-accuracy-bits, Qimf-accuracy-bits  compiler option
fimf-arch-consistency, Qimf-arch-consistency  compiler option
fimf-domain-exclusion, Qimf-domain-exclusion  compiler option
fimf-max-error, Qimf-max-error  compiler option
fimf-precision, Qimf-precision  compiler option
fimf-use-svml_Qimf-use-svml  compiler option

fimf-accuracy-bits, Qimf-accuracy-bits
Defines the relative error for math library function
results, including division and square root.

Syntax

Linux OS:

-fimf-accuracy-bits=bits[:funclist]
Windows OS:

/Qimf-accuracy-bits:bits[:funclist]

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

186

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Arguments

bits Is a positive, floating-point number indicating the number of correct bits the compiler
should use.

The format for the number is [digits] [.digits] [ { e | E }[sign]digits].

funclist Is an optional list of one or more math library functions to which the attribute should
be applied. If you specify more than one function, they must be separated with
commas.

Precision-specific variants like sin and sinf are considered different functions, so you
would need to use -fimf-accuracy-bits=23:sin,sinf
(or /Qimf-accuracy-bits:23:sin,sinf) to specify the relative error for both the
single-precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides, symbol / to
denote double-precision divides, symbol /l to denote extended-precision divides, and
symbol /q to denote quad-precision divides. For example you can specify
-fimf-accuracy-bits=10.0:/f or /Qimf-accuracy-bits:10.0:/f.

Default

-fimf-precision=medium or /Qimf-
precision:medium

The compiler uses medium precision when calling math library
functions. Note that other options can affect precision; see below
for details.

Description

This option defines the relative error, measured by the number of correct bits, for math library function
results.

The following formula is used to convert bits into ulps: ulps = 2p-1-bits, where p is the number of the target
format mantissa bits (24, 53, and 64 for single, double, and long double, respectively).

This option can affect run-time performance and the accuracy of results.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in the following:

Linux

• -fimf-accuracy-bits=23:sinf,cosf,logf
• -fimf-accuracy-bits=52:sqrt,/,trunc
• -fimf-accuracy-bits=10:powf
Windows

• /Qimf-accuracy-bits:23:sinf,cosf,logf
• /Qimf-accuracy-bits:52:sqrt,/,trunc
• /Qimf-accuracy-bits:10:powf
If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

There are three options you can use to express the maximum relative error. They are as follows:

Linux

Compiler Reference   

187



• -fimf-precision
• -fimf-max-error
• -fimf-accuracy-bits
Windows

• /Qimf-precision
• /Qimf-max-error
• /Qimf-accuracy-bits
If more than one of these options are specified, the default value for the maximum relative error is
determined by the last one specified on the command line.

If none of the above options are specified, the default values for the maximum relative error are determined
by the setting of the following options:

• -fp-model (Linux) or /fp (Windows)

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-absolute-error, Qimf-absolute-error  compiler option
fimf-arch-consistency, Qimf-arch-consistency  compiler option
fimf-domain-exclusion, Qimf-domain-exclusion  compiler option
fimf-max-error, Qimf-max-error  compiler option
fimf-precision, Qimf-precision  compiler option
fimf-use-svml_Qimf-use-svml  compiler option

fimf-arch-consistency, Qimf-arch-consistency
Ensures that the math library functions produce
consistent results across different microarchitectural
implementations of the same architecture.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

188

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Syntax

Linux OS:

-fimf-arch-consistency=value[:funclist]
Windows OS:

/Qimf-arch-consistency:value[:funclist]

Arguments

value Is one of the logical values "true" or "false".

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. If you specify more than one function,
they must be separated with commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-arch-consistency=true:sin,sinf
(or /Qimf-arch-consistency:true:sin,sinf) to specify consistent
results for both the single-precision and double-precision sine
functions.

You also can specify the symbol /f to denote single-precision divides,
symbol / to denote double-precision divides, symbol /l to denote
extended-precision divides, and symbol /q to denote quad-precision
divides. For example you can specify
-fimf-arch-consistency=true:/
or /Qimf-arch-consistency:true:/.

Default

false Implementations of some math library functions may produce slightly different results on
implementations of the same architecture.

Description

This option ensures that the math library functions produce consistent results across different
microarchitectural implementations of the same architecture (for example, across different microarchitectural
implementations of IA-32 architecture). Consistency is only guaranteed for a single binary. Consistency is not
guaranteed across different architectures. For example, consistency is not guaranteed across IA-32
architecture and Intel® 64 architecture.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example:

Linux

If you want double precision, you can specify :sin; if you want single precision, you can specify :sinf, as in
-fimf-arch-consistency=true:sin or -fimf-arch-consistency=false:sqrtf.

Windows

If you want double precision, you can specify :sin; if you want single precision, you can specify :sinf, as
in /Qimf-arch-consistency:true:sin or /Qimf-arch-consistency:false:sqrtf.

Compiler Reference   

189



If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

The -fimf-arch-consistency (Linux*) and /Qimf-arch-consistency (Windows*) option may decrease
run-time performance, but the option will provide bit-wise consistent results on all Intel® processors and
compatible, non-Intel processors, regardless of micro-architecture. This option may not provide bit-wise
consistent results between different architectures.

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-absolute-error, Qimf-absolute-error  compiler option
fimf-accuracy-bits, Qimf-accuracy-bits  compiler option
fimf-domain-exclusion, Qimf-domain-exclusion  compiler option
fimf-max-error, Qimf-max-error  compiler option
fimf-precision, Qimf-precision  compiler option
fimf-use-svml_Qimf-use-svml  compiler option

fimf-domain-exclusion, Qimf-domain-exclusion
Indicates the input arguments domain on which math
functions must provide correct results.

Syntax

Linux OS:

-fimf-domain-exclusion=classlist[:funclist]
Windows OS:

/Qimf-domain-exclusion:classlist[:funclist]

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

190

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Arguments

classlist Is one of the following:

• One or more of the following floating-point value classes you can exclude from the
function domain without affecting the correctness of your program. The supported
class names are:

extremes This class is for values which do not lie within the
usual domain of arguments for a given function.

nans This means "x=Nan".

infinities This means "x=infinities".

denormals This means "x=denormal".

zeros This means "x=0".

Each classlist element corresponds to a power of two. The exclusion attribute is the
logical or of the associated powers of two (that is, a bitmask).

The following shows the current mapping from classlist mnemonics to numerical
values:

extremes 1

nans 2

infinities 4

denormals 8

zeros 16

none 0

all 31

common 15

other combinations bitwise OR of the used values

You must specify the integer value that corresponds to the class that you want to
exclude.

Note that on excluded values, unexpected results may occur.
• One of the following short-hand tokens:

none This means that none of the supported classes are
excluded from the domain. To indicate this token,
specify 0, as in -fimf-domain-exclusion=0
(or /Qimf-domain-exclusion:0).

all This means that all of the supported classes are
excluded from the domain. To indicate this token,
specify 31, as in -fimf-domain-exclusion=31
(or /Qimf-domain-exclusion:31).

Compiler Reference   

191



common This is the same as specifying
extremes,nans,infinities,denormals. To indicate this
token, specify 15 (1 + 2+ 4 + 8), as in
-fimf-domain-exclusion=15
(or /Qimf-domain-exclusion:15)

funclist Is an optional list of one or more math library functions to which the attribute should
be applied. If you specify more than one function, they must be separated with
commas.

Precision-specific variants like sin and sinf are considered different functions, so you
would need to use -fimf-domain-exclusion=4:sin,sinf
(or /Qimf-domain-exclusion:4:sin,sinf) to specify infinities for both the single-
precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides, symbol / to
denote double-precision divides, symbol /l to denote extended-precision divides, and
symbol /q to denote quad-precision divides. For example, you can specify:

-fimf-domain-exclusion=4 or /Qimf-domain-exclusion:4
-fimf-domain-exclusion=5:/,powf or /Qimf-domain-exclusion:5:/,powf
-fimf-domain-exclusion=23:log,logf,/,sin,cosf
or /Qimf-domain-exclusion:23:log,logf,/,sin,cosf
If you don't specify argument funclist, the domain restrictions apply to all math library
functions.

Default

Zero ("0") The compiler uses default heuristics when calling math library functions.

Description

This option indicates the input arguments domain on which math functions must provide correct results. It
specifies that your program will function correctly if the functions specified in funclist do not produce
standard conforming results on the number classes.

This option can affect run-time performance and the accuracy of results. As more classes are excluded, faster
code sequences can be used.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-domain-exclusion=denormals:sin
or /Qimf-domain-exclusion:denormals:sin, or -fimf-domain-exclusion=extremes:sqrtf
or /Qimf-domain-exclusion:extremes:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

192



NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

Example
Consider the following single-precision sequence for function exp2f:

Operation: y = exp2f(x)

Accuracy: 1.014 ulp

Instructions: 4 (2 without fix-up)

The following shows the 2-instruction sequence without the fix-up:

vcvtfxpntps2dq  zmm1 {k1}, zmm0, 0x50      // zmm1 <-- rndToInt(2^24 * x)
vexp223ps       zmm1 {k1}, zmm1            // zmm1 <-- exp2(x)

However, the above 2-instruction sequence will not correctly process NaNs. To process Nans correctly, the
following fix-up must be included following the above instruction sequence:

vpxord          zmm2, zmm2, zmm2             // zmm2 <-- 0
vfixupnanps     zmm1 {k1}, zmm0, zmm2 {aaaa} // zmm1 <-- QNaN(x) if x is NaN <F>

If the vfixupnanps instruction is not included, the sequence correctly processes any arguments except NaN
values. For example, the following options generate the 2-instruction sequence:

-fimf-domain-exclusion=2:exp2f      <- NaN’s are excluded (2 corresponds to NaNs)
-fimf-domain-exclusion=6:exp2f      <- NaN’s and infinities are excluded (4 corresponds to 
infinities; 2 + 4 = 6)
-fimf-domain-exclusion=7:exp2f      <- NaN’s, infinities, and extremes are excluded (1 
corresponds to extremes; 2 + 4 + 1 = 7)
-fimf-domain-exclusion=15:exp2f     <- NaN’s, infinities, extremes, and denormals are excluded 
(8 corresponds to denormals;  2 + 4 + 1 + 8=15)

If the vfixupnanps instruction is included, the sequence correctly processes any arguments including NaN
values. For example, the following options generate the 4-instruction sequence:

-fimf-domain-exclusion=1:exp2f      <- only extremes are excluded (1 corresponds to extremes)
-fimf-domain-exclusion=4:exp2f      <- only infinities are excluded (4 corresponds to infinities)
-fimf-domain-exclusion=8:exp2f      <- only denormals are excluded (8 corresponds to denormals)
-fimf-domain-exclusion=13:exp2f     <- only extremes, infinities and denormals are excluded (1 + 
4 + 8 = 13)

See Also
fimf-absolute-error, Qimf-absolute-error  compiler option

Compiler Reference   

193

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


fimf-accuracy-bits, Qimf-accuracy-bits  compiler option
fimf-arch-consistency, Qimf-arch-consistency  compiler option
fimf-max-error, Qimf-max-error  compiler option
fimf-precision, Qimf-precision  compiler option
fimf-use-svml_Qimf-use-svml  compiler option

fimf-force-dynamic-target, Qimf-force-dynamic-target
Instructs the compiler to use run-time dispatch in calls
to math functions.

Syntax

Linux OS:

-fimf-force-dynamic-target[=funclist]
Windows OS:

/Qimf-force-dynamic-target[:funclist]

Arguments

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. If you specify more than one function,
they must be separated with commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-dynamic-target=sin,sinf
(or /Qimf-dynamic-target:sin,sinf) to specify run-time dispatch
for both the single-precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides,
symbol / to denote double-precision divides, symbol /l to denote
extended-precision divides, and symbol /q to denote quad-precision
divides. For example, you can specify -fimf-dynamic-target=/
or /Qimf-dynamic-target:/.

Default

OFF Run-time dispatch is not forced in math libraries calls. The compiler can choose to call a CPU-
specific version of a math function if one is available.

Description

This option instructs the compiler to use run-time dispatch in calls to math functions. When this option set to
ON, it lets you force run-time dispatch in math libraries calls.

If you want to target multiple CPU families with a single application or you prefer to choose a target CPU at
run time, you can force run-time dispatch in math libraries by using this option.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

194



Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

fimf-max-error, Qimf-max-error
Defines the maximum allowable relative error for
math library function results, including division and
square root.

Syntax

Linux OS:

-fimf-max-error=ulps[:funclist]
Windows OS:

/Qimf-max-error:ulps[:funclist]

Arguments

ulps Is a positive, floating-point number indicating the maximum allowable
relative error the compiler should use.

The format for the number is [digits] [.digits] [ { e | E }[sign]digits].

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. If you specify more than one function,
they must be separated with commas.

Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-max-error=4.0:sin,sinf
(or /Qimf-max-error=4.0:sin,sinf) to specify the maximum
allowable relative error for both the single-precision and double-
precision sine functions.

You also can specify the symbol /f to denote single-precision divides,
symbol / to denote double-precision divides, symbol /l to denote
extended-precision divides, and symbol /q to denote quad-precision
divides. For example you can specify -fimf-max-error=4.0:/
or /Qimf-max-error:4.0:/.

Default

-fimf-precision=medium or /Qimf-
precision:medium

The compiler uses medium precision when calling math library
functions. Note that other options can affect precision; see below
for details.

Compiler Reference   

195

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Description

This option defines the maximum allowable relative error, measured in ulps, for math library function results.

This option can affect run-time performance and the accuracy of results.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-max-error=4.0:sin or /Qimf-max-error:4.0:sin, or
-fimf-max-error=4.0:sqrtf or /Qimf-max-error:4.0:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

There are three options you can use to express the maximum relative error. They are as follows:

Linux

• -fimf-precision
• -fimf-max-error
• -fimf-accuracy-bits
Windows

• /Qimf-precision
• /Qimf-max-error
• /Qimf-accuracy-bits
If more than one of these options are specified, the default value for the maximum relative error is
determined by the last one specified on the command line.

If none of the above options are specified, the default values for the maximum relative error are determined
by the setting of the following options:

• -fp-model (Linux) or /fp (Windows)

NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

196

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Alternate Options

None

See Also
fimf-absolute-error, Qimf-absolute-error  compiler option
fimf-accuracy-bits, Qimf-accuracy-bits  compiler option
fimf-arch-consistency, Qimf-arch-consistency  compiler option
fimf-domain-exclusion, Qimf-domain-exclusion  compiler option
fimf-precision, Qimf-precision  compiler option
fimf-use-svml_Qimf-use-svml  compiler option

fimf-precision, Qimf-precision
Lets you specify a level of accuracy (precision) that
the compiler should use when determining which math
library functions to use.

Syntax

Linux OS:

-fimf-precision[=value[:funclist]]
Windows OS:

/Qimf-precision[:value[:funclist]]

Arguments

value Is one of the following values denoting the desired accuracy:

high This is equivalent to max-error = 1.0.

medium This is equivalent to max-error = 4; this is
the default setting if the option is specified
and value is omitted.

low This is equivalent to accuracy-bits = 11 for
single-precision functions; accuracy-bits =
26 for double-precision functions.

Linux

In the above explanations, max-error means option
-fimf-max-error; accuracy-bits means option
-fimf-accuracy-bits.

Windows

In the above explanations, max-error means
option /Qimf-max-error (Windows*); accuracy-bits means
option /Qimf-accuracy-bits.

funclist Is an optional list of one or more math library functions to which the
attribute should be applied.

If you specify more than one function, they must be separated with
commas.

Compiler Reference   

197



Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-precision=high:sin,sinf
(or /Qimf-precision:high:sin,sinf) to specify high precision for
both the single-precision and double-precision sine functions.

You also can specify the symbol /f to denote single-precision divides,
symbol / to denote double-precision divides, symbol /l to denote
extended-precision divides, and symbol /q to denote quad-precision
divides. For example you can specify -fimf-precision=low:/
or /Qimf-precision:low:/ and -fimf-precision=low:/f
or /Qimf-precision:low:/f.

Default

medium The compiler uses medium precision when calling math library functions. Note that
other options can affect precision; see below for details.

Description

This option lets you specify a level of accuracy (precision) that the compiler should use when determining
which math library functions to use.

This option can be used to improve run-time performance if reduced accuracy is sufficient for the application,
or it can be used to increase the accuracy of math library functions selected by the compiler.

In general, using a lower precision can improve run-time performance and using a higher precision may
reduce run-time performance.

If you need to define the accuracy for a math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sinf, as in -fimf-precision=low:sin or /Qimf-precision:low:sin, or
-fimf-precision=high:sqrtf or /Qimf-precision:high:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

There are three options you can use to express the maximum relative error. They are as follows:

Linux

• -fimf-precision
• -fimf-max-error
• -fimf-accuracy-bits
Windows

• /Qimf-precision
• /Qimf-max-error
• /Qimf-accuracy-bits
If more than one of these options are specified, the default value for the maximum relative error is
determined by the last one specified on the command line.

If none of the above options are specified, the default values for the maximum relative error are determined
by the setting of the following options:

• -fp-model (Linux) or /fp (Windows)

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

198



NOTE
Many routines in libraries LIBM (Math Library) and SVML (Short Vector Math Library) are
more highly optimized for Intel® microprocessors than for non-Intel microprocessors.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fimf-absolute-error, Qimf-absolute-error  compiler option
fimf-accuracy-bits, Qimf-accuracy-bits  compiler option
fimf-arch-consistency, Qimf-arch-consistency  compiler option
fimf-domain-exclusion, Qimf-domain-exclusion  compiler option
fimf-max-error, Qimf-max-error  compiler option
fp-model, fp  compiler option
fimf-use-svml_Qimf-use-svml  compiler option

fimf-use-svml, Qimf-use-svml
Instructs the compiler to use the Short Vector Math
Library (SVML) rather than the Intel® oneAPI
DPC++/C++ Compiler Math Library (LIBM) to
implement math library functions.

Syntax

Linux OS:

-fimf-use-svml=value[:funclist]
Windows OS:

/Qimf-use-svml:value[:funclist]

Arguments

funclist Is an optional list of one or more math library functions to which the
attribute should be applied. If you specify more than one function,
they must be separated with commas.

Compiler Reference   

199

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Precision-specific variants like sin and sinf are considered different
functions, so you would need to use
-fimf-use-svmlt=true:sin,sinf
(or /Qimf-use-svml:true:sin,sinf) to specify that both the
single-precision and double-precision sine functions should use SVML.

Default

false Math library functions are implemented using the Intel® oneAPI DPC++/C++ Compiler Math
Library, though other compiler options may give the compiler the flexibility to implement math
library functions with either LIBM or SVML.

Description

This option instructs the compiler to implement math library functions using the Short Vector Math Library
(SVML).

Linux

When you specify option -fimf-use-svml=true, the specific SVML variant chosen is influenced by other
compiler options such as -fimf-precision and -fp-model.

Windows

When you specify option /Qimf-use-svml:true, the specific SVML variant chosen is influenced by other
compiler options such as /Qimf-precision and /fp.

This option has no effect on math library functions that are implemented in LIBM but not in SVML.

In value-safe settings of option -fp-model (Linux) or option /fp (Windows) such as precise, this option
causes a slight decrease in the accuracy of math library functions, because even the high accuracy SVML
functions are slightly less accurate than the corresponding functions in LIBM. Additionally, the SVML functions
might not accurately raise floating-point exceptions, do not maintain errno, and are designed to work
correctly only in round-to-nearest-even rounding mode.

The benefit of using -fimf-use-svml=true or /Qimf-use-svml:true with value-safe settings of
-fp-model (Linux) or /fp (Windows) is that it can significantly improve performance by enabling the
compiler to efficiently vectorize loops containing calls to math library functions.

If you need to use SVML for a specific math function of a certain precision, specify the function name of the
precision that you need. For example, if you want double precision, you can specify :sin; if you want single
precision, you can specify :sqrtf, as in -fimf-use-svml=true:sin or /Qimf-use-svml:true:sin, or
-fimf-use-svml =false:sqrtf or /Qimf-use-svml:false:sqrtf.

If you do not specify any function names, then the setting applies to all functions (and to all precisions).
However, as soon as you specify an individual function name, the setting applies only to the function of
corresponding precision. So, for example, sinf applies only to the single-precision sine function, sin applies
only to the double-precision sine function, sinl applies only to the extended-precision sine function, etc.

NOTE
Since SVML functions may raise unexpected floating-point exceptions, be cautious about
using features that enable trapping on floating-point exceptions.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

200



NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

None

Alternate Options

None

See Also
fp-model, fp  compiler option

fma, Qfma
Determines whether the compiler generates fused
multiply-add (FMA) instructions if such instructions
exist on the target processor.

Syntax

Linux OS:

-fma
-no-fma

Windows OS:

/Qfma
/Qfma-

Arguments

None

Default

-fma
or /Qfma

If the instructions exist on the target processor, the compiler generates fused multiply-
add (FMA) instructions.

However, if you specify -fp-model strict (Linux*) or /fp:strict (Windows*), but
do not explicitly specify -fma or /Qfma, the default is -no-fma or /Qfma-.

Description

This option determines whether the compiler generates fused multiply-add (FMA) instructions if such
instructions exist on the target processor. When the [Q]fma option is specified, the compiler may generate
FMA instructions for combining multiply and add operations. When the negative form of the [Q]fma option is
specified, the compiler must generate separate multiply and add instructions with intermediate rounding.

Compiler Reference   

201

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


This option has no effect unless setting CORE-AVX2 or higher is specified for option [Q]x,-march (Linux),
or /arch (Windows).

IDE Equivalent

None

See Also
fp-model, fp  compiler option
x, Qx  compiler option
march  compiler option
arch  compiler option

fp-model, fp
Controls the semantics of floating-point calculations.

Syntax

Linux OS:

-fp-model=keyword
Windows OS:

/fp:keyword

Arguments

keyword Specifies the semantics to be used. Possible values are:

precise Disables optimizations that are not value-safe on floating-point
data.

fast[=1|2] Enables more aggressive optimizations on floating-point data.

There is currently no difference between fast=1 and fast=2.

strict Enables precise, disables contractions, and enables pragma
stdc fenv_access.

Default

-fp-model=fast
or /fp:fast

The compiler uses more aggressive optimizations on floating-point calculations.

Description

This option controls the semantics of floating-point calculations.

The floating-point (FP) environment is a collection of registers that control the behavior of FP machine
instructions and indicate the current FP status. The floating-point environment may include rounding-mode
controls, exception masks, flush-to-zero controls, exception status flags, and other floating-point related
features.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

202



Option Description

-fp-model=precise or /fp:precise Tells the compiler to strictly adhere to value-safe
optimizations when implementing floating-point
calculations. It disables optimizations that can
change the result of floating-point calculations,
which is required for strict ANSI conformance.

These semantics ensure the reproducibility of
floating-point computations for serial code,
including code vectorized or auto-parallelized by the
compiler, but they may slow performance. They do
not ensure value safety or run-to-run reproducibility
of other parallel code.

Run-to-run reproducibility for floating-point
reductions in OpenMP* code may be obtained for a
fixed number of threads through the
KMP_DETERMINISTIC_REDUCTION environment
variable. For more information about this
environment variable, see topic "Supported
Environment Variables".

The compiler assumes the default floating-point
environment; you are not allowed to modify it.

-fp-model=fast[=1|2] or /fp:fast[=1|2] Tells the compiler to use more aggressive
optimizations when implementing floating-point
calculations. These optimizations increase speed,
but may affect the accuracy or reproducibility of
floating-point computations.

There is currently no difference between fast=1 and
fast=2.

-fp-model=strict or /fp:strict Tells the compiler to strictly adhere to value-safe
optimizations when implementing floating-point
calculations and enables floating-point exception
semantics. This is the strictest floating-point model.

The compiler does not assume the default floating-
point environment; you are allowed to modify it.

The -fp-model and /fp options determine the setting for the maximum allowable relative error for math
library function results (max-error) if none of the following options are specified:

• -fimf-accuracy-bits (Linux*) or /Qimf-accuracy-bits (Windows*)
• -fimf-max-error (Linux) or /Qimf-max-error (Windows)
• -fimf-precision (Linux) or /Qimf-precision (Windows)

Option -fp-model=fast (and /fp:fast) sets option -fimf-precision=medium
(/Qimf-precision:medium) and option -fp-model=precise (and /fp:precise); it implies
-fimf-precision=high (and /Qimf-precision:high).

Option -fp-model=fast=2 (and /fp:fast2) sets option -fimf-precision=medium
(and /Qimf-precision:medium) and option -fimf-domain-exclusion=15
(and /Qimf-domain-exclusion=15).

Compiler Reference   

203



NOTE
In Microsoft* Visual Studio, when you create a Microsoft* Visual C++ project,
option /fp:precise is set by default. It sets the floating-point model to improve consistency
for floating-point operations by disabling certain optimizations that may reduce
performance. To set the option back to the general default /fp:fast, change the IDE project
property for Floating Point Model to Fast.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

IDE Equivalent

Visual Studio

Visual Studio: Code Generation>Floating Point Model

Code Generation>Enable Floating Point Exceptions

Code Generation> Floating Point Expression Evaluation

Eclipse

Eclipse: Floating Point > Floating Point Model

Alternate Options

None

See Also
O  compiler option (specifically O0)
Od  compiler option
fimf-absolute-error, Qimf-absolute-error  compiler option
fimf-accuracy-bits, Qimf-accuracy-bits  compiler option
fimf-max-error, Qimf-max-error  compiler option
fimf-precision, Qimf-precision  compiler option
fimf-domain-exclusion, Qimf-domain-exclusion  compiler option
Supported Environment Variables
The article titled: Consistency of Floating-Point Results using the Intel® Compiler

fp-speculation, Qfp-speculation
Tells the compiler the mode in which to speculate on
floating-point operations.

Syntax

Linux OS:

-fp-speculation=mode
Windows OS:

/Qfp-speculation:mode

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

204

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://software.intel.com/content/www/us/en/develop/articles/consistency-of-floating-point-results-using-the-intel-compiler.html


Arguments

mode Is the mode for floating-point operations. Possible values are:

fast Tells the compiler to speculate on floating-
point operations.

safe Tells the compiler to disable speculation if
there is a possibility that the speculation
may cause a floating-point exception.

strict Tells the compiler to disable speculation on
floating-point operations.

off This is the same as specifying strict.

Default

-fp-speculation=fast
or /Qfp-speculation:fast

The compiler speculates on floating-point operations. This is also the
behavior when optimizations are enabled.

However, if you specify no optimizations (-O0), the default changes:

Linux

In this case, the default is -fp-speculation=safe.

Windows

In this case, the default is /Qfp-speculation:safe.

Description

This option tells the compiler the mode in which to speculate on floating-point operations.

Disabling speculation may prevent the vectorization of some loops containing conditionals.

IDE Equivalent

Visual Studio

Visual Studio: Optimization > Floating-Point Speculation

Eclipse

Eclipse: Floating Point > Floating-Point Speculation

Alternate Options

None

pc, Qpc
Enables control of floating-point significand precision.

Syntax

Linux OS:

-pcn

Windows OS:

/Qpcn

Compiler Reference   

205



Arguments

n Is the floating-point significand precision. Possible values are:

32 Rounds the significand to 24 bits (single
precision).

64 Rounds the significand to 53 bits (double
precision).

80 Rounds the significand to 64 bits (extended
precision).

Default

-pc80
or /Qpc64

On Linux* systems, the floating-point significand is rounded to 64 bits.

On Windows* systems, the floating-point significand is rounded to 53 bits.

Description

This option enables control of floating-point significand precision.

Some floating-point algorithms are sensitive to the accuracy of the significand, or fractional part of the
floating-point value. For example, iterative operations like division and finding the square root can run faster
if you lower the precision with this option.

Note that a change of the default precision control or rounding mode, for example, by using the [Q]pc32
option or by user intervention, may affect the results returned by some of the mathematical functions.

IDE Equivalent

None

Alternate Options

None

Inlining Options
This section contains descriptions for compiler options that pertain to inlining. They are listed in alphabetical
order.

fgnu89-inline
Tells the compiler to use C89 semantics for inline
functions when in C99 mode.

Syntax

Linux OS:

-fgnu89-inline
Windows OS:

None

Arguments

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

206



Default

OFF

Description

This option tells the compiler to use C89 semantics for inline functions when in C99 mode.

IDE Equivalent

None

Alternate Options

None

finline
Tells the compiler to inline functions declared with
__inline and perform C++ inlining.

Syntax

Linux OS:

-finline
-fno-inline

Windows OS:

None

Arguments

None

Default

-fno-inline The compiler does not inline functions declared with __inline.

Description

This option tells the compiler to inline functions declared with __inline and perform C++ inlining.

IDE Equivalent

None

Alternate Options

None

finline-functions
Enables function inlining for single file compilation.

Syntax

Linux OS:

-finline-functions
-fno-inline-functions

Compiler Reference   

207



Windows OS:

None

Arguments

None

Default

-finline-functions Interprocedural optimizations occur. However, if you specify -O0, the default
is OFF.

Description

This option enables function inlining for single file compilation.

It enables the compiler to perform inline function expansion for calls to functions defined within the current
source file.

The compiler applies a heuristic to perform the function expansion.

IDE Equivalent

None

Alternate Options

None

Output, Debug, and Precompiled Header Options
This section contains descriptions for compiler options that pertain to output, debugging, or precompiled
headers (PCH). They are listed in alphabetical order.

c
Prevents linking.

Syntax

Linux OS:

-c

Windows OS:

/c

Arguments

None

Default

OFF Linking is performed.

Description

This option prevents linking. Compilation stops after the object file is generated.

The compiler generates an object file for each C or C++ source file or preprocessed source file. It also takes
an assembler file and invokes the assembler to generate an object file.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

208



IDE Equivalent

None

Alternate Options

None

debug (Linux*)
Enables or disables generation of debugging
information.

Syntax

Linux OS:

-debug [keyword]
Windows OS:

None

Arguments

keyword Is the type of debugging information to be generated. Possible values are:

none Disables generation of debugging information.

full or all Generates complete debugging information.

minimal Generates line number information for debugging.

[no]emit_column Determines whether the compiler generates column
number information for debugging.

[no]expr-source-pos Determines whether the compiler generates source position
information at the expression level of granularity.

[no]inline-debug-info Determines whether the compiler generates enhanced
debug information for inlined code.

[no]pubnames Determines whether the compiler generates a DWARF
debug_pubnames section.

[no]semantic-stepping Determines whether the compiler generates enhanced
debug information useful for breakpoints and stepping.

[no]variable-locations Determines whether the compiler generates enhanced
debug information useful in finding scalar local variables.

extended Generates complete debugging information and also sets
keyword values semantic-stepping and variable-
locations.

[no]parallel
(Linux only)

Determines whether the compiler generates parallel debug
code instrumentations useful for thread data sharing and
reentrant call detection.

For information on the non-default settings for these keywords, see the Description section.

Compiler Reference   

209



Default

varies Normally, the default is -debug none and no debugging information is
generated. However, on Linux*, the -debug inline-debug-info
option will be enabled by default if you compile with optimizations
(option -O2 or higher) and debugging is enabled (option -g).

Description

This option enables or disables generation of debugging information.

By default, enabling debugging, will disable optimization. To enable both debugging and optimization use the
-debug option together with one of the optimization level options (-O3, -O2 or -O3).

Keywords semantic-stepping, inline-debug-info, variable-locations, and extended can be used in
combination with each other. If conflicting keywords are used in combination, the last one specified on the
command line has precedence.

Option Description

-debug none Disables generation of debugging information.

-debug full or -debug all Generates complete debugging information. It is the same as specifying
-debug with no keyword.

-debug minimal Generates line number information for debugging.

-debug emit_column Generates column number information for debugging.

-debug expr-source-pos Generates source position information at the statement level of
granularity.

-debug inline-debug-info Generates enhanced debug information for inlined code.

On inlined functions, symbols are (by default) associated with the caller.
This option causes symbols for inlined functions to be associated with the
source of the called function.

-debug pubnames The compiler generates a DWARF debug_pubnames section. This provides
a means to list the names of global objects and functions in a compilation
unit.

-debug semantic-stepping Generates enhanced debug information useful for breakpoints and
stepping. It tells the debugger to stop only at machine instructions that
achieve the final effect of a source statement.

For example, in the case of an assignment statement, this might be a
store instruction that assigns a value to a program variable; for a function
call, it might be the machine instruction that executes the call. Other
instructions generated for those source statements are not displayed
during stepping.

This option has no impact unless optimizations have also been enabled.

-debug variable-locations Generates enhanced debug information useful in finding scalar local
variables. It uses a feature of the Dwarf object module known as
"location lists".

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

210



Option Description

This feature allows the run-time locations of local scalar variables to be
specified more accurately; that is, whether, at a given position in the
code, a variable value is found in memory or a machine register.

-debug extended Sets keyword values semantic-stepping and variable-locations. It
also tells the compiler to include column numbers in the line information.

Generates complete debugging information and also sets keyword values
semantic-stepping and variable-locations. This is a more powerful
setting than -debug full or -debug all.

-debug parallel Generates parallel debug code instrumentations needed for the thread
data sharing and reentrant call detection.

This content does not apply to SYCL.

For shared data and reentrancy detection, option -qopenmp must be set.

On Linux* systems, debuggers read debug information from executable images. As a result, information is
written to object files and then added to the executable by the linker.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Advanced Debugging > Enable Parallel Debug Checks (-debug parallel)

Debug > Enable Expanded Line Number Information (-debug expr-source-pos)

Alternate Options

For -debug full, -debug all, or
-debug

Linux: -g
Windows: /debug:full, /debug:all, or /debug

See Also
debug (Windows*)  compiler option
qopenmp, Qopenmp  compiler option

debug (Windows*)
Enables or disables generation of debugging
information.

Syntax

Linux OS:

None
Windows OS:

/debug[:keyword]

Compiler Reference   

211



Arguments

keyword Is the type of debugging information to be generated. Possible values are:

none Disables generation of debugging information.

full or all Generates complete debugging information.

minimal Generates line number information for debugging.

partial Deprecated. Generates global symbol table information needed for
linking.

[no]expr-
source-pos

Determines whether the compiler generates source position information
at the expression level of granularity.

[no]inline-
debug-info

Determines whether the compiler generates enhanced debug information
for inlined code.

For information on the non-default settings for these keywords, see the Description section.

Default

/debug:none This is the default on the command line and for a release configuration in the IDE.

/debug:all This is the default for a debug configuration in the IDE.

Description

This option enables or disables generation of debugging information. It is passed to the linker.

By default, enabling debugging, will disable optimization. To enable both debugging and optimization use
the /debug option together with one of the optimization level options (/O3, /O2 or /O3).

If conflicting keywords are used in combination, the last one specified on the command line has precedence.

Option Description

/debug:none Disables generation of debugging information.

/debug:full or /debug:all Generates complete debugging information. It produces
symbol table information needed for full symbolic debugging of
unoptimized code and global symbol information needed for
linking. It is the same as specifying /debug with no keyword.

/debug:minimal Generates line number information for debugging.

/debug:partial Generates global symbol table information needed for linking,
but not local symbol table information needed for debugging.
This option is deprecated and is not available in the IDE.

/debug:expr-source-pos Generates source position information at the statement level
of granularity.

/debug:inline-debug-info Generates enhanced debug information for inlined code.

On inlined functions, symbols are (by default) associated with
the caller. This option causes symbols for inlined functions to
be associated with the source of the called function.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

212



IDE Equivalent

Windows

Visual Studio: Debugging > Enable Expanded Line Number Information (/debug:expr-source-pos)

Linux

Eclipse: None

Alternate Options

For /debug:all or
/debug

Linux: None
Windows: /Zi

See Also
debug (Linux*)  compiler option

Fa
Specifies that an assembly listing file should be
generated.

Syntax

Linux OS:

-Fa[filename|dir]
Windows OS:

/Fa[filename|dir]

Arguments

filename Is the name of the assembly listing file.

dir Is the directory where the file should be placed. It can include
filename.

Default

OFF No assembly listing file is produced.

Description

This option specifies that an assembly listing file should be generated (optionally named filename).

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Output Files > ASM List Location

Compiler Reference   

213



Linux

Eclipse: Output > Generate Assembler Source and Binary Files

Alternate Options

Linux: -S
Windows: /S

fasm-blocks
Enables the use of blocks and entire functions of
assembly code within a C or C++ file.

Syntax

Linux OS:

-fasm-blocks
Windows OS:

None

Arguments

None

Default

OFF The compiler allows a GNU*-style inline assembly format.

Description

This option enables the use of blocks and entire functions of assembly code within a C or C++ file.

It allows a Microsoft* MASM-style inline assembly block not a GNU*-style inline assembly block.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

-use-msasm

FD
Generates file dependencies related to the Microsoft*
C/C++ compiler.

Syntax

Linux OS:

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

214



Windows OS:

/FD

Arguments

None

Default

OFF The compiler does not generate Microsoft C/C++-related file dependencies.

Description

This option generates file dependencies related to the Microsoft* C/C++ compiler. It invokes the Microsoft
C/C++ compiler and passes the option to it.

IDE Equivalent

None

Alternate Options

None

Fe
Specifies the name for a built program or dynamic-link
library.

Syntax

Linux OS:

None
Windows OS:

/Fe[[:]filename|dir]

Arguments

filename Is the name for the built program or dynamic-link library.

dir Is the directory where the built program or dynamic-link library should
be placed. It can include file.

Default

OFF The name of the file is the name of the first source file on the command line with file
extension .exe, so file.f becomes file.exe.

Description

This option specifies the name for a built program (.EXE) or a dynamic-link library (.DLL).

You can use this option to specify an alternate name for an executable file. This is especially useful when
compiling and linking a set of input files. You can use the option to give the resulting file a name other than
that of the first input file (source or object) on the command line.

Compiler Reference   

215



NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

Linux: -o
Windows: None

Example
In the following example, the command produces an executable file named outfile.exe as a result of
compiling and linking three files: one object file and two C++ source files.

prompt> icx /Feoutfile.exe file1.obj file2.cpp file3.cpp
This command produces an executable file named file1.exe when the /Fe option is not used.

See Also
o  compiler option

Fo
Specifies the name for an object file.

Syntax

Linux OS:

See option o.

Windows OS:

/Fo[[:]filename|dir]

Arguments

filename Is the name for the object file.

dir Is the directory where the object file should be placed. It can include
filename.

Default

OFF An object file has the same name as the name of the first source file and a file extension of .obj.

Description

This option specifies the name for an object file.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

216



IDE Equivalent

Windows

Visual Studio: Output Files > Object File Name

Alternate Options

None

See Also
o  compiler option

Fp
Lets you specify an alternate path or file name for
precompiled header files.

Syntax

Linux OS:

None
Windows OS:

/Fp{filename|dir}

Arguments

filename Is the name for the precompiled header file.

dir Is the directory where the precompiled header file should be placed. It
can include filename.

Default

OFF The compiler does not create or use precompiled headers unless you tell it to do so.

Description

This option lets you specify an alternate path or file name for precompiled header files.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Precompiled Headers > Precompiled Header Output File

Linux

Eclipse: None

Alternate Options

None

Compiler Reference   

217



ftrapuv, Qtrapuv
Initializes stack local variables to an unusual value to
aid error detection.

Syntax

Linux OS:

-ftrapuv
Windows OS:

/Qtrapuv (C++ only)
Windows OS:

None (SYCL only)

Arguments

None

Default

OFF The compiler does not initialize local variables.

Description

This option initializes stack local variables to an unusual value to aid error detection. Normally, these local
variables should be initialized in the application. It also unmasks the floating-point invalid exception.

The option sets any uninitialized local variables that are allocated on the stack to a value that is typically
interpreted as a very large integer or an invalid address. References to these variables are then likely to
cause run-time errors that can help you detect coding errors.

This option sets option -g (Linux*) and /Zi or /Z7 (Windows*), which changes the default optimization level
from O2 to -O0 (Linux) or /Od (Windows). You can override this effect by explicitly specifying an O option
setting.

For more details on using options -ftrapuv and /Qtrapuv (C++) with compiler option O, see the article
titled Don't optimize when using -ftrapuv for uninitialized variable detection.

Another way to detect uninitialized local scalar variables is by specifying keyword uninit for option check.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Run-Time > Initialize Stack Variables to an Unusual Value

Alternate Options

None

See Also
g  compiler option
Zi, Z7, ZI  compiler option
O  compiler option

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

218

https://software.intel.com/content/www/us/en/develop/articles/dont-optimize-when-using-ftrapuv-for-uninitialized-variable-detection.html


fverbose-asm
Produces an assembly listing with compiler comments,
including options and version information.

Syntax

Linux OS:

-fverbose-asm
-fno-verbose-asm
Windows OS:

None

Arguments

None

Default

-fno-verbose-asm No source code annotations appear in the assembly listing file, if one
is produced.

Description

This option produces an assembly listing file with compiler comments, including options and version
information.

To use this option, you must also specify -S, which sets -fverbose-asm.

If you do not want this default when you specify -S, specify -fno-verbose-asm.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
S  compiler option

g
Tells the compiler to generate a level of debugging
information in the object file.

Syntax

Linux OS:

-g[n]

Compiler Reference   

219



Windows OS:

See option Zi, Z7, ZI.

Arguments

n Is the level of debugging information to be generated. Possible values
are:

0 Disables generation of symbolic debug
information.

1 Produces minimal debug information for
performing stack traces.

2 Produces complete debug information. This
is the same as specifying -g with no n.

3 Produces extra information that may be
useful for some tools.

Default

-g or -g2 The compiler produces complete debug information.

Description

Option -g tells the compiler to generate symbolic debugging information in the object file, which increases
the size of the object file.

The compiler does not support the generation of debugging information in assemblable files. If you specify
this option, the resulting object file will contain debugging information, but the assemblable file will not.

This option turns off option -O2 and makes option -O0 the default unless option -O2 (or higher) is explicitly
specified in the same command line.

Specifying the -g or -O0 option sets the -fno-omit-frame-pointer option.

Linux

For C++, the -debug inline-debug-info option will be enabled by default if you compile with optimizations
(option -O2 or higher) and debugging is enabled with option -g.

NOTE
When option -g is specified, debugging information is generated in the DWARF Version 3
format. Older versions of some analysis tools may require applications to be built with the
-gdwarf-2 option to ensure correct operation.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: General > Include Debug Information

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

220



Alternate Options

Linux: None

Windows: /Zi, /Z7, /ZI

See Also
gdwarf  compiler option
Zi, Z7, ZI  compiler option
debug (Linux*)  compiler option

gdwarf
Lets you specify a DWARF Version format when
generating debug information.

Syntax

Linux OS:

-gdwarf-n
Windows OS:

None

Arguments

n Is a value denoting the DWARF Version format to use. Possible values
are:

2 Generates debug information using the
DWARF Version 2 format.

3 Generates debug information using the
DWARF Version 3 format.

4 Generates debug information using the
DWARF Version 4 format. This setting is only
available on Linux*.

Default

OFF No debug information is generated. However, if compiler option -g is specified, debugging
information is generated in the DWARF Version 3 format.

Description

This option lets you specify a DWARF Version format when generating debug information.

Note that older versions of some analysis tools may require applications to be built with the -gdwarf-2 option
to ensure correct operation.

IDE Equivalent

None

Alternate Options

None

Compiler Reference   

221



See Also
g  compiler option

grecord-gcc-switches
Causes the command line options that were used to
invoke the compiler to be appended to the
DW_AT_producer attribute in DWARF debugging
information.

Syntax

Linux OS:

-grecord-gcc-switches
Windows OS:

None

Arguments

None

Default

OFF The command line options that were used to invoke the compiler are
not appended to the DW_AT_producer attribute in DWARF debugging
information.

Description

This option causes the command line options that were used to invoke the compiler to be appended to the
DW_AT_producer attribute in DWARF debugging information.

The options are concatenated with whitespace separating them from each other and from the compiler
version.

IDE Equivalent

None

Alternate Options

None

gsplit-dwarf
Creates a separate object file containing DWARF
debug information.

Syntax

Linux OS:

-gsplit-dwarf
Windows OS:

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

222



Arguments

None

Default

OFF No separate object file containing DWARF debug information is
created.

Description

This option creates a separate object file containing DWARF debug information. It causes debug information
to be split between the generated object (.o) file and the new DWARF object (.dwo) file.

The DWARF object file is not used by the linker, so this reduces the amount of debug information the linker
must process and it results in a smaller executable file.

For this option to perform correctly, you must use binutils-2.24 or higher. To debug the resulting executable,
you must use gdb-7.6.1 or higher.

NOTE
If you use the split executable with a tool that does not support the split DWARF format, it
will behave as though the DWARF debug information is absent.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

o
Specifies the name for an output file.

Syntax

Linux OS:

-o filename

Windows OS:

See option Fo.

Arguments

filename Is the name for the output file. The space before filename is optional.

Default

OFF The compiler uses the default file name for an output file.

Compiler Reference   

223



Description

This option specifies the name for an output file as follows:

• If -c is specified, it specifies the name of the generated object file.
• If -S is specified, it specifies the name of the generated assembly listing file.
• If -P is specified, it specifies the name of the generated preprocessor file.

Otherwise, it specifies the name of the executable file.

IDE Equivalent

None

Alternate Options

Linux: None

Windows: /Fe

See Also
Fo  compiler option
Fe  compiler option

RTC
Enables checking for certain run-time conditions.

Syntax

Linux OS:

None
Windows OS:

/RTCoption

Arguments

option Specifies the condition to check. Possible values are 1, s, u, or c.

Default

OFF No checking is performed for these run-time conditions.

Description

This option enables checking for certain run-time conditions. Using the /RTC option sets
__MSVC_RUNTIME_CHECKS = 1.

Option Description

/RTC1 This is the same as specifying /RTCsu.

/RTCs Enables run-time checks of the stack frame.

/RTCu Enables run-time checks for unintialized variables.

/RTCc Enables checks for converting to smaller types.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

224



IDE Equivalent

Windows

Visual Studio: Code Generation > Basic Runtime Checks / Smaller Type Check

Linux

Eclipse: None

Alternate Options

None

S
Causes the compiler to compile to an assembly file
only and not link.

Syntax

Linux OS:

-S
Windows OS:

/S

Arguments

None

Default

OFF Normal compilation and linking occur.

Description

This option causes the compiler to compile to an assembly file only and not link.

On Linux* systems, the assembly file name has a .s suffix. On Windows* systems, the assembly file name
has an .asm suffix.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Output Files > Generate Assembler Source File

Alternate Options

Linux: None

Windows: /Fa

See Also
Fa  compiler option

Compiler Reference   

225



use-msasm
Enables the use of blocks and entire functions of
assembly code within a C or C++ file.

Syntax

Linux OS:

-use-msasm

Windows OS:

None

Arguments

None

Default

OFF The compiler allows a GNU*-style inline assembly format.

Description

This option enables the use of blocks and entire functions of assembly code within a C or C++ file.

It allows a Microsoft* MASM-style inline assembly block not a GNU*-style inline assembly block.

IDE Equivalent

None

Alternate Options

-fasm-blocks

Y-
Tells the compiler to ignore all other precompiled
header files.

Syntax

Linux OS:

None

Windows OS:

/Y-

Arguments

None

Default

OFF The compiler recognizes precompiled header files when certain compiler options are specified.

Description

This option tells the compiler to ignore all other precompiled header files.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

226



NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
Yc  compiler option
Yu  compiler option

Yc
Tells the compiler to create a precompiled header file.

Syntax

Linux OS:

None
Windows OS:

/Yc[filename]

Arguments

filename Is the name of a C/C++ header file, which is included in the source
file using an #include preprocessor directive.

Default

OFF The compiler does not create or use precompiled headers unless you tell it to do so.

Description

This option tells the compiler to create a precompiled header (PCH) file. It is supported only for single source
file compilations.

When filename is specified, the compiler creates a precompiled header file from the headers in the C/C++
program up to and including the C/C++ header specified.

If you do not specify filename, the compiler compiles all code up to the end of the source file, or to the point
in the source file where a hdrstop occurs. The default name for the resulting file is the name of the source
file with extension .pch.

This option cannot be used in the same compilation as the /Yu option.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Compiler Reference   

227



IDE Equivalent

Windows

Visual Studio: Precompiled Headers > Precompiled Header File

Linux

Eclipse: None

Alternate Options

None

Example
If option /Fp is used, it names the PCH file. Consider the following example command:

icx /c /Ycheader.h /Fpprecomp foo.cpp
icx /c /Yc /Fpprecomp foo.cpp

The name of the PCH file is precomp.pch.

If the header file name is specified, the file name is based on the header file name. For example:

icx /c /Ycheader.h foo.cpp
The name of the PCH file is header.pch.

If no header file name is specified, the file name is based on the source file name. For example:

icx /c /Yc foo.cpp
The name of the PCH file is foo.pch.

See Also
Yu  compiler option
Fp  compiler option

Yu
Tells the compiler to use a precompiled header file.

Syntax

Linux OS:

None
Windows OS:

/Yu[filename]

Arguments

filename Is the name of a C/C++ header file, which is included in the source
file using an #include preprocessor directive.

Default

OFF The compiler does not use precompiled header files unless it is told to do so.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

228



Description

This option tells the compiler to use a precompiled header (PCH) file.

It is supported for multiple source files when all source files use the same .pch file.

The compiler treats all code occurring before the header file as precompiled. It skips to just beyond the
#include directive associated with the header file, uses the code contained in the PCH file, and then compiles
all code after filename.

If you do not specify filename, the compiler will use a PCH with a name based on the source file name. If you
specify option /Fp, it will use the PCH specified by that option.

When this option is specified, the compiler ignores all text, including declarations preceding the #include
statement of the specified file.

This option cannot be used in the same compilation as the /Yc option.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Precompiled Headers > Precompiled Header

Linux

Eclipse: None

Alternate Options

None

Example
Consider the following example command:

icx /c /Yuheader.h bar.cpp
The name of the PCH file used is header.pch.

In the following command line, no filename is specified:

icx /Yu bar.cpp 
The name of the PCH file used is bar.pch.

In the following command line, no filename is specified, but option /Fp is specified:

icx /Yu /Fpprecomp bar.cpp
The name of the PCH file used is precomp.pch.

See Also
Yc  compiler option

Compiler Reference   

229



Zi, Z7, ZI
Tells the compiler to generate full debugging
information in either an object (.obj) file or a project
database (PDB) file.

Syntax

Linux OS:

See option g.
Windows OS:

/Zi
/Z7
/ZI

Arguments

None

Default

OFF No debugging information is produced.

Description

Option /Z7 tells the compiler to generate symbolic debugging information in the object (.obj) file for use with
the debugger. No .pdb file is produced by the compiler.

Option /ZI is a synonym for option /Zi.

The /Zi option tells the compiler to generate symbolic debugging information in a program database (PDB)
file for use with the debugger. Type information is placed in the .pdb file, and not in the .obj file, resulting in
smaller object files in comparison to option /Z7.

When option /Zi is specified, two PDB files are created:

• The compiler creates the program database project.pdb. If you compile a file without a project, the
compiler creates a database named vcx0.pdb, where x represents the major version of Visual C++, for
example vc140.pdb.

This file stores all debugging information for the individual object files and resides in the same directory
as the project makefile. If you want to change this name, use option /Fd.

• The linker creates the program database executablename.pdb.

This file stores all debug information for the .exe file and resides in the debug subdirectory. It contains full
debug information, including function prototypes, not just the type information found in vcx0.pdb.

Both PDB files allow incremental updates. The linker also embeds the path to the .pdb file in the .exe or .dll
file that it creates.

The compiler does not support the generation of debugging information in assemblable files. If you specify
these options, the resulting object file will contain debugging information, but the assemblable file will not.

These options turn off option /O2 and make option /Od the default unless option /O2 (or higher) is explicitly
specified in the same command line.

For more information about the /Z7, /Zi, and /ZI options, see the Microsoft documentation.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

230



IDE Equivalent

Visual Studio

Visual Studio: General > Generate Debug Information

Eclipse

Eclipse: None

Alternate Options

Linux: -g

Windows: None

See Also
g  compiler option
debug (Windows*)  compiler option

Preprocessor Options
This section contains descriptions for compiler options that pertain to preprocessing. They are listed in
alphabetical order.

B
Specifies a directory that can be used to find include
files, libraries, and executables.

Syntax

Linux OS:

-Bdir
Windows OS:

None

Arguments

dir Is the directory to be used. If necessary, the compiler adds a directory
separator character at the end of dir.

Default

OFF The compiler looks for files in the directories specified in your PATH environment variable.

Description

This option specifies a directory that can be used to find include files, libraries, and executables.

The compiler uses dir as a prefix.

For include files, the dir is converted to -I/dir/include. This command is added to the front of the includes
passed to the preprocessor.

For libraries, the dir is converted to -L/dir. This command is added to the front of the standard -L inclusions
before system libraries are added.

Compiler Reference   

231



For executables, if dir contains the name of a tool, such as ld or as, the compiler will use it instead of those
found in the default directories.

The compiler looks for include files in dir /include while library files are looked for in dir.

On Linux* systems, another way to get the behavior of this option is to use the environment variable
GCC_EXEC_PREFIX.

IDE Equivalent

None

Alternate Options

None

C
Places comments in preprocessed source output.

Syntax

Linux OS:

-C
Windows OS:

/C

Arguments

None

Default

OFF No comments are placed in preprocessed source output.

Description

This option places (or preserves) comments in preprocessed source output.

Comments following preprocessing directives, however, are not preserved.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Keep Comments

Linux

Eclipse: None

Alternate Options

None

Example
The following commands cause the compiler to preserve comments in the prog1.i preprocessed file.

Linux

icpx -C -P prog1.cpp prog2.cpp

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

232



Windows

icx /C /P prog1.cpp prog2.cpp

D
Defines a macro name that can be associated with an
optional value.

Syntax

Linux OS:

-Dname[=value]
Windows OS:

/Dname[=value]

Arguments

name Is the name of the macro.

value Is an optional integer or an optional character string delimited by
double quotes; for example, Dname=string.

Default

OFF Only default symbols or macros are defined.

Description

Defines a macro name that can be associated with an optional value. This option is equivalent to a #define
preprocessor directive.

If a value is not specified, name  is defined as "1".

IDE Equivalent

Windows

Visual Studio: Preprocessor > Preprocessor Definitions

Linux

Eclipse: Preprocessor > Preprocessor Definitions

Alternate Options

None

Example
To define a macro called SIZE with the value 100, enter the following command:

Linux

icpx -DSIZE=100 prog1.cpp
Windows

icx /DSIZE=100 prog1.cpp 
If you define a macro, but do not assign a value, the compiler defaults to 1 for the value of the macro.

Compiler Reference   

233



See Also
Additional Predefined Macros

dD, QdD
Same as option -dM, but outputs #define directives in
preprocessed source.

Syntax

Linux OS:

-dD
Windows OS:

/QdD

Arguments

None

Default

OFF The compiler does not output #define directives.

Description

Same as -dM, but outputs #define directives in preprocessed source. To use this option, you must also
specify the E option.

IDE Equivalent

None

Alternate Options

None

dM, QdM
Tells the compiler to output macro definitions in effect
after preprocessing.

Syntax

Linux OS:

-dM
Windows OS:

/QdM

Arguments

None

Default

OFF The compiler does not output macro definitions after preprocessing.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

234



Description

This option tells the compiler to output macro definitions in effect after preprocessing. To use this option, you
must also specify option E.

IDE Equivalent

None

Alternate Options

None

See Also
E  compiler option

E
Causes the preprocessor to send output to stdout.

Syntax

Linux OS:

-E
Windows OS:

/E

Arguments

None

Default

OFF Preprocessed source files are output to the compiler.

Description

This option causes the preprocessor to send output to stdout. Compilation stops when the files have been
preprocessed.

When you specify this option, the compiler's preprocessor expands your source module and writes the result
to stdout. The preprocessed source contains #line directives, which the compiler uses to determine the
source file and line number.

IDE Equivalent

None

Alternate Options

None

Example
To preprocess two source files and write them to stdout, enter the following command:

Linux

icpx -E prog1.cpp prog2.cpp

Compiler Reference   

235



Windows

icx /E prog1.cpp prog2.cpp

EP
Causes the preprocessor to send output to stdout,
omitting #line directives.

Syntax

Linux OS:

-EP
Windows OS:

/EP

Arguments

None

Default

OFF Preprocessed source files are output to the compiler.

Description

This option causes the preprocessor to send output to stdout, omitting #line directives.

If you also specify option P or Linux* option F, the preprocessor will write the results (without #line
directives) to a file instead of stdout.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Preprocess Suppress Line Numbers

Linux

Eclipse: None

Alternate Options

None

Example
To preprocess to stdout omitting #line directives, enter the following command:

Linux

icpx -EP prog1.cpp prog2.cpp
Windows

icx /EP prog1.cpp prog2.cpp

FI
Tells the preprocessor to include a specified file name
as the header file.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

236



Syntax

Linux OS:

None
Windows OS:

/FIfilename

Arguments

filename Is the file name to be included as the header file.

Default

OFF The compiler uses default header files.

Description

This option tells the preprocessor to include a specified file name as the header file.

The file specified with /FI is included in the compilation before the first line of the primary source file.

IDE Equivalent

Windows

Visual Studio: Advanced > Forced Include File

Linux

Eclipse: None

Alternate Options

None

H, QH
Tells the compiler to display the include file order and
continue compilation.

Syntax

Linux OS:

-H
Windows OS:

/QH

Arguments

None

Default

OFF Compilation occurs as usual.

Compiler Reference   

237



Description

This option tells the compiler to display the include file order and continue compilation.

IDE Equivalent

None

Alternate Options

None

I
Specifies an additional directory to search for include
files.

Syntax

Linux OS:

-Idir

Windows OS:

/Idir

Arguments

dir Is the additional directory for the search.

Default

OFF The default directory is searched for include files.

Description

This option specifies an additional directory to search for include files. To specify multiple directories on the
command line, repeat the include option for each directory.

IDE Equivalent

Windows

Visual Studio: General > Additional Include Directories

Linux

Eclipse: Preprocessor > Additional Include Directories

Alternate Options

None

I-
Splits the include path.

Syntax

Linux OS:

-I-

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

238



Windows OS:

/I-

Arguments

None

Default

OFF The default directory is searched for include files.

Description

This option splits the include path. It prevents the use of the current directory as the first search directory for
'#include "file"'.

If you specify directories using the I option before you specify option I-, the directories are searched only
for the case of '#include "file"'; they are not searched for '#include <file>'.

If you specify directories using the I option after you specify option I-, these directories are searched for all
'#include' directives.

This option has no effect on option nostdinc++, which searches the standard system directories for header
files.

This option is provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

See Also
I  compiler option
nostdinc++  compiler option

idirafter
Adds a directory to the second include file search
path.

Syntax

Linux OS:

-idirafterdir
Windows OS:

None

Arguments

dir Is the name of the directory to add.

Compiler Reference   

239



Default

OFF Include file search paths include certain default directories.

Description

This option adds a directory to the second include file search path (after -I).

IDE Equivalent

None

Alternate Options

None

imacros
Allows a header to be specified that is included in front
of the other headers in the translation unit.

Syntax

Linux OS:

-imacros filename
Windows OS:

None

Arguments

filename Name of header file.

Default

OFF

Description

Allows a header to be specified that is included in front of the other headers in the translation unit.

IDE Equivalent

None

Alternate Options

None

iprefix
Lets you indicate the prefix for referencing directories
that contain header files.

Syntax

Linux OS:

-iprefix prefix

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

240



Windows OS:

None

Arguments

prefix Is the prefix to use.

Default

OFF No prefix is included.

Description

Options for indicating the prefix for referencing directories containing header files. Use prefix with option
-iwithprefix as a prefix.

IDE Equivalent

None

Alternate Options

None

iquote
Adds a directory to the front of the include file search
path for files included with quotes but not brackets.

Syntax

Linux OS:

-iquote dir
Windows OS:

None

Arguments

dir Is the name of the directory to add.

Default

OFF The compiler does not add a directory to the front of the include file search path.

Description

Add directory to the front of the include file search path for files included with quotes but not brackets.

IDE Equivalent

None

Alternate Options

None

Compiler Reference   

241



isystem
Specifies a directory to add to the start of the system
include path.

Syntax

Linux OS:

-isystemdir
Windows OS:

None

Arguments

dir Is the directory to add to the system include path.

Default

OFF The default system include path is used.

Description

This option specifies a directory to add to the system include path. The compiler searches the specified
directory for include files after it searches all directories specified by the -I compiler option but before it
searches the standard system directories.

On Linux* systems, this option is provided for compatibility with gcc.

IDE Equivalent

None

Alternate Options

None

iwithprefix
Appends a directory to the prefix passed in by -iprefix
and puts it on the include search path at the end of
the include directories.

Syntax

Linux OS:

-iwithprefixdir
Windows OS:

None

Arguments

dir Is the include directory.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

242



Default

OFF

Description

This option appends a directory to the prefix passed in by -iprefix and puts it on the include search path at
the end of the include directories.

IDE Equivalent

None

Alternate Options

None

iwithprefixbefore
Similar to -iwithprefix except the include directory is
placed in the same place as -I command-line include
directories.

Syntax

Linux OS:

-iwithprefixbeforedir
Windows OS:

None

Arguments

dir Is the include directory.

Default

OFF

Description

Similar to -iwithprefix except the include directory is placed in the same place as -I command-line
include directories.

IDE Equivalent

None

Alternate Options

None

Kc++, TP
Tells the compiler to process all source or
unrecognized file types as C++ source files. This is a
deprecated option that may be removed in a future
release.

Compiler Reference   

243



Syntax

Linux OS:

-Kc++
Windows OS:

/TP

Arguments

None

Default

OFF The compiler uses default rules for determining whether a file is a C++ source file.

Description

This option tells the compiler to process all source or unrecognized file types as C++ source files.

This is a deprecated option that may be removed in a future release. The replacement option for Kc++ is
-x c++; the replacement option for /TP is /Tp<file>.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Advanced > Compile As

Linux

Eclipse: None

Alternate Options

Linux: -x c++
Windows: /Tp

M, QM
Tells the compiler to generate makefile dependency
lines for each source file.

Syntax

Linux OS:

-M
Windows OS:

/QM

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

244



Arguments

None

Default

OFF The compiler does not generate makefile dependency lines for each source file.

Description

This option tells the compiler to generate makefile dependency lines for each source file, based on the
#include lines found in the source file.

IDE Equivalent

None

Alternate Options

None

MD, QMD
Preprocess and compile, generating output file
containing dependency information ending with
extension .d.

Syntax

Linux OS:

-MD
Windows OS:

/QMD

Arguments

None

Default

OFF The compiler does not generate dependency information.

Description

Preprocess and compile, generating output file containing dependency information ending with extension .d.

IDE Equivalent

None

Alternate Options

None

MF, QMF
Tells the compiler to generate makefile dependency
information in a file.

Compiler Reference   

245



Syntax

Linux OS:

-MFfilename
Windows OS:

/QMFfilename

Arguments

filename Is the name of the file where the makefile dependency information
should be placed.

Default

OFF The compiler does not generate makefile dependency information in files.

Description

This option tells the compiler to generate makefile dependency information in a file. To use this option, you
must also specify /QM or /QMM.

IDE Equivalent

None

Alternate Options

None

See Also
QM  compiler option
QMM  compiler option

MG, QMG
Tells the compiler to generate makefile dependency
lines for each source file.

Syntax

Linux OS:

-MG
Windows OS:

/QMG

Arguments

None

Default

OFF The compiler does not generate makefile dependency information in files.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

246



Description

This option tells the compiler to generate makefile dependency lines for each source file. It is similar to /QM,
but it treats missing header files as generated files.

IDE Equivalent

None

Alternate Options

None

See Also
QM  compiler option

MM, QMM
Tells the compiler to generate makefile dependency
lines for each source file.

Syntax

Linux OS:

-MM
Windows OS:

/QMM

Arguments

None

Default

OFF The compiler does not generate makefile dependency information in files.

Description

This option tells the compiler to generate makefile dependency lines for each source file. It is similar to /QM,
but it does not include system header files.

IDE Equivalent

None

Alternate Options

None

See Also
QM  compiler option

MMD, QMMD
Tells the compiler to generate an output file containing
dependency information.

Compiler Reference   

247



Syntax

Linux OS:

-MMD
Windows OS:

/QMMD

Arguments

None

Default

OFF The compiler does not generate an output file containing dependency information.

Description

This option tells the compiler to preprocess and compile a file, then generate an output file (with
extension .d) containing dependency information.

It is similar to /QMD, but it does not include system header files.

IDE Equivalent

None

Alternate Options

None

MQ
Changes the default target rule for dependency
generation.

Syntax

Linux OS:

-MQtarget
Windows OS:

None

Arguments

target Is the target rule to use.

Default

OFF The default target rule applies to dependency generation.

Description

This option changes the default target rule for dependency generation. It is similar to -MT, but quotes special
Make characters.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

248



IDE Equivalent

None

Alternate Options

None

MT, QMT
Changes the default target rule for dependency
generation.

Syntax

Linux OS:

-MTtarget
Windows OS:

/QMTtarget

Arguments

target Is the target rule to use.

Default

OFF The default target rule applies to dependency generation.

Description

This option changes the default target rule for dependency generation.

IDE Equivalent

None

Alternate Options

None

nostdinc++
Do not search for header files in the standard
directories for C++, but search the other standard
directories.

Syntax

Linux OS:

-nostdinc++
Windows OS:

None

Arguments

None

Compiler Reference   

249



Default

OFF

Description

Do not search for header files in the standard directories for C++, but search the other standard directories.

IDE Equivalent

None

Alternate Options

None

P
Tells the compiler to stop the compilation process and
write the results to a file.

Syntax

Linux OS:

-P

Windows OS:

/P

Arguments

None

Default

OFF Normal compilation is performed.

Description

This option tells the compiler to stop the compilation process after C or C++ source files have been
preprocessed and write the results to files named according to the compiler's default file-naming
conventions.

On Linux systems, this option causes the preprocessor to expand your source module and direct the output
to a .i file instead of stdout. Unlike the -E option, the output from -P on Linux does not include #line
number directives. By default, the preprocessor creates the name of the output file using the prefix of the
source file name with a .i extension. You can change this by using the -o option.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Generate Preprocessed File

Linux

Eclipse: None

Alternate Options

Linux: -F

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

250



Windows: None

pragma-optimization-level
Specifies which interpretation of the optimization_level
pragma should be used if no prefix is specified.

Syntax

Linux OS:

-pragma-optimization-level=interpretation
Windows OS:

None

Arguments

interpretation Compiler-specific interpretation of optimization_level pragma.
Possible values are:

Intel Specify the Intel interpretation.

GCC Specify the GCC interpretation.

Default

-pragma-optimization-level=Intel Use the Intel interpretation of the
optimization_level pragma.

Description

Specifies which interpretation of the optimization_level pragma should be used if no prefix is specified.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

U
Undefines any definition currently in effect for the
specified macro.

Syntax

Linux OS:

-Uname

Compiler Reference   

251



Windows OS:

/Uname

Arguments

name Is the name of the macro to be undefined.

Default

OFF Macro definitions are in effect until they are undefined.

Description

This option undefines any definition currently in effect for the specified macro. It is equivalent to an #undef
preprocessing directive.

On Windows systems, use the /u option to undefine all previously defined preprocessor values.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Undefine Preprocessor Definitions

Linux

Eclipse: Preprocessor > Undefine Preprocessor Definitions

Alternate Options

None

Example
To undefine a macro, enter the following command:

On Windows systems:

icx /Uia64 prog1.cpp 
On Linux systems:

icpx -Uia64 prog1.cpp
If you attempt to undefine an ANSI C macro, the compiler will emit an error:

invalid macro undefinition: <name of macro>

See Also

undef
Disables all predefined macros.

Syntax

Linux OS:

-undef
Windows OS:

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

252



Arguments

None

Default

OFF Defined macros are in effect until they are undefined.

Description

This option disables all predefined macros.

IDE Equivalent

None

Alternate Options

None

X
Removes standard directories from the include file
search path.

Syntax

Linux OS:

-X
Windows OS:

/X

Arguments

None

Default

OFF Standard directories are in the include file search path.

Description

This option removes standard directories from the include file search path. It prevents the compiler from
searching the default path specified by the INCLUDE environment variable.

On Linux* systems, specifying -X (or -noinclude) prevents the compiler from searching in /usr/include
for files specified in an INCLUDE statement.

You can use this option with the I option to prevent the compiler from searching the default path for include
files and direct it to use an alternate path.

IDE Equivalent

Windows

Visual Studio: Preprocessor > Ignore Standard Include Path

Linux

Eclipse: Preprocessor > Ignore Standard Include Path

Compiler Reference   

253



Alternate Options

Linux: -nostdinc
Windows: None

See Also
I  compiler option

Component Control Options
This section contains descriptions for compiler options that pertain to component control. They are listed in
alphabetical order.

Qoption
Passes options to a specified tool.

Syntax

Linux OS:

-Qoption,string,options
Windows OS:

/Qoption,string,options

Arguments

string Is the name of the tool.

options Are one or more comma-separated, valid options for the designated
tool.

Note that certain tools may require that options appear within
quotation marks (" ").

Default

OFF No options are passed to tools.

Description

This option passes options to a specified tool.

If an argument contains a space or tab character, you must enclose the entire argument in quotation marks
(" "). You must separate multiple arguments with commas.

string can be any of the following:

• cpp - Indicates the preprocessor for the compiler.
• c - Indicates the Intel® oneAPI DPC++/C++ Compiler.
• asm - Indicates the assembler.
• link - Indicates the linker.
• prof - Indicates the profiler.
• On Windows* systems, the following is also available:

• masm - Indicates the Microsoft assembler.
• On Linux* systems, the following are also available:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

254



• as - Indicates the assembler.
• gas - Indicates the GNU assembler.
• ld - Indicates the loader.
• gld - Indicates the GNU loader.
• lib - Indicates an additional library.
• crt - Indicates the crt%.o files linked into executables to contain the place to start execution.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Language Options
This section contains descriptions for compiler options that pertain to language compatibility, conformity,
etc.. They are listed in alphabetical order.

ansi
Enables language compatibility with the gcc option
ansi.

Syntax

Linux OS:

-ansi
Windows OS:

None

Arguments

None

Default

OFF GNU C++ is more strongly supported than ANSI C.

Description

This option enables language compatibility with the gcc option -ansi and provides the same level of ANSI
standard conformance as that option.

This option sets option fmath-errno.

If you want strict ANSI conformance, use the -strict-ansi option.

Compiler Reference   

255



IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Language > ANSI Conformance

Alternate Options

None

fno-gnu-keywords
Tells the compiler to not recognize typeof as a
keyword.

Syntax

Linux OS:

-fno-gnu-keywords
Windows OS:

None

Arguments

None

Default

OFF Keyword typeof is recognized.

Description

Tells the compiler to not recognize typeof as a keyword.

IDE Equivalent

None

Alternate Options

None

fno-operator-names
Disables support for the operator names specified in
the standard.

Syntax

Linux OS:

-fno-operator-names
Windows OS:

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

256



Arguments

None

Default

OFF

Description

Disables support for the operator names specified in the standard.

IDE Equivalent

None

Alternate Options

None

fno-rtti
Disables support for run-time type information (RTTI).

Syntax

Linux OS:

-fno-rtti
Windows OS:

None

Arguments

None

Default

OFF Support for run-time type information (RTTI) is enabled.

Description

This option disables support for run-time type information (RTTI).

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: None

Alternate Options

None

fpermissive
Tells the compiler to allow for non-conformant code.

Compiler Reference   

257



Syntax

Linux OS:

-fpermissive
Windows OS:

None

Arguments

None

Default

OFF

Description

Tells the compiler to allow for non-conformant code.

IDE Equivalent

None

Alternate Options

None

fshort-enums
Tells the compiler to allocate as many bytes as needed
for enumerated types.

Syntax

Linux OS:

-fshort-enums
Windows OS:

None

Arguments

None

Default

OFF The compiler allocates a default number of bytes for enumerated types.

Description

This option tells the compiler to allocate as many bytes as needed for enumerated types.

IDE Equivalent

Windows

Visual Studio: None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

258



Linux

Eclipse: Data > Associate as Many Bytes as Needed for Enumerated Types

Alternate Options

None

fsyntax-only
Tells the compiler to check only for correct syntax.

Syntax

Linux OS:

-fsyntax-only
Windows OS:

None

Arguments

None

Default

OFF Normal compilation is performed.

Description

This option tells the compiler to check only for correct syntax. No object file is produced.

IDE Equivalent

None

Alternate Options

Linux: None

Windows: /Zs

funsigned-char
Change default char type to unsigned.

Syntax

Linux OS:

-funsigned-char
Windows OS:

None

Arguments

None

Compiler Reference   

259



Default

OFF Do not change default char type to unsigned.

Description

Change default char type to unsigned.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Data > Change default char type to unsigned

Alternate Options

None

J
Sets the default character type to unsigned.

Syntax

Linux OS:

None
Windows OS:

/J

Arguments

None

Default

OFF The default character type is signed

Description

This option sets the default character type to unsigned. This option has no effect on character values that
are explicitly declared signed. This option sets _CHAR_UNSIGNED = 1.

IDE Equivalent

Windows

Visual Studio: Language > Default Char Unsigned

Linux

Eclipse: None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

260



std, Qstd
Tells the compiler to conform to a specific language
standard.

Syntax

Linux OS:

-std=val
Windows OS:

/Qstd:val
/std:val (For Microsoft* compatibility)

Arguments

val Specifies the specific language standard to conform to.

The following values apply to Linux* -std and Windows* /Qstd:

c++2b Enables support for the Working Draft for ISO C++ 2023 DIS
standard.

c++20 Enables support for the 2020 ISO C++ DIS standard.

c++17 Enables support for the 2017 ISO C++ standard with
amendments.

c++14 Enables support for the 2014 ISO C++ standard with
amendments.

c++11 Enables support for the 2011 ISO C++ standard with
amendments.

c++98 and c++03 Enables support for the 1998 ISO C++ standard with
amendments.

c2x Enables support for the Working Draft for ISO C2x standard.

c18 and c17 Enables support for the 2017 ISO C standard.

Support for c17 can also be enabled by value iso9899:2017.

Support for c18 can also be enabled by value iso9899:2018.

c11 Enables support for the 2011 ISO C standard.

Support for this standard can also be enabled by value
iso9899:2011.

c99 Enables support for the 1999 ISO C standard.

Support for this standard can also be enabled by value
iso9899:1999.

c90 and c89 Enables support for the 1990 ISO C standard.

Support for this standard can also be enabled by value
iso9899:1990.

The following values apply only to Linux -std:

Compiler Reference   

261



gnu++2b Enables support for the Working Draft for ISO C++ 2023 DIS
standard plus GNU extensions.

gnu++20 Enables support for the 2020 ISO C++ DIS standard plus GNU
extensions.

gnu++17 Enables support for the 2017 ISO C++ standard with
amendments plus GNU extensions.

gnu++14 Enables support for the 2014 ISO C++ standard with
amendments plus GNU extensions.

gnu++11 Enables support for the 2011 ISO C++ standard with
amendments plus GNU extensions.

gnu++98 and gnu++03 Enables support for the 1998 ISO C++ standard with
amendments plus GNU extensions.

gnu2x Enables support for the Working Draft for ISO C2x standard
plus GNU extensions.

gnu18 and gnu17 Enables support for the 2017 ISO C standard plus GNU
extensions.

gnu11 Enables support for the 2011 ISO C standard plus GNU
extensions.

gnu99 Enables support for the 1999 ISO C standard plus GNU
extensions.

gnu90 and gnu89 Enables support for the 1990 ISO C standard plus GNU
extensions.

For possible values for Microsoft*-compatible Windows* /std, see the Microsoft* documentation.

Default

Default for Windows option /Qstd:
OFF

The compiler does not conform to a specific language standard.

Default for Windows option /std:
c++14

Currently, the compiler conforms to the 2014 ISO C++ standard. For
the latest information, see the Microsoft* documentation.

Default for Linux option -std on
dpcpp:
c++17

The compiler conforms to the 2017 ISO C++ standard.

Default for Linux option -std on icx:
c++14

The compiler conforms to the 2014 ISO C++ standard.

Description

This option tells the compiler to conform to a specific language standard.

IDE Equivalent

Visual Studio

Visual Studio: Language > C/C++ Language Support

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

262



Eclipse

Eclipse: Language > ANSI Conformance

Alternate Options

None

strict-ansi
Tells the compiler to implement strict ANSI
conformance dialect.

Syntax

Linux OS:

-strict-ansi
Windows OS:

None

Arguments

None

Default

OFF The compiler conforms to default standards.

Description

This option tells the compiler to implement strict ANSI conformance dialect. On Linux* systems, if you need
to be compatible with gcc, use the -ansi option.

This option sets option fmath-errno, which tells the compiler to assume that the program tests errno after
calls to math library functions. This restricts optimization because it causes the compiler to treat most math
functions as having side effects.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Language > ANSI Conformance

Alternate Options

None

Compiler Reference   

263



vd
Enables or suppresses hidden vtordisp members in C+
+ objects.

Syntax

Linux OS:

None

Windows OS:

/vdn

Arguments

n Possible values are:

0 Suppresses the creation of the hidden vtordisp members in C++ objects.

1 Enables the creation of hidden vtordisp members in C++ objects when they
are necessary.

2 Enables the hidden vtordisp members for all virtual base classes with virtual
functions. This setting is recommended in the following cases:

• When the only virtual function in your virtual base class is a destructor
• When you want to ensure correct performance of the dynamic_cast

operator on a partially-constructed object

Default

/vd1 The compiler enables the creation of hidden vtordisp members in C++ objects when they are
necessary.

Description

This option enables or suppresses hidden vtordisp members in C++ objects.

This is a compatibility option for the Microsoft Visual C++* option /vdn. For full details about this compiler
option, see the Microsoft* documentation.

IDE Equivalent

None

Alternate Options

None

vmg
Selects the general representation that the compiler
uses for pointers to members.

Syntax

Linux OS:

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

264



Windows OS:

/vmg

Arguments

None

Default

OFF The compiler uses default rules to represent pointers to members.

Description

This option selects the general representation that the compiler uses for pointers to members. Use this
option if you declare a pointer to a member before you define the corresponding class.

IDE Equivalent

None

Alternate Options

None

x (type option)
All source files found subsequent to -x type will be
recognized as a particular type.

Syntax

Linux OS:

-x type
Windows OS:

None

Arguments

type is the type of source file. Possible values are:

c++ C++ source file

c++-header C++ header file

c++-cpp-output C++ pre-processed file

c C source file

c-header C header file

cpp-output C pre-processed file

assembler Assembly file

assembler-with-cpp Assembly file that needs to be preprocessed

none Disable recognition, and revert to file extension

Compiler Reference   

265



Default

none Disable recognition and revert to file extension.

Description

All source files found subsequent to -xtype will be recognized as a particular type.

IDE Equivalent

None

Alternate Options

None

Example
Suppose you want to compile the following C and C++ source files whose extensions are not recognized by
the compiler:

File Name Language

file1.c99 C

file2.cplusplus C++

We will also include these files whose extensions are recognized:

File Name Language

file3.c C

file4.cpp C++

The command-line invocation using the -x option follows:

icpx -x c file1.c99 -x c++ file2.cplusplus -x none file3.c file4.cpp 

Zc
Lets you specify ANSI C standard conformance for
certain language features.

Syntax

Linux OS:

None
Windows OS:

/Zc:arg1[,arg2]

Arguments

arg Is the language feature for which you want standard conformance.

The settings are compatible with Microsoft* settings for option /Zc.
For a list of supported settings, see the table in the Description section
of this topic.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

266



Default

varies See the table in the Description section of this topic.

Description

This option lets you specify ANSI C standard conformance for certain language features.

If you do not want the default behavior for one or more of the settings, you must specify the negative form
of the setting. For example, if you do not want the threadSafeInit or sizedDealloc default behavior, you
should specify /Zc:threadSafeInit-,sizedDealloc-.

The following table shows the supported Microsoft settings for option /Zc.

/Zc setting name Description

alignedNew[-] Enables C++17 aligned allocation functions (default for C++17). Disabled
by /Zc:alignedNew-.

char8_t[-] Enables char8_t from C++2a. Disabled by /Zc:char8_t- (default).

dllexportInlines[-] Enables dllexport/dllimport inline member functions of dllexport/import
classes (default). Disabled by /Zc:dllexportInlines-.

sizedDealloc[-] Enables C++14 sized global deallocation functions (default). Disabled
by /Zc:sizedDealloc-

strictStrings[-] Enforces const qualification for string literals. Disabled by /
Zc:strictStrings- (default).

threadSafeInit[-] Enables thread-safe initialization of local statics (default). Disabled by /
Zc:threadSafeInit-.

trigraphs[-] Enables trigraph character sequences. Disabled by /Zc:trigraphs-
(default).

twoPhase[-] Enables two-phase name lookup in templates. Disabled by /Zc:twoPhase-
(default).

IDE Equivalent

Windows

Visual Studio: Language > Treat wchar_t as Built-in Type / Force Conformance In For Loop Scope

Language > Enforce type conversion rules (rvalueCast)

Linux

Eclipse: None

Alternate Options

None

Zg
Tells the compiler to generate function prototypes.
This is a deprecated option that may be removed in a
future release.

Compiler Reference   

267



Syntax

Linux OS:

None

Windows OS:

/Zg

Arguments

None

Default

OFF The compiler does not create function prototypes.

Description

This option tells the compiler to generate function prototypes.

This is a deprecated option that may be removed in a future release. There is no replacement option.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Zp
Specifies alignment for structures on byte boundaries.

Syntax

Linux OS:

-Zp[n]

Windows OS:

/Zp[n]

Arguments

n Is the byte size boundary. Possible values are 1, 2, 4, 8, or 16.

Default

Zp16 Structures are aligned on either size boundary 16 or the boundary that will naturally align them.

Description

This option specifies alignment for structures on byte boundaries.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

268



If you do not specify n, you get Zp16.

IDE Equivalent

Windows

Visual Studio: Code Generation > Struct Member Alignment

Linux

Eclipse: Data > Structure Member Alignment

Alternate Options

None

Zs
Tells the compiler to check only for correct syntax.

Syntax

Linux OS:

None
Windows OS:

/Zs

Arguments

None

Default

OFF Normal compilation is performed.

Description

This option tells the compiler to check only for correct syntax.

IDE Equivalent

None

Alternate Options

Linux: -syntax, -fsyntax-only
Windows: None

Data Options
This section contains descriptions for compiler options that pertain to the treatment of data. They are listed
in alphabetical order.

align
Determines whether variables and arrays are naturally
aligned.

Compiler Reference   

269



Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

-align
-noalign
Windows OS:

None

Arguments

None

Default

-noalign Variables and arrays are aligned according to the gcc model, which means they are aligned to 4-
byte boundaries.

Description

This option determines whether variables and arrays are naturally aligned. Option -align forces the
following natural alignment:

Type Alignment

double 8 bytes

long long 8 bytes

long double 16 bytes

If you are not interacting with system libraries or other libraries that are compiled without -align, this
option can improve performance by reducing misaligned accesses.

This option can also be specified as -m[no-]align-double. The options are equivalent.

Caution
If you are interacting with compatible libraries, this option can improve performance by
reducing misaligned accesses. However, if you are interacting with noncompatible libraries
or libraries that are compiled without option -align, your application may not perform as
expected.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

270



Alternate Options

None

fcommon
Determines whether the compiler treats common
symbols as global definitions.

Syntax

Linux OS:

-fcommon
-fno-common
Windows OS:

None

Arguments

None

Default

-fcommon The compiler does not treat common symbols as global definitions.

Description

This option determines whether the compiler treats common symbols as global definitions and to allocate
memory for each symbol at compile time.

Option -fno-common tells the compiler to treat common symbols as global definitions. When using this
option, you can only have a common variable declared in one module; otherwise, a link time error will occur
for multiple defined symbols.

Normally, a file-scope declaration with no initializer and without the extern or static keyword "int i;" is
represented as a common symbol. Such a symbol is treated as an external reference. However, if no other
compilation unit has a global definition for the name, the linker allocates memory for it.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Data > Allow gprel Addressing of Common Data Variables

Alternate Options

None

fkeep-static-consts, Qkeep-static-consts
Tells the compiler to preserve allocation of variables
that are not referenced in the source.

Compiler Reference   

271



Syntax

Linux OS:

-fkeep-static-consts
-fno-keep-static-consts
Windows OS:

/Qkeep-static-consts (C++ only)
/Qkeep-static-consts- (C++ only)

Arguments

None

Default

-fno-keep-static-consts
C++: or /Qkeep-static-consts-

If a variable is never referenced in a routine, the variable is discarded
unless optimizations are disabled by option -O0 (Linux*) or /Od
(Windows*).

Description

This option tells the compiler to preserve allocation of variables that are not referenced in the source.

The negated form can be useful when optimizations are enabled to reduce the memory usage of static data.

IDE Equivalent

None

Alternate Options

None

fmath-errno
Tells the compiler that errno can be reliably tested
after calls to standard math library functions.

Syntax

Linux OS:

-fmath-errno
-fno-math-errno
Windows OS:

None

Arguments

None

Default

-fno-math-errno The compiler assumes that the program does not test errno after
calls to standard math library functions.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

272



Description

This option tells the compiler to assume that the program tests errno after calls to math library functions.
This restricts optimization because it causes the compiler to treat most math functions as having side effects.

Option -fno-math-errno tells the compiler to assume that the program does not test errno after calls to
math library functions. This frequently allows the compiler to generate faster code. Floating-point code that
relies on IEEE exceptions instead of errno to detect errors can safely use this option to improve
performance.

IDE Equivalent

None

Alternate Options

None

fpack-struct
Specifies that structure members should be packed
together.

Syntax

Linux OS:

-fpack-struct
Windows OS:

None

Arguments

None

Default

OFF

Description

Specifies that structure members should be packed together.

NOTE
Using this option may result in code that is not usable with standard (system) c and C++
libraries.

IDE Equivalent

None

Alternate Options

Linux: -Zp1
Windows: None

Compiler Reference   

273



fpascal-strings
Tells the compiler to allow for Pascal-style string
literals.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

-fpascal-strings
Windows OS:

None

Arguments

None

Default

OFF The compiler does not allow for Pascal-style string literals.

Description

Tells the compiler to allow for Pascal-style string literals.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: None

Alternate Options

None

fpic
Determines whether the compiler generates position-
independent code.

Syntax

Linux OS:

-fpic

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

274



-fno-pic
Windows OS:

None

Arguments

None

Default

-fno-pic The compiler does not generate position-independent code.

Description

This option determines whether the compiler generates position-independent code.

Option -fpic specifies full symbol preemption. Global symbol definitions as well as global symbol references
get default (that is, preemptable) visibility unless explicitly specified otherwise.

Option -fpic must be used when building shared objects.

This option can also be specified as -fPIC.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Code Generation > Generate Position Independent Code

Alternate Options

None

fpie
Tells the compiler to generate position-independent
code. The generated code can only be linked into
executables.

Syntax

Linux OS:

-fpie
Windows OS:

None

Arguments

None

Default

OFF The compiler does not generate position-independent code for an
executable-only object.

Compiler Reference   

275



Description

This option tells the compiler to generate position-independent code. It is similar to -fpic, but code
generated by -fpie can only be linked into an executable.

Because the object is linked into an executable, this option causes better optimization of some symbol
references.

To ensure that run-time libraries are set up properly for the executable, you should also specify option -pie
to the compiler driver on the link command line.

Option -fpie can also be specified as -fPIE.

IDE Equivalent

None

Alternate Options

None

See Also
fpic  compiler option
pie  compiler option

freg-struct-return
Tells the compiler to return struct and union values in
registers when possible.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

-freg-struct-return
Windows OS:

None

Arguments

None

Default

OFF

Description

This option tells the compiler to return struct and union values in registers when possible.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

276



IDE Equivalent

None

Alternate Options

None

fstack-protector
Enables or disables stack overflow security checks for
certain (or all) routines.

Syntax

Linux OS:

-fstack-protector[-keyword]
-fno-stack-protector[-keyword]
Windows OS:

None

Arguments

keyword Possible values are:

strong When option -fstack-protector-strong is specified, it enables stack
overflow security checks for routines with any type of buffer.

all When option -fstack-protector-all is specified, it enables stack
overflow security checks for every routine.

If no -keyword is specified, option -fstack-protector enables stack overflow security checks for routines
with a string buffer.

Default

-fno-stack-protector,
-fno-stack-protector-strong

No stack overflow security checks are enabled for the relevant
routines.

-fno-stack-protector-all No stack overflow security checks are enabled for any routines.

Description

This option enables or disables stack overflow security checks for certain (or all) routines. A stack overflow
occurs when a program stores more data in a variable on the execution stack than is allocated to the
variable. Writing past the end of a string buffer or using an index for an array that is larger than the array
bound could cause a stack overflow and security violations.

The -fstack-protector options are provided for compatibility with gcc. They use the gcc/glibc
implementation when possible. If the gcc/glibc implementation is not available, they use the Intel
implementation.

This content does not apply to SYCL.
For an Intel-specific version of this feature, see option -fstack-security-check.

IDE Equivalent

None

Compiler Reference   

277



Alternate Options

None

See Also
fstack-security-check  compiler option
GS  compiler option

fstack-security-check
Determines whether the compiler generates code that
detects some buffer overruns.

Syntax

Linux OS:

-fstack-security-check
-fno-stack-security-check
Windows OS:

None

Arguments

None

Default

-fno-stack-security-check The compiler does not detect buffer overruns.

Description

This option determines whether the compiler generates code that detects some buffer overruns that
overwrite the return address. This is a common technique for exploiting code that does not enforce buffer
size restrictions.

This option always uses an Intel implementation.

For a gcc-compliant version of this feature, see option fstack-protector.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

Linux: None

Windows: /GS

See Also
fstack-protector  compiler option
GS  compiler option

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

278



fvisibility
Specifies the default visibility for global symbols or the
visibility for symbols in declarations, functions, or
variables.

Syntax

Linux OS:

-fvisibility=arg
-fvisibility-global-new-delete-hidden
-fvisibility-inlines-hidden
-f[no]visibility-inlines-hidden-static-local-var
-fvisibility-ms-compat
Windows OS:

None

Arguments

arg Specifies the visibility setting. Possible values are:

default Sets visibility to default. The symbol is visible outside this
shared object.

This means that other components can reference the
symbols, and the symbol definitions can be overridden
(preempted) by a definition of the same name in another
component.

hidden Sets visibility to hidden. The symbol is not visible outside
this shared object.

This means that other components cannot directly
reference the symbol.

internal This is the same as specifying hidden.

protected Sets visibility to protected. The symbol is seen by the
dynamic linker but always dynamically resolves to an
object within this shared object.

This means that other components can reference the
symbol, but it cannot be overridden by a definition of the
same name in another component.

This value is not supported on all targets.

Default

-fvisibility=default The compiler sets visibility of symbols to default.

Description

This option specifies the default visibility for global symbols (syntax -fvisibility=arg) or the visibility for
symbols in declarations, functions, or variables.

Compiler Reference   

279



The following table shows supported -fvisibility options:

Option Description

-fvisibility=arg Sets visibility of symbols for all global declarations.

As specified above in Arguments, arg can be one of
the following: hidden internal default protected.

-fvisibility-global-new-delete-hidden Sets hidden visibility for global C++ operator new
and delete declarations.

-fvisibility-inlines-hidden Sets hidden visibility by default for inline C++
member functions.

-fvisibility-inlines-hidden-static-local-var
-fno-visibility-inlines-hidden-static-local-var

When -fvisibility-inlines-hidden is enabled,
static variables in inline C++ member functions will
also be given hidden visibility by default.

To disable option
-fvisibility-inlines-hidden-static-local-var
, specify option
-fno-visibility-inlines-hidden-static-local-var
.

-fvisibility-ms-compat Sets default visibility for global types and sets
hidden visibility for global functions and variables.

If an -fvisibility option is specified more than once on the command line, the last specification takes
precedence over any others.

The following shows the precedence of the visibility settings (from greatest to least visibility):

• default
• protected
• hidden

IDE Equivalent

None

Alternate Options

None

fzero-initialized-in-bss, Qzero-initialized-in-bss
Determines whether the compiler places in the DATA
section any variables explicitly initialized with zeros.

Syntax

Linux OS:

-fzero-initialized-in-bss
-fno-zero-initialized-in-bss

Windows OS:

/Qzero-initialized-in-bss
/Qzero-initialized-in-bss-

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

280



Arguments

None

Default

-fno-zero-initialized-in-bss
or /Qzero-initialized-in-bss-

Variables explicitly initialized with zeros are placed in the BSS
section. This can save space in the resulting code.

Description

This option determines whether the compiler places in the DATA section any variables explicitly initialized
with zeros.

If option -fno-zero-initialized-in-bss (Linux*) or /Qzero-initialized-in-bss- (Windows*) is
specified, the compiler places in the DATA section any variables that are initialized to zero.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Data > Disable Placement of Zero-Initialized Variables in .bss - place in .data instead

Alternate Options

None

GA
Enables faster access to certain thread-local storage
(TLS) variables.

Syntax

Linux OS:

None
Windows OS:

/GA

Arguments

None

Default

OFF Default access to TLS variables is in effect.

Description

This option enables faster access to certain thread-local storage (TLS) variables. When you compile your
main executable (.EXE) program with this option, it allows faster access to TLS variables declared with the
__declspec(thread) specification.

Note that if you use this option to compile .DLLs, you may get program errors.

Compiler Reference   

281



IDE Equivalent

Windows

Visual Studio: Optimization > Optimize for Windows Applications

Linux

Eclipse: None

Alternate Options

None

Gs
Lets you control the threshold at which the stack
checking routine is called or not called.

Syntax

Linux OS:

None
Windows OS:

/Gs[n]

Arguments

n Is the number of bytes that local variables and compiler temporaries
can occupy before stack checking is activated. This is called the
threshold.

Default

/Gs Stack checking occurs for routines that require more than 4KB (4096 bytes) of stack space. This
is also the default if you do not specify n.

Description

This option lets you control the threshold at which the stack checking routine is called or not called. If a
routine's local stack allocation exceeds the threshold (n), the compiler inserts a __chkstk() call into the
prologue of the routine.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

282



GS
Determines whether the compiler generates code that
detects some buffer overruns.

Syntax

Linux OS:

None
Windows OS:

/GS[:keyword]
/GS-

Arguments

keyword Specifies the level of stack protection heuristics used by the compiler. Possible values are:

off Tells the compiler to ignore buffer overruns. This is the same
as specifying /GS-.

partial Tells the compiler to provide a stack protection level that is
compatible with Microsoft* Visual Studio 2008.

strong Tells the compiler to provide full stack security level checking.
This setting is compatible with more recent Microsoft* Visual
Studio stack protection heuristics. This is the same as
specifying /GS with no keyword.

Default

/GS- The compiler does not detect buffer overruns.

Description

This option determines whether the compiler generates code that detects some buffer overruns that
overwrite a function's return address, exception handler address, or certain types of parameters.

This option has been added for Microsoft compatibility.

Following Visual Studio 2008, the Microsoft implementation of option /GS became more extensive (for
example, more routines are protected). The performance of some programs may be impacted by the newer
heuristics. In such cases, you may see better performance if you specify /GS:partial.

For more details about option /GS, see the Microsoft documentation.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Security Check

Eclipse

Eclipse: None

Alternate Options

SYCL: None

Compiler Reference   

283



C++: Linux: -fstack-security-check
C++: Windows: None

See Also
fstack-security-check  compiler option
fstack-protector  compiler option

malign-double
Determines whether double, long double, and long
long types are naturally aligned. This option is
equivalent to specifying option align.

Architecture Restrictions

Only available on IA-32 architecture

Syntax

Linux OS:

-malign-double
-mno-align-double
Windows OS:

None

Arguments

None

Default

-mno-align-double Types are aligned according to the gcc model, which means they are aligned
to 4-byte boundaries.

Description

For details, see the align option.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

mcmodel
Tells the compiler to use a specific memory model to
generate code and store data.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

284



Architecture Restrictions

Only available on Intel® 64 architecture

Syntax

Linux OS:

-mcmodel=mem_model
Windows OS:

None

Arguments

mem_model Is the memory model to use. Possible values are:

small Tells the compiler to restrict code and data to
the first 2GB of address space. All accesses
of code and data can be done with
Instruction Pointer (IP)-relative addressing.

medium Tells the compiler to restrict code to the first
2GB; it places no memory restriction on
data. Accesses of code can be done with IP-
relative addressing, but accesses of data
must be done with absolute addressing.

large Places no memory restriction on code or
data. All accesses of code and data must be
done with absolute addressing.

Default

-mcmodel=small On systems using Intel® 64 architecture, the compiler restricts code and data to the
first 2GB of address space. Instruction Pointer (IP)-relative addressing can be used to
access code and data.

Description

This option tells the compiler to use a specific memory model to generate code and store data. It can affect
code size and performance. If your program has global and static data with a total size smaller than 2GB,
-mcmodel=small is sufficient. Global and static data larger than 2GB requires-mcmodel=medium or
-mcmodel=large. Allocation of memory larger than 2GB can be done with any setting of -mcmodel.

IP-relative addressing requires only 32 bits, whereas absolute addressing requires 64-bits. IP-relative
addressing is somewhat faster. So, the small memory model has the least impact on performance.

NOTE
This content does not apply to SYCL.

When you specify option -mcmodel=medium or -mcmodel=large, it sets option -shared-intel. This
ensures that the correct dynamic versions of the Intel run-time libraries are used.

If you specify option -static-intel while -mcmodel=medium or -mcmodel=large is set, an error will
be displayed.

Compiler Reference   

285



IDE Equivalent

None

Alternate Options

None

Example
The following example shows how to compile using -mcmodel:

This content does not apply to SYCL.

icx -shared-intel -mcmodel=medium -o prog prog.c

See Also
shared-intel  compiler option
fpic  compiler option

Qlong-double
Changes the default size of the long double data type.

Syntax

Linux OS:

None
Windows OS:

/Qlong-double

Arguments

None

Default

OFF The default size of the long double data type is 64 bits.

Description

This option changes the default size of the long double data type to 80 bits.

However, the alignment requirement of the data type is 16 bytes, and its size must be a multiple of its
alignment, so the size of a long double on Windows* is also 16 bytes. Only the lower 10 bytes (80 bits) of
the 16 byte space will have valid data stored in it.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

286



NOTE
Using the Qlong-double command-line option on Windows* platforms requires that any
source code using double extended precision floating-point types (FP80) be carefully
segregated from source code that was not written in a way that considers or supports their
use. When this option is used, source code that makes assumptions or has requirements on
the size or layout of an FP80 value may experience a variety of failures at compile time, link
time, or run time.

The Microsoft* C Standard Library and Microsoft* C++ Standard Template Library do not support FP80
datatypes. In all circumstances where you want to use this option, please check with your library
vendor to determine whether they support FP80 datatype formats.

For example, the Microsoft* compiler and Microsoft*-provided library routines (such as printf or
long double math functions) do not provide support for 80-bit floating-point values and should not
be called from code compiled with the Qlong-double command-line option.

Starting with the Microsoft Visual Studio 2019 version 16.10 release, you may get compilation errors
when using options /std:c++latest together with /Qlong-double in programs that directly or indirectly
include the <complex> header, <xutility> header, or the <cmath> header. To see an example of this,
see the Example section below.

IDE Equivalent

None

Alternate Options

None

Example
In the Note above, we mention an issue with using the options /std:c++latest together with /Qlong-double in
programs that directly or indirectly include the <complex>, <xutility>, or the <cmath> headers. The
following shows an example of this issue:

#include <iostream>
#include <complex>

int main()
{long double ld2 = 1256789.98765432106L;int iNan = isnan(ld2);std::cout << "Hello World!\n"; }

ksh-3.2$ icl -c -EHsc -GR    -std:c++latest /Qlong-double /MD  test1.cpp
Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version xxx 
Build xxxx
Copyright (C) 1985-2021 Intel Corporation.  All rights reserved.

test1.cpp
c:/Program files/Microsoft Visual Studio/2022/Preview/VC/Tools/MSVC/14.29.30130/include/
xutility(5918): error: no instance of function template "std::_Bit_cast" matches the argument 
list
            argument types are: (const long double)
      const auto _Bits = _Bit_cast<_Uint_type>(_Xx);
                         ^
c:/Program files/Microsoft Visual Studio/2022/Preview/VC/Tools/MSVC/14.29.30130/include/
xutility(67): note: this candidate was rejected because at least one template argument could not 
be deduced
  _NODISCARD _CONSTEXPR_BIT_CAST _To _Bit_cast(const _From& _Val) noexcept {

Compiler Reference   

287



                                     ^
          detected during:
            instantiation of "auto std::_Float_abs_bits(const _Ty &) [with _Ty=long double, 
<unnamed>=0]" at line 5967
            instantiation of "bool std::_Is_finite(_Ty) [with _Ty=long double, <unnamed>=0]" at 
line 1307 of "c:/Program files/Microsoft Visual Studio/2022/Preview/VC/Tools/MSVC/14.29.30130/
include/cmath"
            instantiation of "_Ty std::_Common_lerp(_Ty, _Ty, _Ty) noexcept [with _Ty=long 
double]" at line 1392 of "c:/Program files/Microsoft Visual Studio/2022/Preview/VC/Tools/MSVC/
14.29.30130/include/cmath"

compilation aborted for test1.cpp (code 2)

Compiler Diagnostic Options
This section contains descriptions for compiler options that pertain to compiler diagnostics. They are listed in
alphabetical order.

w
Disables all warning messages.

Syntax

Linux OS:

-w
Windows OS:

/w

Arguments

None

Default

OFF Default warning messages are enabled.

Description

This option disables all warning messages.

IDE Equivalent

Windows

Visual Studio: General > Warning Level

Linux

Eclipse: General > Warning Level

Alternate Options

Linux: -w0
Windows: /W0

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

288



w, W
Specifies the level of diagnostic messages to be
generated by the compiler.

Syntax

Linux OS:

-wn
Windows OS:

/Wn

Arguments

n Is the level of diagnostic messages to be generated. Possible values
are:

0 Enables diagnostics for errors. Disables
diagnostics for warnings.

1 Enables diagnostics for warnings and errors.

2 Enables diagnostics for warnings and errors.
On Linux* systems, additional warnings are
enabled. On Windows* systems, this setting
is equivalent to level 1 (n = 1).

3 Enables diagnostics for remarks, warnings,
and errors. Additional warnings are also
enabled above level 2 (n = 2). This level is
recommended for production purposes.

4 Enables diagnostics for all level 3 (n = 3)
warnings plus informational warnings and
remarks, which in most cases can be safely
ignored. This value is only available on
Windows* systems.

5 Enables diagnostics for all remarks,
warnings, and errors. This setting produces
the most diagnostic messages. This value is
only available on Windows* systems.

Default

n=1 The compiler displays diagnostics for warnings and errors.

Description

This option specifies the level of diagnostic messages to be generated by the compiler.

On Windows systems, option /W4 is equivalent to option /Wall.

The -wn, /Wn, and Wall options can override each other. The last option specified on the command line takes
precedence.

Compiler Reference   

289



IDE Equivalent

Windows

Visual Studio: General > Warning Level

Linux

Eclipse: General > Warning Level

Alternate Options

None

See Also
Wall  compiler option

Wabi
Determines whether a warning is issued if generated
code is not C++ ABI compliant.

Syntax

Linux OS:

-Wabi
-Wno-abi
Windows OS:

None

Arguments

None

Default

-Wno-abi No warning is issued when generated code is not C++ ABI compliant.

Description

This option determines whether a warning is issued if generated code is not C++ ABI compliant.

IDE Equivalent

None

Alternate Options

None

Wall
Enables warning and error diagnostics.

Syntax

Linux OS:

-Wall

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

290



Windows OS:

/Wall

Arguments

None

Default

OFF Only default warning diagnostics are enabled.

Description

This option enables many warning and error diagnostics.

On Windows* systems, this option is equivalent to the /W4 option. It enables diagnostics for all level 3
warnings plus informational warnings and remarks.

However, on Linux* systems, this option is similar to gcc option -Wall. It displays all errors and some of the
warnings that are typically reported by gcc option -Wall. If you want to display all warnings, specify the -w2
or -w3 option.

The Wall, -wn, and /Wn options can override each other. The last option specified on the command line takes
precedence.

IDE Equivalent

None

Alternate Options

None

See Also
w, W  compiler option

Wcheck-unicode-security
Determines whether the compiler performs source
code checking for Unicode vulnerabilities.

Syntax

Linux OS:

-Wcheck-unicode-security
-Wno-check-unicode-security

Windows OS:

/Wcheck-unicode-security
/Wno-check-unicode-security

Arguments

None

Default

Wno-check-unicode-securityThe compiler does not perform source code checking for Unicode vulnerabilities.

Compiler Reference   

291



Description

This option determines whether the compiler performs source code checking for Unicode vulnerabilities.

Option Wcheck-unicode-security enables Unicode checking. The compiler will detect and warn about
Unicode constructs that can be exploited by using bi-directional formatting codes, zero-width characters in
strings, and use of zero-width characters and homoglyphs in identifiers.

Option Wno-check-unicode-security disables Unicode checking.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: DPC++: DPC++ > Diagnostics > Check Unicode Security

C/C++: C/C++ > Diagnostics [Intel C++] > Check Unicode Security

Linux

Eclipse: DPC++: Intel(R) oneAPI DPC++ Compiler > Diagnostics > Check Unicode Security

C/C++: Intel C++ Compiler > Compilation Diagnostics > Check Unicode Security

Alternate Options

None

Wcomment
Determines whether a warning is issued when /*
appears in the middle of a /* */ comment.

Syntax

Linux OS:

-Wcomment
-Wno-comment
Windows OS:

None

Arguments

None

Default

-Wno-comment No warning is issued when /* appears in the middle of a /* */ comment.

Description

This option determines whether a warning is issued when /* appears in the middle of a /* */ comment.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

292



IDE Equivalent

None

Alternate Options

None

Wdeprecated
Determines whether warnings are issued for
deprecated C++ headers.

Syntax

Linux OS:

-Wdeprecated
-Wno-deprecated
Windows OS:

None

Arguments

None

Default

-Wdeprecated The compiler issues warnings for deprecated C++ headers.

Description

This option determines whether warnings are issued for deprecated C++ headers. It has no effect in C
compilation mode.

Option -Wdeprecated enables these warnings by defining the __DEPRECATED macro for preprocessor.

To disable warnings for deprecated C++ headers, specify -Wno-deprecated.

IDE Equivalent

None

Alternate Options

None

Weffc++, Qeffc++
Enables warnings based on certain C++ programming
guidelines.

Syntax

Linux OS:

-Weffc++
Windows OS:

/Qeffc++

Compiler Reference   

293



Arguments

None

Default

OFF Diagnostics are not enabled.

Description

This option enables warnings based on certain programming guidelines developed by Scott Meyers in his
books on effective C++ programming. With this option, the compiler emits warnings for these guidelines:

• Use const and inline rather than #define. Note that you will only get this in user code, not system
header code.

• Use <iostream> rather than <stdio.h>.
• Use new and delete rather than malloc and free.
• Use C++ style comments in preference to C style comments. C comments in system headers are not

diagnosed.
• Use delete on pointer members in destructors. The compiler diagnoses any pointer that does not have a

delete.
• Make sure you have a user copy constructor and assignment operator in classes containing pointers.
• Use initialization rather than assignment to members in constructors.
• Make sure the initialization list ordering matches the declartion list ordering in constructors.
• Make sure base classes have virtual destructors.
• Make sure operator= returns *this.
• Make sure prefix forms of increment and decrement return a const object.
• Never overload operators &&, ||, and ,.

NOTE
The warnings generated by this compiler option are based on the following books from Scott
Meyers:

• Effective C++ Second Edition - 50 Specific Ways to Improve Your Programs and Designs
• More Effective C++ - 35 New Ways to Improve Your Programs and Designs

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Compilation Diagnostics > Enable Warnings for Style Guideline Violations

Alternate Options

None

Werror, WX
Changes all warnings to errors.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

294



Syntax

Linux OS:

-Werror
Windows OS:

/WX

Arguments

None

Default

OFF The compiler returns diagnostics as usual.

Description

This option changes all warnings to errors.

IDE Equivalent

Windows

Visual Studio: General > Treat Warnings As Errors

Linux

Eclipse: Compilation Diagnostics > Treat Warnings As Errors

Alternate Options

None

Werror-all
Causes all warnings and currently enabled remarks to
be reported as errors.

Syntax

Linux OS:

-Werror-all
Windows OS:

/Werror-all

Arguments

None

Default

OFF The compiler returns diagnostics as usual.

Description

This option causes all warnings and currently enabled remarks to be reported as errors.

Compiler Reference   

295



IDE Equivalent

None

Alternate Options

None

Wextra-tokens
Determines whether warnings are issued about extra
tokens at the end of preprocessor directives.

Syntax

Linux OS:

-Wextra-tokens
-Wno-extra-tokens
Windows OS:

None

Arguments

None

Default

-Wno-extra-tokens The compiler does not warn about extra tokens at the end of preprocessor
directives.

Description

This option determines whether warnings are issued about extra tokens at the end of preprocessor directives.

IDE Equivalent

None

Alternate Options

None

Wformat
Determines whether argument checking is enabled for
calls to printf, scanf, and so forth.

Syntax

Linux OS:

-Wformat
-Wno-format
Windows OS:

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

296



Arguments

None

Default

-Wno-format Argument checking is not enabled for calls to printf, scanf, and so
forth.

Description

This option determines whether argument checking is enabled for calls to printf, scanf, and so forth.

IDE Equivalent

None

Alternate Options

None

Wformat-security
Determines whether the compiler issues a warning
when the use of format functions may cause security
problems.

Syntax

Linux OS:

-Wformat-security
-Wno-format-security
Windows OS:

None

Arguments

None

Default

-Wno-format-security No warning is issued when the use of format functions may cause
security problems.

Description

This option determines whether the compiler issues a warning when the use of format functions may cause
security problems.

When -Wformat-security is specified, it warns about uses of format functions where the format string is
not a string literal and there are no format arguments.

IDE Equivalent

None

Alternate Options

None

Compiler Reference   

297



Wmain
Determines whether a warning is issued if the return
type of main is not expected.

Syntax

Linux OS:

-Wmain
-Wno-main
Windows OS:

None

Arguments

None

Default

-Wno-main No warning is issued if the return type of main is not expected.

Description

This option determines whether a warning is issued if the return type of main is not expected.

IDE Equivalent

None

Alternate Options

None

Wmissing-declarations
Determines whether warnings are issued for global
functions and variables without prior declaration.

Syntax

Linux OS:

-Wmissing-declarations
-Wno-missing-declarations
Windows OS:

None

Arguments

None

Default

-Wno-missing-declarations No warnings are issued for global functions and variables without prior
declaration.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

298



Description

This option determines whether warnings are issued for global functions and variables without prior
declaration.

IDE Equivalent

None

Alternate Options

None

Wmissing-prototypes
Determines whether warnings are issued for missing
prototypes.

Syntax

Linux OS:

-Wmissing-prototypes
-Wno-missing-prototypes
Windows OS:

None

Arguments

None

Default

-Wno-missing-prototypes No warnings are issued for missing prototypes.

Description

Determines whether warnings are issued for missing prototypes.

If -Wmissing-prototypes is specified, it tells the compiler to detect global functions that are defined
without a previous prototype declaration.

IDE Equivalent

None

Alternate Options

None

Wpointer-arith
Determines whether warnings are issued for
questionable pointer arithmetic.

Syntax

Linux OS:

-Wpointer-arith

Compiler Reference   

299



-Wno-pointer-arith
Windows OS:

None

Arguments

None

Default

-Wno-pointer-arith No warnings are issued for questionable pointer arithmetic.

Description

Determines whether warnings are issued for questionable pointer arithmetic.

IDE Equivalent

None

Alternate Options

None

Wreorder
Tells the compiler to issue a warning when the order
of member initializers does not match the order in
which they must be executed.

Syntax

Linux OS:

-Wreorder
Windows OS:

None

Arguments

None

Default

OFF The compiler does not issue a warning.

Description

This option tells the compiler to issue a warning when the order of member initializers does not match the
order in which they must be executed. This option is supported for C++ only.

IDE Equivalent

None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

300



Wreturn-type
Determines whether warnings are issued when a
function is declared without a return type, when the
definition of a function returning void contains a
return statement with an expression, or when the
closing brace of a function returning non-void is
reached.

Syntax

Linux OS:

-Wreturn-type
-Wno-return-type
Windows OS:

None

Arguments

None

Default

ON for one condition A warning is issued when the closing brace of a function returning non-void
is reached.

Description

This option determines whether warnings are issued for the following:

• When a function is declared without a return type
• When the definition of a function returning void contains a return statement with an expression
• When the closing brace of a function returning non-void is reached

Specify -Wno-return-type if you do not want to see warnings about the above diagnostics.

IDE Equivalent

None

Alternate Options

None

Wshadow
Determines whether a warning is issued when a
variable declaration hides a previous declaration.

Syntax

Linux OS:

-Wshadow
-Wno-shadow

Compiler Reference   

301



Windows OS:

None

Arguments

None

Default

-Wno-shadow No warning is issued when a variable declaration hides a previous
declaration.

Description

This option determines whether a warning is issued when a variable declaration hides a previous declaration.
Same as -ww1599.

IDE Equivalent

None

Alternate Options

None

Wsign-compare
Determines whether warnings are issued when a
comparison between signed and unsigned values could
produce an incorrect result when the signed value is
converted to unsigned.

Syntax

Linux OS:

-Wsign-compare
-Wno-sign-compare
Windows OS:

None

Arguments

None

Default

-Wno-sign-compare The compiler does not issue these warnings

Description

This option determines whether warnings are issued when a comparison between signed and unsigned values
could produce an incorrect result when the signed value is converted to unsigned.

On Linux* systems, this option is provided for compatibility with gcc.

IDE Equivalent

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

302



Alternate Options

None

Wstrict-aliasing
Determines whether warnings are issued for code that
might violate the optimizer's strict aliasing rules.

Syntax

Linux OS:

-Wstrict-aliasing
-Wno-strict-aliasing
Windows OS:

None

Arguments

None

Default

-Wno-strict-aliasing No warnings are issued for code that might violate the optimizer's
strict aliasing rules.

Description

This option determines whether warnings are issued for code that might violate the optimizer's strict aliasing
rules. These warnings will only be issued if you also specify option -fstrict-aliasing.

IDE Equivalent

None

Alternate Options

None

Wstrict-prototypes
Determines whether warnings are issued for functions
declared or defined without specified argument types.

Syntax

Linux OS:

-Wstrict-prototypes
-Wno-strict-prototypes
Windows OS:

None

Arguments

None

Compiler Reference   

303



Default

-Wno-strict-prototypes No warnings are issued for functions declared or defined without
specified argument types.

Description

This option determines whether warnings are issued for functions declared or defined without specified
argument types.

IDE Equivalent

None

Alternate Options

None

Wtrigraphs
Determines whether warnings are issued if any
trigraphs are encountered that might change the
meaning of the program.

Syntax

Linux OS:

-Wtrigraphs
-Wno-trigraphs
Windows OS:

None

Arguments

None

Default

-Wno-trigraphs No warnings are issued if any trigraphs are encountered that might change
the meaning of the program.

Description

This option determines whether warnings are issued if any trigraphs are encountered that might change the
meaning of the program.

IDE Equivalent

None

Alternate Options

None

Wuninitialized
Determines whether a warning is issued if a variable is
used before being initialized.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

304



Syntax

Linux OS:

-Wuninitialized
-Wno-uninitialized
Windows OS:

None

Arguments

None

Default

-Wno-uninitialized No warning is issued if a variable is used before being initialized.

Description

This option determines whether a warning is issued if a variable is used before being initialized. Equivalent to
-ww592 and -wd592.

IDE Equivalent

None

Alternate Options

-ww592 and -wd592

Wunknown-pragmas
Determines whether a warning is issued if an unknown
#pragma directive is used.

Syntax

Linux OS:

-Wunknown-pragmas
-Wno-unknown-pragmas
Windows OS:

None

Arguments

None

Default

-Wunknown-pragmas A warning is issued if an unknown #pragma directive is used.

Description

This option determines whether a warning is issued if an unknown #pragma directive is used.

Compiler Reference   

305



IDE Equivalent

None

Alternate Options

None

Wunused-function
Determines whether a warning is issued if a declared
function is not used.

Syntax

Linux OS:

-Wunused-function
-Wno-unused-function
Windows OS:

None

Arguments

None

Default

-Wno-unused-function No warning is issued if a declared function is not used.

Description

This option determines whether a warning is issued if a declared function is not used.

IDE Equivalent

None

Alternate Options

None

Wunused-variable
Determines whether a warning is issued if a local or
non-constant static variable is unused after being
declared.

Syntax

Linux OS:

-Wunused-variable
-Wno-unused-variable
Windows OS:

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

306



Arguments

None

Default

-Wno-unused-variable No warning is issued if a local or non-constant static variable is
unused after being declared.

Description

This option determines whether a warning is issued if a local or non-constant static variable is unused after
being declared.

IDE Equivalent

None

Alternate Options

None

Wwrite-strings
Issues a diagnostic message if const char * is
converted to (non-const) char *.

Syntax

Linux OS:

-Wwrite-strings
Windows OS:

None

Arguments

None

Default

OFF No diagnostic message is issued if const char * is converted to (non-const) char*.

Description

This option issues a diagnostic message if const char* is converted to (non-const) char *.

IDE Equivalent

None

Alternate Options

None

Compatibility Options
This section contains descriptions for compiler options that pertain to language compatibility.

Compiler Reference   

307



gcc-toolchain
Lets you specify the location of the base toolchain.

Syntax

Linux OS:

--gcc-toolchain=dir

Windows OS:

None

Arguments

dir Is the location of the base toolchain.

Default

OFF The compiler uses heuristics to locate the base toolchain.

Description

This option lets you specify the location of the base toolchain.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

vmv
Enables pointers to members of any inheritance type.

Syntax

Linux OS:

None

Windows OS:

/vmv

Arguments

None

Default

OFF The compiler uses default rules to represent pointers to members.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

308



Description

This option enables pointers to members of any inheritance type. To use this option, you must also specify
option /vmg.

IDE Equivalent

None

Alternate Options

None

Linking or Linker Options
This section contains descriptions for compiler options that pertain to linking or to the linker. They are listed
in alphabetical order.

Bdynamic
Enables dynamic linking of libraries at run time.

Syntax

Linux OS:

-Bdynamic
Windows OS:

None

Arguments

None

Default

OFF Limited dynamic linking occurs.

Description

This option enables dynamic linking of libraries at run time. Smaller executables are created than with static
linking.

This option is placed in the linker command line corresponding to its location on the user command line. It
controls the linking behavior of any library that is passed using the command line.

All libraries on the command line following option -Bdynamic are linked dynamically until the end of the
command line or until a -Bstatic option is encountered. The -Bstatic option enables static linking of
libraries.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Compiler Reference   

309



Alternate Options

None

See Also
Bstatic  compiler option

Bstatic
Enables static linking of a user's library.

Syntax

Linux OS:

-Bstatic

Windows OS:

None

Arguments

None

Default

OFF Default static linking occurs.

Description

This option enables static linking of a user's library.

This option is placed in the linker command line corresponding to its location on the user command line. It
controls the linking behavior of any library that is passed using the command line.

All libraries on the command line following option -Bstatic are linked statically until the end of the
command line or until a -Bdynamic option is encountered. The -Bdynamic option enables dynamic linking of
libraries.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
Bdynamic  compiler option

Bsymbolic
Binds references to all global symbols in a program to
the definitions within a user's shared library.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

310



Syntax

Linux OS:

-Bsymbolic
Windows OS:

None

Arguments

None

Default

OFF When a program is linked to a shared library, it can override the definition within the shared
library.

Description

This option binds references to all global symbols in a program to the definitions within a user's shared
library.

This option is only meaningful on Executable Linkage Format (ELF) platforms that support shared libraries.

Caution
This option can have unintended side-effects of disabling symbol preemption in the shared
library.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
Bsymbolic-functions  compiler option

Bsymbolic-functions
Binds references to all global function symbols in a
program to the definitions within a user's shared
library.

Syntax

Linux OS:

-Bsymbolic-functions

Compiler Reference   

311



Windows OS:

None

Arguments

None

Default

OFF When a program is linked to a shared library, it can override the definition within the shared
library.

Description

This option binds references to all global function symbols in a program to the definitions within a user's
shared library.

This option is only meaningful on Executable Linkage Format (ELF) platforms that support shared libraries.

Caution
This option can have unintended side-effects of disabling symbol preemption in the shared
library.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
Bsymbolic  compiler option

dynamic-linker
Specifies a dynamic linker other than the default.

Syntax

Linux OS:

-dynamic-linker file
Windows OS:

None

Arguments

file Is the name of the dynamic linker to be used.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

312



Default

OFF The default dynamic linker is used.

Description

This option lets you specify a dynamic linker other than the default.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

F (Windows*)
Specifies the stack reserve amount for the program.

Syntax

Linux OS:

None
Windows OS:

/Fn

Arguments

n Is the stack reserve amount. It can be specified as a decimal integer
or as a hexadecimal constant by using a C-style convention (for
example, /F0x1000).

Default

OFF The stack size default is chosen by the operating system.

Description

This option specifies the stack reserve amount for the program. The amount (n) is passed to the linker.

Note that the linker property pages have their own option to do this.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Compiler Reference   

313



Alternate Options

None

fixed
Causes the linker to create a program that can be
loaded only at its preferred base address.

Syntax

Linux OS:

None
Windows OS:

/fixed

Arguments

None

Default

OFF The compiler uses default methods to load programs.

Description

This option is passed to the linker, causing it to create a program that can be loaded only at its preferred
base address.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

Fm
Tells the linker to generate a link map file. This is a
deprecated option that may be removed in a future
release.

Syntax

Linux OS:

None
Windows OS:

/Fm[filename|dir]

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

314



Arguments

filename Is the name for the link map file.

dir Is the directory where the link map file should be placed. It can
include file.

Default

OFF No link map is generated.

Description

This option tells the linker to generate a link map.

This is a deprecated option that may be removed in a future release. There is no replacement option.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

fuse-ld
Tells the compiler to use a different linker instead of
the default linker (ld).

Syntax

Linux OS:

-fuse-ld=keyword
Windows OS:

None

Arguments

keyword Possible values are:

bfd Tells the compiler to use the bfd linker.

gold Tells the compiler to use the gold linker.

Default

ld The compiler uses the ld linker by default.

Description

This option tells the compiler to use a different linker instead of default linker (ld).

Compiler Reference   

315



This option is provided for compatibility with gcc.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

l
Tells the linker to search for a specified library when
linking.

Syntax

Linux OS:

-lstring
Windows OS:

None

Arguments

string Specifies the library (libstring) that the linker should search.

Default

OFF The linker searches for standard libraries in standard directories.

Description

This option tells the linker to search for a specified library when linking.

When resolving references, the linker normally searches for libraries in several standard directories, in
directories specified by the L option, then in the library specified by the l option.

The linker searches and processes libraries and object files in the order they are specified. So, you should
specify this option following the last object file it applies to.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

316



See Also
L  compiler option

L
Tells the linker to search for libraries in a specified
directory before searching the standard directories.

Syntax

Linux OS:

-Ldir
Windows OS:

None

Arguments

dir Is the name of the directory to search for libraries.

Default

OFF The linker searches the standard directories for libraries.

Description

This option tells the linker to search for libraries in a specified directory before searching for them in the
standard directories.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
l  compiler option

LD
Specifies that a program should be linked as a
dynamic-link (DLL) library.

Syntax

Linux OS:

None
Windows OS:

/LD

Compiler Reference   

317



/LDd

Arguments

None

Default

OFF The program is not linked as a dynamic-link (DLL) library.

Description

This option specifies that a program should be linked as a dynamic-link (DLL) library instead of an executable
(.exe) file. You can also specify /LDd, where d indicates a debug version.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

link
Passes user-specified options directly to the linker at
compile time.

Syntax

Linux OS:

None
Windows OS:

/link

Arguments

None

Default

OFF No user-specified options are passed directly to the linker.

Description

This option passes user-specified options directly to the linker at compile time.

All options that appear following /link are passed directly to the linker.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

318



NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
Xlinker  compiler option

MD
Tells the linker to search for unresolved references in
a multithreaded, dynamic-link run-time library.

Syntax

Linux OS:

None
Windows OS:

/MD
/MDd

Arguments

None

Default

OFF The linker searches for unresolved references in a multi-threaded, static run-time library.

Description

This option tells the linker to search for unresolved references in a multithreaded, dynamic-link (DLL) run-
time library. You can also specify /MDd, where d indicates a debug version.

This option is processed by the compiler, which adds directives to the compiled object file that are processed
by the linker.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Runtime Library

Compiler Reference   

319



Eclipse

Eclipse: None

Alternate Options

None

MT
Tells the linker to search for unresolved references in
a multithreaded, static run-time library.

Syntax

Linux OS:

None
Windows OS:

/MT
/MTd

Arguments

None

Default

/MT The linker searches for unresolved references in a multithreaded,
static run-time library.

Description

This option tells the linker to search for unresolved references in a multithreaded, static run-time library. You
can also specify /MTd, where d indicates a debug version.

This option is processed by the compiler, which adds directives to the compiled object file that are processed
by the linker.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: Code Generation > Runtime Library

Eclipse

Eclipse: None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

320



See Also

no-libgcc
Prevents the linking of certain gcc-specific libraries.

Syntax

Linux OS:

-no-libgcc
Windows OS:

None

Arguments

None

Default

OFF

Description

This option prevents the linking of certain gcc-specific libraries.

This option is not recommended for general use.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

nodefaultlibs
Prevents the compiler from using standard libraries
when linking.

Syntax

Linux OS:

-nodefaultlibs
Windows OS:

None

Arguments

None

Compiler Reference   

321



Default

OFF The standard libraries are linked.

Description

This option prevents the compiler from using standard libraries when linking.

On Linux* systems, it is provided for GNU compatibility.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Libraries > Use no system libraries

Alternate Options

None

See Also
nostdlib  compiler option

no-intel-lib, Qno-intel-lib
Disables linking to specified Intel® libraries, or to all
Intel® libraries.

Syntax

Linux OS:

-no-intel-lib[=library]
Windows OS:

/Qno-intel-lib[:library]

Arguments

library Indicates which Intel® library should not be linked. Possible values are:

libirc Disables linking to the Intel® C/C++ library.

libimf Disables linking to the Intel® oneAPI DPC++/C++ Compiler
Math library. This value is only available for Linux*.

libsvml Disables linking to the Intel® Short Vector Math library.

libirng Disables linking to the Random Number Generator library.

If you specify more than one library, they must be separated by commas.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

322



If library is omitted, the compiler will not link to any of the Intel® libraries shown above.

Default

OFF If this option is not specified, the compiler uses default heuristics for linking to
libraries.

Description

This option disables linking to specified Intel® libraries, or to all Intel® libraries.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

nostartfiles
Prevents the compiler from using standard startup
files when linking.

Syntax

Linux OS:

-nostartfiles
Windows OS:

None

Arguments

None

Default

OFF The compiler uses standard startup files when linking.

Description

This option prevents the compiler from using standard startup files when linking.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Compiler Reference   

323



Alternate Options

None

See Also
nostdlib  compiler option

nostdlib
Prevents the compiler from using standard libraries
and startup files when linking.

Syntax

Linux OS:

-nostdlib
Windows OS:

None

Arguments

None

Default

OFF The compiler uses standard startup files and standard libraries when linking.

Description

This option prevents the compiler from using standard libraries and startup files when linking.

This option is provided for GNU compatibility.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
nodefaultlibs  compiler option
nostartfiles  compiler option

pie
Determines whether the compiler generates position-
independent code that will be linked into an
executable.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

324



Syntax

Linux OS:

-pie
-no-pie
Windows OS:

None

Arguments

None

Default

varies On Linux*, the default is -no-pie.

Description

This option determines whether the compiler generates position-independent code that will be linked into an
executable. To enable generation of position-independent code that will be linked into an executable, specify
-pie.

To disable generation of position-independent code that will be linked into an executable, specify -no-pie.

IDE Equivalent

None

Alternate Options

None

See Also
fpic  compiler option

pthread
Tells the compiler to use pthreads library for
multithreading support.

Syntax

Linux OS:

-pthread
Windows OS:

None

Arguments

None

Default

OFF The compiler does not use pthreads library for multithreading support.

Compiler Reference   

325



Description

Tells the compiler to use pthreads library for multithreading support.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

shared
Tells the compiler to produce a dynamic shared object
instead of an executable.

Syntax

Linux OS:

-shared
Windows OS:

None

Arguments

None

Default

OFF The compiler produces an executable.

Description

This option tells the compiler to produce a dynamic shared object (DSO) instead of an executable. This
includes linking in all libraries dynamically and passing -shared to the linker.

You must specify option fpic for the compilation of each object file you want to include in the shared library.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

326



See Also
fpic  compiler option
Xlinker  compiler option

shared-intel
Causes Intel-provided libraries to be linked in
dynamically.

Syntax

Linux OS:

-shared-intel
Windows OS:

None

Arguments

None

Default

OFF Intel® libraries are linked in statically, with the exception of Intel's OpenMP* runtime support
library, which is linked in dynamically unless you specify option -qopenmp-link=static.

Description

This option causes Intel-provided libraries to be linked in dynamically. It is the opposite of -static-intel.

This option is processed by the compiler driver command that initiates linking, adding library names explicitly
to the link command.

If you specify option -mcmodel=medium or -mcmodel=large, it sets option -shared-intel.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: None

Alternate Options

None

See Also
static-intel  compiler option
qopenmp-link  compiler option

Compiler Reference   

327



shared-libgcc
Links the GNU libgcc library dynamically.

Syntax

Linux OS:

-shared-libgcc
Windows OS:

None

Arguments

None

Default

-shared-libgcc The compiler links the libgcc library dynamically.

Description

This option links the GNU libgcc library dynamically. It is the opposite of option static-libgcc.

This option is processed by the compiler driver command that initiates linking, adding library names explicitly
to the link command.

This option is useful when you want to override the default behavior of the static option, which causes all
libraries to be linked statically.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
static-libgcc  compiler option

static
Prevents linking with shared libraries.

Syntax

Linux OS:

-static
Windows OS:

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

328



Arguments

None

Default

OFF The compiler links with shared libraries except as otherwise specified by -static-intel or its
default.

Description

This option prevents linking with shared libraries. It causes the executable to link all libraries statically.

NOTE
This option does not cause static linking of libraries for which no static version is available.
These libraries can only be linked dynamically.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: Libraries > Link with static libraries

Alternate Options

None

See Also
static-intel  compiler option

static-intel
Causes Intel-provided libraries to be linked in
statically.

Syntax

Linux OS:

-static-intel
Windows OS:

None

Arguments

None

Compiler Reference   

329



Default

ON Intel® libraries are linked in statically, with the exception of Intel's OpenMP* runtime support
library, which is linked in dynamically unless you specify option -qopenmp-link=static.

Description

This option causes Intel-provided libraries to be linked in statically with certain exceptions (see the Default
above). It is the opposite of -shared-intel.

This option is processed by the icx or icpx command that initiates linking, adding library names explicitly to
the link command.

If you specify option -static-intel while option -mcmodel=medium or -mcmodel=large is set, an error
will be displayed.

If you specify option -static-intel and any of the Intel-provided libraries have no static version, a
diagnostic will be displayed.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Visual Studio

Visual Studio: None

Eclipse

Eclipse: None

Alternate Options

None

See Also
shared-intel  compiler option
qopenmp-link  compiler option

static-libgcc
Links the GNU libgcc library statically.

Syntax

Linux OS:

-static-libgcc
Windows OS:

None

Arguments

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

330



Default

OFF The compiler links the GNU libgcc library dynamically.

Description

This option links the GNU libgcc library statically. It is the opposite of option -shared-libgcc.

This option is processed by the compiler driver command that initiates linking, adding library names explicitly
to the link command.

This option is useful when you want to override the default behavior, which causes the library to be linked
dynamically.

NOTE
If you want to use traceback, you must also link to the static version of the libgcc library.
This library enables printing of backtrace information.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
shared-libgcc  compiler option
static-libstdc++  compiler option

static-libstdc++
Links the GNU libstdc++ library statically.

Syntax

Linux OS:

-static-libstdc++
Windows OS:

None

Arguments

None

Default

OFF The compiler links the GNU libstdc++ library dynamically.

Compiler Reference   

331



Description

This option links the GNU libstdc++ library statically.

This option is processed by the compiler driver command that initiates linking, adding library names explicitly
to the link command.

This option is useful when you want to override the default behavior, which causes the library to be linked
dynamically.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
static-libgcc  compiler option

T
Tells the linker to read link commands from a file.

Syntax

Linux OS:

-Tfilename
Windows OS:

None

Arguments

filename Is the name of the file.

Default

OFF The linker does not read link commands from a file.

Description

This option tells the linker to read link commands from a file.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

332



Alternate Options

None

u (Linux*)
Tells the compiler the specified symbol is undefined.

Syntax

Linux OS:

-u symbol
Windows OS:

None

Arguments

None

Default

OFF Standard rules are in effect for variables.

Description

This option tells the compiler the specified symbol is undefined.

IDE Equivalent

None

Alternate Options

None

v
Specifies that driver tool commands should be
displayed and executed.

Syntax

Linux OS:

-v [filename]
Windows OS:

None

Arguments

filename Is the name of a source file to be compiled. A space must appear
before the file name.

Default

OFF No tool commands are shown.

Compiler Reference   

333



Description

This option specifies that driver tool commands should be displayed and executed.

If you use this option without specifying a source file name, the compiler displays only the version of the
compiler.

IDE Equivalent

None

Alternate Options

None

See Also
dryrun  compiler option

Wa
Passes options to the assembler for processing.

Syntax

Linux OS:

-Wa,option1[,option2,...]
Windows OS:

None

Arguments

option Is an assembler option. This option is not processed by the driver and
is directly passed to the assembler.

Default

OFF No options are passed to the assembler.

Description

This option passes one or more options to the assembler for processing. If the assembler is not invoked,
these options are ignored.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

334



Wl
Passes options to the linker for processing.

Syntax

Linux OS:

-Wl,option1[,option2,...]
Windows OS:

None

Arguments

option Is a linker option. This option is not processed by the driver and is
directly passed to the linker.

Default

OFF No options are passed to the linker.

Description

This option passes one or more options to the linker for processing. If the linker is not invoked, these options
are ignored.

This option is equivalent to specifying option -Qoption,link,options.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
Qoption  compiler option

Wp
Passes options to the preprocessor.

Syntax

Linux OS:

-Wp,option1[,option2,...]
Windows OS:

None

Compiler Reference   

335



Arguments

option Is a preprocessor option. This option is not processed by the driver
and is directly passed to the preprocessor.

Default

OFF No options are passed to the preprocessor.

Description

This option passes one or more options to the preprocessor. If the preprocessor is not invoked, these options
are ignored.

This option is equivalent to specifying option -Qoption,cpp, options.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
Qoption  compiler option

Xlinker
Passes a linker option directly to the linker.

Syntax

Linux OS:

-Xlinker option
Windows OS:

None

Arguments

option Is a linker option.

Default

OFF No options are passed directly to the linker.

Description

This option passes a linker option directly to the linker. If -Xlinker -shared is specified, only -shared is
passed to the linker and no special work is done to ensure proper linkage for generating a shared object.
-Xlinker just takes whatever arguments are supplied and passes them directly to the linker.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

336



If you want to pass compound options to the linker, for example "-L $HOME/lib", you must use the
following method:

-Xlinker -L -Xlinker $HOME/lib

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: None

Linux

Eclipse: Linker > Miscellaneous > Other Options

Alternate Options

None

See Also
shared  compiler option
link  compiler option

Zl
Causes library names to be omitted from the object
file.

Syntax

Linux OS:

None
Windows OS:

/Zl

Arguments

None

Default

OFF Default or specified library names are included in the object file.

Description

This option causes library names to be omitted from the object file.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Compiler Reference   

337



IDE Equivalent

Windows

Visual Studio: Advanced > Omit Default Library Names

Linux

Eclipse: None

Alternate Options

None

Miscellaneous Options
This section contains descriptions for compiler options that do not pertain to a specific category. They are
listed in alphabetical order.

dryrun
Specifies that driver tool commands should be shown
but not executed.

Syntax

Linux OS:

-dryrun
Windows OS:

None

Arguments

None

Default

OFF No tool commands are shown, but they are executed.

Description

This option specifies that driver tool commands should be shown but not executed.

IDE Equivalent

None

Alternate Options

None

See Also
v  compiler option

dumpmachine
Displays the target machine and operating system
configuration.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

338



Syntax

Linux OS:

-dumpmachine
Windows OS:

None

Arguments

None

Default

OFF The compiler does not display target machine or operating system information.

Description

This option displays the target machine and operating system configuration. No compilation is performed.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
dumpversion  compiler option

dumpversion
Displays the version number of the compiler.

Syntax

Linux OS:

-dumpversion
Windows OS:

None

Arguments

None

Default

OFF The compiler does not display the compiler version number.

Compiler Reference   

339



Description

This option displays the version number of the compiler. It does not compile your source files.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
dumpmachine  compiler option

help
Displays a list of supported compiler options in
alphabetical order.

Syntax

Linux OS:

-help
Windows OS:

/help

Arguments

None

Default

OFF No list is displayed unless this compiler option is specified.

Description

This option displays a list of supported compiler options in alphabetical order.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

340



nologo
Tells the compiler to not display compiler version
information.

Syntax

Linux OS:

None

Windows OS:

/nologo

Arguments

None

Default

OFF

Description

Tells the compiler to not display compiler version information.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: General > Suppress Startup Banner

Linux

Eclipse: None

Alternate Options

None

save-temps, Qsave-temps
Tells the compiler to save intermediate files created
during compilation.

Syntax

Linux OS:

-save-temps
-no-save-temps

Windows OS:

/Qsave-temps (C++ only)

Compiler Reference   

341



/Qsave-temps- (C++ only)
Windows OS:

None (SYCL only)

Arguments

None

Default

SYCL: Linux systems: -no-save-temps On Linux systems, the compiler deletes intermediate
files after compilation is completed.

C++: Linux systems: -no-save-temps
Windows systems: .obj files are saved

On Linux systems, the compiler deletes intermediate
files after compilation is completed.

On Windows systems, the compiler saves only
intermediate object files after compilation is
completed.

Description

This option tells the compiler to save intermediate files created during compilation. The names of the files
saved are based on the name of the source file; the files are saved in the current working directory.

If option [Q]save-temps (C++) or save-temps (SYCL) is specified, the following occurs:

• The object .o file (Linux) is saved.
• C++: The .obj file (Windows) object .o file is saved.

If -no-save-temps is specified on Linux systems, the following occurs:

• The .o file is put into /tmp and deleted after calling ld.
• The preprocessed file is not saved after it has been used by the compiler.

This content does not apply to SYCL.
If /Qsave-temps- is specified on Windows systems, the following occurs:

• The .obj file is not saved after the linker step.
• The preprocessed file is not saved after it has been used by the compiler.

NOTE
This option only saves intermediate files that are normally created during compilation.

IDE Equivalent

None

Alternate Options

None

showIncludes
Tells the compiler to display a list of the include files.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

342



Syntax

Linux OS:

None
Windows OS:

/showIncludes

Arguments

None

Default

OFF The compiler does not display a list of the include files.

Description

This option tells the compiler to display a list of the include files. Nested include files (files that are included
from the files that you include) are also displayed.

IDE Equivalent

Windows

Visual Studio: Advanced > Show Includes

Linux

Eclipse: None

Alternate Options

None

sox, Qsox
Tells the compiler to save the compilation options in
the executable file.

Syntax

Linux OS:

-sox
Windows OS:

/Qsox

Arguments

None

Default

OFF The compiler version number is saved in the object file.

Description

This option tells the compiler to save the compilation options in the executable file. The information is
embedded as a string in each object file or assembly output.

Compiler Reference   

343



When you specify this option, the size of the executable on disk is increased slightly. When you link the
object files into an executable file, the linker places each of the information strings into the header of the
executable. It is then possible to use a tool, such as a strings utility, to determine what options were used to
build the executable file.

IDE Equivalent

None

Alternate Options

None

sysroot
Specifies the root directory where headers and
libraries are located.

Syntax

Linux OS:

--sysroot=dir
Windows OS:

None

Arguments

dir Specifies the local directory that contains copies of target libraries in
the corresponding subdirectories.

Default

Off The compiler uses default settings to search for headers and libraries.

Description

This option specifies the root directory where headers and libraries are located.

For example, if the headers and libraries are normally located in /usr/include and /usr/lib respectively,
--sysroot=/mydir will cause the compiler to search in /mydir/usr/include and /mydir/usr/lib for the
headers and libraries.

This option is provided for compatibility with gcc.

NOTE
Even though this option is not supported for a Windows-to-Windows native compiler, it is
supported for a Windows-host to Linux-target compiler.

IDE Equivalent

None

Alternate Options

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

344



Tc
Tells the compiler to process a file as a C source file.

Syntax

Linux OS:

None
Windows OS:

/Tcfilename

Arguments

filename Is the file name to be processed as a C source file.

Default

OFF The compiler uses default rules for determining whether a file is a C source file.

Description

This option tells the compiler to process a file as a C source file.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

See Also
TC  compiler option
Tp  compiler option

TC
Tells the compiler to process all source or
unrecognized file types as C source files.

Syntax

Linux OS:

None
Windows OS:

/TC

Compiler Reference   

345



Arguments

None

Default

OFF The compiler uses default rules for determining whether a file is a C source file.

Description

This option tells the compiler to process all source or unrecognized file types as C source files.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

Windows

Visual Studio: Advanced > Compile As

Linux

Eclipse: None

Alternate Options

None

See Also
TP  compiler option
Tc  compiler option

Tp
Tells the compiler to process a file as a C++ source
file.

Syntax

Linux OS:

None
Windows OS:

/Tpfilename

Arguments

filename Is the file name to be processed as a C++ source file.

Default

OFF The compiler uses default rules for determining whether a file is a C++ source file.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

346



Description

This option tells the compiler to process a file as a C++ source file.

IDE Equivalent

None

Alternate Options

None

See Also
TP  compiler option
Tc  compiler option

version
Tells the compiler to display GCC-style version
information.

Syntax

Linux OS:

--version
Windows OS:

None

Arguments

None

Default

OFF

Description

Tells the compiler to display GCC-style version information.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

Alternate Options

None

watch
Tells the compiler to display certain information to the
console output window.

Compiler Reference   

347



Syntax

Linux OS:

-watch[=keyword[, keyword...]]
-nowatch
Windows OS:

/watch[:keyword[, keyword...]]
/nowatch

Arguments

keyword Determines what information is displayed. Possible values are:

none Disables cmd and source.

[no]cmd Determines whether driver tool commands are displayed and
executed.

[no]source Determines whether the name of the file being compiled is displayed.

all Enables cmd and source.

Default

nowatch Pass information and source file names are not displayed to the console output window.

Description

Tells the compiler to display processing information (pass information and source file names) to the console
output window.

Option watch keyword Description

none Tells the compiler to not display pass information and source file names
to the console output window. This is the same as specifying nowatch.

cmd Tells the compiler to display and execute driver tool commands.

source Tells the compiler to display the name of the file being compiled.

all Tells the compiler to display pass information and source file names to
the console output window. This is the same as specifying watch with no
keyword. For heterogeneous compilation, the tool commands for the host
and the offload compilations will be displayed.

NOTE
This option only applies to host compilation. When offloading is enabled, it does not impact
device-specific compilation.

IDE Equivalent

None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

348



Alternate Options

watch cmd Linux: -v
Windows: None

See Also
v  compiler option

Deprecated and Removed Compiler Options
This topic lists deprecated and removed compiler options and suggests replacement options, if any are
available.

Deprecated and removed options for SYCL and C++ are listed in separate tables. There are currently no
removed options for SYCL.

For more information on compiler options, see the detailed descriptions of the individual option descriptions
in this section.

Deprecated Options for SYCL
Occasionally, compiler options are marked as deprecated. Deprecated options are still supported in the
current release, but they may be unsupported in future releases.

The following table lists options that are currently deprecated.

Note that deprecated options are not limited to this list.

Deprecated Linux and Windows Options Suggested Replacement

foffload-static-lib None

fsycl-add-targets None

fsycl-explicit-simd None

fsycl-link-targets None

Deprecated Options for C++
Occasionally, compiler options are marked as "deprecated." Deprecated options are still supported in the
current release, but they may be unsupported in future releases.

The following two tables list options that are currently deprecated.

Note that deprecated options are not limited to these lists.

Deprecated Linux Options Suggested Replacement

daal qdaal

device-math-lib None

fopenmp None

ipp qipp

Kc++ x c++

Compiler Reference   

349



Deprecated Linux Options Suggested Replacement

m32 None

march=pentiumii None

march=pentiumiii march=pentium3

mkl qmkl

msse Linux only: None

tbb qtbb

xH xSSE4.2

Deprecated Windows Options Suggested Replacement

device-math-lib None

GX EHsc

GZ RTC1

H None

Oy None

Qm32 None

Qsfalign None

Quse-asm None

QxH QxSSE4.2

Ze None

Zg None

Removed Options for C++
Some compiler options are no longer supported and have been removed. If you use one of these options, the
compiler issues a warning, ignores the option, and then proceeds with compilation.

The following two tables list options that are no longer supported.

Note that removed options are not limited to these lists.

Removed Linux Options Suggested Replacement

A- undef

0f_check None

c99 std=c99

check-uninit check=uninit

export None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

350



Removed Linux Options Suggested Replacement

export-dir None

F P

falign-stack=mode None

fdiv_check None

fp fno-omit-frame-pointer

fvisibility=internal fvisibility=hidden

fwritable-strings None

gcc-name and gxx-name No exact replacement; use gcc-toolchain

guide-profile None

i-dynamic shared-intel

i-static static-intel

inline-debug-info debug inline-debug-info

ipo-obj (and -ipo_obj) None

ipp-link=static-thread None

Knopic, KNOPIC fpic

Kpic, KPIC fpic

mp fp-model

no-alias-args fargument-noalias

no-c99 std=c89

openmp qopenmp

openmp-lib qopenmp-lib

openmp-lib legacy None

openmp-link and qopenmp-link None

openmpP qopenmp

openmp-profile None

openmp-report qopt-report-phase=openmp

openmpS qopenmp-stubs

openmp-stubs qopenmp-stubs

openmp-task qopenmp-task

opt-gather-scatter-unroll None

Compiler Reference   

351



Removed Linux Options Suggested Replacement

opt-report qopt-report

opt-streaming-cache-evict None

prefetch qopt-prefetch

print-sysroot None

prof-format-32 None

prof-genx prof-gen=srcpos

profile-functions None

profile-loops None

profile-loops-report None

qopenmp-report qopt-report-phase=openmp

qopenmp-task None

qp p

rct None

shared-libcxa shared-libgcc

ssp None

static-libcxa static-libgcc

std=c9x std=c99

syntax fsyntax-only

tcheck None

tpp1 None

tpp2 None

tpp5 None

tpp6 None

tpp7 None

tprofile None

Wpragma-once None

Removed Windows Options Suggested Replacement

debug:parallel None

G5 None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

352



Removed Windows Options Suggested Replacement

G6 (or GB) None

G7 None

Gf GF

ML[d] Upgrade to MT[d]

Og O1, O2, or O3

Op fp:precise

QA- u

Qc99 Qstd=c99

Qguide-profile None

Qgpu-arch:ivybridge None

QI0f None

QIfdiv None

Qinline-debug-info debug:inline-debug-info

Qipo-obj (and Qipo_obj) None

Qipp-link:static-thread None

Qmspp None

Qopenmp-lib:legacy None

Qopenmp-link None

Qopenmp-profile None

Qopenmp-report Qopt-report-phase:openmp

Qopenmp-task None

Qopt-report-level Qopt-report

Qprefetch Qopt-prefetch

Qprof-format-32 None

Qprofile-functions None

Qprofile-loops None

Qprofile-loops-report None

Qrct None

Qssp None

Qtprofile None

Compiler Reference   

353



Removed Windows Options Suggested Replacement

Qtcheck None

Qvc11
Qvc10
Qvc9 and earlier

None

YX None

Zd debug:minimal

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Display Option Information
To display a list of all available compiler options, specify option help on the command line.

To display functional groupings of compiler options, specify a functional category for option help. For
example, to display a list of options that affect diagnostic messages, enter one of the following commands:

Linux

-help diagnostics     
Windows

/help diagnostics     
For details on other categories you can specify, see help.

Alternate Compiler Options
These options are not valid for SYCL applications.

This topic lists alternate names for compiler options and show the primary option name. Some of the
alternate option names are deprecated and may be removed in future releases.

For more information on compiler options, see the detailed descriptions of the individual, primary options.

Some of these options are deprecated. For more information, see Deprecated and Removed Options.

Linux

Alternate Linux* Options Primary Option Name

Code Generation:

-fp -fomit-frame-pointer

Advanced Optimizations:

-funroll-loops -unroll

OpenMP* and Parallel Processing Options:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

354

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Alternate Linux* Options Primary Option Name

-fopenmp -qopenmp

Linking or Linker:

-i-dynamic -shared-intel

-i-static -static-intel

Windows

Alternate Windows* Options Primary Option Name

OpenMP* and Parallel Processing Options:

/openmp /Qopenmp

Portability and GCC-compatible Warning Options
This section discusses portability options and GCC-compatible warning options.

This content does not apply for SYCL.

Portability Options

A challenge in porting applications from one compiler to another is making sure that there is support for the
compiler options you use to build your application. The Intel® compiler supports many of the options that are
valid on other compilers you may be using.

The first table lists compiler options that are supported by the Intel® compiler and the GCC Compiler.
Following this table, you will see information about GCC-compatible warning options.

The second table lists compiler options that are supported by the Intel® compiler and the Microsoft C++
Compiler .

Options that are unique to either compiler are not listed in this topic.

Linux

This table lists compiler options that are supported by both the Intel® compiler and the GCC Compiler.

-ansi

-B

-C

-c

-D

-dD

-dM

-E

-fargument-noalias

-fargument-noalias-global

-fcf-protection

Compiler Reference   

355



-fdata-sections

-ffunction-sections

-f[no-]builtin

-f[no-]common

-f[no-]freestanding

-f[no-]gnu-keywords

-f[no-]inline

-f[no-]inline-functions

-f[no-]math-errno

-f[no-]operator-names

-f[no-]stack-protector

-f[no-]unsigned-bitfields

-fpack-struct

-fpermissive

-fPIC

-fpic

-freg-struct-return

-fshort-enums

-fsyntax-only

-funroll-loops

-funsigned-char

-fverbose-asm

-H

-help

-I

-idirafter

-imacros

-iprefix

-iwithprefix

-iwithprefixbefore

-l

-L

-M

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

356



-malign-double

-march

-mcpu

-MD

-MF

-MG

-MM

-MMD

-m[no-]ieee-fp

-MP

-MQ

-msse

-msse2

-msse3

-MT

-nodefaultlibs

-nostartfiles

-nostdinc

-nostdinc++

-nostdlib

-o

-O

-O0

-O1

-O2

-O3

-Os

-p

-P

-S

-shared

-static

-std

Compiler Reference   

357



-trigraphs

-U

-u

-v

-V

-Wall

-Werror

-W[no-]cast-qual

-W[no-]comment

-W[no-]comments

-W[no-]deprecated

-W[no-]fatal-errors

-W[no-]format-security

-W[no-]main

-W[no-]missing-declarations

-W[no-]missing-prototypes

-W[no-]overflow

-W[no-]overloaded-virtual

-W[no-]pointer-arith

-W[no-]return-type

-W[no-]strict-prototypes

-W[no-]trigraphs

-W[no-]uninitialized

-W[no-]unknown-pragmas

-W[no-]unused-function

-W[no-]unused-variable

-X

-x assembler-with-cpp

-x c

-x c++

-Xlinker

The Intel® compiler recognizes many GCC-compatible warning options, but many are not documented.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

358



In general, if a GCC-compatible option is accepted by the compiler, but not documented, the implementation
of the option is the same as described in the GCC documentation.

To find the GCC documentation about GCC warning options, you can do any of the following:

• Enter the command:

man gcc
• Check the GCC website.
• Search the web for "gcc warning options".

Windows

This table lists compiler options that are supported by both the Intel® compiler and the Microsoft C++
Compiler.

For complete details about these options, such as the possible values for <n> when it appears below, see the
Microsoft Visual Studio C++ documentation.

/C

/c

/D<name>{=|#}<text>

/E

/EH{a|s|c|r}

/EP

/F<n>

/Fa[file]

/FA[{c|s|cs}]

/FC

/Fe<file>

/FI<file>

/Fm[<file>]

/Fo<file>

/fp:<model>

/Fp<file>

/FR[<file>]

/GA

/Gd

/GF

/Gr

/GR[-]

/GS[-]

/Gs[<n>]

Compiler Reference   

359

https://gcc.gnu.org/onlinedocs/gcc/


/Gy[-]

/Gz

/GZ

/H<n>

/help

/I<dir>

/J

/LD

/LDd

/link

/MD

/MDd

/MT

/MTd

/nologo

/O1

/O2

/Od

/Oi[-]

/Os

/Ot

/Ox

/Oy[-]

/P

/QIfist[-]

/RTC{1|c|s|u}

/showIncludes

/TC

/Tc<source file>

/TP

/Tp<source file>

/u

/U<name>

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

360



/vd<n>

/vmg

/vmv

/W<n>

/Wall

/WX

/X

/Y-

/Yc[<file>]

/Yu[<file>]

/Z7

/Zc:<arg1>[, <arg2>]

/Zg

/Zi

/ZI

/Zl

/Zp[<n>]

/Zs

Floating-Point Operations
This section contains information about floating-point operations, including IEEE floating-point operations,
and it provides guidelines that can help you improve the performance of floating-point applications.

Programming Tradeoffs in Floating-Point Applications
In general, the programming objectives for floating-point applications fall into the following categories:

• Accuracy: The application produces results that are close to the correct result.
• Reproducibility and portability: The application produces consistent results across different runs,

different sets of build options, different compilers, different platforms, and different architectures.
• Performance: The application produces fast, efficient code.

Based on the goal of an application, you will need to make tradeoffs among these objectives. For example, if
you are developing a 3D graphics engine, performance may be the most important factor to consider, with
reproducibility and accuracy as secondary concerns.

The compiler provides several options that allow you to tune your applications based on specific objectives.
Broadly speaking, there are the floating-point specific options, such as the -fp-model (Linux*) or /fp
(Windows*) option, and the fast-but-low-accuracy options, such as the [Q]imf-max-error option. The
compiler optimizes and generates code differently when you specify these different compiler options. Select
appropriate compiler options by carefully balancing your programming objectives and making tradeoffs
among these objectives. Some of these options may influence the choice of math routines that are invoked.

Floating-Point Operations   

361



Many routines in the libirc, libm, and svml library are more highly optimized for Intel microprocessors than
for non-Intel microprocessors.

Use Floating-Point Options
Take the following code as an example:

float t0, t1, t2;
 ...
t0=t1+t2+4.0f+0.1f;

If you specify the -fp-model fast (Linux) or /fp:fast (Windows) option in favor of performance, the
compiler generates the following assembly code:

movss     xmm0, DWORD PTR _Cnst4.1 
addss     xmm0, DWORD PTR _t1 
addss     xmm0, DWORD PTR _t2 
movss     DWORD PTR _t0, xmm0

This code maximizes performance using Intel® Streaming SIMD Extensions (Intel® SSE) instructions and pre-
computing 4.0f + 0.1f. It is not as accurate as the first implementation, due to the greater intermediate
rounding error. It does not provide reproducible results like the second implementation, because it must
reorder the addition to pre-compute 4.0f + 0.1f. All compilers, on all platforms, at all optimization levels
do not reorder the addition in the same way.

For many other applications, the considerations may be more complicated.

Use Fast-But-Low-Accuracy Options
The fast-but-low-accuracy options provide an easy way to control the accuracy of mathematical functions and
utilize performance/accuracy tradeoffs offered by the Intel® oneAPI Math Kernel Library (oneMKL). You can
specify accuracy, via a command line interface, for all math functions or a selected set of math functions at
the level more precise than low, medium, or high.

You specify the accuracy requirements as a set of function attributes that the compiler uses for selecting an
appropriate function implementation in the math libraries. Examples using the attribute, max-error, are
presented here. For example, use the following option to specify the relative error of two ULPs for all single,
double, long double, and quad precision functions:

-fimf-max-error=2
To specify twelve bits of accuracy for a sin function, use:

-fimf-accuracy-bits=12:sin
To specify relative error of ten ULPs for a sin function, and four ULPs for other math functions called in the
source file you are compiling, use:

-fimf-max-error=10:sin-fimf-max-error=4
On Windows systems, the compiler defines the default value for the max-error attribute depending on
the /fp option settings. In /fp:fast mode the compiler sets a max-error=4.0 for the call. Otherwise, it
sets a max-error=0.6.

Dispatching of Math Routines
The compiler optimizes calls to routines from the libm and svml libraries into direct CPU-specific calls, when
the compilation configuration specifies the target CPU where the code is tuned, and if the set of instructions
available for the code compilation is not narrower than the set of instructions available in the tuning target
CPU.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

362



The dispatching optimization applies to the exp() routine, and to the other math routines with CPU specific
implementations in the libraries. The dispatching optimization can be disabled using the
-fimf-force-dynamic-target (or Qimf-force-dynamic-target) option. This option specifies a list of
math routines that are improved with a dynamic dispatcher.

See Also
Using -fp-model(/fp) Options
fimf-max-error, Qimf-max-error compiler option

Use the -fp-model, /fp Option
The -fp-model (Linux) or /fp (Windows) option allows you to control the optimizations on floating-point
data. You can use this option to tune the performance, level of accuracy, or result consistency for floating-
point applications across platforms and optimization levels.

You can use keywords to specify the semantics to be used. The keywords specified for this option may
influence the choice of math routines that are invoked. Many routines in the libirc, libm, and libsvml libraries
are more highly optimized for Intel microprocessors than for non-Intel microprocessors. Possible values of
the keywords are as follows:

Keyword Description

precise Enables value-safe optimizations on floating-point data.

fast Enables more aggressive optimizations on floating-point data.

strict Enables precise , disables contractions, and enables pragma
stdc fenv_access.

NOTE
Using the default option keyword -fp-model fast or /fp:fast, you may get significant differences
in your result depending on whether the compiler uses x87 or Intel® Streaming SIMD Extensions
(Intel® SSE)/Intel® Advanced Vector Extensions (Intel® AVX) instructions to implement floating-point
operations. Results are more consistent when the other option keywords are used.

See Also
fp-model, fp  compiler option

Denormal Numbers
A normalized number is a number for which both the exponent (including bias) and the most significant bit of
the mantissa are non-zero. For such numbers, all the bits of the mantissa contribute to the precision of the
representation.

The smallest normalized single-precision floating-point number greater than zero is about 1.1754943-38.
Smaller numbers are possible, but those numbers must be represented with a zero exponent and a mantissa
whose leading bit(s) are zero, which leads to a loss of precision. These numbers are called denormalized
numbers or denormals(newer specifications refer to these as subnormal numbers).

Denormal computations use hardware and/or operating system resources to handle denormals; these can
cost hundreds of clock cycles. Denormal computations take much longer to calculate than normal
computations.

There are several ways to avoid denormals and increase the performance of your application:

Compiler Reference   

363



• Scale the values into the normalized range.
• Use a higher precision data type with a larger range.
• Flush denormals to zero.

See Also
Reducing Impact of Denormal Exceptions
Intel® 64 and IA-32 (for C++ only) Architectures Software Developer's Manual, Volume 1: Basic Architecture

Institute of Electrical and Electronics Engineers, Inc*. (IEEE) web site for information about the current
floating-point standards and recommendations

Set the FTZ and DAZ Flags
In Intel® processors, the flush-to-zero (FTZ) and denormals-are-zero (DAZ) flags in the MXCSR register are
used to control floating-point calculations. Intel® Streaming SIMD Extensions (Intel® SSE) and Intel®
Advanced Vector Extensions (Intel® AVX) instructions, including scalar and vector instructions, benefit from
enabling the FTZ and DAZ flags. Floating-point computations using the Intel® SSE and Intel® AVX instructions
are accelerated when the FTZ and DAZ flags are enabled. This improves the application's performance.

Manually set the FTZ flags with the following macros:

_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON)
Manually set the DAZ flags with the following macros:

_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON)
The prototypes for these macros are in xmmintrin.h (FTZ) and pmmintrin.h (DAZ).

Tuning Performance
This section describes several programming guidelines that can help you improve the performance of
floating-point applications, including:

• Handling Floating-point Array Operations in a Loop Body
• Reducing the Impact of Denormal Exceptions
• Avoiding Mixed Data Type Arithmetic Expressions
• Using Efficient Data Types

Handling Floating-point Array Operations in a Loop Body
Following the guidelines below will help auto-vectorization of the loop.

• Statements within the loop body may contain float or double operations (typically on arrays). The
following arithmetic operations are supported: addition, subtraction, multiplication, division, negation,
square root, MAX, MIN, and mathematical functions such as SIN and COS.

• Writing to a single-precision scalar/array and a double scalar/array within the same loop decreases the
chance of auto-vectorization due to the differences in the vector length (that is, the number of elements
in the vector register) between float and double types. If auto-vectorization fails, try to avoid using mixed
data types.

NOTE
The special __m64, __m128, and __m256 datatypes are not vectorizable. The loop body cannot contain
any function calls. Use of the Intel® Streaming SIMD Extensions (Intel® SSE) and Intel® Advanced
Vector Extensions (Intel® AVX) intrinsics (for example, mm_add_ps) is not allowed.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

364



Reducing the Impact of Denormal Exceptions
Denormalized floating-point values are those that are too small to be represented in the normal manner; that
is, the mantissa cannot be left-justified. Denormal values require hardware or operating system interventions
to handle the computation, so floating-point computations that result in denormal values may have an
adverse impact on performance.

There are several ways to handle denormals to increase the performance of your application:

• Scale the values into the normalized range
• Use a higher precision data type with a larger range
• Flush denormals to zero

For example, you can translate them to normalized numbers by multiplying them using a large scalar
number, doing the remaining computations in the normal space, then scaling back down to the denormal
range. Consider using this method when the small denormal values benefit the program design.

Consider using a higher precision data type with a larger range; for example, by converting variables
declared as float to be declared as double. Understand that making the change can potentially slow down
your program. Storage requirements will increase, which will increase the amount of time for loading and
storing data from memory. Higher precision data types can also decrease the potential throughput of Intel®
Streaming SIMD Extensions (Intel® SSE) and Intel® Advanced Vector Extensions (Intel® AVX) operations.

If you change the type declaration of a variable, you might also need to change associated library calls,
unless these are generic; ; for example, cos() instead of cosf().. You should verify that the gain in
performance from eliminating denormals is greater than the overhead of using a data type with higher
precision and greater dynamic range.

In many cases, denormal numbers can be treated safely as zero without adverse effects on program results.
Depending on the target architecture, use flush-to-zero (FTZ) options.

Avoiding Mixed Data Type Arithmetic Expressions
Avoid mixing integer and floating-point (float, double, or long double) data in the same computation.
Expressing all numbers in a floating-point arithmetic expression (assignment statement) as floating-point
values eliminates the need to convert data between fixed and floating-point formats. Expressing all numbers
in an integer arithmetic expression as integer values also achieves this. This improves run-time performance.

For example, assuming that I and J are both int variables, expressing a constant number (2.0) as an integer
value (2) eliminates the need to convert the data. The following examples demonstrate inefficient and
efficient code.

Inefficient code:

int I, J;
  I = J / 2.0
;

Efficient code:

int I, J;
  I = J / 2;

Using Efficient Data Types
In cases where more than one data type can be used for a variable, consider selecting the data types based
on the following hierarchy, listed from most to least efficient:

• char
• short
• int
• long

Compiler Reference   

365



• long long
• float
• double
• long double

NOTE
In an arithmetic expression, you should avoid mixing integer and floating-point data.

You can use integer data types (int, int long, etc.) in loops to improve floating point performance. Convert
the data type to integer data types, process the data, then convert the data to the old type.

See Also
Programming Guidelines for Vectorization
Setting the FTZ and DAZ Flags
Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture

IEEE Floating-point Operations

Understanding the IEEE Standard for Floating-point Arithmetic, IEEE 754-2008
This version of the compiler uses a close approximation to the IEEE Standard for Floating-point Arithmetic,
version IEEE 754-2008, unless otherwise stated. This standard is common to many microcomputer-based
systems due to the availability of fast processors that implement the required characteristics.

This section outlines the characteristics of the IEEE 754-2008 standard and its implementation in the
compiler. Except as noted, the description refers to both the IEEE 754-2008 standard and the compiler
implementation.

Special Values
The following list provides a brief description of the special values that the Intel® oneAPI DPC++/C++
Compiler supports.

• Signed Zero: The sign of zero is the same as the sign of a nonzero number. Comparisons consider +0 to
be equal to -0. A signed zero is useful in certain numerical analysis algorithms, but in most applications
the sign of zero is invisible.

• Denormalized Numbers: Denormalized numbers (denormals) fill the gap between the smallest positive
and the smallest negative normalized number, otherwise only (+/-) 0 occurs in the interval. Denormalized
numbers extend the range of computable results by allowing for gradual underflow.

Systems based on the IA-32 architecture support a Denormal Operand status flag. When this is set, at
least one of the input operands to a Floating-point operation is a denormal. The Underflow status flag is
set when a number loses precision and becomes a denormal.

• Signed Infinity: Infinities are the result of arithmetic in the limiting case of operands with arbitrarily
large magnitude. They provide a way to continue when an overflow occurs. The sign of an infinity is
simply the sign you obtain for a finite number in the same operation as the finite number approaches an
infinite value.

By retrieving the status flags, you can differentiate between an infinity that results from an overflow and
one that results from division by zero. The compiler treats infinity as signed by default. The output value
of infinity is +Infinity or -Infinity.

• Not a Number: Not a Number (NaN) may result from an invalid operation. For example, 0/0 and
SQRT(-1) result in NaN. In general, an operation involving a NaN produces another NaN. Because the
fraction of a NaN is unspecified, there are many possible NaNs

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

366



The compiler treats all NaNs identically, but there are two classes of NaNs:

• Signaling NaNs: Have an initial mantissa bit of 0. They usually raise an invalid exception when used in
an operation.

• Quiet NaNs: Have an initial mantissa bit of 1.

The floating-point hardware usually converts a signaling NaN into a quiet NaN during computational
operations. An invalid exception is raised and the resulting Floating-point value is a quiet NaN.

Attributes
Attributes are a way to provide additional information about a declaration to the compiler. The C+11 attribute
syntax is consistent with the C2x standard.

Use Attributes
The compiler supports three ways to add attributes to your program:

• Gnu Syntax

__attribute__((attribute_name(arguments)))
• Microsoft Syntax

__declspec(attribute_name(argument))
• C++11 Standardized Attribute Syntax (part of the C++11 language standard)

[[attribute_name(arguments)]]
[[attribute-namespace :: attribute_name(arguments)]]

Some attributes are available for both Intel® microprocessors and non-Intel microprocessors but they may
perform additional optimizations for Intel® microprocessors than they perform for non-Intel microprocessors.
Refer to the individual attribute name for a detailed description.

align
Directs the compiler to align the variable to a specified
boundary and a specified offset.

Syntax

Windows* OS:

__declspec(align(n))
Linux* OS:

__attribute__((aligned(n)))
For portability on Linux OS, you should use the syntax form __attribute__((aligned(n))). This form is
compatible with the GNU compiler.

Arguments

n Specifies the alignment. The compiler will align the variable to an n-
byte boundary.

Description

This keyword directs the compiler to align the variable to an n-byte boundary.

Attributes   

367



NOTE
If you require 8-byte alignment, we recommend you specify 16 for n, instead of 8. When 8
is used, the compiler interprets the value as a suggestion and you may not get the
requested 8-byte alignment, depending on various heuristics.

align_value
Provides the ability to add a pointer alignment value
to a pointer typedef declaration.

Syntax

Windows* OS:

__declspec(align_value(alignment))
Linux* OS:

__attribute__((align_value(alignment)))

Arguments

alignment Specifies the alignment (8, 16, 32, 64, 128, 256,...) for what the
pointer points to.

Description

This keyword can be added to a pointer typedef declaration to specify the alignment value of pointers
declared for that pointer type.

It tells the compiler that the data referenced by the designated pointer is aligned by the indicated value, and
the compiler can generate code based on that assumption. If this attribute is used incorrectly, and the data is
not aligned to the designated value, the behavior is undefined.

allow_cpu_features
Provides the ability for a function to use intrinsic
functions and architecture specific functionality.

Syntax

Windows* OS:

__declspec(allow_cpu_features(featp1[,featp2]))
Linux* OS:

__attribute__((allow_cpu_features(featp1[,featp2])))

Arguments

featp1 Specifies features to allow for the function. Values are integral
constant expressions that evaluate to the page one bitmask of
permissible features from the libirc CPUID information. The evaluated
type is an unsigned 64-bit integer which permits use of template-
dependent code. Possible values are:

• _FEATURE_GENERIC_IA32
• _FEATURE_FPU
• _FEATURE_CMOV

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

368



• _FEATURE_MMX
• _FEATURE_FXSAVE
• _FEATURE_SSE
• _FEATURE_SSE2
• _FEATURE_SSE3
• _FEATURE_SSSE3
• _FEATURE_SSE4_1
• _FEATURE_SSE4_2
• _FEATURE_MOVBE
• _FEATURE_POPCNT
• _FEATURE_PCLMULQDQ
• _FEATURE_AES
• _FEATURE_F16C
• _FEATURE_AVX
• _FEATURE_RDRND
• _FEATURE_FMA
• _FEATURE_BMI
• _FEATURE_LZCNT
• _FEATURE_HLE
• _FEATURE_RTM
• _FEATURE_AVX2
• _FEATURE_AVX512DQ
• _FEATURE_PTWRITE
• _FEATURE_AVX512F
• _FEATURE_ADX
• _FEATURE_RDSEED
• _FEATURE_AVX512IFMA52
• _FEATURE_AVX512ER
• _FEATURE_AVX512PF
• _FEATURE_AVX512CD
• _FEATURE_SHA
• _FEATURE_MPX
• _FEATURE_AVX512BW
• _FEATURE_AVX512VL
• _FEATURE_AVX512VBMI
• _FEATURE_AVX512_4FMAPS
• _FEATURE_AVX512_4VNNIW
• _FEATURE_AVX512_VPOPCNTDQ
• _FEATURE_AVX512_BITALG
• _FEATURE_AVX512_VBMI2
• _FEATURE_GFNI
• _FEATURE_VAES
• _FEATURE_VPCLMULQDQ
• _FEATURE_AVX512_VNNI
• _FEATURE_CLWB
• _FEATURE_RDPID
• _FEATURE_IBT
• _FEATURE_SHSTK
• _FEATURE_SGX

Compiler Reference   

369



• _FEATURE_WBNOINVD
• _FEATURE_PCONFIG
• _FEATURE_AXV512_VP2INTERSECT

featp2 Optional. Specifies features to allow for the function. Values are
integral constant expressions that evaluate to the page two bitmask of
permissible features from the libirc CPUID information. The evaluated
type is an unsigned 64-bit integer which permits use of template-
dependent code. If only features from page two are desired, specify 0
for featp1. Possible values are:

• _FEATURE_CLDEMOTE
• _FEATURE_MOVDIRI
• _FEATURE_MOVDIR64B
• _FEATURE_WAITPKG
• _FEATURE_AVX512_Bf16
• _FEATURE_ENQCMD
• _FEATURE_AVX_VNNI
• _FEATURE_AMX_TILE
• _FEATURE_AMX_INT8
• _FEATURE_AMX_BF16
• _FEATURE_KL
• _FEATURE_WIDE_KL

Description

This keyword can be added to a function to specify intrinsic functions and architecture specific functionality
that the function is allowed to use. The function is generated as if the specified features are available.

concurrency_safe
Guides the compiler to parallelize more loops and
straight-line code.

Syntax

Windows* OS:

__declspec(concurrency_safe(clause))
Linux* OS:

__attribute__((concurrency_safe(clause)))

Arguments

clause Is one of the following:

cost(cycles): Specifies the execution cycles of the annotated function
for the compiler to perform parallelization profitability analysis while
compiling its enclosing loops or blocks. The value of cycles is a 2-
byte unsigned integer (unsigned short); its maximal value is 2^16-1.
If the cycle count is greater than 2^16-1, you should use profitable.

profitable: Specifies that the loops or blocks that contain calls to the
annotated function are profitable to parallelize.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

370



Description

This keyword specifies that there are no incorrect side-effects and no illegal (or improperly synchronized)
memory access interferences among multiple invocations of the annotated function or between an invocation
of this annotated function and other statements in the program, if they are executed concurrently.

For every function that is marked with this keyword, you must ensure that its side effects (if any) are
acceptable (or expected), and the memory access interferences are properly synchronized.

const
Indicates that a function has no effect other than
returning a value and that it uses only its arguments
to generate that return value.

Syntax

Windows* OS:

__declspec(const)
Linux* OS:

__attribute__((const))

Arguments

None

Description

This keyword is equivalent to the gcc* attribute const and applies to function declarations.

cpu_dispatch, cpu_specific
Provides the ability to write one or more versions of a
function that execute only on a list of targeted
processors (cpu_dispatch). Provides the ability to
declare that a version of a function is targeted at
particular types of processors (cpu_specific).

Syntax

Windows* OS:

__declspec(cpu_dispatch(cpuid, cpuid, ...))
__declspec(cpu_specific(cpuid))
Linux* OS:

__attribute__((cpu_dispatch(cpuid, cpuid, ...)))
__attribute__((cpu_specific(cpuid)))

Arguments

cpuid Possible values are:

atom: Intel® Atom™ processors with Intel® Supplemental Streaming
SIMD Extensions 3 (Intel® SSSE3)

atom_sse4_2: Intel® Atom™ processors with Intel® Streaming SIMD
Extensions 4.2 (Intel® SSE4.2)

Compiler Reference   

371



atom_sse4_2_movbe: Intel® Atom™ processors with Intel® Streaming
SIMD Extensions 4.2 (Intel® SSE4.2) with MOVBE instructions enabled

broadwell: This is a synonym for core_5th_gen_avx
core_2nd_gen_avx: 2nd generation Intel® Core™ processor family
with support for Intel® Advanced Vector Extensions (Intel® AVX)

core_3rd_gen_avx: 3rd generation Intel® Core™ processor family with
support for Intel® Advanced Vector Extensions (Intel® AVX) including
the RDRND instruction

core_4th_gen_avx: 4th generation Intel® Core™ processor family with
support for Intel® Advanced Vector Extensions 2 (Intel® AVX2)
including the RDRND instruction

core_4th_gen_avx_tsx: 4th generation Intel® Core™ processor
family with support for Intel® Advanced Vector Extensions 2 (Intel®
AVX2) including the RDRND instruction, and support for Intel®
Transactional Synchronization Extensions (Intel® TSX)

core_5th_gen_avx: 5th generation Intel® Core™ processor family with
support for Intel® Advanced Vector Extensions 2 (Intel® AVX2)
including the RDSEED and Multi-Precision Add-Carry Instruction
Extensions (ADX) instructions

core_5th_gen_avx_tsx: 5th generation Intel® Core™ processor
family with support for Intel® Advanced Vector Extensions 2 (Intel®
AVX2) including the RDSEED and Multi-Precision Add-Carry Instruction
Extensions (ADX) instructions, and support for Intel® Transactional
Synchronization Extensions (Intel® TSX)

core_aes_pclmulqdq: Intel® Core™ processors with support for
Advanced Encryption Standard (AES) instructions and carry-less
multiplication instruction

core_i7_sse4_2: Intel® Core™ i7 processors with Intel® Streaming
SIMD Extensions 4.2 (Intel® SSE4.2) instructions

generic: Other Intel processors for IA-32 (for C++ only) or Intel® 64
architecture or compatible processors not provided by Intel
Corporation

haswell: This is a synonym for core_4th_gen_avx
pentium: Intel® Pentium® processor

pentium_4: Intel® Pentium® 4 processors

pentium_4_sse3: Intel® Pentium® 4 processor with Intel® Streaming
SIMD Extensions 3 (Intel® SSE3) instructions, Intel® Core™ Duo
processors, Intel® Core™ Solo processors

pentium_ii: Intel® Pentium® II processors

pentium_iii: Intel® Pentium® III processors

pentium_iii_no_xmm_regs: Intel® Pentium® III processors with no
XMM registers

pentium_m: Intel® Pentium® M processors

pentium_mmx: Intel® Pentium® processors with MMX™ technology

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

372



pentium_pro: Intel® Pentium® Pro processors

Description

Use the cpu_dispatch keyword to provide a list of targeted processors, along with an empty function body/
function stub.

Use the cpu_specific keyword to declare each function version targeted at particular type of processor.

These features are available only for Intel processors based on IA-32 (for C++ only) or Intel® 64
architecture. They are not available for non-Intel processors. Applications built using the manual processor
dispatch feature may be more highly optimized for Intel processors than for non-Intel processors.

See Also

mpx
Directs the compiler to pass Intel® Memory Protection
Extensions (Intel® MPX) bounds information along with
any pointer-typed parameters.

Syntax

Windows* OS:

__declspec(mpx)
Linux* OS:

__attribute__((mpx))

Arguments

None

Description

When a function declared with this keyword is called, any pointer-typed parameters passed to the function
will also have Intel® MPX bounds information passed. If the called function returns a pointer-typed object, the
compiler will expect the function to return Intel® MPX bounds information along with the pointer object.
Similarly, if this keyword is applied to a function definition, the function will expect the caller to pass Intel®
MPX bounds information along with any pointer-type parameters. If the function returns a pointer-typed
object, Intel® MPX bounds information will be returned with the object.

NOTE
The usage of this attribute is intended for Windows code that contains hand-written Intel® MPX
enhancements based on Intel® MPX inline assembly or calls to Intel® MPX intrinsics, and where the
user does not wish to enable automatic Intel® MPX code generation.

target
Specifies a target for called functions or variables.

Syntax

Windows* OS:

__declspec(target(target-name))

Compiler Reference   

373



Linux* OS:

__attribute__((target(target-name)))

Arguments

target-name Specifies the target name. Possible values are:

• arch=skylake-avx512
• arch=corei7
• arch=core2
• arch=atom
• mmx
• sse
• sse2
• sse3
• ssse3
• sse4.1
• sse4.2
• popcnt
• aes
• pclmul
• avx
• avx2
• avx512f

Description

This keyword specifies that the called function or variable is also available on the target. Only functions or
variables marked with this attribute are available on the target, and only these functions can be called on the
target.

Intrinsics
A detailed introduction and information about Intel intrinsics is provided in the Intel® C++ Compiler Classic
Developer Guide and Reference. The Intel® Intrinsics Guide provides detailed information and a lookup tool
for viewing the available Intel intrinsics.

The following is some general information:

• Intrinsics are assembly-coded functions that let you use C++ function calls and variables in place of
assembly instructions.

• Intrinsics can be used only on the host.
• Intrinsics are expanded inline eliminating function call overhead. Providing the same benefit as using

inline assembly, intrinsics improve code readability, assist instruction scheduling, and help reduce
debugging.

• Intrinsics provide access to instructions that cannot be generated using the standard constructs of the C
and C++ languages.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

374

https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics.html
https://software.intel.com/sites/landingpage/IntrinsicsGuide/


NOTE
To use intrinsic-based code with the Intel® oneAPI DPC++/C++ Compiler, do the following:

• Specify compiler option march so that the compiler recognizes the processor-specific or
architecture-specific intrinsic.

• Include the immintrin.h header file that comes with the intrinsic declarations.

Availability of Intrinsics on Intel Processors
Not all Intel® processors support all intrinsics. For information on which intrinsics are supported on Intel®
processors, visit the Product Specification, Processors page. The Processor Spec Finder tool links directly to
all processor documentation and the datasheets list the features, including intrinsics, supported by each
processor.

Libraries
The Intel® oneAPI DPC++/C++ Compiler lets you use all the standard run-time libraries that are part of
Microsoft* Visual C++*. The options described in this section can help you determine which libraries your
application uses.

To create libraries, use the lib.exe tool or xilib.exe tool.

Create Libraries
Libraries are simply an indexed collection of object files that are included as needed in a linked program.
Combining object files into a library makes it easy to distribute your code without disclosing the source. It
also reduces the number of command-line entries needed to compile your project.

Static Libraries
Executables generated using static libraries are no different than executables generated from individual
source or object files. Static libraries are not required at runtime, so you do not need to include them when
you distribute your executable. At compile time, linking to a static library is generally faster than linking to
individual source files.

These steps show how to build a static library on Linux using the icpx driver. You can alternately use the
dpcpp driver. See Invoke the Compiler for information about all available compilers and drivers.

1. Use the c option to generate object files from the source files:

icpx -c my_source1.cpp my_source2.cpp my_source3.cpp
2. Use the GNU* tool ar to create the library file from the object files:

ar rc my_lib.a my_source1.o my_source2.o my_source3.o
3. Compile and link your project with your new library:

icpx main.cpp my_lib.a
If your library file and source files are in different directories, use the Ldir option to indicate where your
library is located:

icpx -L/cpp/libs main.cpp my_lib.a
If your library file and source files are in different directories, use the Ldirdir option to indicate where your
library is located:

icpx -L/cpp/libs main.cpp my_lib.a

Libraries   

375

https://ark.intel.com/content/www/us/en/ark.html#@Processors


If you are using Interprocedural Optimization, see the topic Create a Library from IPO Objects, which
discusses using xiar.

Shared Libraries
Shared libraries, also referred to as dynamic libraries or Dynamic Shared Objects (DSO), are linked
differently than static libraries. At compile time, the linker insures that all the necessary symbols are either
linked into the executable, or can be linked at runtime from the shared library. Executables compiled from
shared libraries are smaller, but the shared libraries must be included with the executable to function
correctly. When multiple programs use the same shared library, only one copy of the library is required in
memory.

Linux

These steps show how to build a shared library on Linux using the icpx driver. You can alternately use the
dpcpp driver. See Invoke the Compiler for information about all available compilers and drivers.

1. Use options fPIC and c to generate object files from the source files:

icpx -fPIC -c my_source1.cpp my_source2.cpp my_source3.cpp
2. Use the shared option to create the library file from the object files:

icpx -shared -o my_lib.so my_source1.o my_source2.o my_source3.o
3. Compile and link your project with your new library:

icpx main.cpp my_lib.so
Windows

Use the following options to create libraries on Windows:

Option Description

/LD, /LDd Produces a DLL. d indicates debug version.

/MD, /MDd Compiles and links with the dynamic, multi-thread C run time library. d indicates
debug version.

/MT, /MTd Compiles and links with the static, multi-thread C run time library. d indicates debug
version.

/Zl Disables embedding default libraries in object files.

See Also
Use Intel Shared Libraries

Create a Library from IPO Objects

See Also
/LD  compiler option
/MD  compiler option
/MT  compiler option

Use Intel Shared Libraries
This topic applies to Linux.

This content does not apply for SYCL.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

376



By default, the Intel® oneAPI DPC++/C++ Compiler links Intel® C++ libraries dynamically. The GNU/Linux
system libraries are also linked dynamically.

Options for Shared Libraries (Linux)

Option Description

-shared-intel Use the shared-intel option to link Intel®-provided libraries dynamically. This has
the advantage of reducing the size of the application binary, but it also requires the
libraries to be on the application's target system.

-shared The shared option instructs the compiler to build a Dynamic Shared Object (DSO)
instead of an executable. For more details, refer to the ld man page documentation.

-fpic Use the fpic option when building shared libraries. It is required for the compilation
of each object file included in the shared library.

Manage Libraries

Manage Libraries on Linux
During compilation, the compiler reads the LIBRARY_PATH environment variable for static libraries it needs to
link when building the executable. At runtime, the executable will link against dynamic libraries referenced in
the LD_LIBRARY_PATH environment variable. Add the location of your static libraries to the LIBRARY_PATH
environment variable so that they are available for linking during compilation.

For example, to compile file.cpp and link it with the library lib.a, located in the /libs directory, using
the icpx driver:

1. Add the directory /libs to LIBRARY_PATH from the command line with the export command:

export LIBRARY_PATH=/libs:$LIBRARY_PATH
Alternately, add the directory to LIBRARY_PATH by addiing the export command to your startup file.

2. Compile file.cpp and link it with lib.a:

icpx file.cpp lib.a  
To link your library during compilation without modifying the LIBRARY_PATH environment variable use the -L
option. For example:

icpx file.cpp -L /libs lib.a
During compilation, the compiler passes object files to the linker in the following order:

1. Object files, from files specified on the command line, in the order they are specified (left to right)
2. Objects or libraries specified in default configuration files
3. Default Intel and system libraries

For example, the command

icpx lib1.a file.cpp lib2.a
would have the following link order:

1. lib1.a
2. file.o
3. lib2.a
4. Objects or libraries specified in default configuration files
5. Default Inel and system libraries

Compiler Reference   

377



Compile with SYCL and Link Other Compilers

When you use the Intel® DPC++ Compiler and source its entire environment, then linking works correctly
with other compilers if the correct path to the compiler libraries is set. This allows programs to be compiled
with SYCL and then linked with other compilers (example: gcc). If you try to do this without sourcing the
compiler environment, the linking fails with undefined references in libsycl.so and other internal libraries.

To resolve this, add the following paths to LD_LIBRARY_PATH:

<install_dir>/compiler/latest/linux/compiler/lib/intel64

<install_dir>/compiler/latest/linux/lib

<install_dir>/compiler/latest/linux/lib/x64

<install_dir>/tbb/latest/lib/intel64/gcc4.8

Manage Libraries on Windows
The LIB environment variable contains a semicolon-separated list of directories in which the Microsoft linker
will search for library (.lib) files. The compiler does not specify library names to the linker but includes
directives in the object file to specify the libraries to be linked with each object.

For more information on adding library names to the response file and the configuration file, see Using
Response Files and Using Configuration Files.

To specify a library name on the command line, you must first add the library's path to the LIB environment
variable. Then you can specify the library name on the command line. For example, to compile file.cpp and
link it with the library mylib.libwith the Intel® C++ Compiler, enter the command:

icx file.cpp mylib.lib

Other Considerations
The Intel Compiler Math Libraries contain performance-optimized implementations for various Intel
platforms. By default, the best implementation for the underlying hardware is selected at runtime. The library
dispatch of multi-threaded code may lead to apparent data races, which may be detected by certain software
analysis tools. However, as long as the threads are running on cores with the same CPUID, these data races
are harmless and are not a cause for concern.

Redistribute Libraries When Deploying Applications
When you deploy your application to systems that do not have a compiler installed, you need to redistribute
certain Intel® libraries where your application is linked. You can do so in one of the following ways:

• Statically link your application.

An application built with statically-linked libraries eliminates the need to distribute runtime libraries with
the application executable. By linking the application to the static libraries, you are not dependent on the
Intel® Fortran or Intel® C/C++ dynamic shared libraries.

• Dynamically link your application.

If you must build your application with dynamically linked (or shared) compiler libraries, you should
address the following concerns:

• You must build your application with shared or dynamic libraries that are redistributable.
• Pay careful attention to the directory where the redistributables are installed and how the OS finds

them.
• You should determine which shared or dynamic libraries your application needs.

The information here is only introductory. The redistributable library installation packages are available at the
following locations:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

378



• Intel® oneAPI versions
• Older Intel® Parallel Studio XE versions

Resolve References to Shared Libraries
If you are relying on shared libraries distributed with
Intel® oneAPI tools, you must make sure that your
users have these shared libraries on their systems.

If you are building an application that will be deployed to your user community and you are relying on shared
libraries (.so shared objects on Linux, .dll dynamic libraries on Windows) distributed with Intel® oneAPI
tools, you must make sure that your users have these shared libraries on their systems. To determine what
shared libraries you depend on, use one of the following commands for each of your programs and
components:

Linux

ldconfig
Windows

dumpbin /DEPENDENTS programOrComponentName
Once you have done this, you must choose how your users will receive these libraries.

Shared Library Deployment
Once you have built, run, and debugged your application, you must deploy it to your users. That deployment
includes any shared libraries, including libraries that are components of the Intel® oneAPI toolkits.

Deployment Models
You have two options for deploying the shared libraries from the Intel oneAPI toolkit that your application
depends on:

Private Model Copy the shared libraries from the Intel oneAPI toolkit into your application
environment, and then package and deploy them with your application. Review
the license and third-party files associated with the Intel oneAPI toolkits and/or
components you have installed to determine the files that you can redistribute.

The advantage to this model is that you have control over your library and
version choice, so you only package and deploy the libraries that you have
tested. The disadvantage is that the end users may see multiple libraries
installed on their system, if multiple installed applications all use the private
model. You are also responsible for updating these libraries whenever updates
are required.

Public Model You direct your users to runtime packages provided by Intel. Your users install
these packages on their system when they install your application. The runtime
packages install onto a fixed location, so all applications built with Intel oneAPI
tools can be used.

The advantage is that one copy of each library is shared by all applications, which
results in improved performance. You can rely on updates to the runtime
packages to resolve issues with libraries independently from when you update
your application. The disadvantage is that the footprint of the runtime package is
larger than a package from the private model. Another disadvantage is that your
tested versions of the runtime libraries may not be the same as your end user's
versions.

Select the model that best fits your environment, your needs, and the needs of your users.

Compiler Reference   

379

https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html
https://software.intel.com/content/www/us/en/develop/articles/intel-compilers-redistributable-libraries-by-version.html


NOTE Intel ensures that newer compiler-support libraries work with older versions of generated
compiler objects, but newer versioned objects require newer versioned compiler-support libraries. If
an incompatibility is introduced that causes newer compiler-support libraries not to work with older
compilers, you will have sufficient warning and the library will be versioned so that deployed
applications continue to work.

Additional Steps
Under either model, you must manually configure certain environment variables that are normally handled by
the setvars/vars scripts or module files.

For example, with the Intel® MPI Library, you must set the following environment variables during
installation:

Linux

I_MPI_ROOT=installPath FI_PROVIDER_PATH=installPath/intel64/libfabric:/usr/lib64/libfabric
Windows

I_MPI_ROOT=installPath

Compatibility in the Minor Releases of the Intel oneAPI Products
For Intel oneAPI products, each minor version of the product is compatible with the other minor version from
the same release (for example, 2021). When there are breaking changes in API or ABI, the major version is
increased. For example, if you tested your application with an Intel oneAPI product with a 2021.1 version, it
will work with all 2021.x versions. It is not guaranteed that it will work with 2022.x or 19.x versions.

Intel's Memory Allocator Library
Intel's libqkmalloc library for fast memory allocation provides a C-level interface for memory allocation
that is optimized for performance.

You can link the libqkmalloc library as a shared library only on Linux platforms for Intel® 64 architecture.
This library provides optimized implementation of standard allocation routines malloc, calloc, realloc,
and free, and is C99 standard compliant.

NOTE This library is limited to work only on Intel® processors and will redirect to standard C routines
at runtime if used on non-Intel® processors.

Use Intel's Custom Memory Allocator Library
You can use the libqkmalloc library by linking directly to it or by using the LD_PRELOAD environment
variable.

To ensure that the application overrides the standard library allocation routines with libqkmalloc, set the
environment variable LD_PRELOAD in the command line before the application execution. This environment
variable allows you to set a library path that loads before any other library (including the C runtime library).
The application uses symbols from the specified library instead of symbols from the standard library.

Restrictions
This library does not support threaded code such as OpenMP* and is not thread-safe. It should not be used
simultaneously from multiple threads. For the best results, this library should be used with large throughput
workloads.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

380



Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

SIMD Data Layout Templates
SIMD Data Layout Templates (SDLT) is a C++11 template library providing containers that represent arrays
of "Plain Old Data" objects (a struct whose data members do not have any pointers/references and no virtual
functions) using layouts that enable generation of efficient SIMD (single instruction multiple data) vector
code. SDLT uses standard ISO C++11 code. It does not require a special language or compiler to be
functional, but takes advantage of performance features (such as OpenMP* SIMD extensions and pragma
ivdep) that may not be available to all compilers. It is designed to promote scalable SIMD vector
programming. To use the library, specify SIMD loops and data layouts using explicit vector programming
model and SDLT containers, and let the compiler generate efficient SIMD code in an efficient manner.

Many of the library interfaces employ generic programming, in which interfaces are defined by requirements
on types and not specific types. The C++ Standard Template Library (STL) is an example of generic
programming. Generic programming enables SDLT to be flexible yet efficient. The generic interfaces enable
you to customize components to your specific needs.

The net result is that SDLT enables you to specify a preferred SIMD data layout far more conveniently than
re-structuring your code completely with a new data structure for effective vectorization, and at the same
time can improve performance.

Motivation
C++ programs often represent an algorithm in terms of high level objects. For many algorithms there is a set
of data that the algorithm will need to process. It is common for the data set to be represented as array of
"plain old data" objects. It is also common for developers to represent that array with a container from the C
++ Standard Template Library, like std::vector. For example:

struct Point3s 
{
    float x;
    float y;
    float z;
       // helper methods
};

std::vector<Point3s> inputDataSet(count);
std::vector<Point3s> outputDataSet(count);

for(int i=0; i < count; ++i) {
  Point3s inputElement = inputDataSet[i];
  Point3s result = // transformation of inputElement that is independent of other iterations
                   // can keep algorithm high level using object helper methods
  outputDataSet[i] = result;
}

Compiler Reference   

381

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


When possible a compiler may attempt to vectorize the loop above, however the overhead of loading the
"Array of Structures" data set into vector registers may overcome any performance gain of vectorizing.
Programs exhibiting the scenario above could be good candidates to use a SDLT container with a SIMD-
friendly internal memory layout. SDLT containers provide accessor objects to import and export Primitives
between the underlying memory layout and the objects original representation. For example:

SDLT_PRIMITIVE(Point3s, x, y, z)

sdlt::soa1d_container<Point3s> inputDataSet(count);
sdlt::soa1d_container<Point3s> outputDataSet(count);

auto inputData = inputDataSet.const_access();
auto outputData = outputDataSet.access();

#pragma forceinline recursive
#pragma omp simd
for(int i=0; i < count; ++i) {
  Point3s inputElement = inputData[i];
  Point3s result = // transformation of inputElement that is independent of other iterations
                   // can keep algorithm high level using object helper methods
  outputData[i] = result;
}

When a local variable inside the loop is imported from or exported to using that loop's index, the compiler's
vectorizor can now access the underlying SIMD friendly data format and when possible perform unit stride
loads. If the compiler can prove nothing outside the loop can access the loop's local object, then it can
optimize its private representation of the loop object be "Structure of Arrays" (SOA). In our example, the
container's underlying memory layout is also SOA and unit stride loads can be generated. The Container also
allocates aligned memory and its accessor objects provide the compiler with the correct alignment
information for it to optimize code generation accordingly.

Version Information
This documentation is for SDLT version 2, which extends version 1 by introducing support for n-dimensional
containers.

Backwards Compatibility

Public interfaces of version 2 are fully backward compatible with interfaces of version 1.

The backwards compatibility includes:

• Existing source code compatibility.

• Any source code using the SDLT v1 public API (non-internal interfaces) can be recompiled against SDLT
v2 headers with no changes.

• Binary compatibility.

• Because SDLT v2 API's exist in a new name space, sdlt::v2, all ABI linkage should not collide with any
existing SDLT v1 ABI's that exist only in sdlt namespace.

• A binary, dynamically-linked library that uses SDLT v1 internally, can be linked into a program using
SDLT v2, and vice versa.

• Passing SDLT containers or accessors as part of a libraries public API (ABI). When SDLT is used as part of
an ABI, that library and the calling code must use the same version of SDLT. They cannot be mixed or
matched.

This compatibility doesn't cover internal implementation. Internal implementation for SDLT v1 was updated
and unified with parts introduced in v2, so for codes dependent on internal interfaces backwards
compatibility is not guaranteed.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

382



Deprecated
These interfaces do not apply for SYCL.

The interfaces below are deprecated; use the replacements provided in the table.

Deprecated Interface Deprecated in Version Replaced By

sdlt::fixed_offset<> v2 sdlt::fixed<>

sdlt::aligned_offset<> v2 sdlt::aligned<>

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Function Calls and Containers

Function Calls
Function calls are a commonly used programming construct. Follow these simple guidelines when using SDLT
containers:

• If an SDLT Primitive is passed to a function by value, by pointer, or by reference, be sure to inline them
• Any Non-inlined functions should be SIMD enabled (for example, denote them with #pragma omp

declare simd).

If a loop variable is passed to a non-inlined function, the current C++ Application Binary Interface (ABI)
requires the memory layout match object's original which could cause additional data transformations or
inhibit vectorization. For that reason, the SDLT approach works best when all the methods or functions called
are inlined or use #pragma omp declare simd. Marking a function "inline" explicitly or implicitly is only a
hint. Compilers have several limits and heuristics that could cause a function to not be inlined. To avoid this
issue, we recommend utilizing the #pragma forceinline recursive which instructs the compiler to ignore
its limits and heuristics: causing all functions in the following code block that could be inlined to actually be
inlined together with any functions called, and functions they call, and so on. Please also note that this can
cause the loop body and/or the function body to become too big to optimize. Under such circumstances,
carefully examine and restructure the function call boundaries and consider applying non-inlined, SIMD-
enabled function calls.

1-Dimensional Containers Overview
What if that std::vector<typename> could store data SIMD-friendly format internally while exposing an
AOS view to the programmer?

The 1-dimensional containers in SDLT aim to achieve that goal. They can abstract the in-memory data layout
of an array of objects to:

1. AOS (Array of Structures)

2. SOA (Structure of Arrays) which is SIMD friendly

Import/Export Only
As the memory layout is abstracted and may not match the original structure’s layout, containers cannot
provide memory references to the underlying data. Only import or export of the object to and from a
particular element in the container. In use, an algorithm might require some minor code changes to follow
import/export paradigm, however algorithm itself should read/flow the same.

Compiler Reference   

383

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


The 1D containers in SDLT are dynamically resizable with an interface similar to std::vector<T>. To avoid
accidental misuse of copying containers into C++11 lambda functions we chose to delete the container’s
copy constructor and instead provide explicit “clone” method instead.

Containers provide SDLT concepts of an accessor and const_accessor for use with SIMD loops, interfaces for
std::vector compatibility are intended for ease of integration, not high performance.

Just like std::vector, the containers own the array data and its scope controls the life of that data.

n-Dimensional Containers Overview
Multi-dimensional containers generalize ideas from 1-dimensional containers; they separate multi-
dimensional access semantics from storage logic in an abstract way. A multi-dimensional SDLT container is a
generic container that handles an arbitrary number of dimensions, and at the same time internally represents
data as needed. Unlike 1-dimensional containers, multi-dimensional containers are not resizable and don't
have interfaces like that of std::vector. While 1-dimensional containers are like std::vectors with
decoupled storage, multi-dimensional containers are more akin to arrays (statically sized or variable length).

Below is an example of an n-dimensional container parameterized by three concerns: the data item
(primitive) type, the storage layout in memory, and the observed shape of the container.

n_container<PrimitiveT, LayoutT, ExtentsT>
Template Arguments Description

typename PrimitiveT The type of primitive that will be contained.

typename LayoutT The type of data layout.

typename ExtentsT Specifies the dimensions of the container

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Construct an n_container

Description

An N-dimensional (multi-dimensional) container must be constructed before it can be used. The data type to
be contained must first be declared as a SDLT_PRIMITIVE, then a data layout is chosen, and finally the
shape of the container is determined describing the extents of each dimension.

Specify Data Layout

Rather than defining different containers for different data layouts, the data layout to use is specified as a
template parameter to the container.

Available layouts are summarized in table below. Full details can found on the table in the topic n_container.
Layout Description

layout::soa<> Structure of Arrays (SOA). Each data member of the
Primitive will have its own N-dimensional array.

layout::soa_per_row<> Structure of Arrays Per Row. Each data member of the
Primitive will have its own 1-dimensional array per row.
Layout repeats for remaining N-1 dimensions.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

384

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Layout Description

layout::aos_by_struct Array of Structures (AOS) Accessed by Struct. Native AOS
layout and data access.

layout::aos_by_stride Array of Structures Accessed by Stride. Native SOA data
access through pointers to the built in types of members
using a stride to account for the size of the Primitive.

Numbers and Constants

In order to define shape, integer values can be provided in three different forms, each successively providing
less information to compiler. It is advised to use as precise specification as possible. The compiler may
optimize better with more information.

Integer Value Specification Description

fixed<int NumberT> Known at compile time.

foo(fixed<1080>(), fixed<1920>());
The suffix _fixed will declare an equivalent literal.
For example, (1080_fixed is equivalent to
fixed<1080>.

foo(1080_fixed, 1920_fixed); )

aligned<int AlignmentT>(number) Programmer guarantees the number is a multiple of the
AlignmentT.

foo(aligned<8>(height),
aligned<128>(width));

“int” Arbitrary integer value.

foo(width, height);

Specify Container Shape

n_extent_t<…> is a variadic template that accepts any number of arguments defining dimensions. Because
construction using this type may look unclear, a generator object, n_extent , is provided to construct
extents for all dimensions using a familiar array-definition-like syntax. Extent values may be specified using
the most precise representation possible, as described above, to allow the compiler to better prove any
potential data alignments.

n_extent[height][width];                 // OK
n_extent[height][aligned<128>(width)];  // Better
n_extent[1080_fixed][1920_fixed];       // Best

Define an n_container

Using a previously declared primitive (same as SDLT v1),

struct RGBAs { float red, green, blue, alpha; };
SDLT_PRIMITIVE(RGBAs, red, green, blue, alpha)

A two-dimensional container of RGBAs with HD image size 1920x0180 can be declared and instantiated as in
the below example.

typedef n_container<RGBAs, layout::soa, 
                    n_extent_t<fixed<1080>, fixed<1920>>> HdImage;
HdImage image1;

Compiler Reference   

385



If sizes are not known, a container may be defined with extents unknown to the compiler but known at run-
time when an instance of the container is created.

typedef n_container<RGBAs, layout::soa, n_extent_t<int, int>> Image;
Image image2(n_extent[height][width]);

Additionally, the templated factory function make_n_container<PrimitiveT, LayoutT> may be used to create
containers.

auto image1 = make_n_container<RGBAs, 
                          layout::soa>(n_extent[1080_fixed][1920_fixed]);
auto image2 = make_n_container<RGBAs, 
                           layout::soa>(n_extent[height][width]);

Access Cells

Containers own data. To get to the data inside, use an "accessor."

auto ca = image1.const_access();
auto a = image2.access();

Specify the index for each dimension with a series of calls to the array subscript operator [], similar to a
multi-dimensional array in C.

RGBAs pixel = ca[y][x];
float greyscale = (pixel.red + pixel.green + pixel.blue)/3;
a[y][x] = RGBAs(greyscale, greyscale, greyscale); 

Discover Extents

Accessors know their extents.

Use template function extent_d<int DimensionT>(object).

for (int y = 0; y < extent_d<0>(ca); ++y)
    for (int x = 0; x < extent_d<1>(ca); ++x) {
          RGBAs pixel = ca[y][x];
         // …
    }

For convenience, non-template methods are also provided.

for (int y = 0; y < ca.extent_d0(); ++y)
    for (int x = 0; x < ca.extent_d1(); ++x) {
          RGBAs pixel = ca[y][x];
         // …
    }

Lower Dimensions

The result of not specifying all the dimensions required by an accessor is a new accessor with a lower rank
that can then be accessed.

auto cay = ca[y];
RGBAs pixel = cay[x];

Bounds

Description

bounds_t<LowerT, UpperT> holds the lower and upper bounds of a half-open interval. It is templated to
allow the different integer representations for the lower and upper bounds. The intent is to model a valid
iteration space over a single dimension.

Bounds can be used to iterate over an entire extent or to restrict iteration space within an extent

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

386



Creating Bounds

Bounds can be created using full bounds_t type, but this may be tedious.

bounds_t<int, int>(start, finish)
bounds_t<int, aligned<16>>(start, aligned<16>(finish))
bounds_t<fixed<0>, fixed<1920>>()

It is simpler and clearer to use factory function bounds to build a bounds_t<>.

bounds(start,finish);
bounds(start, aligned<16>(finish));
bounds(0_fixed, 1920_fixed)

Discovering Bounds

Accessors know their valid iteraton space. Initial bounds for an accessor are set to set the lower bound to be
fixed<0> and the upper bound set to the value and type of the dimension's extent as specified during
construction of the n_container(fixed<>,aligned<>, or int).

To query bounds for given dimension of the accessor use template function bounds_d<int
DimensionT>(object).

auto b0 = bounds_d<0>(ca);
auto b1 = bounds_d<1>(ca);
for (int y = b0.lower(); y < b0.upper(); ++y)
    for (int x = b1.lower(); x < b1.upper(); ++x) {
          RGBAs pixel = ca[y][x];
         // …
    }

bounds_t can participate in C++11 range-based for loops.

for (auto y: bounds_d<0>(ca))
    for (auto x: bounds_d<1>(ca)) {
          RGBAs pixel = ca[y][x];
         // …
    }
for (auto y: ca.bounds_d0())
    for (auto x: ca.bounds_d1()) {
          RGBAs pixel = ca[y][x];
         // …
    }

N-Dimensional Indexes and Bounds

To model index and bounds values over multiple dimensions, respectively the following template classes are
provided: n_index_t<…> and n_bounds_t<…> . These are both variadic templates, accepting any number of
arguments.

n_index is a generator to simplify creating instances of n_index_t.

n_index[540][960]
n_bounds is a generator to simplify creating instances of n_bounds_t.

n_bounds[bounds(540,1080)][bounds(960,1920)]
Alternatively, n_bounds_t can be defined in terms of a n_index_t and n_extent_t.

n_bounds(n_index[540][960], n_extent[540][960]);
Accessing Subsections

Compiler Reference   

387



From a container's accessors, a new accessor can be created over a subsection defined by a n_bounds_t.

auto ca = c.const_access();
auto subsect = ca.section(n_bounds[bounds(540, 1080)][bounds(960,1920)]);

The effect is to restrict the results of bounds_d<int Dimension> on the subsection accessor.

You can create a new accessor translated to a different index space.

auto offsetnewSpace = ca.translated_to(n_index[1000][2000]);
auto zeroSpace = ca.translated_to_zero();

Accesses will have a translation applied that maps the n_index back to the lower bounds of the accessor
that created it. This allows a smaller container to be reused in a larger index space that is being walked over
by blocks, or to move a subsection index space back to the origin.

User-Level Interface
This section describes the user-level interface for the SIMD Data Layout Templates (SDLT). This API is
defined in sdlt.h and its associated header files.

SDLT Primitives
Primitives represent the data we want to work over in SIMD. They can be more than just data structures. As
a C++ object, it can have its own methods that modify its data.

Rules
• Must be Plain Old Data (POD)

• Has trivial copy constructor
• Has trivial move constructor
• Has trivial destructor
• No virtual functions or virtual bases

• No reference data members
• No unions
• No bit fields
• No bool types

• Comparison semantics not efficient in SIMD
• Use 32-bit integer and compare against known values like 0 or 1 explicitly

• Data members need to be public or declare SDLT_PRIMITIVE_FRIEND in the object's definition

Current Limitations
• No pointer data members
• No C++11 strongly typed enums—use integers instead.
• No array based data members.
• copy constructor and assignment operator (=) defined by individual member assignment—strongly

encouraged to facilitate better code generation

They may seem like large restrictions, but often code can easily be re-factored to meet this requirement. For
example:

class Point3d {
    // methods...
protected:
    double v[3];
};

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

388



can be re-factored to have a public data member for each element in the array and update methods to use
the x, y, and z data members rather than the array v.

class Point3d {
public:
    // methods...
    double x;
    double y;
    double z;
};

For better code generation, explicitly define a copy constructor and assignment operator (=) by individual
member assignment.

SDLT_PRIMITIVE Macro
Once an object meets the criteria above, we can consider it a Primitive type in SDLT. In order for Container's
to import and export the Primitive, it has to understand its data layout. Unfortunately C++11 lacks compile
time reflection, so the user must provide SDLT with a description of your structure's data layout. This is
easily done with the SDLT_PRIMITIVE helper macro that accepts a struct type followed by a comma
separated list of its data members.

SDLT_PRIMITIVE(STRUCT_NAME, DATA_MEMBER_1, ...)
Example Usage:

struct UserObject 
{
    float x;
    float y;
    double acceleration;
    int behavior;
};

SDLT_PRIMITIVE(UserObject, x, y, acceleration, behavior)
An object must be declared as a Primitive before it can be used in a Container. However, built-in types like
float, double, int, etc. do not need to be declared as a Primitive before use with a Container. Built-in's are
automatically considered Primitives by SDLT.

Nested Primitives are supported, but the nested Primitive must be declared before the outer Primitive is.
Example: Axis Aligned Bounding Box made up of two 3d points

struct Point3s
{
    float x;
    float y;
    float z;
}; 

struct AABB 
{
    Point3s topLeft;
    Point3s bottomRight;
};

SDLT_PRIMITIVE(Point3s, x, y, z)
SDLT_PRIMITIVE(AABB, topLeft, bottomRight)

Compiler Reference   

389



Notice the struct definitions themselves do not derive from SDLT or use any of its nomenclature. This
independence allows classes to be used in code not using SDLT and only code that does use SDLT Containers
needs to see the Primitive declarations.

soa1d_container
Template class for "Structure of Arrays" memory
layout of a one-dimensional container of Primitives.
#include <sdlt/soa1d_container.h>

Syntax

template<typename PrimitiveT, 
         int AlignD1OnIndexT = 0, 
         class AllocatorT = allocator::default_alloc>
class soa1d_container;

Arguments

typename PrimitiveT The type that each element in the array will store

int AlignD1OnIndexT = 0 [Optional] The index on which the data access will be aligned (useful
for stencils)

class AllocatorT =
allocator::default_alloc

[Optional] Specify type of allocator to be used.
allocator::default_alloc is currently the only allocator
supported.

Description

Dynamically sized container of Primitive elements with memory layout as a Structure of Arrays internally
providing:

• Dynamic resizing with interface similar to std::vector
• Accessor objects suitable for efficient data access inside SIMD loops

Member Description

typedef size_t size_type; Type to use when specifying sizes to methods of the
container.

template <typename OffsetT = no_offset> 
using accessor;

Template alias to an accessor for this container

template <typename OffsetT = no_offset >
using const_accessor; 

Template alias to an const_accessor for this
container

Member Type Description

soa1d_container(
    size_type size_d1 = 0u,
    buffer_offset_in_cachelines buffer_offset
        = buffer_offset_in_cachelines(0),
    const allocator_type & an_allocator = 
allocator_type());

Constructs an uninitialized container of size_d1
elements, using optionally specified allocator
instance, using optionally specified number of cache
lines to offset the start of the buffer in memory to
allow management of 4k cache aliasing.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

390



Member Type Description

soa1d_container(
    size_type size_d1,
    const PrimitiveT &a_value,
    buffer_offset_in_cachelines buffer_offset
        = buffer_offset_in_cachelines(0),
    const allocator_type & an_allocator
        = allocator_type());

Constructs a container of size_d1 elements
initializing each with a_value, using optionally
specified allocator instance, using optionally
specified number of cache lines to offset the start of
the buffer in memory to allow management of 4k
cache aliasing.

template<typename StlAllocatorT>
soa1d_container(
    const std::vector<PrimitiveT, 
StlAllocatorT> &other,
    buffer_offset_in_cachelines buffer_offset
        = buffer_offset_in_cachelines(0),
    const allocator_type & an_allocator 
        = allocator_type());

Constructs a container with a copy of each of the
elements in other, in the same order, using
optionally specified allocator instance, using
optionally specified number of cache lines to offset
the start of the buffer in memory to allow
management of 4k cache aliasing.

soa1d_container(
    const PrimitiveT *other_array, 
    size_type number_of_elements,
    buffer_offset_in_cachelines buffer_offset
        = buffer_offset_in_cachelines(0),
    const allocator_type & an_allocator 
        = allocator_type());

Constructs a container with a copy of
number_of_elements elements from the array
other_array, in the same order, using optionally
specified allocator instance, using optionally
specified number of cache lines to offset the start of
the buffer in memory to allow management of 4k
cache aliasing.

template< typename IteratorT >
soa1d_container(
    IteratorT a_begin,
    IteratorT an_end,
    buffer_offset_in_cachelines buffer_offset
        = buffer_offset_in_cachelines(0),
    const allocator_type & an_allocator
        = allocator_type());

Constructs a container with as many elements as
the range [a_begin - an_end), each with a copy of
the value from its corresponding element in that
range, in the same order, using optionally specified
allocator instance, using optionally specified
number of cache lines to offset the start of the
buffer in memory to allow management of 4k cache
aliasing.

soa1d_container clone() const; Returns: a new soa1d_container instance with its
own copy of the elements

void resize(size_type new_size_d1); Resize the container so that it contains
new_size_d1 elements. If the new size is greater
than the current container size, the new elements
are unitialized.

accessor<> access(); Returns: accessor with no embedded index offset.

accessor<int> access(int offset); Returns: accessor with an integer based embedded
index offset.

template<int IndexAlignmentT>
accessor<aligned_offset<IndexAlignmentT> >
    access(aligned_offset<IndexAlignmentT>);

Returns: accessor with an
aligned_offset<IndexAlignmentT> based embedded
index offset.

template<int OffsetT>
accessor<fixed_offset<OffsetT> >
    access(fixed_offset<OffsetT>);

Returns: accessor with a fixed_offset<OffsetT>
based embedded index offset.

Compiler Reference   

391



Member Type Description

const_accessor<> const_access() const; Returns: const_accessor with no embedded index
offset.

const_accessor<int> 
    const_access(int offset) const;

Returns: const_accessor with an integer based
embedded index offset.

const_accessor<aligned_offset<IndexAlignmentT>
>
    
const_access(aligned_offset<IndexAlignmentT> 
offset) const;

Returns: const_accessor with an
aligned_offset<IndexAlignmentT> based embedded
index offset.

template<int OffsetT>
const_accessor<fixed_offset<OffsetT> >
    const_access(fixed_offset<OffsetT>) const;

Returns: const_accessor with a
fixed_offset<OffsetT> based embedded index
offset.

STL Compatibility

In addition to the performance oriented interface explained in the table above, soa1d_container
implements a subset of the std::vector interface that is intended for ease of integration, not high
performance. Due to the import/export only requirement we can’t return a reference to the object, instead
iterators and operator[] return a Proxy object while other "const' methods return a "value_type const".
Futhermore, iterators do not support the -> operator. Despite that limitation the iterators can be passed to
any STL algorithm. Also for performance reasons, resize does not initialize new elements. The following
std::vector interface methods are implemented:

• size, max_size, capacity, empty, reserve, shrink_to_fit
• assign, push_back, pop_back, clear, insert, emplace, erase
• cbegin, cend, begin, end, begin, end, crbegin, crend, rbegin, rend, rbegin, rend
• operator[], front() const, back() const, at() const
• swap, ==, !=
• swap, soa1d_container(soa1d_container&& donor), soa1d_container & operator=(soa1d_container&&

donor)

aos1d_container
Template class for "Array of Structures" memory
layout of a one-dimensional container of Primitives.
#include <sdlt/aos1d_container.h>

Syntax

template<
    typename PrimitiveT, 
    AccessBy AccessByT,
    class AllocatorT = allocator::default_alloc
>
class aos1d_container;

Arguments

typename PrimitiveT The type that each element in the array will store

access_by AccessByT Enum to control how the memory layout will be accessed. Recommend
access_by_struct unless you are having issues vectorizing.

See the documentation of access_by for more details

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

392



class AllocatorT =
allocator::default_alloc

[Optional] Specify the type of allocator to be used.
allocator::default_alloc is currently the only allocator
supported.

Description

Provide compatible interface with soa1d_container while keeping the memory layout as an Array of
Structures internally. User can easily switch between data layouts by changing the type of container they
use. The rest of the code written against accessors and proxy elements and members can stay the same.

• Dynamic resizing with interface similar to std::vector
• Accessor objects suitable for efficient data access inside SIMD loops

Member Description

typedef size_t size_type; Type to use when specifying sizes to methods of the
container.

template <typename OffsetT = no_offset> 
using accessor;

Template alias to an accessor for this container

template <typename OffsetT = no_offset> 
using const_accessor;

Template alias to a const_accessor for this
container

Member Type Description

aos1d_container(
    size_type size_d1 = 0u,
    buffer_offset_in_cachelines buffer_offset
        = buffer_offset_in_cachelines(0),
    const allocator_type & an_allocator = 
allocator_type());

Constructs an uninitialized container of size_d1
elements, using optionally specified allocator
instance, using optionally specified number of cache
lines to offset the start of the buffer in memory to
allow management of 4k cache aliasing.

aos1d_container (
    size_type size_d1,
    const PrimitiveT &a_value,
    buffer_offset_in_cachelines buffer_offset
        = buffer_offset_in_cachelines(0),
    const allocator_type & an_allocator
        = allocator_type());

Constructs a container of size_d1 elements
initializing each with a_value, using optionally
specified allocator instance, using optionally
specified number of cache lines to offset the start of
the buffer in memory to allow management of 4k
cache aliasing.

template<typename StlAllocatorT>
aos1d_container(
    const std::vector<PrimitiveT, 
StlAllocatorT> &other,
    buffer_offset_in_cachelines buffer_offset
        = buffer_offset_in_cachelines(0),
    const allocator_type & an_allocator
        = allocator_type());

Constructs a container with a copy of each of the
elements in other, in the same order, using
optionally specified allocator instance, using
optionally specified number of cache lines to offset
the start of the buffer in memory to allow
management of 4k cache aliasing.

aos1d_container(
    const PrimitiveT *other_array, 
    size_type number_of_elements,
    buffer_offset_in_cachelines buffer_offset

Constructs a container with a copy of
number_of_elements elements from the array
other_array, in the same order, using optionally
specified allocator instance, using optionally

Compiler Reference   

393



Member Type Description

        = buffer_offset_in_cachelines(0),
    const allocator_type & an_allocator
        = allocator_type());

specified number of cache lines to offset the start of
the buffer in memory to allow management of 4k
cache aliasing.

template< typename IteratorT >
aos1d_container(
    IteratorT a_begin,
    IteratorT an_end,
    buffer_offset_in_cachelines buffer_offset
        = buffer_offset_in_cachelines(0),
    const allocator_type & an_allocator
        = allocator_type());

Constructs a container with as many elements as
the range [a_begin-an_end), each with a copy of
the value from its corresponding element in that
range, in the same order, using optionally specified
allocator instance, using optionally specified
number of cache lines to offset the start of the
buffer in memory to allow management of 4k cache
aliasing.

aos1d_container clone() const; Returns: a new aos1d_container instance with its
own copy of the elements

void resize(size_type new_size_d1); Resize the container so that it contains
new_size_d1 elements. If the new size is greater
than the current container size, the new elements
are unitialized

accessor<> access(); Returns: accessor with no embedded index offset.

accessor<int> access(int offset); Returns:accessor with an integer based embedded
index offset.

template<int IndexAlignmentT>
accessor<aligned_offset<IndexAlignmentT> >
    access(aligned_offset<IndexAlignmentT>);

Returns: accessor with an
aligned_offset<IndexAlignmentT> based embedded
index offset.

template<int OffsetT>
accessor<fixed_offset<OffsetT> >
    access(fixed_offset<OffsetT>);

Returns: accessor with a fixed_offset<OffsetT>
based embedded index offset.

const_accessor<> const_access() const; Returns: const_accessor with no embedded index
offset.

const_accessor<int> 
    const_access(int offset) const;

Returns: const_accessor with an integer based
embedded index offset.

const_accessor<aligned_offset<IndexAlignmentT>
>
    
const_access(aligned_offset<IndexAlignmentT> 
offset) const;

Returns:const_accessor with an
aligned_offset<IndexAlignmentT> based embedded
index offset.

template<int OffsetT>
const_accessor<fixed_offset<OffsetT> >
    const_access(fixed_offset<OffsetT>) const;

Returns:const_accessor with a
fixed_offset<OffsetT> based embedded index
offset.

STL Compatibility

In addition to the performance oriented interface explained in the table above, aos1d_container
implements a subset of the std::vector interface that is intended for ease of integration, not high
performance. Due to the import/export only requirement we can’t return a reference to the object, instead

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

394



iterators and operator[] return a Proxy object while other "const' methods return a "value_type const".
Furthermore, iterators do not support the -> operator. Despite that limitation the iterators can be passed to
any STL algorithm. Also for performance reasons, resize does not initialize new elements. The following
std::vector interface methods are implemented:

• size, max_size, capacity, empty, reserve, shrink_to_fit
• assign, push_back, pop_back, clear, insert, emplace, erase
• cbegin, cend, begin, end, crbegin, crend, rbegin, rend, rbegin, rend
• operator[], front() const, back() const, at() const
• swap, ==, !=
• swap, aos1d_container(aos1d_container&& donor), aos1d_container & operator=(aos1d_container&&

donor)

access_by
Enum to control how the memory layout will be
accessed. #include <sdlt/access_by.h>

Syntax

enum access_by
{
    access_by_struct,
    access_by_stride
};

Description

The access_by_struct causes data access via structure member access. Nested structures will drill down
through the structure members in a nested manner. For example an Axis Aligned Bounding Box (AABB)
containing two Point3d objects (with x,y,z data members) will logically expand to something like:

AABB local;
local = accessor.mData[i];

access_by_stride will cause data access through pointers to built in types with a stride to account for the
size of the primitive. For an Axis Aligned Bounding Box (AABB) containing two Point3d objects (with x,y,z
data members) will logically expand to something like:

AABB local;
local.topLeft.x = *(accessor.mData + offsetof(AABB,topLeft) + offset(Point3d,x) + 
(sizeof(AABB)*i));
local.topLeft.y = *(accessor.mData + offsetof(AABB,topLeft) + offset(Point3d,y) + 
(sizeof(AABB)*i));
local.topLeft.z = *(accessor.mData + offsetof(AABB,topLeft) + offset(Point3d,z) + 
(sizeof(AABB)*i));
local.topRight.x = *(accessor.mData + offsetof(AABB,topRight) + offset(Point3d,x) + 
(sizeof(AABB)*i));
local.topRight.y = *(accessor.mData + offsetof(AABB,topRight) + offset(Point3d,y) + 
(sizeof(AABB)*i));
local.topRight.z = *(accessor.mData + offsetof(AABB,topRight) + offset(Point3d,z) + 
(sizeof(AABB)*i));

When vectorizing, access_by_struct can sometimes generate better code as the compiler could perform
wide loads and use shuffle/insert instructions to move data into SIMD registers. However, depending on the
complexity of the primitive, it can also fail to vectorize, especially when the primitive contains nested
structures.

On the other hand access_by_stride has always vectorized successfully, because the data access is
simplified to an array pointer with a stride. The compiler is able to handle any complexity of primitive,
because it never sees the complexity and instead just sees the simple array pointer with strided access.

Compiler Reference   

395



access_by_struct is probably the best choice as it offers a chance of better code generation especially
when used outside of a SIMD loop. However if you run into issues when vectorizing, try access_by_stride
to see if that alleviates the problem.

We leave this choice up to the developer and require they explicitly make a choice, so this is not hidden
behavior.

n_container
Template class for N-dimensional container. The
contained primitive type, exact memory layout and
container shape are defined via template arguments.

Syntax

template <typename PrimitiveT, 
          typename LayoutT, 
          typename ExtentsT,
          typename AllocatorT >
class n_container;

Description

N-dimensional container of PrimitiveT elements with predefined memory layout and shape. Provides accessor
interface suitable for flexible and efficient data access inside SIMD loops

The following table provides information on the template arguments for n_container

Template Argument Description

typename PrimitiveT The type that each cell in the multi-dimensional
container will store.

Requirements: PrimitiveT must be previously
declared with the SDLT_PRIMITIVE macro.

typename LayoutT The in-memory data layout of cells in the container.

Requirements: LayoutT must be a class from layout
namespace.

typename ExtentsT The shape of the container.

Requirements: ExtentsT must be a concrete type of
n_extent_t variadic template.

class AllocatorT = allocator::default_alloc [Optional] Specify type of allocator to be used.

allocator::default_alloc is currently the only
allocator supported.

The following table provides information on the types defined as members of n_container

Member Type Description

typedef PrimitiveT primitive_type; Type inside each cell of the container.

typedef PrimitiveT allocator_type; Type of allocator used by the container.

typedef implementation-defined accessor Type of an accessor that can write or read cells to
and from this container.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

396



Member Type Description

typedef implementation-defined const_accessor; Type of a const_accessor that can read cells from
this container.

The following table provides information on the methods of n_container

Member Description

n_container (
    const ExtentsT &a_extents,
     buffer_offset_in_cachelines  
buffer_offset
        =buffer_offset_in_cachelines(0),
     const AllocatorT 
&an_allocator=AllocatorT())

Constructs an uninitialized container of the shape
defined as a_extents, using optionally specified
number of cache lines to offset the start of the
buffer in memory to allow management of 4k cache
aliasing, using optionally specified allocator
instance.

n_container (buffer_offset_in_cachelines 
buffer_offset = 
buffer_offset_in_cachelines(0), 
const AllocatorT &an_allocator=AllocatorT())

Constructs an uninitialized container of the shape,
defined via template parameter ExtentsT using
optionally specified number of cache lines to offset
the start of the buffer in memory to allow
management of 4k cache aliasing, using optionally
specified allocator instance.

ExtentsT must be default constructible. Only true
when ExtentsT is made up enitrely of
fixed<NumberT> types.

n_container(n_container&& donor) Transfers ownership of the donor's currently owned
buffers and organization, if any. Any outstanding
accessors on the donor are no longer valid.

n_container & operator = (n_container&& donor) Frees any existing buffers, then transfers ownership
of the donor's currently owned buffers and
organization, if any. Any outstanding accessors on
the donor are no longer valid.

Returns: Reference to this instance.

const ExtentsT& n_extent () const Provides the shape of the container. Alternatively,
the free template function extent_d<int
DimenstionT>(const n_container &) could be used.

Returns: Constant reference to ExtentsT instance
describing the shape of the container.

const_accessor const_access(); Constructs an const_accessor with knowledge of
the underlying data organization to read cells inside
the container.

Returns:const_accessor for the container

accessor access(); Constructs an accessor with knowledge of the
underlying data organization to write or read cells
inside the container.

Returns:accessor for the container

The following table provides information about the friend functions of n_container.

Compiler Reference   

397



Friend Function Description

std::ostream& 
          operator << (std::ostream& 
output_stream, const
          n_container & a_container)

Append string representation of a_container's
extents values to a_output_stream.

Returns: Reference to a_output_stream for
chained calls.

Layouts

sdlt::layout namespace
Rather than having different container types for different data layouts, the library uses the types from the
layout namespace as a template parameter to the n_container.

Available layouts are defined in the namespace layout and summarized in table below.

Layout Description

template <typename AlignOnColumnIndexT=0>
layout::soa

Structure of Arrays: Each data member of the Primitive
will have its own N-dimensional array. The arrays are
placed back-to-back inside a contiguous buffer. Template
parameter AlignOnColumnIndexT identifies which column
of the row dimension should be cache line aligned. The
AlignOnColumnIndexT of each row is cache line aligned.

template <typename AlignOnColumnIndexT>
layout::soa_per_row

Structure of Arrays Per Row: Each data member of
the Primitive will have its own 1-dimensional array
for the row dimension (Soa1d) placed back to back.
The AlignOnColumnIndexT of each row is cache line
aligned. Multiple of these Soa1d's are laid out
sequentially to model the remaining dimensions,
effictively becoming an Array of Structures of
Arrays where the SOA where the size of the array is
the row's extent. This can be particularly efficient
when the extent of the row can be
fixed<NumberT>.

Note: If the size of the row isn't known at compile
time, consider adding an additional dimension that
is fixed<Number> and dividing the row up by that
fixed<NumberT>.

layout::aos_by_struct Array of Structures Accessed by Struct: Primitives are laid
out in native format back to back in memory and access
happens via structure or member access. Nested
structures will drill down through the structure members
in a nested manner.

layout::aos_by_stride Array of Structures Accessed by Stride: Primitives are laid
out in native format back to back in memory and accessed
through pointers to built in types with a stride to account
for the size of the Primitive. Can be useful if
aos_by_struct doesn't vectorize.

Description
The classes are empty and only for specialization of containers for denoted layouts.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

398



Shape
Variadic template class n_extent_t describes the
shape of the n_dimensional container. Specifically, the
number of dimensions the size of each.

Syntax

template<typename... TypeListT>
class n_extent_t

Description

n_extent_t represents the shape of a container as a sequence of sizes for each dimension. The size of each
dimension can be represented by different types. This flexibility allows the same interface to be used to
declare n_extents_t whose dimensions are fully known at compile time with fixed<int NumberT>, or to
be only known at runtime with int, or only known at runtime but with a guarantee will be a multiple of an
alignment with aligned<int Alignment>. For details, see the Number representation section.

The following table provides information on the template arguments for n_extent_t.

Template Argument Description

typename... TypeListT Comma separated list of types, where the number
of types provided controls how many dimensions
there are. Each type in the list identifies how the
size of the corresponding dimension is to be
represented. The order of the dimensions is the
same order as C++ subscripts declaring a multi-
dimensional array, from leftmost to rightmost.

Type must be int, fixed<NumberT>, or
aligned<AlignmentT> for each value describing
corresponding dimensions size (extent) in regular
order of C++ subscripts - from outer to inner.

The following table provides information on the members of n_extent_t

Member Description

static constexpr int rank; Number of dimensions.

static constexpr int row_dimension = rank-1; Index of last dimension, row.

n_extent_t() Requirements: Every type in TypeListT is default
constructible.

Effects: Construct n_extent_t, uses default values
of each type in TypeListT for the dimesnion sizes. In
general, only correctly initialized when every type is
a fixed<NumberT>

n_extent_t(const n_extent_t &a_other) Effects: Construct n_exent_t, copying size of each
dimension from a_other.

Compiler Reference   

399



Member Description

explicit n_extent_t(const TypeListT & … 
a_values)

Effects: Construct n_exent_t, initializing each
dimension with the corresponding value from the
list of a_values passed as an argument. In use,
a_values is a comma separate list of values whose
length and types are defined by TypeListT.

template<int DimensionT> auto get() const Requirements: DimenstionT >=0 and DimensiontT
< rank.

Effects: Determine the exent of DimensionT.

Returns: In the type declared by the DimensionT
position of 0-based TypeListT, the extent of the
specified DimensionT

template<int DimensionT> 
auto rightmost_dimensions() const

Requirements: DimenstionT >=0 and DimensiontT
<= rank.

Effects: Construct a n_extent_t with a lower rank
by copying the righmost DimensionT values from
this instance.

Returns: n_exent[get<rank - DimensionT>()]

[get<rank + 1 - DimensionT>()]

[get<…>()]

[get<row_dimension>()]

template<class... OtherTypeListT>
bool operator == (const 
n_extent_t<OtherTypeListT...> a_other) const

Requirements: rank of a_other is the same as this
instance's.

Effects: Compare size of each dimension for
equality. Only compares numeric values, not the
types of each dimension.

Returns:true if all dimensions are numerically
equal, false otherwise.

template<class... OtherTypeListT>
bool operator != (const 
n_extent_t<OtherTypeListT...> a_other) const

Requirements: rank of a_other is the same as this
instance's.

Effects: Compare size of each dimension for
inequality. Only compares numeric values, not the
types of each dimension.

Returns:true if any dimensions are numerically
different, false otherwise.

size_t size() const Returns: Number of elements specified by extent

Effects: Calculates the number of cells represented
by the current extent values of each dimension by
multiplying them all together.

Returns: get<0>()*get<1>()*get<…
>()*get<rank-1>()

The following table provides information on the friend functions of n_extent_t.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

400



Friend function Description

std::ostream& operator << (std::ostream& 
output_stream, const n_extent_t & a_extents)

Effects: Append string representation of a_extents'
values to a_output_stream

Returns: Reference to a_output_stream for
chained calls.

n_extent_generator
To facilitate simpler and clearer creation of
n_extent_t objects.

Syntax

template<typename... TypeListT>
class n_extent_generator;

namespace { 
    // Instance of generator object
    n_extent_generator<> n_extent; 
}

Description

The generator object provides recursively constructing operators [] for fixed<>, aligned<>, and integer
values allowing building of an n_extent_t <…> instance, one dimension at a time. The main purpose is to
allow a usage syntax that is similar to C multi-dimensional array definition:

Compare the following examples, instantiating three n_extent_t instances. and using the generator object
to instantiate equivalent instances.

n_extent_t<int, int> ext1(height, width);
n_extent_t<int, aligned<128>> ext2(height, width);
n_extent_t<fixed<1080>, fixed<1920>> ext3(1080_fixed, 1920_fixed);
auto ext1 = n_extent[height][width];
auto ext2 = n_extent[height][aligned<128>(width)];
auto ext3 = n_extent[1080_fixed][1920_fixed];

Class Hierarchy

It is expected that n_extent_generator < … > not be directly used as a data member or parameter,
instead only n_extent_t <...> from which it is derived. The generator object n_extent can be
automatically downcast any place expecting an n_extent_t<…> .

The following table provides the template arguments for n_extent_generator
Template Argument Description

typename... TypeListT Comma separated list of types, where the number of
types provided controls how many dimensions the
generator currently represent. Each type in the list
identifies how the size of the corresponding dimension is
to be represented. The order of the dimensions is the
same order as C++ subscripts declaring a multi-
dimensional array – from leftmost to rightmost.

Requirements: Type is int, fixed<NumberT>, or
aligned<AlignmentT>.

The following table provides information on the types defined as members of n_extent_generator in
addition to those inherited from n_extent_t.

Compiler Reference   

401



Member Type Description

typedef n_extent_t<TypeListT...> value_type Type value that the any chained [] operator calls have
produced.

The following table provides information on the members of n_extent_generator in addition to those
inherited from n_extent_t

Member Description

n_extent_generator () Requirements: TypeListT is empty

Effects: Construct generator with no extents
specified

n_extent_generator (const n_extent_generator 
&a_other)

Effects: Construct generator copying any extent
values from a_other

n_extent_generator<TypeListT..., int> 
operator [] (int a_size) const

Requirements: a_size >= 0

Returns: n_extent_generator<…> with additional
rightmost integer based extent.

n_extent_generator<TypeListT...,
          fixed<NumberT>> operator [] 
(fixed<NumberT> a_size) const

Requirements: a_size >= 0

Returns: n_extent_generator<…> with additional
rightmost fixed<NumberT> extent.

n_extent_generator<TypeListT...,
          aligned<AlignmentT>> operator [] 
(aligned<AlignmentT> a_size)

Requirements: a_size >= 0

Returns: n_extent_generator<…> with additional
rightmost aligned<AlignmentT> based extent.

value_type value() const Returns: n_extent_t<…> with the correct types
and values of the multi-dimensional extents
aggregated by the generator.

make_ n_container template function
Factory function to construct an instance of a
properly-typed n_container<…> based on n_extent_t
passed to it.

Syntax

template<
    typename PrimitiveT,
    typename LayoutT,
    typename AllocatorT = allocator::default_alloc,
    typename ExtentsT
>
auto make_n_container(const ExtentsT &_extents)
->n_container<PrimitiveT, LayoutT, ExtentsT, AllocatorT>

Description

Use make_n_container to more easily create an n-dimensional container using template argument
deduction, and avoid specifying the type of extents.

An example of the instantiation of a High Definition image object is below.

typedef n_container<RGBAs, layout::soa, 
                    n_extent_t<int, int>> HdImage;
HdImage image1(n_extent[1080][1920]);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

402



Alternatively, it is possible to use factory function with the C++11 keyword auto, as shown below.

auto image1 = make_n_container<RGBAs, 
                          layout::soa>(n_extent[1080][1920]);

extent_d template function

Syntax

template<int DimensionT, typename ObjT>
auto extent_d(const ObjT &a_obj)

Description

The template function offers a consistent way to determine the extent of a dimension for a multi-dimensional
object. It can avoid extracting an entire n_extent_t<…> when only the extent of a single dimension is
needed.

Template Argument Description

int DimensionT 0 based index starting at the leftmost dimension
indicating which n-dimensions to query the extent
of.

Requirements: DimensionT >=0 and DimensionT
< ObjT::rank

typename ObjT The type of n-dimensional object from which to
retrieve the extent.

Requirements: ObtT is one of:

n_container<…>

n_extent_t<…>

n_extent_generator<…>

Returns

The correctly typed extent corresponding to the requested DimensionT of a_obj.

Example

template <typename VolumeT>
void foo(const VolumeT & a_volume)
{
    int extent_z = extent_d<0>(volume); 
    int extent_y = extent_d<1>(volume); 
    int extent_x = extent_d<2>(volume); 
    /…
}

Bounds
This section provides information related to bounds for the SIMD Data Layout Templates (SDLT).

bounds_t
Class represents a half-open interval with lower and
upper bounds. #include <sdlt/bounds.h>

Syntax

template<typename LowerT = int, typename UpperT = int>
struct bounds_t

Compiler Reference   

403



Description

bounds_t holds the lower and upper bounds of a half open interval. It is templated to allow the different
representations for the lower and upper bounds. Supported types include fixed<NumberT>,
aligned<AlignmentT> and integer values. bounds_t models a valid iteration space over a single dimension.

bounds_t can be used to represent an iteration space over the entire extent of a dimension or to restrict
iteration space within the extent. n_bounds_t aggregates a number of bounds_t objects to allow construction
of multi-demensional subsections restricting multiple extents.

The class interface is compatible with C++ range-based loops to simplify iteration.

Template Argument Description

typename LowerT = int Type of lower bound.

Requirements: type is int, or fixed<NumberT>, or
aligned<AlignmentT>

typename UpperT = int Type of upper bound.

Requirements: type is int, or fixed<NumberT>, or
aligned<AlignmentT>

Member Types Description

typedef LowerT lower_type Type of the lower bound

typedef UpperT upper_type Type of the upper bound

typedef implementation-defined iterator Iterator type for C++ range-based loops support.

Member Description

bounds_t() Effects: Constructs bounds_t with uninitialized
lower and upper bounds.

bounds_t(lower_type l, upper_type u) Requirements: (u >= l)

Effects: Constructs bounds_t representing the half-
open interval [l, u)

bounds_t(const bounds_t & a_other) Effects: Constructs bounds_t with lower and upper
bounds initialized from those of a_other.

template<typename OtherLowerT, 
         typename OtherUpperT>
bounds_t(const bounds_t<OtherLowerT,
                 OtherUpperT> & a_other)

Requirements: OtherLowerT and OtherUpperT can
legally be converted to lower_type and upper_type.
For example it would be illegal to convert an int to
fixed<8>().

Effects: Constructs bounds_t with lower and upper
bounds initialized from those of a_other.

void set(lower_type l, upper_type u) Effects: Set index of the inclusive lower bound and
the index of the exclusive upper bound.

void set_lower(lower_type a_lower) Effects: Set index of the inclusive lower bound

void set_upper(upper_type a_upper) Effects: Set index of the exclusive upper bound

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

404



Member Description

lower_type lower() const Returns: index of the inclusive lower bound

upper_type upper() const Returns: index of the exclusive upper bound

iterator begin() const Returns: index iterator for the inclusive lower
bound. NOTE: C++11 range-based loops require
begin() & end()

iterator end() const Returns: index iterator for the exclusive upper
bound. NOTE: C++11 range-based loops require
begin() & end()

auto width() const Effects: Determine width of iteration space inside
the half open interval between lower() and upper()
bounds.

Returns: upper() – lower()

NOTE: the return type depends on resulting type of
a subtraction between the types of upper() and
lower().

template<typename OtherLowerT, 
         typename OtherUpperT> 
bool contains(const bounds_t<OtherLowerT,
                OtherUpperT> &a_other) const

Effects: Determine if interval of a_other is entirely
contained inside this object’s bounds

Returns: (a_other.lower() >= lower() &&

a_other.upper() <= upper())

template<typename T> 
auto operator + (const T &offset) const

Effects: create a new bounds_t instance with offset
added to both lower and upper bounds.

Returns: bounds(lower() + offset, upper()+offset)

NOTE: The lower_type and upper_type of the
returned bound_t maybe different as result of
addition of the offset.

template<typename T> 
auto operator - (const T & offset) const

Effects: create a new bounds_t instance with offset
subtracted from both lower and upper bounds.

Returns: bounds(lower() - offset, upper()-offset)

NOTE: The lower_type and upper_type of the
returned object maybe different as result of
subtraction of T.

bool operator == (const bounds_t &a_other) 
const

Effects: Equality comparison with same-typed
bounds_t object

Returns: (lower() == a_other.lower() && upper()
== a_other.upper())

template<typename OtherLowerT, 
         typename OtherUpperT>
bool operator == (
 const bounds_t<OtherLowerT, 
                OtherUpperT> &a_other) const

Effects: Equality comparison with bounds_t object
of different lower_type or upper_type.

Returns: (lower() == a_other.lower() && upper()
== a_other.upper())

Compiler Reference   

405



Member Description

bool operator != (const bounds_t &) const Effects: Inequality comparison with same-typed
bounds_t object

Returns: (lower() != a_other.lower() || upper() !=
a_other.upper())

template<typename OtherLowerT, 
         typename OtherUpperT>
bool operator != (
 const bounds_t<OtherLowerT, 
                OtherUpperT> &a_other) const

Effects: Inequality comparison with with bounds_t
object of different lower_type or upper_type

Returns: (lower() != a_other.lower() || upper() !=
a_other.upper())

Friend Function Description

std::ostream& operator << (std::ostream& 
a_output_stream, const bounds_t &a_bounds)

Effects: append string representation of bounds_t
lower and upper values to a_output_stream

Returns: reference to a_output_stream for chained
calls

Range-based loops support

The bounds_t provides begin() and end() methods returning iterators to enable C++11 range-based loops.
The may save quite some typing and improve code clarity when iterating over bounds of a multidimensional
container.

Compare:

auto ca = image_container.const_access();
auto b0 = bounds_d<0>(ca);
auto b1 = bounds_d<1>(ca);
for (auto y = b0.lower(); y < b0.upper(); ++y)
    for (auto x = b1.lower(); x < b1.upper(); ++x) {
          RGBAs pixel = ca[y][x];
            // …
    }

and

auto ca = image_container.const_access();
for (auto y: bounds_d<0>(ca))
    for (auto x: bounds_d<1>(ca)) {
          RGBAs pixel = ca[y][x];
            // …
    }

Note that iterator only gives an index value within the bounds, not an object value. It is expected to be used
to index into accessors like in example above.
sdlt::bounds Template Function
Factory function provided for creation of bounds_t
objects. #include <sdlt/bounds.h>

Syntax

template<typename LowerT, typename UpperT>
auto bounds(LowerT a_lower, UpperT a_upper)

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

406



Description

In order to make creation of objects of bounds_t cleaner the factory function bounds is provided. It basically
enables LowerT and UpperT to be deduced from the arguments passed into it.

Template Argument Description

typename LowerT = int Type of lower bound.

Requirements: type is int, or fixed<NumberT>, or
aligned<AlignmentT>

typename UpperT = int Type of upper bound.

Requirements: type is int, or fixed<NumberT>, or
aligned<AlignmentT>

Returns:

The correctly typed bounds_t<LowerT, UpperT> corresponding to types of a_lower and a_upper passed to
the factory function.

Example:

Compare two ways of instantiating a bounds:

bounds_t<fixed<0>, aligned<16>> my_bounds1(0_fixed, aligned<16>(upper))
auto my_bounds2 = bounds_t<fixed<0>, aligned<16>>(0_fixed, aligned<16>(upper))

With the factory function:

auto my_bounds = bounds(0_fixed, aligned<16>(upper))
n_bounds_t
Variadic template class to describe the valid iteration
space over an N-dimensional container. #include
<sdlt/n_bounds.h>

Syntax

template<typename... TypeListT>
class n_bounds_t

Description

n_bound_t represents the valid iteration space over a n_container or its accessor as as a sequence of
bounds_t for each dimension. The bounds_t of each dimension can be represented by different types. This
flexibility allows the same interface to be used to declare n_bounds_t whose dimensions are fully known at
compile time with fixed<int NumberT>, or to be only known at runtime with int, or only known at runtime
but with a guarantee will be a multiple of an alignment with aligned<int Alignment>. For details see the
Number Representation section).

When an n_container is created, its n_bounds_t always start at fixed<0> for the inclusive lower bounds of
each dimension, and exclusive upper bounds match the extent of the dimension. Accessors can be translated
to different index spaces as well as restrict their iteration space to subsections, which will change the
n_bounds_t those accessors provide.

The following table provides information on the template arguments for n_bounds_t.

Compiler Reference   

407



Template Argument Description

typename... TypeListT Comma separated list of types, where the number
of types provided controls how many dimensions
there are. Each type in the list identifies how the
bounds of the corresponding dimension is to be
represented. The order of the dimensions is the
same order as C++ subscripts declaring a multi-
dimensional array – from leftmost to rightmost.

Requirements: types in the list be
bounds_t<LowerT, UpperT>

The following table provides information on the member types of n_bounds_t

Member Types Description

typedef implementation-defined lower_type Type of n_index_t<…> returned by method lower()

typedef implementation-defined upper_type Type of n_index_t<…> returned by method upper()

The following table provides information on the members of n_bounds_t.

Member Description

static constexpr int rank; Number of dimensions

static constexpr int row_dimension = rank-1; Index of last dimension considered to be the row

n_bounds_t() Requirements: Every bounds_t in TypeListT is
default constructible.

Effects: Construct n_bounds_t, uses default values
of each bounds_t in TypeListT for the dimesnion
sizes. In general only correctly initialized when
every bounds_t has an LowerT and UpperT that is a
fixed<NumberT>.

n_bounds_t(const n_bounds_t &a_other) Effects: Construct n_bounds_t, copying bounds of
each dimension from a_other.

template<int DimensionT> 
auto get() const

Requirements: DimenstionT >=0 and DimensiontT
< rank.

Effects: Determine the bounds of DimensionT.

Returns: In the type declared by the DimensionT
position of 0-based TypeListT, the bounds_t of the
specified DimensionT

lower_type lower() Effects: build n_index<…> representing the
inclusive lower bounds for all dimensions

Returns: n_index[get<0>().lower()]

[get<1>().lower()]

[get<…>().lower()]

[get<row_dimension>().lower()]

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

408



Member Description

upper_type upper() Effects: build n_index<…> representing the
exclusive upper bounds for all dimensions

Returns: n_index[get<0>().upper()]

[get<1>(). upper ()]

[get<…>(). upper ()]

[get<row_dimension>().upper()]

template<typename... OtherTypeListT> 
bool contains(n_bounds_t<OtherTypeListT...>
                             &a_other) 
const    

Requirements: rank of a_other is the same as this
instance’s.

Effects: Determine whether each dimension of the
passed n_bounds_t is fully contained within bounds
of each dimenson of this object.

Returns: get<0>().contains(a_other.get<0>() ) &&

get<1>().contains(a_other.get<1>() ) &&

get<…>().contains(a_other.get<…>() ) &&

get<row_dimension>().contains(a_other.get<row_
dimension>() )

template<class... OtherTypeListT>
bool operator == (const 
n_bounds_t<OtherTypeListT...> a_other) const

Requirements: rank of a_other is the same as this
instance’s.

Effects: Compare bounds each of dimension for
equality. Only compares numeric values, not the
types of each dimension.

Returns: true if all dimensions are numerically
equal, false otherwise.

template<class... OtherTypeListT>
bool operator != (const 
n_bounds_t<OtherTypeListT...> a_other) const

Requirements: rank of a_other is the same as this
instance’s.

Effects: Compare bounds of each dimension for
inequality. Only compares numeric values, not the
types of each dimension.

Returns: true if any dimensions are numerically
different, false otherwise.

template<class ...OtherTypeListT> 
auto operator+ (const 
n_index_t<OtherTypeListT...> a_offset) const

Requirements: rank of a_other is the same as this
instance’s.

Effects: construct a n_bound_t whose types and
bounds value for each dimension are determined by
taking the bounds for each dimension and adding
the an offset for that dimension from a_offset.

Returns: n_bounds[get<0>() + a_offset.get<0>()]

[get<1>() + a_offset.get<1>()]

[get<…>() + a_offset.get<…>()]

[get<row_dimension>() + a_offset.get<
row_dimension >()]

Compiler Reference   

409



Member Description

template<int DimensionT> 
auto rightmost_dimensions() const

Requirements: DimenstionT >=0 and DimensiontT
<= rank.

Effects: Construct a n_bounds_t with a lower rank
by copying the righmost DimensionT values from
this instance.

Returns: n_bounds[get<rank – DimensionT>()]

[get<rank + 1 – DimensionT>()]

[get<…>()]

[get<row_dimension>()]

template<class... OtherTypeListT>
auto overlay_rightmost(const 
n_bounds_t<OtherTypeListT...> & a_other) const

Requirements: rank of a_other is <= rank

Effects: Construct copy of n_bounds_t where the
rightmost dimensions’ values are copied from
a_other, effectively overlaying a_other ontop of
rightmost dimensions of this instance.

Returns:

n_bounds[get<0>()]

[get<1 >()]

[get<…>()]

[get<rank-a_other::rank>()]

[a_other.get<0>()]

[a_other.get<…>()]

[a_other.get<a_other::row_dimension>()]

The following table provides information on the friend functions of n_bounds_t.

Friend Function Description

std::ostream& operator << (std::ostream& 
output_stream, const n_bounds_t & 
a_bounds_list)

Effects: append string representation of
a_bounds_list values to a_output_stream

Returns: reference to a_output_stream for chained
calls.

n_bounds_generator
Facilitates simple creation of n_bounds_t objects.
#include <sdlt/n_bounds.h>

Syntax

template<typename... TypeListT>
class n_bounds_generator;

namespace { 
    // Instance of generator object
    n_bounds_generator<> n_bounds; 
}

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

410



Description

The generator object provides recursively constructing operators [] for bounds_t<LowerT, UpperT> values
allowing building of a n_bounds_t<…> instance one dimension at a time. Its main purpose is to allow a
usage syntax that is similar to C multi-dimensional array definition:

Compare creating two n_bounds_t instances:

n_bounds_t<bounds_t<fixed<540>, fixed<1080>>,
           bounds_t<fixed<960>, fixed<1920>>> bounds1(bounds_t<540_fixed,1080_fixed>(), 
        bounds_t<960_fixed, 1920_fixed>));

n_bounds_t<bounds_t<int, int>,
           bounds_t<int, int>> bounds2(bounds_t<int, int>(540,960), 
        bounds_t<int, int>(960, 1920));

and the equivalent instances using the generator objects and factory functions

auto bounds1 = n_bounds[bounds(540_fixed, 1080_fixed)]
                       [bounds(960_fixed, 1920_fixed)];
auto bounds2 = n_bounds[bounds(540, 1080)]
                       [bounds(960, 1920)];

or alternatively using the operator() with n_index_t and n_extent_t generator objects

auto bounds1 = n_bounds(n_index[540_fixed][960_fixed], 
                         n_extent[540_fixed][960_fixed]);

auto bounds2 = n_bounds(n_index[540][960], 
                        n_extent[540][960]);

Class Hierarchy

It is expected that n_bounds_generator<…> not be directly used as a data member or parameter, instead
only n_bounds_t<...> from which it is derived. The generator object n_bounds can be automatically
downcast any place expecting a n_bounds_t<…>.

The following table provides information on the template arguments for n_bounds_generator

Template Argument Description

typename... TypeListT Comma separated list of types, where the number
of types provided controls how many dimensions
there are. Each type in the list identifies how the
bounds of the corresponding dimension is to be
represented. The order of the dimensions is the
same order as C++ subscripts declaring a multi-
dimensional array – from leftmost to rightmost.

Requirements: types in the list be
bounds_t<LowerT, UpperT>

The following table provides information on the types defined as members of n_bounds_generator in addition
to those inherited from n_bounds_t

Member Types Description

typedef n_bounds_t<TypeListT...> value_type Type value that the any chained [] operator calls
have produced.

The following table provides information on the members of n_bounds_generator in addition to those
inherited from n_bounds_t

Compiler Reference   

411



Member Description

n_bounds_generator() Requirements: TypeListT is empty

Effects: Construct generator with no bounds
specified

n_bounds_generator(const n_bounds_generator 
&a_other) 

Effects: Construct generator copying any bounds
values from a_other

template<typename LowerT, typename UpperT>
auto
operator [] (const bounds_t<LowerT, UpperT> & 
a_bounds) const 

Effects: build a n_bounds_generator<…> with
additional rightmost bounds_t<LowerT, UpperT>
based dimension.

Returns: n_bounds_generator<TypeListT...,
bounds_t< LowerT, UpperT >>

template<class... IndexTypeListT, class... 
ExtentTypeListT>
auto operator () ( 
 const n_index_t<IndexTypeListT...> & 
a_indices,
 const n_extent_t<ExtentTypeListT...> & 
a_extents)  const

Requirements: rank of a_indices is same as rank of
a_extents and TypeListT be empty

Effects: build a n_bounds_generator<…> where n-
lower bounds are specified by a_indices, and n-
upper bounds are calculated by adding a_extents to
a_indices

Returns: n_bounds[bounds(a_indices.get<0>(),

a_indices.get<0>() + a_extents.get<0>())]

[bounds(a_indices.get<1>(),

a_indices.get<1>() + a_extents.get<1>())]

[bounds(a_indices.get<…>(),

a_indices.get<…>() + a_extents.get<…>())]

[bounds( a_indices.get<row_dimension>(),

a_indices.get< row_dimension >() +
a_extents.get< row_dimension >())]

value_type value() const Returns: n_bounds_t<…> with the correct types
and values of the multi-dimensional bounds
aggregated by the generator.

bounds_d Template Function
Provides a consistent way to determine the bounds of
a dimension for a multi-dimensional object. #include
<sdlt/n_extent.h>

Syntax

template<int DimensionT, typename ObjT>
auto bounds_d(const ObjT &a_obj)

Description

Consistent way to determine the bounds of a dimension for a multi-dimensional object. Can avoid extracting
an entire n_bounds_t<…> when only the extent of a single dimension is needed.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

412



Template Argument Description

int DimensionT 0 based index starting at the leftmost dimension
indicating which n-dimensions to query the bounds
of.

Requirements: DimensionT >=0 and DimensionT <
ObjT::rank

typename ObjT The type of n-dimensional object from which to
retrieve the extent.

Requirements: ObtT is one of:

n_container<…>

n_bounds_t<…>

n_bounds_generator<…>

n_container<…>::accessor

n_container<…>::const_accessor

or any sectioned or translated accessor.

Returns:

The correctly typed bounds_t<LowerT, UpperT> corresponding to the requested DimensionT of a_obj.

Example:

template <typename VolumeT>
void foo(const VolumeT & a_volume)
{
    auto bounds_z = bounds_d<0>(volume); 
    auto bounds_y = bounds_d<1>(volume); 
    auto bounds_x = bounds_d<2>(volume); 
    for(auto z : bounds_z)
        for(auto y : bounds_y)
            for(auto x : bounds_x) {
                // …
            }
}

Accessors
This section provides information related to accessors for the SIMD Data Layout Templates (SDLT).
soa1d_container::accessor and aos1d_container::accessor
Lightweight object provides efficient array subscript []
access to the read or write elements from inside a
soa1d_container or aos1d_container. #include
<sdlt/soa1d_container.h> and #include <sdlt/
aos1d_container.h>

Syntax

template <typename OffsetT> soa1d_container::accessor;
template <typename OffsetT> aos1d_container::accessor;

Compiler Reference   

413



Arguments

typename OffsetT The type offset that will be applied to each operator[] call determined
by the type of offset passed into
soa1d_container::access(offset)/
aos1d_container::access(offset) which constructs an accessor.

Description

accessor provides [] operator that returns a proxy object representing an Element inside the Container that
can export or import the Primitive's data. Can re-access with an offset to create a new accessor that when
accessed at [0] will really be accessing at index corresponding to the embedded offset. Lightweight and
meant to be passed by value into functions or lambda closures. Use accessors in place of pointers to access
the logical array data.

Member Description

accessor(); Default Constructible

accessor(const accessor &); Copy Constructible

accessor & operator = (const accessor &); Copy Assignable

const int & get_size_d1() const; Returns: Number of elements in the container.

auto operator [] (int index_d1) const Returns: proxy Element representing element at
index_d1 in the container..

template<typename IndexT_D1>
auto 
operator [] (const IndexT_D1 index_d1);

When: IndexT_D1 is one of the SDLT defined or
generated Index types,

Returns: proxy Element representing element at
index_d1 in the container.

auto 
reaccess(const int offset) const;

Returns: accessor with an integer-based embedded
index offset.

template<int IndexAlignmentT>
auto
reaccess(aligned_offset<IndexAlignmentT> 
offset) const;

Returns: accessor with an
aligned_offset<IndexAlignmentT> based
embedded index offset.

template<int fixed_offsetT>
auto 
reaccess(fixed_offset<fixed_offsetT>) const;

Returns: accessor with a fixed_offset<OffsetT>
based embedded index offset.

soa1d_container::const_accessor and aos1d_container::const_accessor
Lightweight object provides efficient array subscript []
access to the read elements from inside a
soa1d_container or aos1d_container. #include
<sdlt/soa1d_container.h> and #include <sdlt/
aos1d_container.h>

Syntax

template <typename OffsetT> soa1d_container::const_accessor;
template <typename OffsetT> aos1d_container::const_accessor;

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

414



Arguments

typename OffsetT The type offset that embedded offset that will be applied to each
operator[] call

Description

const_accessor provides [] operator that returns a proxy object representing a const Element inside the
Container that can export the Primitive's data. Can re-access with an offset to create a new const_accessor
that when accessed at [0] will really be accessing at index corresponding to the embedded offset.
Lightweight and meant to be passed by value into functions or lambda closures. Use const_accessors in place
of const pointers to access the logical array data.

Member Description

const_accessor(); Default Constructible

const_accessor(const const_accessor &); Copy Constructible

const_accessor & operator = (const 
const_accessor &);

Copy Assignable

const int & get_size_d1() const; Returns: Number of elements in the container.

auto operator [] (int index_d1) const Returns: proxy ConstElement representing element
atindex_d1 in the container..

template<typename IndexT_D1>
auto 
operator [] (const IndexT_D1 index_d1);

When: IndexT_D1 is one of the SDLT defined or
generated Index types.

Returns: proxy ConstElement representing element
at index_d1 in the container.

auto 
reaccess(const int offset) const;

Returns: const_accessor with an integer-based
embedded index offset.

template<int IndexAlignmentT>
auto
reaccess(aligned_offset<IndexAlignmentT> 
offset) const;

Returns: const_accessor with an
aligned_offset<IndexAlignmentT> based
embedded index offset.

template<int fixed_offsetT>
auto 
reaccess(fixed_offset<fixed_offsetT>) const;

Returns: const_accessor with a
fixed_offset<OffsetT> based embedded index
offset.

Accessor Concept
Accessor and const_accessor objects obtained via
n_container::access() and
n_container::const_access() provide access to
read from or write to cells inside an n_container.

Compiler Reference   

415



Syntax

The following methods return objects meeting the requirements of the accessor concept.

auto n_container::access();
auto n_container::const_access();
auto accessor_concept::section(n_bounds_t<…>);
auto accessor_concept::translated_to(n_index_t<…>);
auto accessor_concept::translated_to_zero();

Description

Accessor objects provide read/write access to individual cells of an n-dimensional container. Index values
passed to a sequence of array subscript operator calls will produce a proxy concept that can import to or
export the primitive data the corresponding cell inside the container.

auto image = make_n_container<MyStruct, layout::soa>(n_extent[128][256]);
auto acc = image.access();
MyStruct in_value(100.0f, 200.0f, 300.0f);

acc[64][128] = in_value;
MyStruct out_value = acc[64][128];

assert(out_value == in_value);
Accessors also know their valid iteration space, which can queried using the template function bound_d<int
DimensionT>(accessor).

assert(bounds_d<0>(acc) == bounds(0_fixed,128));
assert(bounds_d<1>(acc) == bounds(0_fixed,256));

An accessor may have a non-zero index space if it has a translation embedded into it, bounds_d will reflect
any such translation.

auto shifted_acc = acc.translated_to(n_index[1000][2000]);
assert(bounds_d<0>(shifted_acc) == bounds(1000,1128));
assert(bounds_d<1>(shifted_acc) == bounds(2000,2256));

This is useful to have a smaller sized container participate in a calculation over a portion of a larger index
space, simplifying programming as the same index variable can be used, and the accessor takes care of
applying the necessary translation. An accessor may represent a subsection over the original extents,
bounds_d will identify the valid iteration space for that accessor.

auto subsection_acc = a.section(n_bounds[bounds(64,96)][bounds(128,160)]);
assert(bounds_d<0>(subsection_acc) == bounds(64, 96));
assert(bounds_d<1>(subsection_acc) == bounds(128, 160);

It can also be useful to have subsections be translated back to start their iteration space at 0. For efficiency,
the translated_to_zero() method is provided to create an accessor shifted back to zero.

auto zb_sub_acc = a.section( n_bounds[bounds(64, 96)][bounds(128, 160)] ).translated_to_zero();
assert(bounds_d<0>(zb_sub_acc) == bounds(0, 32));
assert(bounds_d<1>(zb_sub_acc) == bounds(0, 32));

If fewer array subscript calls applied to an accessor than its rank, the result is another accessor of a lower
rank. This can be useful to obtain accessors suitable to pass to code expecting lower rank accessors. Such as
a obtaining a 3d accessor from a 4d container by specifying only a single index via array subscript. This has

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

416



the effect of embedding the index value of the dimension inside accessor. When the final dimension is sliced,
the result is a proxy object to the cell inside the container corresponding to the embedded index values
inside the sliced accessors

auto image4d = make_n_container<MyStruct, layout::soa>(n_extent[10][20][128][256]);

MyStruct in_value(100.0f, 200.0f, 300.0f);
auto acc4d = image4d.access();
auto acc3d = acc4d[5];
auto acc2d = acc3d[10];
auto acc1d = acc2d[64];
acc1d[128] = in_value;
MyStruct out_value = acc4d[5][10][64][128];
assert(out_value == in_value);

The following table provides information on the requirements of the accessor concept.

Pseudo-Signature Description

typedef PrimitiveT primitive_type; Data type inside the cells of the container.

static constexpr int rank; Number of free dimensions of accessor

accessor_concept(const accessor_concept 
&a_other)

Effects: constructs a copy of another accessor of
the exact same type

template<typename IndexT>
element_concept operator[] (const IndexT 
a_index) const

Requirements: rank == 1 and IndexT is one of:
int, aligned<AlignmentT>, fixed<NumberT>,
linear_index, or simd_index<LaneCountT>

Effects: When only 1 free dimension is left, the
operator[] will construct an element_concept which
is the proxy to the cell inside the container. If this
accessor was obtained with const_access(), then
the proxy will provide read only interface to the
cell’s data.

Returns: The proxy object to cell inside the
container corresponding to the position identified by
the a_index along with any embedded index values
for other dimensions

template<typename IndexT>
accessor_concept operator[] (const IndexT 
a_index) const 

Requirements: rank > 1 and IndexT is one of: int,
aligned<AlignmentT>, fixed<NumberT>,
linear_index, or simd_index<LaneCountT>

Effects: When 2 or more free dimensions are left,
the operator[] will construct another
accessor_concept of lower rank embeding a_index
inside of it, effectively fixing that dimension’s index
value for any accesses made through the returned
accessor_concept.

Returns: The accessor_concept of lower rank ( one
less free dimension).

template<int DimensionT>
auto bounds_d() const

Requirements: DimensionT >=0 and DimensionT
< rank

Compiler Reference   

417



Pseudo-Signature Description

Effects: Determine the bounds of a free dimension
using DimensionT as a 0 based index starting at the
leftmost dimension.

Returns: bounds_t of the DimensionT

auto bounds_dXX() const 
where XX is 0-19

Requirements: XX >=0 and XX < rank and XX <
20

Effects: Non templated methods to determine the
bounds of a free dimension using XX as a 0 based
index starting at the leftmost dimension.

Returns: bounds_t of the XX dimension

template<int DimensionT>
auto extent_d() const

Requirements: DimensionT >=0 and DimensionT
< rank

Effects: Determine the extent of a free dimension
using DimensionT as a 0 based index starting at the
leftmost dimension.

Returns: extent of the DimensionT

auto extent_dXX() const 
where XX is 0-19

Requirements: XX >=0 and XX < rank and XX <
20

Effects: Non templated methods to determine the
extent of a free dimension using XX as a 0 based
index starting at the leftmost dimension.

Returns: extent of the XX dimension

template<typename ...IndexListT>
accessor_concept translated_to(
    n_index_t<IndexListT...> a_n_index) const

Requirements: a_n_index has same rank as the
accessor

Effects: construct an accessor_concept with an
embedded translation such that accessing
a_n_index will corresponds back to the current
lower bounds. Easy way to think of it is that current
iteration space is translated to a_n_index space.

Returns: accessor_concept whose bounds have the
same extents, but whose lower bounds start at the
supplied a_n_index

template<typename ...IndexListT>
accessor_concept translated_to_zero() const

Effects: construct an accessor_concept with an
embedded translation such that accessing [0] index
for all dimensions will corresponds back to the
current lower bounds. Easy way to think of it is that
current iteration space is translated to [0] for all
free dimensions.

Returns: accessor_concept whose bounds have the
same extents, but whose lower bounds start [0]…
[0]

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

418



Pseudo-Signature Description

template<typename ...BoundsTypeListT>
    auto
    section(const 
n_bounds_t<BoundsTypeListT...> &a_n_bounds) 
const

Requirements: a_n_bounds has same rank as the
accessor and a_n_bounds is contained by the
accessors current bounds.

Effects: construct an accessor_concept with using
the supplied a_n_bounds to represent its valid
iteration space. Because a_n_bounds must be
contained within the existing bounds, we are
effictively creating an accessor over a section of the
container. Easy way to think of it is that current
bounds are being restricted to a_n_bounds. Note:
can be useful to chain a call
translated_to_zero() on to the return value.

Returns:accessor_concept whose bounds are set
to the supplied a_n_bounds

Proxy Objects
accessors can't return a reference to the Primitive because its memory layout is abstracted. Instead a Proxy
object is returned. That Proxy supports importing or exporting data to and from the Container. The actual
type of Proxy objects is an implementation detail, but they all support the same public interface which we will
document.

Each accessor [index] operator returns a Proxy object.

Each const_accessor [index] operator returns a ConstProxy object.

The Proxy objects provide a Data Member Interface where for each data member of value_type they are
representing, a member access method is defined which returns a new Proxy or ConstProxy representing just
that data member. Users can drill down through a complex data structure to get a Proxy representing the
exact data member they need versus importing and exporting the entire Primitive value.

Proxy objects also overload the following operators if the underlying value_type supports the operator:

==, !=, <, >, <=, >=, +, -, *, /, %, &&, ||, &, |, ^, ~, *, +, -, !, +=, -=, *=, /=, %=, >>=, <<=, &=, |=,
^=, ++, --

Proxy
Proxy object provides access to a specific Primitive,
Primitive data member, or nested data member within
a Primitive for an element in a container.

Description

accessor [index] or a Proxy object’s Data Member Interfaces return Proxy objects. That Proxy object
represents the Primitive, Primitive data member, or nested data member within a Primitive for an element in
a container. The Proxy object has the following features:

• A value_type can be exported or imported from the Proxy.

• Conversion operator is used to export the value_type
• Alternatively the Proxy can be passed to the function unproxy to export a value_type
• Assignment operator = is used to import value_type into the Proxy

• Overloads the following operators if the underlying value_type supports the operator

• ==, !=, <, >, <=, >=, +, -, *, /, %, &&, ||, &, |, ^, ~, *, +, -, !, +=, -=, *=, /=, %=, >>=, <<=,
&=, |=, ^=, ++, --

• When an operator is called the following occurs:

Compiler Reference   

419



• value_type is exported
• The operator applied to the exported value
• If the operator was an assignment, the result is imported back into the Member and returns the

proxy
• Otherwise a result is returned.

• Data Member Interface.

• For each data member of value_type

• A member access method is defined which returns a Member proxy representing just that member.

Member Type Description

typedef implementation-defined value_type The type of the data the Proxy is representing

Member Description

operator value_type const () const; Returns: exports a copy of the Proxy’s value.

NOTE: constant return value prevents rvalue
assignment for structs offering some protection
against code that expected a modifiable reference.

const value_type &
operator = (const value_type &a_value);

Imports a_value into container at the position the
Proxy is representing.

Returns: the same constant value_type it was
passed.

NOTE: This behavior is different from traditional
assignment operators that return *this. Choice was
to enable efficient chaining of assignment operators
versus returning a Proxy which would have to
export the value it had just imported.

Proxy & operator = (const Proxy &other); Exports value from the other Proxy and imports it.

Returns: A reference to this Proxy obect.

auto name_of_values_data_member_1()const; Returns: Proxy instance representing the 1st data
member of the value_type

NOTE: actual method name is the name of the
value_type’s 1st data member

auto name_of_values_data_member_2()const; Returns: Proxy instance representing the 2nd data
member of the value_type.

NOTE: actual method name is the name of the
value_type’s 2nd data member.

auto name_of_values_data_member_...()const; Returns: Proxy instance representing the ...th data
member of the value_type.

NOTE: actual method name is the name of the
value_type’s …th data member.

auto name_of_values_data_member_N()const; Returns: Proxy instance representing the Nth data
member of the value_type.

NOTE: actual method name is the name of the
value_type’s Nth data member

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

420



ConstProxy
ConstProxy object provides access to a specific
constant primitive, primitive data member, or nested
data member within a primitive for an element in a
container.

Description

const_accessor [index] or a ConstProxy object’s Data Member Interfaces return ConstProxy objects. That
ConstProxy object represents the constant primitive, primitive data member, or nested data member within a
primitive for an element in a container. The ConstProxy object has the following features:

• A value_type can be exported or imported from the ConstProxy.

• Conversion operator is used to export the value_type
• Alternatively the ConstProxy can be passed to the function unproxy to export a value_type

• Overloads the following operators if the underlying value_type supports the operator

• ==, !=, <, >, <=, >=, +, -, *, /, %, &&, ||, &, |, ^, ~, *, +, -, !
• When an operator is called the following occurs:

• value_type is exported
• The operator applied to the exported value
• returns the result.

• Data Member Interface.

• For each data member of value_type

• A member access method is defined which returns a Member ConstProxy representing just that
member.

Member Type Description

typedef implementation-defined value_type The type of the data the ConstProxy is representing

Member Description

operator value_type const () const; Returns: exports a copy of the ConstProxy’s value.

NOTE: constant return value prevents rvalue
assignment for structs offering some protection
against code that expected a modifiable reference.

auto name_of_values_data_member_1()const; Returns: ConstProxy instance representing the 1st
data member of the value_type

NOTE: actual method name is the name of the
value_type’s 1st data member

auto name_of_values_data_member_2()const; Returns: ConstProxy instance representing the 2nd
data member of the value_type.

NOTE: actual method name is the name of the
value_type’s 2nd data member.

auto name_of_values_data_member_...()const; Returns: ConstProxy instance representing the ...th
data member of the value_type.

NOTE: actual method name is the name of the
value_type’s ...th data member.

Compiler Reference   

421



Member Description

auto name_of_values_data_member_N()const; Returns: ConstProxy instance representing the Nth
data member of the value_type.

NOTE: actual method name is the name of the
value_type’s Nth data member

Number Representation
When specifying extents, positions inside of, or bounds of a container, numeric values can be represented
three different ways: fixed, aligned, and int. Fixed is most precise and int is least precise. It is advised
to use as precise specification as possible. The compiler may optimize better with more information.

Fixed
Represent a numerical constant whose value specified at compile time.

template <int NumberT> class fixed;
If offsets applied to index values inside a SIMD loop are known at compile time, then the compiler can use
that information. For example, to maintain aligned access, if boundary is fixed and known to be aligned when
accessing underlying data layout. When multiple accesses are happening near each other, the compiler will
have the opportunity to detect which accesses occur in the same cache lines and potentially avoid
prefetching the same cache line repeatedly. Additionally, if the start of an iteration space is known at compile
time, if it's a multiple of the SIMD lane count, the compiler could skip generating a peel loop. Whenever
possible, fixed values should be used over aligned or arbitrary integer values.

Although std::integral_constant<int> provides the same functionality, the library defines own type to
provide overloaded operators and avoid collisions with any other code's interactions with
std::integral_constant<int>.

The following table provides information about the template arguments for fixed.
Template Argument Description

int Number T The numerical value the fixed will represent.

The following table provides information about the members of fixed.
Member Description

static constexpr int value = NumberT The numerical value known at compile-time.

constexpr operator value_type() const Returns: The numerical value

constexpr value_type operator()() const; Returns: The numerical value

Constant expression arithmetic operators +,- (both unary and binary), * and / are defined for type
sdlt::fixed<> and will be evaluated at compile-time.

The suffix _fixed is a C++11 user-defined equivalent literal. For example, 1080_fixed is equivalent to
fixed<1080>. Consider the readability of the two samples below.

foo3d(fixed<1080>(), fixed<1920>());
versus

foo3d(1080_fixed, 1920_fixed);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

422



NOTEThis note does not apply to SYCL. The sdlt::fixed<NumberT> type supersedes the deprecated
sdlt::fixed_offset<OffsetT> type found in SDLT v1. It is strongly advised to use
sdlt::fixed<NumberT>. However, in this release, a template alias is provided mapping
sdlt::fixed_offset<OffsetT> onto sdlt::fixed<NumberT>.

Aligned
Represent integer value known at compile time to be a multiple of an IndexAlignment.

template <int IndexAlignmentT> class aligned;
If you can tell the compiler that you know that an integer will be a multiple of known value, then, when
combined with a loop index inside a SIMD loop, the compiler can use that information to maintain aligned
access when accessing underlying data layout.

Internally, the integer value is converted to a block count, where:

block_count = value/IndexAlignmentT;
Overloaded math operations can then use that aligned block count as needed. The value() is represented by
AlignmentT*block_count allowing the compiler to prove that the value() is a multiple of AlignmentT,
which can utilize alignment optimizations.

The following table provides information about the template arguments for aligned.
Template Argument Description

int IndexAlignmentT The alignment the user is stating that the number is a
multiple of. IndexAlignmentT must be a power of two.

The following table provides information about the types defined as members of aligned.
Member Type Description

typedef int value_type The type of the numerical value.

typedef int block_type The type of the block_count.

The following table provides information about the members of aligned.
Member Description

static const int index_alignment  The IndexAlignmentT value.

aligned() Constructs empty (uninitialized) object

explicit aligned(value_type) Constructs computing block_count=a_value/
IndexAlignmentT.

aligned(const aligned& a_other) Constructs copying block_count from a_other.
a_other must have same IndexAlignmentT.

template<int OtherAlignment>
explicit aligned(const aligned& other)

Constructs computing block_count optimized by
avoiding computing other.value(). Must have
IndexAlignmentT of a_other < IndexAlignmentT
and other.value() be multiple of IndexAlignmentT.

template<int OtherAlignment>
aligned(const aligned& other)

Constructs computing block_count with a multiply
instead of divide. Must have IndexAlignmentT of
a_other > IndexAlignmentT

Compiler Reference   

423



Member Description

static aligned from_block_count(block_type 
block_count)

Creates an instance of aligned avoiding any math
by directly using supplied block_count

value_type value() const Computes the value represented by the aligned.

Returns:
aligned_block_count()*IndexAlignmentT

operator value_type() Conversion to int.

Returns: value()

block_type aligned_block_count() const Conversion to int.

Returns: The block count

The following operations are supported for the aligned type.

Operation Description

operator *(int), commutative Scale value.

Returns: aligned<IndexAlignmentT >

operator *(fixed<V>), commutative Scales IndexAlignment by 2^M and value by K.
Must have V=2^M*K (V is a multiple of a power of
2).

Returns: aligned<IndexAlignmentT*(2^M)>

operator *(aligned<OtherAl>) Scales IndexAlignment by OtherAl and
block_count by argument.

Returns: aligned<IndexAlignmentT*OtherAl>

int operator/(fixed<IndexAlignmentT>) Returns: aligned_block_count()

int operator/(fixed<-IndexAlignmentT>) Returns: -aligned_block_count();

int operator/(fixed<V>) Must have abs(V)>IndexAlignmentT &&
IndexAlignmentT%V==0.

Returns: aligned_block_count()/(V/
IndexAlignmentT)

int operator/(fixed<V>) Must have abs(V) < IndexAlignmentT && V
%IndexAlignmentT==0
Returns:
aligned_block_count()*(IndexAlignmentT/V)

aligned operator -() Returns: Same type aligned for negated value.

aligned operator -(const aligned &)
                const 

Returns: Same type aligned for value of difference.

template<int OtherAl> 
aligned<?> operator -(const 
aligned<OtherAl>&) const 

Difference with other alignment. Behavior and
returned alignment type depend on relation
between alignments of operands.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

424



Operation Description

Returns: Value for difference as lower of incoming
alignments

template<int V>
aligned<?> operator -(const fixed<V> &) const 

Difference with fixed value. Behavior and returned
alignment type depend on relation between
alignments of aligned<> operand and the value of
V.

Returns: Adjusted aligned value of a difference

aligned operator +(const aligned &)const Returns: Same type aligned for value of sum

template<int OtherAl>
aligned<?> operator +(const 
aligned<OtherAl>&) const 

Sum with other alignment. Behavior and returned
alignment type depend on relation between
alignments of operands.

Returns: Value for sum as lower of incoming
alignments

template<int V>
aligned<?> operator +(const fixed<V> &) const

Sum with fixed value. Behavior and returned
alignment type depend on relation between
alignments of aligned<> operand and the value of
V.

Returns: Adjusted aligned value of a sum.

template<int OtherAl>
aligned operator +=(const aligned<OtherAl> &) 
const

Increments value for the aligned object if
IndexAlignmentT is compatible with OtherAl
Returns: Aligned with incremented value.

template<int OtherAl>
aligned operator -=(const aligned<OtherAl> &) 
const

Decrements value for the aligned object if
IndexAlignmentT is compatible with OtherAl
Returns: Same type aligned with decremented
value.

template<int OtherAl>
aligned operator *=(const aligned<OtherAl> &) 
const

Multiplies value for the aligned object if
IndexAlignmentT is compatible with OtherAl.

Returns: Same type aligned with multiplied value.

template<int OtherAl>
aligned operator /=(const aligned<OtherAl> &) 
const

Divides value for the aligned object if
IndexAlignmentT is compatible with OtherAl
Returns: Same type aligned with divided value.

NOTEThis note does not apply to SYCL. The sdlt::aligned<> type supersedes the deprecated
sdlt::aligned_offset<> type found in SDLT v1. It is strongly advised to use sdlt::aligned<>,
however in this release a template alias is provided mapping sdlt::aligned_offset<> onto
sdlt::aligned<>.

Compiler Reference   

425



int
Represents an arbitrary integer value. In interfaces where fixed<> and aligned<> values supported you may
also use plain old integer value. It provides least information among these three and so least facilitates
compiler optimizations.
aligned_offset
Represent an integer based offset whose value is a
multiple of an IndexAlignment specified at compile
time. #include <sdlt/aligned_offset.h>

Syntax

template<int IndexAlignmentT>
class aligned_offset;

Arguments

int IndexAlignmentT The index alignment the user is stating that the offset have.

Description

aligned_offset is a deprecated feature.

If we can tell the compiler that we know an offset will be a multiple of known value, then when combined
with a loop index inside a SIMD loop, the compiler can use that information to maintain aligned access when
accessing underlying data layout.

Internally, the offset value is converted to a block count.

Block Count = offsetValue/IndexAlignmentT;
Indices can then use that aligned block count as needed.

Member Description

static const int IndexAlignment = 
IndexAlignmentT;

The alignment the offset is a multiple of

explicit aligned_offset(const int offset) Construct instance based on offset

static aligned_offset from_block_count(int 
aligned_block_count);

Returns: Instance based on aligned_block_count,
where the offset value =
IndexAlignment*aligned_block_count

int aligned_block_count() const; Returns: number of blocks of IndexAlignment it
takes to represent the offset value.

int value() const; Returns: offset value

fixed_offset
Represent an integer based offset whose value
specified at compile time. #include <sdlt/
fixed_offset.h>

Syntax

template <int OffsetT> fixed_offset;

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

426



Arguments

int OffsetT The value the fixed_offset will represent

Description

fixed_offset is a deprecated feature.

If we can tell the compiler that we know an offset at compile time, then when combined with a loop index
inside a SIMD loop, the compiler can use that information to maintain aligned access (should the offset be
aligned) when accessing underlying data layout. When multiple accesses are happening near each other, the
compiler will have the opportunity to detect which accesses occur in the same cache lines and potentially
avoid prefetching the same cache line repeatedly. Whenever possible, a fixed_offset should be used over an
aligned_offset or integer based offset.

Member Description

static constexpr int value = OffsetT The offset value known at compile

Indexes
soa1d_container's and aos1d_container's accessors [] operator can accept an integer based loop index.
However if any modifications were applied to that loop index, the fact that it's a loop index may be lost by
the compiler as it is handled before being passed to the [] operator.

To avoid this situation, SDLT provides classes to wrap loop indexes that capture multiple additions or
subtractions of offsets (see the Offsets section). The resulting index can be passed to [] and preserve the
original loop index and track any arithmetic with Offsets to be applied to underlying data layout.

It is common for stencil based algorithms to need to apply offsets during data access.

For a regular linear loop, use linear_index to wrap your loop index.

linear_index
Wraps an integer-based loop index that is iterating
linearly through an iteration space. #include <sdlt/
linear_index.h>

Syntax

class linear_index;

Description

Inside of a linear loop, wrap the loop index with a linear_index to allow addition or subtraction of offsets.

Member Description

explicit linear_index(int an_index); Construct instance from a loop index

int value() const; Returns the original loop index

n_index_t
Variadic template class n_index_t describes a position
inside of the N-dimensional container. Specifically, the
number of dimensions and the of index value of each.

Syntax

template<typename... TypeListT>
class n_index_t

Compiler Reference   

427



Description

n_index_t represents a position inside an n-dimensional space as a sequence of index value for each
dimension. The index of each dimension can be represented by different types. This flexibility allows the
same interface to be used to declare n_index_t with indices that are fully known at compile time with
fixed<int NumberT>, or to be only known at runtime with int, or only known at runtime but with a
guarantee will be a multiple of an alignment with aligned<int Alignment>. For more details, see the
Number representation section.

Objects of this class may be used to identify a cell in a container, describe the inclusive lower bounds for
n_bounds(), n-dimensional position for accessor's translated_to().

The following table provides information about the template arguments for n_index_t.

Template Argument Description

typename... TypeListT Comma separated list of types, where the number
of types provided controls how many dimensions
there are. Each type in the list identifies how the
index of the corresponding dimension is to be
represented. The order of the dimensions is the
same order as C++ subscripts declaring a multi-
dimensional array, from leftmost to rightmost.

Requirements: Type must be int, or
fixed<NumberT>, or aligned<AlignmentT>.

The following table provides information about the members of n_index_t

Member Description

static constexpr int rank; Number of dimensions.

static constexpr int row_dimension = rank-1; Index of last dimension, row.

n_index_t() Default constructor. Uses default values for extent
types.

Requirements: Every type in TypeListT is default
constructible.

Effects: Construct n_index_t, uses default values
of each type in TypeListT for the dimesnion sizes. In
general only correctly initialized when every type is
a fixed<NumberT>.

n_index_t(const n_extent_t &a_other) Copy constructor.

Effects: Construct n_index_t, copying index value
of each dimension from a_other.

explicit n_index_t(const TypeListT & … 
a_values)

Returns: The last extent in its native type

Effects: Construct n_index_t, initializing each
dimension with the corresponding value from the
list of a_values passed as an argument. In use,
a_values is a comma separate list of values whose
length and types are defined by TypeListT.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

428



Member Description

template<int DimensionT> 
auto get() const

Requirements: DimenstionT >=0 and DimensiontT
< rank.

Effects: Determine the index value of DimensionT.

Returns: In the type declared by the DimensionT
position of 0-based TypeListT, the index value of the
specified DimensionT

n_index_t operator +() const Effects: Determine the positive unary value of each
dimension's index, effectively no operation is
performed

Returns: Copy of the current instance.

auto operator -() const Effects: Determine the negative unary value of
each dimension's index

Returns: n_index[-get<0>()]

[-get<1>()]

[-get<…>()]

[-get<row_dimension>()]

template<class... OtherTypeListT>
auto operator +(
   const n_index_t<OtherTypeListT...> & 
a_other) const

Requirements: Rank of a_other is the same as
this instance's.

Effects: Build n_index_t whose values are the
result of adding the index value for each dimension
with those of a_other

Returns: n_index[get<0>() + a_other.get<0>()]

[get<1>() + a_other.get<1>()]

[get<…>() + a_other.get<…>()]

[get<row_dimension>() +

a_other.get<row_dimension>()]

template<class... OtherTypeListT>
auto operator -(
   const n_index_t<OtherTypeListT...> & 
a_other) const

Requirements: Rank of a_other is the same as
this instance's.

Effects: Build n_index_t whose values are the
result of subtracting the index value for each
dimension of a_other with this instance's.

Returns: n_index[get<0>() - a_other.get<0>()]

[get<1>() - a_other.get<1>()]

[get<…>() - a_other.get<…>()]

[get<row_dimension>() -

a_other.get<row_dimension>()]

template<class... OtherTypeListT>
bool operator == (const 
n_index_t<OtherTypeListT...> a_other) const

Requirements: Rank of a_other is the same as
this instance's.

Compiler Reference   

429



Member Description

Effects: Compare index of each dimension for
equality. Only compares numeric values, not the
types of each dimension.

Returns:true if all dimensions are numerically
equal, false otherwise.

template<class... OtherTypeListT>
bool operator != (const 
n_index_t<OtherTypeListT...> a_other) const

Requirements: Rank of a_other is the same as
this instance's.

Effects: Compare index of each dimension for
inequality. Only compares numeric values, not the
types of each dimension.

Returns: true if any dimensions are numerically
different, false otherwise.

template<int DimensionT> 
auto rightmost_dimensions() const

Requirements: DimenstionT >=0 and DimensiontT
<= rank.

Effects: Construct a n_index_t with a lower rank
by copying the righmost DimensionT values from
this instance.

Returns: n_index[get<rank - DimensionT>()]

[get<rank + 1 - DimensionT>()]

[get<…>()]

[get<row_dimension>()]

template<class... OtherTypeListT>
auto overlay_rightmost(const 
n_index_t<OtherTypeListT...> & a_other) const

Requirements: rank of a_other is <= rank

Effects: Construct copy of n_index_t where the
rightmost dimensions' values are copied from
a_other, effectively overlaying a_other ontop of
rightmost dimensions of this instance.

Returns: n_index[get<0>()]

[get<1 >()]

[get<…>()]

[get<rank-a_other::rank>()]

[a_other.get<0>()]

[a_other.get<…>()]

[a_other.get<a_other::row_dimension>()]

The following table provides information about the friend functions of n_index_t
Friend Function Description

std::ostream& operator << (std::ostream& 
output_stream, const n_index_t & a_indices)

Effects: Append string representation of a_indices'
values to a_output_stream.

Returns: Reference to a_output_stream for
chained calls.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

430



n_index_generator
To facilitate simpler creation of n_index_t objects,
the generator object n_index is provided.

Syntax

template<typename... TypeListT>
class n_index_generator;

namespace { 
    // Instance of generator object
    n_index_generator<> n_index; 
}

Description

The generator object provides recursively constructing operators [] for fixed<>, aligned<>, and integer
values allowing building of a n_index_t<…> instance one dimension at a time. Its main purpose is to allow a
usage syntax that is similar to C multi-dimensional array definition.

Compare the following examples, instantiating three n_index_t instances, and using the generator object to
instantiate equivalent instances.

n_index_t<int, int> idx1(row, col);
n_index_t<int, aligned<16>> idx2(row, aligned<16>(col));
n_index_t<fixed<540>, fixed<960>> idx3(540_fixed, 960_fixed);
auto idx1 = n_index[row][col];
auto idx2 = n_index[row][aligned<16>(col)];
auto idx3 = n_index[540_fixed][960_fixed];

Class Hierarchy

It is expected that n_index_generator < … > not be directly used as a data member or parameter, instead
only n_index_t <...> from which it is derived. The generator object n_index can be automatically
downcast any place expecting an n_index_t<…> .

The following table provides the template arguments for n_index_generator
Template Argument Description

typename... TypeListT Comma separated list of types, where the number of
types provided controls how many dimensions the
generator currently represents. Each type in the list
identifies how the size of the corresponding dimension is
to be represented. The order of the dimensions is the
same order as C++ subscripts declaring a multi-
dimensional array – from leftmost to rightmost.

Requirements: Type is int, fixed<NumberT>, or
aligned<AlignmentT>.

The following table provides information on the types defined as members of n_index_generator in
addition to those inherited from n_index_t.

Member Type Description

typedef n_index_t<TypeListT...> value_type Type value that the any chained [] operator calls have
produced.

Compiler Reference   

431



The following table provides information on the members of n_index_generator in addition to those
inherited from n_index_t

Member Description

n_index_generator () Requirements: TypeListT is empty.

Effects: Construct generator with no indices
specified.

n_index_generator (const n_index_generator 
&a_other)

Effects: Construct generator copying any index
values from a_other

n_index_generator<TypeListT..., int> operator 
[] (int a_index) const

Requirements: a_size >= 0.

Returns: n_index_generator<…> with additional
rightmost integer based index.

n_index_generator<TypeListT...,
          fixed<NumberT>> operator [] 
(fixed<NumberT> a_index) const

Requirements: a_size >= 0.

Returns: n_index_generator<…> with additional
rightmost fixed<NumberT> index.

n_index_generator<TypeListT...,
          aligned<AlignmentT>> operator [] 
(aligned<AlignmentT> a_index)

Requirements: a_size >= 0

Returns: n_index_generator<…> with additional
rightmost aligned<AlignmentT> based index.

value_type value() const Returns: n_extent_t<…> with the correct types
and values of the multi-dimensional extents
aggregated by the generator.

index_d template function

Syntax

template<int DimensionT, typename ObjT>
auto index_d(const ObjT &a_obj)

Description

The template function offers a consistent way to determine the index of a dimension for a multi-dimensional
object. It can avoid extracting an entire n_index_t<…> when only the extent of a single dimension is
needed.

Template Argument Description

int DimensionT 0 based index starting at the leftmost dimension
indicating which n-dimensions to query the index
of.

Requirements: DimensionT >=0 and DimensionT
< ObjT::rank

typename ObjT The type of n-dimensional object from which to
retrieve the extent.

Requirements: ObtT is one of:

n_index_t<…>

n_index_generator<…>

Returns

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

432



The correctly typed index corresponding to the requested DimensionT of a_obj.

Example

template <typename IndicesT>
void foo(const IndicesT & a_pos)
{
    int z = index_d<0>(a_pos);
    int y = index_d<1>(a_pos);
    int x = index_d<2>(a_pos);
    /…
}

Convenience and Correctness
Users can include a single header file sdlt.h that includes all the supported public features, or users can
include the individual headers of features they will be using (which might build faster). In other words,

#include <sdlt/sdlt.h>
instead of

#include <sdlt/primitive.h>
#include <sdlt/soa1d_container.h>

For convenience, SDLT provides a macro to encapsulate #pragma forceinline recursive.

SDLT_INLINE_BLOCK
SDLT reduces overhead by trusting the programmer to pass it valid values for template and function
parameters. Adding conditional checks inside of a SIMD loop can cause unnecessary code generation and
inhibit vectorization by creating multiple exit points in a loop. To assist in verifying that a program is indeed
passing valid values to SDLT, the programmer can add a compilation flag to their build to define
SDLT_DEBUG=1.

-DSDLT_DEBUG=1
If _DEBUG is defined and SDLT_DEBUG has not been defined to 0 or 1, then SDLT_DEBUG is automatically set
to 1. When set to 1, every operator[] is bounds checked and all addresses are validated for correct
alignment. It is very useful for tracking down any usage bugs.

The macro __SDLT_VERSION is predefined to be 2001. Programs could use it for conditional compilation if
incompatibilities arise in future updates.

C++ implementations of std::min and std::max sometimes have a negative impact on performance. SDLT
defines min_val and max_val that help avoid such performance penalties.

max_val
Return the right value if the right value is greater than
left, otherwise returns the left value. #include
<sdlt/min_max_val.h>

Syntax

template<typename T>
T max_val(const T left, const T right);

Arguments

typename T The type of the left and right values

Compiler Reference   

433



Description

C++ implementations of std::min and std::max create a conditional control flow that returns references to
its parameters, which may cause inefficient vector code generation. max_val is a really simple template that
returns by value instead of reference, allowing more efficient vector code to be generated. For most cases
the algorithm didn't need a reference to the inputs and a copy by value should suffice. It should inline,
adding no overhead. Inside of SIMD loops, we suggest using sdlt::max_val in place of std::max.

Requires < operator be defined for the type T.
min_val
Return the left value if the right value is greater than
left, otherwise returns the right value. #include
<sdlt/min_max_val.h>

Syntax

template<typename T>
T min_val(const T left, const T right);

Arguments

typename T The type of the left and right values

Description

C++ implementations of std::min and std::max create a conditional control flow that returns references to
its parameters, which may cause inefficient vector code generation. min_val is a really simple template that
returns by value instead of reference, allowing more efficient vector code to be generated. For most cases
the algorithm didn’t need a reference to the inputs and a copy by value should suffice. It should inline,
adding no overhead. Inside of SIMD loops, we suggest using sdlt::min_val in place of std::min.

Requires < operator be defined for the type T.

Examples
The example programs in this section demonstrate the following:

• The efficiency of using SDLT and its Structure of Arrays approach rather than a typical Array of Structures
• Construction of more complex SDLT primitives
• Performance improvement in case of a forward-dependency
• Use of offsets and calling methods on the SDLT primitive
• RGB to YUV conversion

Efficiency with Structure of Arrays Example
This example demonstrates the efficiency of using a Structure of Arrays (SoA) approach by comparing the
assembly generated from a simple SIMD loop using an Array of Structures (AoS) approach with the assembly
generated using the SoA approach of SDLT.

Array of Structures: Non-unit stride access version
Source:

#include <stdio.h>

#define N 1024

typedef struct RGBs {
    float r;
    float g;

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

434



    float b;
} RGBTy;

void main()
{
    RGBTy a[N];  
    #pragma omp simd
    for (int k = 0; k<N; ++k) {
        a[k].r = k*1.5;  // non-unit stride access
        a[k].g = k*2.5;  // non-unit stride access
        a[k].b = k*3.5;  // non-unit stride access
    }
    std::cout << "k =" << 10 <<
        ", a[k].r =" << a[10].r <<
        ", a[k].g =" << a[10].g <<
        ", a[k].b =" << a[10].b << std::endl;
}

AVX2 assembly generated (69 instructions):

..TOP_OF_LOOP:
        vcvtdq2ps %ymm7, %ymm1
        lea       (%rax), %rcx
        vcvtdq2ps %ymm5, %ymm2
        vpaddd    %ymm3, %ymm7, %ymm7
        vpaddd    %ymm3, %ymm5, %ymm5
        vmulps    %ymm1, %ymm4, %ymm8
        vmulps    %ymm1, %ymm6, %ymm12
        vmulps    %ymm2, %ymm6, %ymm14
        vmulps    %ymm1, %ymm0, %ymm1
        vmulps    %ymm2, %ymm4, %ymm10
        addl      $16, %edx
        vextractf128 $1, %ymm8, %xmm9
        vmovss    %xmm8, (%rsp,%rcx)
        vmovss    %xmm9, 48(%rsp,%rcx)
        vextractps $1, %xmm8, 12(%rsp,%rcx)
        vextractps $2, %xmm8, 24(%rsp,%rcx)
        vextractps $3, %xmm8, 36(%rsp,%rcx)
        vmulps    %ymm2, %ymm0, %ymm8
        vextractps $1, %xmm9, 60(%rsp,%rcx)
        vextractps $2, %xmm9, 72(%rsp,%rcx)
        vextractps $3, %xmm9, 84(%rsp,%rcx)
        vextractf128 $1, %ymm12, %xmm13
        vextractf128 $1, %ymm14, %xmm15
        vextractf128 $1, %ymm1, %xmm2
        vextractf128 $1, %ymm8, %xmm9
        vmovss    %xmm12, 4(%rsp,%rax)
        vmovss    %xmm13, 52(%rsp,%rax)
        vextractps $1, %xmm12, 16(%rsp,%rax)
        vextractps $2, %xmm12, 28(%rsp,%rax)
        vextractps $3, %xmm12, 40(%rsp,%rax)
        vextractps $1, %xmm13, 64(%rsp,%rax)
        vextractps $2, %xmm13, 76(%rsp,%rax)
        vextractps $3, %xmm13, 88(%rsp,%rax)
        vmovss    %xmm14, 100(%rsp,%rax)
        vextractps $1, %xmm14, 112(%rsp,%rax)
        vextractps $2, %xmm14, 124(%rsp,%rax)
        vextractps $3, %xmm14, 136(%rsp,%rax)

Compiler Reference   

435



        vmovss    %xmm15, 148(%rsp,%rax)
        vextractps $1, %xmm15, 160(%rsp,%rax)
        vextractps $2, %xmm15, 172(%rsp,%rax)
        vextractps $3, %xmm15, 184(%rsp,%rax)
        vmovss    %xmm1, 8(%rsp,%rax)
        vextractps $1, %xmm1, 20(%rsp,%rax)
        vextractps $2, %xmm1, 32(%rsp,%rax)
        vextractps $3, %xmm1, 44(%rsp,%rax)
        vmovss    %xmm2, 56(%rsp,%rax)
        vextractps $1, %xmm2, 68(%rsp,%rax)
        vextractps $2, %xmm2, 80(%rsp,%rax)
        vextractps $3, %xmm2, 92(%rsp,%rax)
        vmovss    %xmm8, 104(%rsp,%rax)
        vextractps $1, %xmm8, 116(%rsp,%rax)
        vextractps $2, %xmm8, 128(%rsp,%rax)
        vextractps $3, %xmm8, 140(%rsp,%rax)
        vmovss    %xmm9, 152(%rsp,%rax)
        vextractps $1, %xmm9, 164(%rsp,%rax)
        vextractps $2, %xmm9, 176(%rsp,%rax)
        vextractps $3, %xmm9, 188(%rsp,%rax)
        addq      $192, %rax
        vextractf128 $1, %ymm10, %xmm11
        vmovss    %xmm10, 96(%rsp,%rcx)
        vmovss    %xmm11, 144(%rsp,%rcx)
        vextractps $1, %xmm10, 108(%rsp,%rcx)
        vextractps $2, %xmm10, 120(%rsp,%rcx)
        vextractps $3, %xmm10, 132(%rsp,%rcx)
        vextractps $1, %xmm11, 156(%rsp,%rcx)
        vextractps $2, %xmm11, 168(%rsp,%rcx)
        vextractps $3, %xmm11, 180(%rsp,%rcx)
        cmpl      $1024, %edx
        jb        ..TOP_OF_LOOP

Structure of Arrays: Using SDLT for unit stride access
To introduce the use of SDLT, the code below will:

• declare a primitive,
• use an soa1d_container instead of an array
• use an accessor inside a SIMD loop to generate efficient code
• use a proxy object’s data member interface to access individual data members of an element inside the

container

Source:

#include <stdio.h>
#include <sdlt/sdlt.h>

#define N 1024

typedef struct RGBs {
    float r;
    float g;
    float b;
} RGBTy;

SDLT_PRIMITIVE(RGBTy, r, g, b)

void main()

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

436



{
    // Use SDLT to get SOA data layout
    sdlt::soa1d_container<RGBTy> aContainer(N);
    auto a = aContainer.access();

    // use SDLT Data Member Interface to access struct members r, g, and b.
    // achieve unit-stride access after vectorization
    #pragma omp simd
    for (int k = 0; k<N; k++) {
        a[k].r() = k*1.5;
        a[k].g() = k*2.5;
        a[k].b() = k*3.5;
    }
    std::cout << "k =" << 10 <<
        ", a[k].r =" << a[10].r() <<
        ", a[k].g =" << a[10].g() <<
        ", a[k].b =" << a[10].b() << std::endl;
}

AVX2 assemply generated (19 instructions):

..TOP_OF_LOOP:
        vpaddd    %ymm4, %ymm3, %ymm12
        vcvtdq2ps %ymm3, %ymm7
        vcvtdq2ps %ymm12, %ymm10
        vmulps    %ymm7, %ymm2, %ymm5
        vmulps    %ymm7, %ymm1, %ymm6
        vmulps    %ymm7, %ymm0, %ymm8
        vmulps    %ymm10, %ymm2, %ymm3
        vmulps    %ymm10, %ymm1, %ymm9
        vmulps    %ymm10, %ymm0, %ymm11
        vmovups   %ymm5, (%r13,%rax,4)
        vmovups   %ymm6, (%r15,%rax,4)
        vmovups   %ymm8, (%rbx,%rax,4)
        vmovups   %ymm3, 32(%r13,%rax,4)
        vmovups   %ymm9, 32(%r15,%rax,4)
        vmovups   %ymm11, 32(%rbx,%rax,4)
        vpaddd    %ymm4, %ymm12, %ymm3
        addq      $16, %rax
        cmpq      $1024, %rax
        jb        ..TOP_OF_LOOP

Both versions appear to have unrolled the loop twice. When examining the assembly generated for AVX2
instruction set, we can see a measurable reduction in the number of instructions (19 vs. 69) when we are
able to perform unit stride access using SDLT. Also, at runtime, the soa1d_container aligned its data
allocation and will gain any of the architectural advantages that come with using aligned instead of unaligned
SIMD stores.

Complex SDLT Primitive Construction Example
This example demonstrates use of nested primitives and the use of an accessor inside a SIMD loop to
generate efficient code.

#include <stdio.h>
#include <sdlt/sdlt.h>

#define N 1024

typedef struct XYZs {
    float x;

Compiler Reference   

437



    float y;
    float z;
} XYZTy;

SDLT_PRIMITIVE(XYZTy, x, y, z)

typedef struct RGBs {
    float r;
    float g;
    float b;
    XYZTy w;
} RGBTy;

SDLT_PRIMITIVE(RGBs, r, g, b, w)

void main()
{
    sdlt::soa1d_container<RGBTy> aContainer(N);
    auto a = aContainer.access();

    #pragma omp simd
    for (int k = 0; k<N; k++) {
        RGBTy c;
        c.r = k*1.5f;
        c.g = k*2.5f;
        c.b = k*3.5f;
        c.w.x = k*4.5f;
        c.w.y = k*5.5f;
        c.w.z = k*6.5f;
        a[k] = c;
    }
    const RGBTy c = a[10];
    printf("k = %d, a[k].r = %f, a[k].g = %f, a[k].b = %f \n",
        10, c.r, c.g, c.b);

    printf("k = %d, a[k].w.x = %f, a[k].w.y = %f, a[k].w.z = %f \n",
        10, c.w.x, c.w.y, c.w.z);

Forward Dependency Example
This example demonstrates the declaration of a Structure of Arrays (SoA) interacting with a forward
dependency.

#include <stdio.h>
#include <sdlt/primitive.h>
#include <sdlt/soa1d_container.h>

#define N 1024

typedef struct RGBs {
    float r;
    float g;
    float b;
} RGBTy;

SDLT_PRIMITIVE(RGBTy, r, g, b)

void main()
{

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

438



    // RGBTy a[N];  // AOS data layout

    sdlt::soa1d_container<RGBTy> aContainer(N);
    auto a = aContainer.access();    // SOA data layout

    // use SDLT access method to access struct members r, g, and b.
    // with unit-stride access  after vectorization
    #pragma omp simd
    for (int k = 0; k<N; k++) {
        a[k].r() = k*1.5;
        a[k].g() = k*2.5;
        a[k].b() = k*3.5;
    }

    // Test forward-dependency on SOA memory access
    #pragma omp simd
    for (int i = 0; i<N - 1; i++) {
        sdlt::linear_index k(i);
        a[k].r() = a[k + 1].r() + k*1.5;
        a[k].g() = a[k + 1].g() + k*2.5;
        a[k].b() = a[k + 1].b() + k*3.5;
    }
    std::cout << "k =" << 10 <<
        ", a[k].r =" << a[10].r() <<
        ", a[k].g =" << a[10].g() <<
        ", a[k].b =" << a[10].b() << std::endl;
}

Use of Offsets and Methods on a SDLT Primitive Example
This example demonstrates a linearized 2d stencil using embedded offsets and calling methods on the
primitive.

#include <sdlt/sdlt.h>

// Typical C++ object to represent a pixel in an image
struct RGBs
{
    float red;
    float green;
    float blue;

    RGBs() {}
    RGBs(const RGBs &iOther)
        : red(iOther.red)
        , green(iOther.green)
        , blue(iOther.blue)
    {
    }

    RGBs & operator =(const RGBs &iOther)
    {
        red = iOther.red;
        green = iOther.green;
        blue = iOther.blue;
        return *this;
    }

    RGBs operator + (const RGBs &iOther) const

Compiler Reference   

439



    {
        RGBs sum;
        sum.red = red + iOther.red;
        sum.green = green + iOther.green;
        sum.blue = blue + iOther.blue;
        return sum;
    }

    RGBs operator * (float iScalar) const
    {
        RGBs scaledColor;
        scaledColor.red = red * iScalar;
        scaledColor.green = green * iScalar;
        scaledColor.blue = blue * iScalar;
        return scaledColor;
    }
};

SDLT_PRIMITIVE(RGBs, red, green, blue)

const int StencilHaloSize = 1;
const int width = 1920;
const int height = 1080;

template<typename AccessorT> void loadImageStub(AccessorT) {}
template<typename AccessorT> void saveImageStub(AccessorT) {}

// performs average color filtering with neighbors left,right,above,below
void main(void)
{
    // We are padding +-1 so we can avoid boundary conditions
    const int paddedWidth = width + 2 * StencilHaloSize;
    const int paddedHeight = height + 2 * StencilHaloSize;
    int elementCount = paddedWidth*paddedHeight;
    sdlt::soa1d_container<RGBs> inputImage(elementCount);
    sdlt::soa1d_container<RGBs> outputImage(elementCount);

    loadImageStub(inputImage.access());

    SDLT_INLINE_BLOCK
    {
        const int endOfY = StencilHaloSize + height;
        const int endOfX = StencilHaloSize + width;
        for (int y = StencilHaloSize; y < endOfY; ++y)
        {
            // Embed offsets into Accessors to get the to correct row
            auto prevRow = inputImage.const_access((y - 1)*paddedWidth);
            auto curRow = inputImage.const_access(y*paddedWidth);
            auto nextRow = inputImage.const_access((y + 1)*paddedWidth);

            auto outputRow = outputImage.access(y*paddedWidth);

            #pragma omp simd
            for (int ix = StencilHaloSize; ix < endOfX; ++ix)
            {
                sdlt::linear_index x(ix);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

440



                const RGBs color1 = curRow[x - 1];
                const RGBs color2 = curRow[x];
                const RGBs color3 = curRow[x + 1];
                const RGBs color4 = prevRow[x];
                const RGBs color5 = nextRow[x];
                // Despite looking like AOS code, compiler is able to create
                // privatized instances and call inlinable methods on the objects
                // keeping the algorithm at very high level
                const RGBs sumOfColors = color1 + color2 + color3 + color4 + color5;
                const RGBs averageColor = sumOfColors*(1.0f / 5.0f);
                outputRow[x] = averageColor;
            }
        }
    }
    saveImageStub(outputImage.access());
}

RGB to YUV Conversion Example
This example converts a 2D image from the RGB format to the YUV format. It demonstrates how storing both
images in 2D SoA n_containers can improve performance.

#include <iostream>
#include <sdlt/sdlt.h>
using namespace sdlt;
#define WIDTH 1024
#define HEIGHT 1024

struct RGBs {
    float r;
    float g;
    float b;
};

struct YUVs {
    float y;
    float u;
    float v;
    
    YUVs(){ };

    YUVs& operator=(const RGBs &tmp){
        y = 0.229f * tmp.r + 0.587f * tmp.g + 0.114f * tmp.b;
        u = -0.147f * tmp.r - 0.289f * tmp.g + 0.436f * tmp.b;
        v = 0.615 * tmp.r - 0.515f * tmp.g - 0.100 * tmp.b;
        return *this;
    }
    YUVs(const RGBs &tmp){
        y = 0.229f * tmp.r + 0.587f * tmp.g + 0.114f * tmp.b;
        u = -0.147f * tmp.r - 0.289f * tmp.g + 0.436f * tmp.b;
        v = 0.615 * tmp.r - 0.515f * tmp.g - 0.100 * tmp.b;
   }
};

SDLT_PRIMITIVE(RGBs, r, g, b)
SDLT_PRIMITIVE(YUVs, y, u, v)

int main(){
    typedef layout::soa<> LayoutT;

Compiler Reference   

441



    n_extent_t<int, int> extents(HEIGHT, WIDTH);

    /*  Creating a typedef for SoA N-dimensional container.
        RGBTy and YUVTy are user defined structures whose collection needs to be stored in SoA 
format in memory.
        Layout in memory specified as layout::soa.
        In the below case N-dimensional SoA container is used in 2-D context
    */
    typedef sdlt::n_container< RGBs, LayoutT, decltype(extents) > ContainerRGB;
    typedef sdlt::n_container< YUVs, LayoutT, decltype(extents) > ContainerYUV;

    //Instantiate Input and Output Containers
    ContainerRGB inputRGB(extents);
    ContainerYUV outputYUV(extents);

    auto input = inputRGB.const_access();   //Get Constant Accessor object for inputRGB
    auto output = outputYUV.access();       //Get Accessor object for outputYUV

    //Select the iteration range in each dimension
    const auto iRGB1 = bounds_d<1>(input);  //bound_d<1>(input);
    const auto iRGB0 = bounds_d<0>(input);  //bound_d<0>(input);

    for(int y = iRGB0.lower(); y < iRGB0.upper(); y++)
    {
        #pragma simd
        for (int x = iRGB1.lower(); x < iRGB1.upper(); x++){
            const RGBs temp1 = input[y][x];
            YUVs temp2 = temp1;
            output[y][x] = temp2;
        }
    }
    return 0;
}

Intel® C++ Class Libraries
The Intel® C++ Class Libraries enable Single-Instruction, Multiple-Data (SIMD) operations. The principle of
SIMD operations is to exploit microprocessor architecture through parallel processing. The effect of parallel
processing is increased data throughput using fewer clock cycles. The objective is to improve application
performance of complex and computation-intensive audio, video, and graphical data bit streams.

Hardware and Software Requirements
The Intel® C++ Class Libraries are functions abstracted from the instruction extensions available on Intel®
processors.

Details About the Libraries
The Intel® C++ Class Libraries for SIMD Operations provide a convenient interface to access the underlying
instructions for processors as specified above. These processor-instruction extensions enable parallel
processing using the single instruction-multiple data (SIMD) technique as illustrated in the following figure.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

442



SIMD Data Flow

Performing four operations with a single instruction improves efficiency by a factor of four for that particular
instruction.

These new processor instructions can be implemented using assembly inlining, intrinsics, or the C++ SIMD
classes. Compare the coding required to add four 32-bit floating-point values, using each of the available
interfaces:

Comparison Between Inlining, Intrinsics, and Class Libraries
The table below shows an addition of four single-precision floating-point values using assembly inlining,
intrinsics, and the libraries. You can see how much easier it is to code with the Intel C++ SIMD Class
Libraries. Besides using fewer keystrokes and fewer lines of code, the notation is like the standard notation in
C++, making it much easier to implement over other methods.

Assembly Inlining Intrinsics SIMD Class Libraries

... __m128 a,b,c;
__asm{ movaps xmm0,b
movaps xmm1,c addps
xmm0,xmm1 movaps a,
xmm0 } ...

#include <xmmintrin.h> ...
__m128 a,b,c; a =
_mm_add_ps(b,c); ...

#include <fvec.h> ...
F32vec4 a,b,c; a = b
+c; ...

C++ Classes and SIMD Operations
Use of C++ classes for SIMD operations allows for operating on arrays or vectors of data in a single
operation. Consider the addition of two vectors, A and B, where each vector contains four elements. Using an
integer vector class, the elements A[i] and B[i] from each array are summed in the typical method of
adding elements using a loop example snippet below.

int a[4], b[4], c[4]; 
for (i=0; i<4; i++) /* needs four iterations */ 
c[i] = a[i] + b[i]; /* computes c[0], c[1], c[2], c[3] */

The following example shows the same results using one operation with an integer class, showing the SIMD
method of adding elements using Ivec classes.

Is16vec4 ivecA, ivecB, ivec C; /*needs one iteration*/ 
ivecC = ivecA + ivecB; /*computes ivecC0, ivecC1, ivecC2, ivecC3 */

Available Classes
The C++ SIMD classes provide parallelism, which is not easily implemented using typical mechanisms of C+
+. The following table shows how the C++ classes use the SIMD classes and libraries.

SIMD Vector Classes

Compiler Reference   

443



Instruction
Set

Class Signedness Data Type Size Elements Header File

MMX™
Technology

I64vec1 unspecified __m64 64 1 ivec.h

I32vec2 unspecified int 32 2 ivec.h

Is32vec2 signed int 32 2 ivec.h

Iu32vec2 unsigned int 32 2 ivec.h

I16vec4 unspecified short 16 4 ivec.h

Is16vec4 signed short 16 4 ivec.h

Iu16vec4 unsigned short 16 4 ivec.h

I8vec8 unspecified char 8 8 ivec.h

Is8vec8 signed char 8 8 ivec.h

Iu8vec8 unsigned char 8 8 ivec.h

Intel®
Streaming
SIMD
Extensions
(Intel® SSE)

F32vec4 unspecified float 32 4 fvec.h

F32vec1 unspecified float 32 1 fvec.h

Intel®
Streaming
SIMD
Extensions
2 (Intel®
SSE2)

F64vec2 unspecified double 64 2 dvec.h

I128vec1 unspecified __m128i 128 1 dvec.h

I64vec2 unspecified long int 64 2 dvec.h

I32vec4 unspecified int 32 4 dvec.h

Is32vec4 signed int 32 4 dvec.h

Iu32vec4 unsigned int 32 4 dvec.h

I16vec8 unspecified int 16 8 dvec.h

Is16vec8 signed int 16 8 dvec.h

Iu16vec8 unsigned int 16 8 dvec.h

I8vec16 unspecified char 8 16 dvec.h

Is8vec16 signed char 8 16 dvec.h

Iu8vec16 unsigned char 8 16 dvec.h

Intel®
Advanced
Vector
Extensions
(Intel® AVX)

F32vec8 unspecified float 32 8 dvec.h

F64vec4 unspecified double 64 4 dvec.h

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

444



Instruction
Set

Class Signedness Data Type Size Elements Header File

Intel®
Advanced
Vector
Extensions
512 (Intel®
AVX-512)
Foundation

F32vec16 unspecified float 32 16 dvec.h

F64vec8 unspecified double 64 8 dvec.h

M512vec unspecified __m512i 512 1 dvec.h

I32vec16 unspecified int 32 16 dvec.h

Is32vec16 signed int 32 16 dvec.h

Iu32vec16 unsigned int 32 16 dvec.h

I64vec8 unspecified long int 64 8 dvec.h

Is64vec8 signed long int 64 8 dvec.h

Iu64vec8 unsigned long int 64 8 dvec.h

Intel®
AVX-512
Byte and
Word
Instructions
(BWI)

I16vec32 unspecified int 16 32 dvec.h

Is16vec32 signed int 16 32 dvec.h

Iu16vec32 unsigned int 16 32 dvec.h

I8vec64 unspecified int 8 64 dvec.h

Is8vec64 signed int 8 64 dvec.h

Iu8vec64 unsigned int 8 64 dvec.h

Most classes contain similar functionality for all data types and are represented by all available intrinsics.
However, some capabilities do not translate from one data type to another without suffering from poor
performance, and are therefore excluded from individual classes.

NOTE Intrinsics that take immediate values and cannot be expressed easily in classes are not
implemented. For example:

• _mm_shuffle_ps
• _mm_shuffle_pi16
• _mm_shuffle_ps
• _mm_extract_pi16
• _mm_insert_pi16

Access to Classes Using Header Files
The required class header files are installed in the include directory with the Intel® oneAPI DPC++/C++
Compiler. To enable the classes, use the #include directive in your program file as shown in the table that
follows.

Include Directives for Enabling Classes

Instruction Set Extension Include Directive

MMX™ Technology #include <ivec.h>

Compiler Reference   

445



Instruction Set Extension Include Directive

Intel® SSE #include <fvec.h>

Intel® SSE2 #include <dvec.h>

Intel® Streaming SIMD Extensions
3 (Intel® SSE3)

#include <dvec.h>

Intel® Streaming SIMD Extensions
4 (Intel® SSE4)

#include <dvec.h>

Intel® AVX #include <dvec.h>

Each succeeding file from the top down includes the preceding class. You only need to include fvec.h if you
want to use both the Ivec and Fvec classes. Similarly, to use all the classes including those for Intel® SSE2,
you only need to include the dvec.h file.

Usage Precautions
When using the C++ classes, you should follow some general guidelines. More detailed usage rules for each
class are listed in Integer Vector Classes, and Floating-point Vector Classes.

Clear MMX™ Technology Registers

If you use both the Ivec and Fvec classes at the same time, your program could mix MMX™ Technology
instructions, called by Ivec classes, with Intel® architecture floating-point instructions, called by Fvec
classes. x87 floating-point instructions exist in the following Fvec functions:

• fvec constructors
• debug functions (cout and element access)
• rsqrt_nr

NOTE MMX™ Technology registers are aliased on the floating-point registers, so you should clear the
MMX™ Technology state with the EMMS instruction intrinsic before issuing an x87 floating-point
instruction.

Example Usage

ivecA = ivecA & ivecB; An Ivec logical operation that uses MMX™
Technology instructions.

empty (); Creates a clear state.

cout << f32vec4a; A F32vec4 operation that uses x87 floating-
point instructions.

Caution Failure to clear the MMX™ Technology registers can result in incorrect execution or poor
performance due to an incorrect register state.

Capabilities of C++ SIMD Classes
The fundamental capabilities of each C++ SIMD class include:

• Computation

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

446



• Horizontal data support
• Branch compression/elimination
• Caching hints

Understanding each of these capabilities and how they interact is crucial to achieving desired results.

Computation
The SIMD C++ classes contain vertical operator support for most arithmetic operations, including shifting
and saturation.

Computation operations include: +, -, *, /, reciprocal ( rcp and rcp_nr ), square root (sqrt), and reciprocal
square root ( rsqrt and rsqrt_nr ).

Operations rcp and rsqrt are approximating instructions with very short latencies that produce results with
at least 12 bits of accuracy. You may get a different answer if used on non-Intel processors. Operations
rcp_nr and rsqrt_nr use software refining techniques to enhance the accuracy of the approximations, with
a minimal impact on performance. (The nr stands for Newton-Raphson, a mathematical technique for
improving performance using an approximate result.)

Horizontal Data Support
The C++ SIMD classes provide horizontal support for some arithmetic operations. The term horizontal
indicates computation across the elements of one vector, as opposed to the vertical, element-by-element
operations on two different vectors.

The add_horizontal, unpack_low and pack_sat functions are examples of horizontal data support. This
support enables certain algorithms that cannot exploit the full potential of SIMD instructions.

Shuffle intrinsics are another example of horizontal data flow. Shuffle intrinsics are not expressed in the C++
classes due to their immediate arguments. However, the C++ class implementation enables you to mix
shuffle intrinsics with the other C++ functions. For example:

F32vec4 fveca, fvecb, fvecd; 
fveca += fvecb; 
fvecd = _mm_shuffle_ps(fveca,fvecb,0);

Branch Compression/Elimination
Branching in SIMD architectures can be complicated and expensive. The SIMD C++ classes provide functions
to eliminate branches, using logical operations, max and min functions, conditional selects, and compares.
Consider the following example:

short a[4], b[4], c[4];
for (i=0; i<4; i++) 
c[i] = a[i] > b[i] ? a[i] : b[i];

This operation is independent of the value of i. For each i, the result could be either A or B depending on the
actual values. A simple way of removing the branch altogether is to use the select_gt function, as follows:

Is16vec4 a, b, c 
c = select_gt(a, b, a, b)

Caching Hints
Intel® Streaming SIMD Extensions provide prefetching and streaming hints. Prefetching data can minimize
the effects of memory latency. Streaming hints allow you to indicate that certain data should not be cached.

Compiler Reference   

447



Integer Vector Classes
The Ivec classes provide an interface to single instruction, multiple data (SIMD) processing using integer
vectors of various sizes. The class hierarchy is represented in the following figure.

Ivec Class Hierarchy

The M64 and M128 classes define the __m64 and __m128i data types from which the rest of the Ivec classes
are derived. The first generation of child classes (the intermediate classes) are derived on element sizes of
128, 64, 32, 16, and 8 bits:

I128vec1, I64vec1, I64vec2, I32vec2, I32vec4, I16vec4, I16vec8, I8vec8, I8vec16

The second generation specify the signedness:

Is64vec2, Iu64vec2, Is32vec2, Iu32vec2, Is32vec4, Iu32vec4, Is16vec4, Iu16vec4,
Is16vec8, Iu16vec8, Is8vec8, Iu8vec8, Is8vec16, Iu8vec16

Caution
Intermixing the M64 and M128 data types will result in unexpected behavior.

Terms and Syntax
The following are special terms and syntax used in this chapter to describe functionality of the classes with
respect to their associated operations.

Ivec Class Syntax Conventions
The name of each class denotes the data type, signedness, bit size, and number of elements using the
following generic format:

<type><signedness><bits>vec<elements>
{ F | I } { s | u } { 128 | 64 | 32 | 16 | 8 } vec { 16 | 8 | 4 | 2 | 1 }
where

• type indicates floating point ( F ) or integer ( I ).
• signedness indicates signed ( s ) or unsigned ( u ). For the Ivec class, leaving this field blank indicates

an intermediate class. For the Fvec classes, this field is blank because there are no unsigned Fvec classes.
• bits specifies the number of bits per element.
• elements specifies the number of elements.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

448



Special Terms and Conventions
The following terms are used to define the functionality and characteristics of the classes and operations
defined in this manual.

• Nearest Common Ancestor: This is the intermediate or parent class of two classes of the same size. For
example, the nearest common ancestor of Iu8vec8 and Is8vec8 is I8vec8, and the nearest common
ancestor between Iu8vec8 and I16vec4 is M64.

• Casting: Changes the data type from one class to another. When an operation uses different data types
as operands, the return value of the operation must be assigned to a single data type, and one or more of
the data types must be converted to a required data type. This conversion is known as a typecast. While
typecasting is occasionally automatic, in cases where it is not automatic you must use special syntax to
explicitly typecast it yourself.

• Operator Overloading: This is the ability to use various operators on the user-defined data type of a
given class. In the case of the Ivec and Fvec classes, once you declare a variable, you can add, subtract,
multiply, and perform a range of operations. Each family of classes accepts a specified range of operators,
and must comply by rules and restrictions regarding typecasting and operator overloading as defined in
the header files.

Rules for Operators
To use operators with the Ivec classes you must use one of the following three syntax conventions, where

• [ operator ] represents an operator (for example, &, |, or ^ )
• [ Ivec_Class ] represents an Ivec class
• R, A, B variables are declared using the pertinent Ivec classes

Convention One

Syntax:

 [ Ivec_Class ] R = [ Ivec_Class ] A [ operator ][ Ivec_Class ] B
Example:

 I64vec1 R = I64vec1 A & I64vec1 B;
Convention Two

Syntax:

[ Ivec_Class ] R =[ operator ] ([ Ivec_Class ] A,[ Ivec_Class ] B)
Example:

 I64vec1 R = andnot(I64vec1 A, I64vec1 B);
Convention Three

Syntax:

[ Ivec_Class ] R [ operator ]= [ Ivec_Class ] A
Example:

 I64vec1 R &= I64vec1 A;
Summary of Rules for Major Operators

The following table lists automatic and explicit sign and size typecasting. Explicit means that it is illegal to
mix different types without an explicit typecasting. Automatic means that you can mix types freely and the
compiler will do the typecasting for you.

Compiler Reference   

449



Operators Sign Typecasting Size Typecasting Other Typecasting
Requirements

Assignment N/A N/A N/A

Logical Automatic Automatic
(to left)

Explicit typecasting is
required for different
types used in non-
logical expressions on
the right side of the
assignment.

Addition and Subtraction Automatic Explicit N/A

Multiplication Automatic Explicit N/A

Shift Automatic Explicit Casting Required to
ensure arithmetic shift.

Compare Automatic Explicit Explicit casting is
required for signed
classes for the less-than
or greater-than
operations.

Conditional Select Automatic Explicit Explicit casting is
required for signed
classes for less-than or
greater-than operations.

Data Declaration and Initialization
The following table lists literal examples of constructor declarations and data type initialization for all class
sizes. All values are initialized with the most significant element on the left and the least significant to the
right.

Operation Class Syntax

Declaration M128 I128vec1 A; Iu8vec16 A;

Declaration M64 I64vec1 A; Iu8vec8 A;

__m128 Initialization M128 I128vec1 A(__m128 m);
Iu16vec8(__m128 m);

__m64 Initialization M64 I64vec1 A(__m64 m);Iu8vec8
A(__m64 m);

__int64 Initialization M64 I64vec1 A = __int64 m;
Iu8vec8 A =__int64 m;

int i Initialization M64 I64vec1 A = int i; Iu8vec8
A = int i;

int Initialization I32vec2 I32vec2 A(int A1, int A0);
Is32vec2 A(signed int A1,
signed int A0);
Iu32vec2 A(unsigned int A1,
unsigned int A0);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

450



Operation Class Syntax

int Initialization I32vec4 I32vec4 A(int A3, int A2,
int A1, int A0);
Is32vec4 A(signed int
A3, ..., signed int A0);
Iu32vec4 A(unsigned int
A3, ..., unsigned int A0);

short int Initialization I16vec4 I16vec4 A(short A3, short
A2, short A1, short A0);
Is16vec4 A(signed short
A3, ..., signed short A0);
Iu16vec4 A(unsigned short
A3, ..., unsigned short
A0);

short int Initialization I16vec8 I16vec8 A(short A7, short
A6, ..., short A1, short
A0);
Is16vec8 A(signed A7, ...,
signed short A0);
Iu16vec8 A(unsigned short
A7, ..., unsigned short
A0);

char Initialization I8vec8 I8vec8 A(char A7, char
A6, ..., char A1, char A0);
Is8vec8 A(signed char
A7, ..., signed char A0);
Iu8vec8 A(unsigned char
A7, ..., unsigned char A0);

char Initialization I8vec16 I8vec16 A(char A15, ...,
char A0);
Is8vec16 A(signed char
A15, ..., signed char A0);
Iu8vec16 A(unsigned char
A15, ..., unsigned char
A0);

Assignment Operator
Any Ivec object can be assigned to any other Ivec object; conversion on assignment from one Ivec object
to another is automatic. For example:

Is16vec4 A;
Is8vec8 B;
I64vec1 C;

A = B; /* assign Is8vec8 to Is16vec4 */
B = C; /* assign I64vec1 to Is8vec8 */
B = A & C; /* assign M64 result of '&' to Is8vec8 */

Compiler Reference   

451



Logical Operators
The logical operators use the symbols and intrinsics listed in the following table.

Bitwise
Operation

Standard
Operator
Symbols

Operator
Symbols
with Assign

Standard
Syntax
Usage

Syntax
Usage with
Assign

Corresponding
Intrinsic

AND & &= R = A & B R &= A _mm_and_si64
_mm_and_si128

OR | |= R = A | B R |= A _mm_and_si64
_mm_and_si128

XOR ^ ^= R = A^B R ^= A _mm_and_si64
_mm_and_si128

ANDNOT andnot N/A R = A
andnot B

N/A _mm_and_si64
_mm_and_si128

Examples and Miscellaneous Exceptions

• A and B converted to M64. Result assigned to Iu8vec8:

I64vec1 A;
Is8vec8 B;
Iu8vec8 C;

C = A & B;
• Same size and signedness operators return the nearest common ancestor:

I32vec2 R = Is32vec2 A ^ Iu32vec2 B;
• A&B returns M64, which is cast to Iu8vec8:

C = Iu8vec8(A&B)+ C;
• When A and B are of the same class, they return the same type. When A and B are of different classes,

the return value is the return type of the nearest common ancestor.

Ivec Logical Operator Overloading

The logical operator returns values for combinations of classes, listed in the following table, apply when A
and B are of different classes.

Return
Value

AND OR XOR NAND Operand A Operand B

I64vec1 R & | ^ andnot I[s|
u]64vec2 A

I[s|
u]64vec2 B

I64vec2 R & | ^ andnot I[s|
u]64vec2 A

I[s|
u]64vec2 B

I32vec2 R & | ^ andnot I[s|
u]32vec2 A

I[s|
u]32vec2 B

I32vec4 R & | ^ andnot I[s|
u]32vec4 A

I[s|
u]32vec4 B

I16vec4 R & | ^ andnot I[s|
u]16vec4 A

I[s|
u]16vec4 B

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

452



Return
Value

AND OR XOR NAND Operand A Operand B

I16vec8 R & | ^ andnot I[s|
u]16vec8 A

I[s|
u]16vec8 B

I8vec8 R & | ^ andnot I[s|u]8vec8
A

I[s|
u]8vec8 B

I8vec16 R & | ^ andnot I[s|
u]8vec16 A

I[s|
u]8vec16 B

Ivec Logical Operator Overloading with Assignment

For logical operators with assignment, the return value of R is always the same data type as the pre-declared
value of R as listed in the following table:

Return Type Left Side AND OR XOR Right Side (Any Ivec
Type)

I128vec1 I128vec1 R &= |= ^= I[s|u][N]vec[N] A;

I64vec1 I64vec1 R &= |= ^= I[s|u][N]vec[N] A;

I64vec2 I64vec2 R &= |= ^= I[s|u][N]vec[N] A;

I[x]32vec4 I[x]32vec4
R

&= |= ^= I[s|u][N]vec[N] A;

I[x]32vec2 I[x]32vec2
R

&= |= ^= I[s|u][N]vec[N] A;

I[x]16vec8 I[x]16vec8
R

&= |= ^= I[s|u][N]vec[N] A;

I[x]16vec4 I[x]16vec4
R

&= |= ^= I[s|u][N]vec[N] A;

I[x]8vec16 I[x]8vec16
R

&= |= ^= I[s|u][N]vec[N] A;

I[x]8vec8 I[x]8vec8 R &= |= ^= I[s|u][N]vec[N] A;

Addition and Subtraction Operators
The addition and subtraction operators return the class of the nearest common ancestor when the right-side
operands are of different signs. The following code snippets show examples of usage and miscellaneous
exceptions.

• Return nearest common ancestor type, I16vec4:

Is16vec4 A;
Iu16vec4 B;
I16vec4 C;

C = A + B;
• Returns type left-hand operand type:

Is16vec4 A;
Iu16vec4 B;

Compiler Reference   

453



A += B;
B -= A;

• Explicitly convert B to Is16vec4:

Is16vec4 A,C;
Iu32vec24 B;

C = A + C;
C = A + (Is16vec4)B;

The following table lists addition and subtraction operators with their corresponding intrinsics:

Operation Symbols Syntax Corresponding
Intrinsics

Addition +
+=

R = A + B
R += A

_mm_add_epi64
_mm_add_epi32
_mm_add_epi16
_mm_add_epi8
_mm_add_pi32
_mm_add_pi16
_mm_add_pi8

Subtraction -
-=

R = A - B
R -= A

_mm_sub_epi64
_mm_sub_epi32
_mm_sub_epi16
_mm_sub_epi8
_mm_sub_pi32
_mm_sub_pi16
_mm_sub_pi8

Addition and Subtraction Operator Overloading

The following table lists addition and subtraction return values for combinations of classes when the right
side operands are of different signedness. The two operands must be the same size, otherwise you must
explicitly indicate the typecasting.

Return Value Add Sub Right Side
Operand (A)

Right Side
Operand (B)

I64vec2 R + - I[s|u]64vec2 A I[s|u]64vec2 B

I32vec4 R + - I[s|u]32vec4 A I[s|u]32vec4 B

I32vec2 R + - I[s|u]32vec2 A I[s|u]32vec2 B

I16vec8 R + - I[s|u]16vec8 A I[s|u]16vec8 B

I16vec4 R + - I[s|u]16vec4 A I[s|u]16vec4 B

I8vec8 R + - I[s|u]8vec8 A I[s|u]8vec8 B

I8vec16 R + - I[s|u]8vec2 A I[s|u]8vec16 B

Addition and Subtraction with Assignment

The following table lists the return data type values for operands of the addition and subtraction operators
with assignment. The left side operand determines the size and signedness of the return value. The right side
operand must be the same size as the left operand; otherwise, you must use an explicit typecast.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

454



Return Value Left Side
Operand

Add Sub Right Side
Operand

I[x]32vec4 I[x]32vec2 R += -= I[s|u]32vec4 A;

I[x]32vec2 R I[x]32vec2 R += -= I[s|u]32vec2 A;

I[x]16vec8 I[x]16vec8 += -= I[s|u]16vec8 A;

I[x]16vec4 I[x]16vec4 += -= I[s|u]16vec4 A;

I[x]8vec16 I[x]8vec16 += -= I[s|u]8vec16 A;

I[x]8vec8 I[x]8vec8 += -= I[s|u]8vec8 A;

Multiplication Operators
The multiplication operators can only accept and return data types from the I[s|u]16vec4 or I[s|
u]16vec8 classes, as shown in the following examples:

• Explicitly convert B to Is16vec4:

Is16vec4 A,C; 
Iu32vec2 B; 

C = A * C; 
C = A * (Is16vec4)B; 

• Return nearest common ancestor type, I16vec4:

Is16vec4 A; 
Iu16vec4 B; 
I16vec4 C; 

C = A + B; 
• The mul_high and mul_add functions take Is16vec4 data only:

Is16vec4 A,B,C,D; 

C = mul_high(A,B);
D = mul_add(A,B);

Multiplication Operators with Corresponding Intrinsics
Symbols Syntax Usage Intrinsic

* *= R = A * B
R *= A

_mm_mullo_pi16
_mm_mullo_epi16

mul_high N/A R = mul_high(A, B) _mm_mulhi_pi16
_mm_mulhi_epi16

mul_add N/A R = mul_high(A, B) _mm_madd_pi16
_mm_madd_epi16

Multiplication Operator Overloading

The multiplication return operators always return the nearest common ancestor as listed in the following
table. The two operands must be 16 bits in size, otherwise you must explicitly indicate typecasting.

Compiler Reference   

455



R Mul Operand A Operand B

I16vec4 R * I[s|u]16vec4 A I[s|u]16vec4 B

I16vec8 R * I[s|u]16vec8 A I[s|u]16vec8 B

Is16vec4 R mul_add Is16vec4 A Is16vec4 B

Is16vec8 mul_add Is16vec8 A Is16vec8 B

Is32vec2 R mul_high Is16vec4 A Is16vec4 B

Is32vec4 R mul_high s16vec8 A Is16vec8 B

Multiplication with Assignment

The following table lists the return values and data type assignments for operands of the multiplication
operators with assignment. All operands must be 16 bytes in size. If the operands are not the right size, you
must use an explicit typecast.

Return Value Left Side Operand Mul Right Side Operand

I[x]16vec8 I[x]16vec8 *= I[s|u]16vec8 A;

I[x]16vec4 I[x]16vec4 *= I[s|u]16vec4 A;

Shift Operators
The right shift argument can be any integer or Ivec value, and is implicitly converted to a M64 data type. The
first or left operand of a << can be of any type except I[s|u]8vec[8|16]. For example:

• Automatic size and sign conversion:

Is16vec4 A,C;
Iu32vec2 B;

C = A;
• A&B returns I16vec4, which must be cast to Iu16vec4 to ensure logical shift, not arithmetic shift:

Is16vec4 A, C;
Iu16vec4 B, R;

R = (Iu16vec4)(A & B) C;
• A&B returns I16vec4, which must be cast to Is16vec4 to ensure arithmetic shift, not logical shift:

R = (Is16vec4)(A & B) C;
Shift Operators with Corresponding Intrinsics

Operation Symbols Syntax Usage Intrinsic

Shift Left <<
&=

R = A << B
R &= A

_mm_sll_si64
_mm_slli_si64
_mm_sll_pi32
_mm_slli_pi32
_mm_sll_pi16
_mm_slli_pi16

Shift Right >> R = A >> B
R >>= A

_mm_srl_si64
_mm_srli_si64

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

456



Operation Symbols Syntax Usage Intrinsic

_mm_srl_pi32
_mm_srli_pi32
_mm_srl_pi16
_mm_srli_pi16
_mm_sra_pi32
_mm_srai_pi32
_mm_sra_pi16
_mm_srai_pi16

Shift Operator Overloading

Right shift operations with signed data types use arithmetic shifts. All unsigned and intermediate classes
correspond to logical shifts. The following table lists how the return type is determined by the first argument
type:

Option R Right Shift Left Shift A B

Logical I64vec1 >> >>= << <<= I64vec1
A;

I64vec1
B;

Logical I32vec2 >> >>= << <<= I32vec2
A

I32vec2
B;

Arithmetic Is32vec2 >> >>= << <<= Is32vec2
A

I[s|u]
[N]vec[N
] B;

Logical Iu32vec2 >> >>= << <<= Iu32vec2
A

I[s|u]
[N]vec[N
] B;

Logical I16vec4 >> >>= << <<= I16vec4
A

I16vec4
B

Arithmetic Is16vec4 >> >>= << <<= Is16vec4
A

I[s|u]
[N]vec[N
] B;

Logical Iu16vec4 >> >>= << <<= Iu16vec4
A

I[s|u]
[N]vec[N
] B;

Comparison Operators
The equality and inequality comparison operands can have mixed signedness, but they must be of the same
size. The comparison operators for less-than and greater-than must be of the same sign and size. For
example:

• The nearest common ancestor is returned for compare for equal/not-equal operations:

Iu8vec8 A;
Is8vec8 B;
I8vec8 C;

C = cmpneq(A,B);

Compiler Reference   

457



• Type cast needed for different-sized elements for equal/not-equal comparisons:

Iu8vec8 A, C;
Is16vec4 B;

C = cmpeq(A,(Iu8vec8)B);
• Type cast needed for sign or size differences for less-than and greater-than comparisons:

Iu16vec4 A;
Is16vec4 B, C;

C = cmpge((Is16vec4)A,B);
C = cmpgt(B,C);

Inequality Comparison Symbols and Corresponding Intrinsics

Comparison Operators Syntax Intrinsic

Equality cmpeq R = cmpeq(A, B) _mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

Inequality cmpneq R = cmpneq(A, B) _mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8
_mm_andnot_si64

Greater Than cmpgt R = cmpgt(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Greater Than
or Equal To

cmpge R = cmpge(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8
_mm_andnot_si64

Less Than cmplt R = cmplt(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Less Than
or Equal To

cmple R = cmple(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8
_mm_andnot_si64

Compare Operator Overloading

Comparison operators have the restriction that the operands must be the size and sign as listed in the
following table.

R Comparison Operand A Operand B

I32vec2 R cmpeq
cmpne

I[s|u]32vec2 B I[s|u]32vec2 B

I16vec4 R  I[s|u]16vec4 B I[s|u]16vec4 B

I8vec8 R  I[s|u]8vec8 B I[s|u]8vec8 B

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

458



R Comparison Operand A Operand B

I32vec2 R cmpgt
cmpge
cmplt
cmple

Is32vec2 B Is32vec2 B

I16vec4 R  Is16vec4 B Is16vec4 B

I8vec8 R  Is8vec8 B Is8vec8 B

Conditional Select Operators
For conditional select operands, the third and fourth operands determine the type returned. Third and fourth
operands with same size, but different signedness, return the nearest common ancestor data type. For
example:

• Return the nearest common ancestor data type if third and fourth operands are of the same size, but
different signs:

I16vec4 R = select_neq(Is16vec4, Is16vec4, Is16vec4, Iu16vec4);
• Conditional select for equality:

R0 := (A0 == B0) ? C0 : D0;
R1 := (A1 == B1) ? C1 : D1;
R2 := (A2 == B2) ? C2 : D2;
R3 := (A3 == B3) ? C3 : D3;

• Conditional select for inequality:

R0 := (A0 != B0) ? C0 : D0;
R1 := (A1 != B1) ? C1 : D1;
R2 := (A2 != B2) ? C2 : D2;
R3 := (A3 != B3) ? C3 : D3;

Conditional Select Symbols and Corresponding Intrinsics

The following table lists the conditional select symbols and their corresponding intrinsics:

Conditional
Select

Operators Syntax Corresponding
Intrinsic

Additional
Intrinsic (Applies
to All)

Equality select_eq R =
select_eq(A, B,
C, D)

_mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

_mm_and_si64
_mm_or_si64
_mm_andnot_si64
 

 

 

 

 

Inequality select_neq R =
select_neq(A,
B, C, D)

_mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

Greater Than select_gt R =
select_gt(A, B,
C, D)

_mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Greater Than
or Equal To

select_ge R =
select_gt(A, B,
C, D)

_mm_cmpge_pi32
_mm_cmpge_pi16
_mm_cmpge_pi8

Compiler Reference   

459



Conditional
Select

Operators Syntax Corresponding
Intrinsic

Additional
Intrinsic (Applies
to All)

Less Than select_lt R =
select_lt(A, B,
C, D)

_mm_cmplt_pi32
_mm_cmplt_pi16
_mm_cmplt_pi8

Less Than
or Equal To

select_le R =
select_le(A, B,
C, D)

_mm_cmple_pi32
_mm_cmple_pi16
_mm_cmple_pi8

Conditional Select Operator Overloading

All conditional select operands must be of the same size. The return data type is the nearest common
ancestor of operands C and D. For conditional select operations using greater-than or less-than operations,
the first and second operands must be signed as listed in the following table:

R Comparison A and B C D

I32vec2 R select_eq
select_ne

I[s|u]32vec2 I[s|u]32vec2 I[s|u]32vec2

I16vec4 R  I[s|u]16vec4 I[s|u]16vec4

I8vec8 R  I[s|u]8vec8 I[s|u]8vec8

I32vec2 R select_gt
select_ge
select_lt
select_le

Is32vec2 Is32vec2 Is32vec2

I16vec4 R  Is16vec4 Is16vec4

I8vec8 R  Is8vec8 Is8vec8

Conditional Select Operator Return Value Mapping

The following table lists the mapping of return values from R0 to R7 for any number of elements. The same
return value mappings also apply when there are fewer than four return values.

Return
Value

A
Operan
ds

Available Operators B
Operan
ds

C and
D
Operan
ds

R0:= A0 == != > >= < <= B0 C0 :
D0;

R1:= A0 == != > >= < <= B0 C1 :
D1;

R2:= A0 == != > >= < <= B0 C2 :
D2;

R3:= A0 == != > >= < <= B0 C3 :
D3;

R4:= A0 == != > >= < <= B0 C4 :
D4;

R5:= A0 == != > >= < <= B0 C5 :
D5;

R6:= A0 == != > >= < <= B0 C6 :
D6;

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

460



Return
Value

A
Operan
ds

Available Operators B
Operan
ds

C and
D
Operan
ds

R7:= A0 == != > >= < <= B0 C7 :
D7;

Debug Operations
The debug operations do not map to any compiler intrinsics for MMX™ instructions. They are provided for
debugging programs only. Use of these operations may result in loss of performance, so you should not use
them outside of debugging.

Output Examples
• The four 32-bit values of A are placed in the output buffer and printed in the following format (default in

decimal):

cout << Is32vec4 A;
cout << Iu32vec4 A;
cout << hex << Iu32vec4 A; /* print in hex format */
"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding intrinsics: none
• The two 32-bit values of A are placed in the output buffer and printed in the following format (default in

decimal):

cout << Is32vec2 A;
cout << Iu32vec2 A;
cout << hex << Iu32vec2 A; /* print in hex format */
"[1]:A1 [0]:A0"

Corresponding intrinsics: none
• The eight 16-bit values of A are placed in the output buffer and printed in the following format (default in

decimal):

cout << Is16vec8 A;
cout << Iu16vec8 A;
cout << hex << Iu16vec8 A; /* print in hex format */
"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding intrinsics: none
• The four 16-bit values of A are placed in the output buffer and printed in the following format (default in

decimal):

cout << Is16vec4 A;
cout << Iu16vec4 A;
cout << hex << Iu16vec4 A; /* print in hex format */
"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding intrinsics: none

Compiler Reference   

461



• The sixteen 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

cout << Is8vec16 A; cout << Iu8vec16 A; cout << hex << Iu8vec8 A;
/* print in hex format instead of decimal*/
"[15]:A15 [14]:A14 [13]:A13 [12]:A12 [11]:A11 [10]:A10 [9]:A9 [8]:A8 [7]:A7 [6]:A6 [5]:A5 [4]:A4 
[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding intrinsics: none
• The eight 8-bit values of A are placed in the output buffer and printed in the following format (default is

decimal):

cout << Is8vec8 A; cout << Iu8vec8 A;cout << hex << Iu8vec8 A;
/* print in hex format instead of decimal*/
"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding intrinsics: none

Element Access Operators
Access and read element i of A. If DEBUG is enabled and the user tries to access an element outside of A, a
diagnostic message is printed and the program aborts.

Corresponding intrinsics: none

Examples:

int R = Is64vec2 A[i];
unsigned int R = Iu64vec2 A[i];
int R = Is32vec4 A[i];
unsigned int R = Iu32vec4 A[i];
int R = Is32vec2 A[i];
unsigned int R = Iu32vec2 A[i];
short R = Is16vec8 A[i];
unsigned short R = Iu16vec8 A[i];
short R = Is16vec4 A[i];
unsigned short R = Iu16vec4 A[i];
signed char R = Is8vec16 A[i];
unsigned char R = Iu8vec16 A[i];
signed char R = Is8vec8 A[i];
unsigned char R = Iu8vec8 A[i];

Element Assignment Operators
Assign R to element i of A. If DEBUG is enabled and the user tries to assign a value to an element outside of
A, a diagnostic message is printed and the program aborts.

Corresponding intrinsics: none

Examples:

Is64vec2 A[i] = int R;
Is32vec4 A[i] = int R;
Iu32vec4 A[i] = unsigned int R;
Is32vec2 A[i] = int R;
Iu32vec2 A[i] = unsigned int R;
Is16vec8 A[i] = short R;
Iu16vec8 A[i] = unsigned short R;

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

462



Is16vec4 A[i] = short R;
Iu16vec4 A[i] = unsigned short R;
Is8vec16 A[i] = signed char R;
Iu8vec16 A[i] = unsigned char R;
Is8vec8 A[i] = signed char R;
Iu8vec8 A[i] = unsigned char R;

Unpack Operators
• Interleave the 64-bit value from the high half of A with the 64-bit value from the high half of B:

I64vec2 unpack_high(I64vec2 A, I64vec2 B);
Is64vec2 unpack_high(Is64vec2 A, Is64vec2 B);
Iu64vec2 unpack_high(Iu64vec2 A, Iu64vec2 B);
R0 = A1;
R1 = B1;

Corresponding intrinsic: _mm_unpackhi_epi64
• Interleave the two 32-bit values from the high half of A with the two 32-bit values from the high half of B:

I32vec4 unpack_high(I32vec4 A, I32vec4 B);
Is32vec4 unpack_high(Is32vec4 A, Is32vec4 B);
Iu32vec4 unpack_high(Iu32vec4 A, Iu32vec4 B);
R0 = A1;
R1 = B1;
R2 = A2;
R3 = B2;

Corresponding intrinsic: _mm_unpackhi_epi32
• Interleave the 32-bit value from the high half of A with the 32-bit value from the high half of B:

I32vec2 unpack_high(I32vec2 A, I32vec2 B);
Is32vec2 unpack_high(Is32vec2 A, Is32vec2 B);
Iu32vec2 unpack_high(Iu32vec2 A, Iu32vec2 B);
R0 = A1;
R1 = B1;

Corresponding intrinsic: _mm_unpackhi_pi32
• Interleave the four 16-bit values from the high half of A with the two 16-bit values from the high half of B:

I16vec8 unpack_high(I16vec8 A, I16vec8 B);
Is16vec8 unpack_high(Is16vec8 A, Is16vec8 B);
Iu16vec8 unpack_high(Iu16vec8 A, Iu16vec8 B);
R0 = A2;
R1 = B2;
R2 = A3;
R3 = B3;

Corresponding intrinsic: _mm_unpackhi_epi16
• Interleave the two 16-bit values from the high half of A with the two 16-bit values from the high half of B:

I16vec4 unpack_high(I16vec4 A, I16vec4 B);
Is16vec4 unpack_high(Is16vec4 A, Is16vec4 B);
Iu16vec4 unpack_high(Iu16vec4 A, Iu16vec4 B);
R0 = A2;R1 = B2;
R2 = A3;R3 = B3;

Compiler Reference   

463



Corresponding intrinsic: _mm_unpackhi_pi16
• Interleave the four 8-bit values from the high half of A with the four 8-bit values from the high half of B:

I8vec8 unpack_high(I8vec8 A, I8vec8 B);
Is8vec8 unpack_high(Is8vec8 A, I8vec8 B);
Iu8vec8 unpack_high(Iu8vec8 A, I8vec8 B);
R0 = A4;
R1 = B4;
R2 = A5;
R3 = B5;
R4 = A6;
R5 = B6;
R6 = A7;
R7 = B7;

Corresponding intrinsic: _mm_unpackhi_pi8
• Interleave the sixteen 8-bit values from the high half of A with the four 8-bit values from the high half of

B:

I8vec16 unpack_high(I8vec16 A, I8vec16 B);
Is8vec16 unpack_high(Is8vec16 A, I8vec16 B);
Iu8vec16 unpack_high(Iu8vec16 A, I8vec16 B);
R0 = A8;
R1 = B8;
R2 = A9;
R3 = B9;
R4 = A10;
R5 = B10;
R6 = A11;
R7 = B11;
R8 = A12;
R8 = B12;
R2 = A13;
R3 = B13;
R4 = A14;
R5 = B14;
R6 = A15;
R7 = B15;

Corresponding intrinsic: _mm_unpackhi_epi16
• Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B:

R0 = A0;
R1 = B0;

Corresponding intrinsic: _mm_unpacklo_epi32
• Interleave the 64-bit value from the low half of A with the 64-bit values from the low half of B:

I64vec2 unpack_low(I64vec2 A, I64vec2 B);
Is64vec2 unpack_low(Is64vec2 A, Is64vec2 B);
Iu64vec2 unpack_low(Iu64vec2 A, Iu64vec2 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;

Corresponding intrinsic: _mm_unpacklo_epi32

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

464



• Interleave the two 32-bit values from the low half of A with the two 32-bit values from the low half of B:

I32vec4 unpack_low(I32vec4 A, I32vec4 B);
Is32vec4 unpack_low(Is32vec4 A, Is32vec4 B);
Iu32vec4 unpack_low(Iu32vec4 A, Iu32vec4 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;

Corresponding intrinsic: _mm_unpacklo_epi32
• Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B:

I32vec2 unpack_low(I32vec2 A, I32vec2 B);
Is32vec2 unpack_low(Is32vec2 A, Is32vec2 B);
Iu32vec2 unpack_low(Iu32vec2 A, Iu32vec2 B);
R0 = A0;
R1 = B0;

Corresponding intrinsic: _mm_unpacklo_pi32
• Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B:

I16vec8 unpack_low(I16vec8 A, I16vec8 B);
Is16vec8 unpack_low(Is16vec8 A, Is16vec8 B);
Iu16vec8 unpack_low(Iu16vec8 A, Iu16vec8 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;

Corresponding intrinsic: _mm_unpacklo_epi16
• Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B:

I16vec4 unpack_low(I16vec4 A, I16vec4 B);
Is16vec4 unpack_low(Is16vec4 A, Is16vec4 B);
Iu16vec4 unpack_low(Iu16vec4 A, Iu16vec4 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;

Corresponding intrinsic: _mm_unpacklo_pi16
• Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B:

I8vec16 unpack_low(I8vec16 A, I8vec16 B);
Is8vec16 unpack_low(Is8vec16 A, Is8vec16 B);
Iu8vec16 unpack_low(Iu8vec16 A, Iu8vec16 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
R4 = A2;

Compiler Reference   

465



R5 = B2;
R6 = A3;
R7 = B3;
R8 = A4;
R9 = B4;
R10 = A5;
R11 = B5;
R12 = A6;
R13 = B6;
R14 = A7;
R15 = B7;

Corresponding intrinsic: _mm_unpacklo_epi8
• Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B:

I8vec8 unpack_low(I8vec8 A, I8vec8 B);
Is8vec8 unpack_low(Is8vec8 A, Is8vec8 B);
Iu8vec8 unpack_low(Iu8vec8 A, Iu8vec8 B);
R0 = A0;
R1 = B0;
R2 = A1;
R3 = B1;
R4 = A2;
R5 = B2;
R6 = A3;
R7 = B3;

Corresponding intrinsic: _mm_unpacklo_pi8

Pack Operators
• Pack the eight 32-bit values found in A and B into eight 16-bit values with signed saturation:

Is16vec8 pack_sat(Is32vec2 A,Is32vec2 B);
Corresponding intrinsic: _mm_packs_epi32

• Pack the four 32-bit values found in A and B into eight 16-bit values with signed saturation:

Is16vec4 pack_sat(Is32vec2 A,Is32vec2 B);
Corresponding intrinsic: _mm_packs_pi32

• Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with signed saturation:

Is8vec16 pack_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packs_epi16

• Pack the eight 16-bit values found in A and B into eight 8-bit values with signed saturation:

Is8vec8 pack_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packs_pi16

• Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with unsigned saturation:

Iu8vec16 packu_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packus_epi16

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

466



• Pack the eight 16-bit values found in A and B into eight 8-bit values with unsigned saturation:

Iu8vec8 packu_sat(Is16vec4 A,Is16vec4 B);
Corresponding intrinsic: _mm_packs_pu16

Clear MMX™ State Operator
Empty the MMX™ registers and clear the MMX state. Read the guidelines for using the EMMS instruction
intrinsic.

void empty(void);
Corresponding intrinsic: _mm_empty

Integer Functions for Intel® Streaming SIMD Extensions
This topic contains information about Intel® Streaming SIMD Extensions (Intel® SSE) integer functions.

NOTE You must include the fvec.h header file.

• Compute the element-wise maximum of the respective signed integer words in A and B:

Is16vec4 simd_max(Is16vec4 A, Is16vec4 B);
The corresponding intrinsic is: _mm_max_pi16

• Compute the element-wise minimum of the respective signed integer words in A and B:

Is16vec4 simd_min(Is16vec4 A, Is16vec4 B);
The corresponding intrinsic is: _mm_min_pi16

• Compute the element-wise maximum of the respective unsigned bytes in A and B:

Iu8vec8 simd_max(Iu8vec8 A, Iu8vec8 B);
The corresponding intrinsic is: _mm_max_pu8

• Compute the element-wise minimum of the respective unsigned bytes in A and B:

Iu8vec8 simd_min(Iu8vec8 A, Iu8vec8 B);
The corresponding intrinsic is: _mm_min_pu8

• Create an 8-bit mask from the most significant bits of the bytes in A:

int move_mask(I8vec8 A);
The corresponding intrinsic is: _mm_movemask_pi8

• Conditionally store byte elements of A to address p. The high bit of each byte in the selector B determines
whether the corresponding byte in A will be stored:

void mask_move(I8vec8 A, I8vec8 B, signed char *p);
The corresponding intrinsic is: _mm_maskmove_si64

• Store the data in A to the address p without polluting the caches. A can be any Ivec type:

void store_nta(__m64 *p, M64 A);
The corresponding intrinsic is: _mm_stream_pi

• Compute the element-wise average of the respective unsigned 8-bit integers in A and B:

Iu8vec8 simd_avg(Iu8vec8 A, Iu8vec8 B);
The corresponding intrinsic is: _mm_avg_pu8

• Compute the element-wise average of the respective unsigned 16-bit integers in A and B:

Iu16vec4 simd_avg(Iu16vec4 A, Iu16vec4 B)

Compiler Reference   

467



The corresponding intrinsic is: _mm_avg_pu16

Conversions between Fvec and Ivec
• Convert the lower double-precision floating-point value of A to a 32-bit integer with truncation:

int F64vec2ToInt(F64vec42 A);
r := (int)A0;

• Convert the four floating-point values of A to two the two least significant double-precision floating-point
values:

F64vec2 F32vec4ToF64vec2(F32vec4 A);
r0 := (double)A0;
r1 := (double)A1;

• Convert the two double-precision floating-point values of A to two single-precision floating-point values:

F32vec4 F64vec2ToF32vec4(F64vec2 A);
r0 := (float)A0;
r1 := (float)A1;

• Convert the signed int in B to a double-precision floating-point value and pass the upper double-precision
value from A through to the result:

F64vec2 InttoF64vec2(F64vec2 A, int B);
r0 := (double)B;
r1 := A1;

• Convert the lower floating-point value of A to a 32-bit integer with truncation:

int F32vec4ToInt(F32vec4 A);
r := (int)A0;

• Convert the two lower floating-point values of A to two 32-bit integer with truncation, returning the
integers in packed form:

Is32vec2 F32vec4ToIs32vec2 (F32vec4 A);
r0 := (int)A0;
r1 := (int)A1;

• Convert the 32-bit integer value B to a floating-point value; the upper three floating-point values are
passed through from A:

F32vec4 IntToF32vec4(F32vec4 A, int B);
r0 := (float)B;
r1 := A1;
r2 := A2;
r3 := A3;

• Convert the two 32-bit integer values in packed form in B to two floating-point values; the upper two
floating-point values are passed through from A:

F32vec4 Is32vec2ToF32vec4(F32vec4 A, Is32vec2 B);
r0 := (float)B0;
r1 := (float)B1;
r2 := A2;
r3 := A3;

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

468



Floating-point Vector Classes
The floating-point vector classes, F64vec2, F32vec4, and F32vec1, provide an interface to SIMD operations.
The class specifications are as follows:

• F64vec2 A(double x, double y);
• F32vec4 A(float z, float y, float x, float w);
• F32vec1 B(float w);
The packed floating-point input values are represented with the right-most value lowest as shown in the
following table.

Single-Precision Floating-point Elements

Fvec Syntax and Notation
This reference uses the following conventions for syntax and return values.

Fvec Classes Syntax Notation
Fvec classes use one of the following the syntax conventions, where

• [operator] is an operator (for example, &, |, or ^ )
• [Fvec_Class] is any Fvec class ( F64vec2, F32vec4, or F32vec1 )
• R, A, B are declared Fvec variables of the type indicated

Syntax Convention One

Syntax:

[Fvec_Class] R = [Fvec_Class] A [operator][Ivec_Class] B;
Example:

F64vec2 R = F64vec2 A & F64vec2 B;
Syntax Convention Two

Syntax:

[Fvec_Class] R = [operator]([Fvec_Class] A,[Fvec_Class] B);

Compiler Reference   

469



Example:

F64vec2 R = andnot(F64vec2 A, F64vec2 B);
Syntax Convention Three

Syntax:

[Fvec_Class] R [operator]= [Fvec_Class] A;
Example:

F64vec2 R &= F64vec2 A;

Return Value Notation
Because the Fvec classes have packed elements, the return values typically follow the conventions presented
in the following table. F32vec4 returns four single-precision, floating-point values (R0, R1, R2, and R3);
F64vec2 returns two double-precision, floating-point values, and F32vec1 returns the lowest single-precision
floating-point value (R0).

Syntax Convention
One Example

Syntax Convention
Two Example

Syntax
Convention
Three Example

F32vec
4

F64vec
2

F32vec
1

R0 := A0 & B0; R0 := A0 andnot B0; R0 &= A0; x x x

R1 := A1 & B1; R1 := A1 andnot B1; R1 &= A1; x x N/A

R2 := A2 & B2; R2 := A2 andnot B2; R2 &= A2; x N/A N/A

R3 := A3 & B3 R3 := A3 andhot B3; R3 &= A3; x N/A N/A

Data Alignment
Memory operations using the Intel® Streaming SIMD Extensions should be performed on 16-byte-aligned
data whenever possible. Memory operations using the Intel® Advanced Vector Extensions should be
performed on 32-byte-aligned data whenever possible.

F32vec4 and F64vec2 object variables are properly aligned by default. Note that floating point arrays are
not automatically aligned. To get 16-byte alignment, you can use the alignment __declspec:

__declspec( align(16) ) float A[4];

Conversions
All Fvec object variables can be implicitly converted to __m128 data types. For example, the results of
computations performed on F32vec4 or F32vec1 object variables can be assigned to __m128 data types:

__m128d mm = A & B; /* where A,B are F64vec2 object variables */
__m128 mm = A & B; /* where A,B are F32vec4 object variables */
__m128 mm = A & B; /* where A,B are F32vec1 object variables */

Constructors and Initialization
The following tables show how to create and initialize F32vec objects with the Fvec classes.

Constructor Declaration

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

470



Example Intrinsic Returns

F64vec2 A;
F32vec4 B;
F32vec1 C;

N/A N/A

__m128 Object Initialization

Example Intrinsic Returns

F64vec2 A(__m128d mm);
F32vec4 B(__m128 mm);
F32vec1 C(__m128 mm);

N/A N/A

Double Initialization

Example Intrinsic Returns

/* Initializes two
doubles. */
F64vec2 A(double d0,
double d1);
F64vec2 A = F64vec2(double
d0, double d1);

_mm_set_pd A0 := d0;
A1 := d1;

F64vec2 A(double d0);
/* Initializes both return
values
with the same double
precision value */.

_mm_set1_pd A0 := d0;
A1 := d0;

Float Initialization

Example Intrinsic Returns

F32vec4 A(float f3, float
f2,
float f1, float f0);
F32vec4 A = F32vec4(float
f3, float f2,
float f1, float f0);

_mm_set_ps A0 := f0;
A1 := f1;
A2 := f2;
A3 := f3;

F32vec4 A(float f0);
/* Initializes all return
values
with the same floating
point value. */

_mm_set1_ps A0 := f0;
A1 := f0;
A2 := f0;
A3 := f0;

F32vec4 A(double d0);
/* Initialize all return
values with
the same double-precision
value. */

_mm_set1_ps(d) A0 := d0;
A1 := d0;
A2 := d0;
A3 := d0;

F32vec1 A(double d0);
/* Initializes the lowest
value of A

_mm_set_ss(d) A0 := d0;
A1 := 0;
A2 := 0;
A3 := 0;

Compiler Reference   

471



Example Intrinsic Returns

with d0 and the other
values with 0.*/

F32vec1 B(float f0);
/* Initializes the lowest
value of B
with f0 and the other
values with 0.*/

_mm_set_ss B0 := f0;
B1 := 0;
B2 := 0;
B3 := 0;

F32vec1 B(int I);
/* Initializes the lowest
value of B
with f0, other values are
undefined.*/

_mm_cvtsi32_ss B0 := f0;
B1 := {}
B2 := {}
B3 := {}

Arithmetic Operators
The following table lists the arithmetic operators of the Fvec classes and generic syntax. The operators have
been divided into standard and advanced operations, which are described in more detail later in this section.

Standard Arithmetic Operators

Operation Operators Generic Syntax

Addition +
+=

R = A + B;
R += A;

Subtraction -
-=

R = A - B;
R -= A;

Multiplication *
*=

R = A * B;
R *= A;

Division /
/=

R = A / B;
R /= A;

Advanced Arithmetic Operators

Operation Operators Generic Syntax

Square Root sqrt R = sqrt(A);

Reciprocal
(Newton-Raphson)

rcp
rcp_nr

R = rcp(A);
R = rcp_nr(A);

Reciprocal Square Root
(Newton-Raphson)

rsqrt
rsqrt_nr

R = rsqrt(A);
R = rsqrt_nr(A);

Standard Arithmetic Operator Usage
The following two tables show the return values for each class of the standard arithmetic operators, which
use the syntax styles described earlier in the Return Value Notation section.

Standard Arithmetic Return Value Mapping

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

472



R A Operators B F32vec
4

F64vec
2

F32vec
1

R0:= A0 + - * / B0 X X X

R1:= A1 + - * / B1 X X N/A

R2:= A2 + - * / B2 X
 

N/A N/A

R3:= A3 + - * / B3 X N/A N/A

Arithmetic with Assignment Return Value Mapping

R Operators A F32vec4 F64vec2 F32vec1

R0:= += -= *= /= A0 X X X
 

R1:= += -= *= /= A1 X X N/A
 

R2:= += -= *= /= A2 X N/A N/A

R3:= += -= *= /= A3 X N/A N/A

Standard Arithmetic Operations for Fvec Classes

This table lists standard arithmetic operator syntax and intrinsics.

Operation Returns Example Syntax
Usage

Intrinsic

Addition

 

 

4 floats F32vec4 R = F32vec4
A + F32vec4 B;
F32vec4 R +=
F32vec4 A;

_mm_add_ps

2 doubles F64vec2 R = F64vec2
A + F32vec2 B;
F64vec2 R +=
F64vec2 A;

_mm_add_pd

1 float F32vec1 R = F32vec1
A + F32vec1 B;
F32vec1 R +=
F32vec1 A;

_mm_add_ss

Subtraction

 

 

4 floats F32vec4 R = F32vec4
A - F32vec4 B;
F32vec4 R -=
F32vec4 A;

_mm_sub_ps

2 doubles F64vec2 R - F64vec2
A + F32vec2 B;
F64vec2 R -=
F64vec2 A;

_mm_sub_pd

Compiler Reference   

473



Operation Returns Example Syntax
Usage

Intrinsic

1 float F32vec1 R = F32vec1
A - F32vec1 B;
F32vec1 R -=
F32vec1 A;

_mm_sub_ss

Multiplication

 

 

4 floats F32vec4 R = F32vec4
A * F32vec4 B;
F32vec4 R *=
F32vec4 A;

_mm_mul_ps

2 doubles F64vec2 R = F64vec2
A * F364vec2 B;
F64vec2 R *=
F64vec2 A;

_mm_mul_pd

1 float F32vec1 R = F32vec1
A * F32vec1 B;
F32vec1 R *=
F32vec1 A;

_mm_mul_ss

Division

 

 

4 floats F32vec4 R = F32vec4
A / F32vec4 B;
F32vec4 R /=
F32vec4 A;

_mm_div_ps

2 doubles F64vec2 R = F64vec2
A / F64vec2 B;
F64vec2 R /=
F64vec2 A;

_mm_div_pd

1 float F32vec1 R = F32vec1
A / F32vec1 B;
F32vec1 R /=
F32vec1 A;

_mm_div_ss

Advanced Arithmetic Operator Usage
Advanced Arithmetic Return Value Mapping

The following table shows the return values classes of the advanced arithmetic operators, which use the
syntax styles described earlier in the Return Value Notation section.

R Operators A F32vec
4

F64vec
2

F32vec
1

R0:= sqrt rcp rsqrt rcp_nr rsqrt_
nr

A0 X X X 

R1:= sqrt rcp rsqrt rcp_nr rsqrt_
nr

A1 X X N/A

R2:= sqrt rcp rsqrt rcp_nr rsqrt_
nr

A2 X N/A N/A

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

474



R Operators A F32vec
4

F64vec
2

F32vec
1

R3:= sqrt rcp rsqrt rcp_nr rsqrt_
nr

A3 X N/A N/A

f := add_horizo
ntal

  (A0 +
A1 +
A2 +
A3)

  X N/A N/A

d := add_horizo
ntal

  (A0 +
A1)

  N/A X N/A

Advanced Arithmetic Operations for Fvec Classes

The following table show examples for advanced arithmetic operators.

Operation Returns Example Syntax
Usage

Intrinsic

Square Root 4 floats F32vec4 R =
sqrt(F32vec4 A);

_mm_sqrt_ps

2 doubles F64vec2 R =
sqrt(F64vec2 A);

_mm_sqrt_pd

1 float F32vec1 R =
sqrt(F32vec1 A);

_mm_sqrt_ss

Reciprocal 4 floats F32vec4 R =
rcp(F32vec4 A);

_mm_rcp_ps

2 doubles F64vec2 R =
rcp(F64vec2 A);

_mm_rcp_pd

1 float F32vec1 R =
rcp(F32vec1 A);

_mm_rcp_ss

Reciprocal Square Root 4 floats F32vec4 R =
rsqrt(F32vec4 A);

_mm_rsqrt_ps

2 doubles F64vec2 R =
rsqrt(F64vec2 A);

_mm_rsqrt_pd

1 float F32vec1 R =
rsqrt(F32vec1 A);

_mm_rsqrt_ss

Reciprocal Newton Raphson 4 floats F32vec4 R =
rcp_nr(F32vec4 A);

_mm_sub_ps
_mm_add_ps
_mm_mul_ps
_mm_rcp_ps

2 doubles F64vec2 R =
rcp_nr(F64vec2 A);

_mm_sub_pd
_mm_add_pd
_mm_mul_pd
_mm_rcp_pd

Compiler Reference   

475



Operation Returns Example Syntax
Usage

Intrinsic

1 float F32vec1 R =
rcp_nr(F32vec1 A);

_mm_sub_ss
_mm_add_ss
_mm_mul_ss
_mm_rcp_ss

Reciprocal Square Root
Newton Raphson

4 float F32vec4 R =
rsqrt_nr(F32vec4
A);

_mm_sub_pd
_mm_mul_pd
_mm_rsqrt_ps

2 doubles F64vec2 R =
rsqrt_nr(F64vec2
A);

_mm_sub_pd
_mm_mul_pd
_mm_rsqrt_pd

1 float F32vec1 R =
rsqrt_nr(F32vec1
A);

_mm_sub_ss
_mm_mul_ss
_mm_rsqrt_ss

Horizontal Add 1 float float f =
add_horizontal(F32v
ec4 A);

_mm_add_ss
_mm_shuffle_ss

1 double double d =
add_horizontal(F64v
ec2 A);

_mm_add_sd
_mm_shuffle_sd

Minimum and Maximum Operators
• Compute the minimums of the two double precision floating-point values of A and B.

F64vec2 R = simd_min(F64vec2 A, F64vec2 B)
R0 := min(A0,B0);
R1 := min(A1,B1);

Corresponding intrinsic: _mm_min_pd
• Compute the minimums of the four single precision floating-point values of A and B.

F32vec4 R = simd_min(F32vec4 A, F32vec4 B)
R0 := min(A0,B0);
R1 := min(A1,B1);
R2 := min(A2,B2);
R3 := min(A3,B3);

Corresponding intrinsic: _mm_min_ps
• Compute the minimum of the lowest single precision floating-point values of A and B.

F32vec1 R = simd_min(F32vec1 A, F32vec1 B)
R0 := min(A0,B0);

Corresponding intrinsic: _mm_min_ss

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

476



• Compute the maximums of the two double precision floating-point values of A and B.

F64vec2 simd_max(F64vec2 A, F64vec2 B)
R0 := max(A0,B0);
R1 := max(A1,B1);

Corresponding intrinsic: _mm_max_pd
• Compute the maximums of the four single precision floating-point values of A and B.

F32vec4 R = simd_man(F32vec4 A, F32vec4 B)
R0 := max(A0,B0);
R1 := max(A1,B1);
R2 := max(A2,B2);
R3 := max(A3,B3);

Corresponding intrinsic: _mm_max_ps
• Compute the maximum of the lowest single precision floating-point values of A and B.

F32vec1 simd_max(F32vec1 A, F32vec1 B)
R0 := max(A0,B0);

Corresponding intrinsic: _mm_max_ss

Logical Operators
The following table lists the logical operators of the Fvec classes and generic syntax. The logical operators for
F32vec1 classes use only the lower 32 bits.

Bitwise Operation Operators Generic Syntax

AND &
&=

R = A & B;
R &= A;

OR |
|=

R = A | B;
R |= A;

XOR ^
^=

R = A ^ B;
R ^= A;

andnot andnot R = andnot(A);

The following table lists standard logical operators syntax and corresponding intrinsics. Note that there is no
corresponding scalar intrinsic for the F32vec1 classes, which accesses the lower 32 bits of the packed vector
intrinsics.

Operation Returns Example Syntax
Usage

Intrinsic

AND
 

 

4 floats F32vec4 & = F32vec4
A & F32vec4 B;
F32vec4 & &=
F32vec4 A;

_mm_and_ps

2 doubles F64vec2 R = F64vec2
A & F64vec2 B;
F64vec2 R &=
F64vec2 A;

_mm_and_pd

Compiler Reference   

477



Operation Returns Example Syntax
Usage

Intrinsic

1 float F32vec1 R = F32vec1
A & F32vec1 B;
F32vec1 R &=
F32vec1 A;

_mm_and_ps

OR
 

 

4 floats F32vec4 R = F32vec4
A | F32vec4 B;
F32vec4 R |=
F32vec4 A;

_mm_or_ps

2 doubles F64vec2 R = F64vec2
A | F64vec2 B;
F64vec2 R |=
F64vec2 A;

_mm_or_pd

1 float F32vec1 R = F32vec1
A | F32vec1 B;
F32vec1 R |=
F32vec1 A;

_mm_or_ps

XOR
 

 

4 floats F32vec4 R = F32vec4
A ^ F32vec4 B;
F32vec4 R ^=
F32vec4 A;

_mm_xor_ps

2 doubles F64vec2 R = F64vec2
A ^ F64vec2 B;
F64vec2 R ^=
F64vec2 A;

_mm_xor_pd

1 float F32vec1 R = F32vec1
A ^ F32vec1 B;
F32vec1 R ^=
F32vec1 A;

_mm_xor_ps

ANDNOT 2 doubles F64vec2 R =
andnot(F64vec2 A,
F64vec2 B);

_mm_andnot_pd

Compare Operators
The operators described in this section compare the single precision floating-point values of A and B.
Comparison between objects of any Fvec class return the same class being compared.

The following table lists the compare operators for the Fvec classes:

Comparison Operators Syntax

Equality cmpeq R = cmpeq(A, B)

Inequality cmpneq R = cmpneq(A, B)

Greater Than cmpgt R = cmpgt(A, B)

Greater Than or Equal To cmpge R = cmpge(A, B)

Not Greater Than cmpngt R = cmpngt(A, B)

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

478



Comparison Operators Syntax

Not Greater Than or Equal To cmpnge R = cmpnge(A, B)

Less Than cmplt R = cmplt(A, B)

Less Than or Equal To cmple R = cmple(A, B)

Not Less Than cmpnlt R = cmpnlt(A, B)

Not Less Than or Equal To cmpnle R = cmpnle(A, B)

Compare Operators
The mask is set to 0xffffffff for each floating-point value where the comparison is true and 0x00000000
where the comparison is false. The following table shows the return values for each class of the compare
operators, which use the syntax described earlier in the Return Value Notation section:

R A0 For Any Operators B If True If False F32vec
4

F64vec
2

F32vec
1

R0
:=

(A
1
!
(A
1

cmp[eq | lt | le | gt | ge]
cmp[ne | nlt | nle | ngt | nge]

B1
)
B1
)

0xffffffff 0x0000
000

X X X

R1
:=

(A
1
!
(A
1

cmp[eq | lt | le | gt | ge]
cmp[ne | nlt | nle | ngt | nge]

B2
)
B2
)

0xffffffff 0x0000
000
 

X X N/A

R2
:=

(A
1
!
(A
1

cmp[eq | lt | le | gt | ge]
cmp[ne | nlt | nle | ngt | nge]

B3
)
B3
)

0xffffffff 0x0000
000
 

X N/A N/A

R3
:=

A3 cmp[eq | lt | le | gt | ge]
cmp[ne | nlt | nle | ngt | nge]

B3
)
B3
)

0xffffffff 0x0000
000
 

X N/A N/A

The following table shows examples for comparison operators and intrinsics:

Comparison Returns Example Syntax Usage Intrinsic

Equality 4 floats F32vec4 R = cmpeq(F32vec4 A); _mm_cmpeq_ps

2 doubles F64vec2 R = cmpeq(F64vec2 A); _mm_cmpeq_pd

1 float F32vec1 R = cmpeq(F32vec1 A); _mm_cmpeq_ss
Inequality 4 floats F32vec4 R = cmpneq(F32vec4

A);
_mm_cmpneq_ps

Compiler Reference   

479



Comparison Returns Example Syntax Usage Intrinsic

2 doubles F64vec2 R = cmpneq(F64vec2
A);

_mm_cmpneq_pd

1 float F32vec1 R = cmpneq(F32vec1
A);

_mm_cmpneq_ss

Greater Than 4 floats F32vec4 R = cmpgt(F32vec4 A); _mm_cmpgt_ps

2 doubles F64vec2 R = cmpgt(F32vec42
A);

_mm_cmpgt_pd

1 float F32vec1 R = cmpgt(F32vec1 A); _mm_cmpgt_ss
Greater Than
or Equal To

4 floats F32vec4 R = cmpge(F32vec4 A); _mm_cmpge_ps

2 doubles F64vec2 R = cmpge(F64vec2 A); _mm_cmpge_pd

1 float F32vec1 R = cmpge(F32vec1 A); _mm_cmpge_ss
Not Greater
Than

4 floats F32vec4 R = cmpngt(F32vec4
A);

_mm_cmpngt_ps

2 doubles F64vec2 R = cmpngt(F64vec2
A);

_mm_cmpngt_pd

1 float F32vec1 R = cmpngt(F32vec1
A);

_mm_cmpngt_ss

Not Greater
Than or Equal
To

4 floats F32vec4 R = cmpnge(F32vec4
A);

_mm_cmpnge_ps

2 doubles F64vec2 R = cmpnge(F64vec2
A);

_mm_cmpnge_pd

1 float F32vec1 R = cmpnge(F32vec1
A);

_mm_cmpnge_ss

Less Than 4 floats F32vec4 R = cmplt(F32vec4 A); _mm_cmplt_ps

2 doubles F64vec2 R = cmplt(F64vec2 A); _mm_cmplt_pd

1 float F32vec1 R = cmplt(F32vec1 A); _mm_cmplt_ss
Less Than or
Equal To

4 floats F32vec4 R = cmple(F32vec4 A); _mm_cmple_ps

2 doubles F64vec2 R = cmple(F64vec2 A); _mm_cmple_pd

1 float F32vec1 R = cmple(F32vec1 A); _mm_cmple_pd
Not Less Than 4 floats F32vec4 R = cmpnlt(F32vec4

A);
_mm_cmpnlt_ps

2 doubles F64vec2 R = cmpnlt(F64vec2
A);

_mm_cmpnlt_pd

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

480



Comparison Returns Example Syntax Usage Intrinsic

1 float F32vec1 R = cmpnlt(F32vec1
A);

_mm_cmpnlt_ss

Not Less Than
or Equal To

4 floats F32vec4 R = cmpnle(F32vec4
A);

_mm_cmpnle_ps

2 doubles F64vec2 R = cmpnle(F64vec2
A);

_mm_cmpnle_pd

1 float F32vec1 R = cmpnle(F32vec1
A);

_mm_cmpnle_ss

Conditional Select Operators for Fvec Classes
Each conditional function compares single-precision floating-point values of A and B. The C and D parameters
are used for return value. Comparison between objects of any Fvec class returns the same class.

Conditional Select Operators for Fvec Classes

Conditional Select Operators Syntax

Equality select_eq R = select_eq(A, B)

Inequality select_neq R = select_neq(A, B)

Greater Than select_gt R = select_gt(A, B)

Greater Than or Equal To select_ge R = select_ge(A, B)

Not Greater Than select_gt R = select_gt(A, B)

Not Greater Than or Equal To select_ge R = select_ge(A, B)

Less Than select_lt R = select_lt(A, B)

Less Than or Equal To select_le R = select_le(A, B)

Not Less Than select_nlt R = select_nlt(A, B)

Not Less Than or Equal To select_nle R = select_nle(A, B)

Conditional Select Operator Usage
For conditional select operators, the return value is stored in C if the comparison is true or in D if false. The
following table shows the return value mapping for each class of the conditional select operators, using the 
Return Value Notation.

R A0 Operators B C D F32v
ec4

F64v
ec2

F32v
ec1

R0:= (A1
!(A1

select_[eq | lt | le | gt |
ge]
select_[ne | nlt | nle | ngt
| nge]

B0)
B0)

C0
C0

D0
D0

X X X

Compiler Reference   

481



R A0 Operators B C D F32v
ec4

F64v
ec2

F32v
ec1

R1:= (A2
!(A2

select_[eq | lt | le | gt |
ge]
select_[ne | nlt | nle | ngt
| nge]

B1)
B1)

C1
C1

D1
D1

X X N/A

R2:= (A2
!(A2

select_[eq | lt | le | gt |
ge]
select_[ne | nlt | nle | ngt
| nge]

B2)
B2)

C2
C2

D2
D2

X N/A N/A

R3:= (A3
!(A3

select_[eq | lt | le | gt |
ge]
select_[ne | nlt | nle | ngt
| nge]

B3)
B3)

C3
C3

D3
D3

X N/A N/A

The following table shows examples for conditional select operations and corresponding intrinsics:

Comparison Returns Example Syntax
Usage

Intrinsic

Equality 4 floats F32vec4 R =
select_eq(F32vec4
A);

_mm_cmpeq_ps

2 doubles F64vec2 R =
select_eq(F64vec2
A);

_mm_cmpeq_pd

1 float F32vec1 R =
select_eq(F32vec1
A);

_mm_cmpeq_ss

Inequality 4 floats F32vec4 R =
select_neq(F32vec4
A);

_mm_cmpneq_ps

2 doubles F64vec2 R =
select_neq(F64vec2
A);

_mm_cmpneq_pd

1 float F32vec1 R =
select_neq(F32vec1
A);

_mm_cmpneq_ss

Greater Than 4 floats F32vec4 R =
select_gt(F32vec4
A);

_mm_cmpgt_ps

2 doubles F64vec2 R =
select_gt(F64vec2
A);

_mm_cmpgt_pd

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

482



Comparison Returns Example Syntax
Usage

Intrinsic

1 float F32vec1 R =
select_gt(F32vec1
A);

_mm_cmpgt_ss

Greater Than or Equal To 4 floats F32vec1 R =
select_ge(F32vec4
A);

_mm_cmpge_ps

2 doubles F64vec2 R =
select_ge(F64vec2
A);

_mm_cmpge_pd

1 float F32vec1 R =
select_ge(F32vec1
A);

_mm_cmpge_ss

Not Greater Than 4 floats F32vec1 R =
select_ngt(F32vec4
A);

_mm_cmpngt_ps

2 doubles F64vec2 R =
select_ngt(F64vec2
A);

_mm_cmpngt_pd

1 float F32vec1 R =
select_ngt(F32vec1
A);

_mm_cmpngt_ss

Not Greater Than or Equal
To

4 floats F32vec1 R =
select_nge(F32vec4
A);

_mm_cmpnge_ps

2 doubles F64vec2 R =
select_nge(F64vec2
A);

_mm_cmpnge_pd

1 float F32vec1 R =
select_nge(F32vec1
A);

_mm_cmpnge_ss

Less Than 4 floats F32vec4 R =
select_lt(F32vec4
A);

_mm_cmplt_ps

2 doubles F64vec2 R =
select_lt(F64vec2
A);

_mm_cmplt_pd

1 float F32vec1 R =
select_lt(F32vec1
A);

_mm_cmplt_ss

Compiler Reference   

483



Comparison Returns Example Syntax
Usage

Intrinsic

Less Than or Equal To 4 floats F32vec4 R =
select_le(F32vec4
A);

_mm_cmple_ps

2 doubles F64vec2 R =
select_le(F64vec2
A);

_mm_cmple_pd

1 float F32vec1 R =
select_le(F32vec1
A);

_mm_cmple_ps

Not Less Than 4 floats F32vec1 R =
select_nlt(F32vec4
A);

_mm_cmpnlt_ps

2 doubles F64vec2 R =
select_nlt(F64vec2
A);

_mm_cmpnlt_pd

1 float F32vec1 R =
select_nlt(F32vec1
A);

_mm_cmpnlt_ss

Not Less Than or Equal To 4 floats F32vec1 R =
select_nle(F32vec4
A);

_mm_cmpnle_ps

2 doubles F64vec2 R =
select_nle(F64vec2
A);

_mm_cmpnle_pd

1 float F32vec1 R =
select_nle(F32vec1
A);

_mm_cmpnle_ss

Cacheability Support Operators
• Stores (non-temporal) the two double-precision, floating-point values of A. Requires a 16-byte aligned

address.

void store_nta(double *p, F64vec2 A);
Corresponding intrinsic: _mm_stream_pd

• Stores (non-temporal) the four single-precision, floating-point values of A. Requires a 16-byte aligned
address.

void store_nta(float *p, F32vec4 A);
Corresponding intrinsic: _mm_stream_ps

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

484



Debug Operations
The debug operations do not map to any compiler intrinsics for MMX™ technology or Intel® Streaming SIMD
Extensions . They are provided for debugging programs only. Use of these operations may result in loss of
performance, so you should not use them outside of debugging.

Output Operations
• The two single, double-precision floating-point values of A are placed in the output buffer and printed in

decimal format as follows:

cout << F64vec2 A;
"[1]:A1 [0]:A0"

Corresponding intrinsics: none
• The four, single-precision floating-point values of A are placed in the output buffer and printed in decimal

format as follows:

cout << F32vec4 A;
"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding intrinsics: none
• The lowest, single-precision floating-point value of A is placed in the output buffer and printed.

cout << F32vec1 A;
Corresponding intrinsics: none

Element Access Operations
•double d = F64vec2 A[int i]

Read one of the two, double-precision floating-point values of A without modifying the corresponding
floating-point value. Permitted values of i are 0 and 1. For example:

double d = F64vec2 A[1]; 
If DEBUG is enabled and i is not one of the permitted values (0 or 1), a diagnostic message is printed and
the program aborts. Corresponding intrinsics: none

•float f = F32vec4 A[int i]
Read one of the four, single-precision floating-point values of A without modifying the corresponding
floating point value. Permitted values of i are 0, 1, 2, and 3. For example:

float f = F32vec4 A[2]; 
        

If DEBUG is enabled and i is not one of the permitted values (0-3), a diagnostic message is printed and
the program aborts.
Corresponding intrinsics: none

Element Assignment Operations
•F64vec4 A[int i] = double d;

Modify one of the two, double-precision floating-point values of A. Permitted values of int i are 0 and 1.
For example:

F32vec4 A[1] = double d;
F32vec4 A[int i] = float f;

Compiler Reference   

485



• Modify one of the four, single-precision floating-point values of A. Permitted values of int i are 0, 1, 2,
and 3. For example:

F32vec4 A[3] = float f; 
        

If DEBUG is enabled and int i is not one of the permitted values (0-3), a diagnostic message is printed
and the program aborts.
Corresponding intrinsics: none.

Load and Store Operators
• Loads two, double-precision floating-point values, copying them into the two, floating-point values of A.

No assumption is made for alignment.

void loadu(F64vec2 A, double *p)
Corresponding intrinsic: _mm_loadu_pd

• Stores the two, double-precision floating-point values of A. No assumption is made for alignment.

void storeu(float *p, F64vec2 A);
Corresponding intrinsic: _mm_storeu_pd

• Loads four, single-precision floating-point values, copying them into the four floating-point values of A. No
assumption is made for alignment.

void loadu(F32vec4 A, double *p)
Corresponding intrinsic: _mm_loadu_ps

• Stores the four, single-precision floating-point values of A. No assumption is made for alignment.

void storeu(float *p, F32vec4 A);
Corresponding intrinsic: _mm_storeu_ps

Unpack Operators
• Selects and interleaves the lower, double-precision floating-point values from A and B.

F64vec2 R = unpack_low(F64vec2 A, F64vec2 B);
Corresponding intrinsic: _mm_unpacklo_pd(a, b)

• Selects and interleaves the higher, double-precision floating-point values from A and B.

F64vec2 R = unpack_high(F64vec2 A, F64vec2 B);
Corresponding intrinsic: _mm_unpackhi_pd(a, b)

• Selects and interleaves the lower two, single-precision floating-point values from A and B.

F32vec4 R = unpack_low(F32vec4 A, F32vec4 B);
Corresponding intrinsic: _mm_unpacklo_ps(a, b)

• Selects and interleaves the higher two, single-precision floating-point values from A and B.

F32vec4 R = unpack_high(F32vec4 A F32vec4 B);
Corresponding intrinsic: _mm_unpackhi_ps(a, b)

Move Mask Operators
• Creates a 2-bit mask from the most significant bits of the two, double-precision floating-point values of A,

as follows:

int i = move_mask(F64vec2 A)
i := sign(a1)<<1 | sign(a0)<<0

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

486



Corresponding intrinsic: _mm_movemask_pd
• Creates a 4-bit mask from the most significant bits of the four, single-precision floating-point values of A,

as follows:

int i = move_mask(F32vec4 A)
i := sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 | sign(a0)<<0

Corresponding intrinsic: _mm_movemask_ps

Classes Quick Reference
This appendix contains tables listing operators to perform various SIMD operations, corresponding intrinsics
to perform those operations, and the classes that implement those operations. The classes listed here belong
to the Intel® C++ Class Libraries for SIMD Operations.

In the following tables,

• N/A indicates that the operator is not implemented in that particular class. For example, in the Logical
Operations table, the Andnot operator is not implemented in the F32vec4 and F32vec1 classes.

• All other entries under Classes indicate that those operators are implemented in those particular classes,
and the entries under the Classes columns provide the suffix for the corresponding intrinsic. For example,
consider the Arithmetic Operations: Part1 table, where the corresponding intrinsic is _mm_add_[x] and
the entry epi16 is under the I16vec8 column. It means that the I16vec8 class implements the addition
operators and the corresponding intrinsic is _mm_add_epi16.

Logical Operations:

Operators Corresponding
Intrinsic

Classes

I128vec1,
I64vec2,
I32vec4,
I16vec8,
I8vec16

I64vec1,
I32vec2,
I16vec4,
I8vec8

F64vec
2

F32vec
4

F32vec
1

&, &= _mm_and_[x] si128 si64 pd ps ps

|, |= _mm_or_[x] si128 si64 pd ps ps

^, ^= _mm_xor_[x] si128 si64 pd ps ps

Andnot _mm_andnot_[x] si128 si64 pd N/A N/A

Arithmetic Operations: Part 1

Operators Corresponding
Intrinsic

Classes

I64vec
2

I32vec
4

I16vec
8

I8vec1
6

+, += _mm_add_[x] epi64 epi32 epi16 epi8

-, -= _mm_sub_[x] epi64 epi32 epi16 epi8

*, *= _mm_mullo_[x] N/A N/A epi16 N/A

/, /= _mm_div_[x] N/A N/A N/A N/A

mul_high _mm_mulhi_[x] N/A N/A epi16 N/A

mul_add _mm_madd_[x] N/A N/A epi16 N/A

sqrt _mm_sqrt_[x] N/A N/A N/A N/A

Compiler Reference   

487



Operators Corresponding
Intrinsic

Classes

I64vec
2

I32vec
4

I16vec
8

I8vec1
6

rcp _mm_rcp_[x] N/A N/A N/A N/A

rcp_nr _mm_rcp_[x]
_mm_add_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A N/A

rsqrt _mm_rsqrt_[x] N/A N/A N/A N/A

rsqrt_nr _mm_rsqrt_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A N/A

Arithmetic Operations: Part 2

Operators Corresponding
Intrinsic

Classes

I32vec
2

I16vec
4

I8vec8 F64vec
2

F32vec
4

F32vec
1

+, += _mm_add_[x] pi32 pi16 pi8 pd ps ss

-, -= _mm_sub_[x] pi32 pi16 pi8 pd ps ss

*, *= _mm_mullo_[x] N/A pi16 N/A pd ps ss

/, /= _mm_div_[x] N/A N/A N/A pd ps ss

mul_high _mm_mulhi_[x] N/A pi16 N/A N/A N/A N/A

mul_add _mm_madd_[x] N/A pi16 N/A N/A N/A N/A

sqrt _mm_sqrt_[x] N/A N/A N/A pd ps ss

rcp _mm_rcp_[x] N/A N/A N/A pd ps ss

rcp_nr _mm_rcp_[x]
_mm_add_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A pd ps ss

rsqrt _mm_rsqrt_[x] N/A N/A N/A pd ps ss

rsqrt_nr _mm_rsqrt_[x]
_mm_sub_[x]
_mm_mul_[x]

N/A N/A N/A pd ps ss

Shift Operations: Part 1

Operators Corresponding
Intrinsic

Classes

I128ve
c1

I64vec
2

I32vec
4

I16vec
8

I8vec1
6

>>,>>= _mm_srl_[x]
_mm_srli_[x]
_mm_sra__[x]

N/A
N/A
N/A

epi64
epi64
N/A

epi32
epi32
epi32

epi16
epi16
epi16

N/A
N/A
N/A

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

488



Operators Corresponding
Intrinsic

Classes

I128ve
c1

I64vec
2

I32vec
4

I16vec
8

I8vec1
6

_mm_srai_[x] N/A N/A epi32 epi16 N/A

<<, <<= _mm_sll_[x]
_mm_slli_[x]

N/A
N/A

epi64
epi64

epi32
epi32

epi16
epi16

N/A
N/A

Shift Operations: Part 2

Operators Corresponding
Intrinsic

Classes

I64vec
1

I32vec
2

I16vec
4

I8vec8

>>,>>= _mm_srl_[x]
_mm_srli_[x]
_mm_sra__[x]
_mm_srai_[x]

si64
si64
N/A
N/A

pi32
pi32
pi32
pi32

pi16
pi16
pi16
pi16

N/A
N/A
N/A
N/A

<<, <<= _mm_sll_[x]
_mm_slli_[x]

si64
si64

pi32
pi32

pi16
pi16

N/A
N/A

Comparison Operations: Part 1

Operators Corresponding
Intrinsic

Classes

I32vec
4

I16vec
8

I8vec1
6

I32vec
2

I16vec
4

I8vec8

cmpeq _mm_cmpeq_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmpneq _mm_cmpeq_[x]
_mm_andnot_[y]*

epi32
si128

epi16
si128

epi8
si128

pi32
si64

pi16
si64

pi8
si64

cmpgt _mm_cmpgt_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmpge _mm_cmpge_[x]
_mm_andnot_[y]*

epi32
si128

epi16
si128

epi8
si128

pi32
si64

pi16
si64

pi8
si64

cmplt _mm_cmplt_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmple _mm_cmple_[x]
_mm_andnot_[y]*

epi32
si128

epi16
si128

epi8
si128

pi32
si64

pi16
si64

pi8
si64

cmpngt _mm_cmpngt_[x] epi32 epi16 epi8 pi32 pi16 pi8

cmpnge _mm_cmpnge_[x] N/A N/A N/A N/A N/A N/A

cmpnlt _mm_cmpnlt_[x] N/A N/A N/A N/A N/A N/A

cmpnle _mm_cmpnle_[x] N/A N/A N/A N/A N/A N/A

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Comparison Operations: Part 2

Compiler Reference   

489



Operators Corresponding
Intrinsic

Classes

F64vec2 F32vec4 F32vec1

cmpeq _mm_cmpeq_[x] pd ps ss

cmpneq _mm_cmpeq_[x]
_mm_andnot_[y]*

pd ps ss

cmpgt _mm_cmpgt_[x] pd ps ss

cmpge _mm_cmpge_[x]
_mm_andnot_[y]*

pd ps ss

cmplt _mm_cmplt_[x] pd ps ss

cmple _mm_cmple_[x]
_mm_andnot_[y]*

pd ps ss

cmpngt _mm_cmpngt_[x] pd ps ss

cmpnge _mm_cmpnge_[x] pd ps ss

cmpnlt _mm_cmpnlt_[x] pd ps ss

cmpnle _mm_cmpnle_[x] pd ps ss

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Conditional Select Operations: Part 1

Operators Corresponding
Intrinsic

Classes

I32vec
4

I16vec
8

I8vec1
6

I32vec
2

I16vec
4

I8vec8

select_eq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_neq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_gt _mm_cmpgt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_ge _mm_cmpge_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_lt _mm_cmplt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

490



Operators Corresponding
Intrinsic

Classes

I32vec
4

I16vec
8

I8vec1
6

I32vec
2

I16vec
4

I8vec8

select_le _mm_cmple_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

epi32
si128
si128
si128

epi16
si128
si128
si128

epi8
si128
si128
si128

pi32
si64
si64
si64

pi16
si64
si64
si64

pi8
si64
si64
si64

select_ngt _mm_cmpgt_[x] N/A N/A N/A N/A N/A N/A

select_nge _mm_cmpge_[x] N/A N/A N/A N/A N/A N/A

select_nlt _mm_cmplt_[x] N/A N/A N/A N/A N/A N/A

select_nle _mm_cmple_[x] N/A N/A N/A N/A N/A N/A

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Conditional Select Operations: Part 2

Operators Corresponding
Intrinsic

Classes

F64vec2 F32vec4 F32vec1

select_eq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_neq _mm_cmpeq_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_gt _mm_cmpgt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_ge _mm_cmpge_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_lt _mm_cmplt_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_le _mm_cmple_[x]
_mm_and_[y]
_mm_andnot_[y]*
_mm_or_[y]

pd ps ss

select_ngt _mm_cmpgt_[x] pd ps ss

select_nge _mm_cmpge_[x] pd ps ss

select_nlt _mm_cmplt_[x] pd ps ss

Compiler Reference   

491



Operators Corresponding
Intrinsic

Classes

F64vec2 F32vec4 F32vec1

select_nle _mm_cmple_[x] pd ps ss

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Packing and Unpacking Operations: Part 1

Operators Corresponding
Intrinsic

Classes

I64vec
2

I32vec
4

I16vec
8

I8vec1
6

I32vec
2

unpack_high _mm_unpackhi_[x] epi64 epi32 epi16 epi8 pi32

unpack_low _mm_unpacklo_[x] epi64 epi32 epi16 epi8 pi32

pack_sat _mm_packs_[x] N/A epi32 epi16 N/A pi32

packu_sat _mm_packus_[x] N/A N/A epi16 N/A N/A

sat_add _mm_adds_[x] N/A N/A epi16 epi8 N/A

sat_sub _mm_subs_[x] N/A N/A epi16 epi8 N/A

Packing and Unpacking Operations: Part 2

Operators Corresponding
Intrinsic

Classes

I16vec
4

I8vec8 F64vec
2

F32vec
4

F32vec
1

unpack_high _mm_unpackhi_[x] pi16 pi8 pd ps N/A

unpack_low _mm_unpacklo_[x] pi16 pi8 pd ps N/A

pack_sat _mm_packs_[x] pi16 N/A N/A N/A N/A

packu_sat _mm_packus_[x] pu16 N/A N/A N/A N/A

sat_add _mm_adds_[x] pi16 pi8 pd ps ss

sat_sub _mm_subs_[x] pi16 pi8 pi16 pi8 pd

Conversions Operations:

Conversion operations can be performed using intrinsics only. There are no classes implemented to
correspond to these intrinsics.

Operators Corresponding
Intrinsic

F64vec2ToInt _mm_cvttsd_si32

F32vec4ToF64vec2 _mm_cvtps_pd

F64vec2ToF32vec4 _mm_cvtpd_ps

IntToF64vec2 _mm_cvtsi32_sd

F32vec4ToInt _mm_cvtt_ss2si

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

492



Operators Corresponding
Intrinsic

F32vec4ToIs32vec2 _mm_cvttps_pi32

IntToF32vec4 _mm_cvtsi32_ss

Is32vec2ToF32vec4 _mm_cvtpi32_ps

Programming Example
This sample program uses the F32vec4 class to average the elements of a twenty element floating point
array.

//Include Intel® Streaming SIMD Extension (Intel® SSE) Class Definitions
 #include <fvec.h>

//Shuffle any two single precision floating point from a 
//into low two SP FP and shuffle any two SP FP from b 
//into high two SP FP of destination
 
#define SHUFFLE(a,b,i) (F32vec4)_mm_shuffle_ps(a,b,i) 
#include <stdio.h> 
#define SIZE 20

//Global variables
 float result; 
_MM_ALIGN16 float array[SIZE];

//***************************************************** 
// Function: Add20ArrayElements 
// Add all the elements of a twenty element array 
//*****************************************************
void Add20ArrayElements (F32vec4 *array, float *result) {
   F32vec4 vec0, vec1;
   vec0 = _mm_load_ps ((float *) array); // Load array's first four floats

   //*****************************************************
   // Add all elements of the array, four elements at a time
   //******************************************************
   vec0 += array[1]; // Add elements 5-8
   vec0 += array[2]; // Add elements 9-12
   vec0 += array[3]; // Add elements 13-16
   vec0 += array[4]; // Add elements 17-20

   //*****************************************************
   // There are now four partial sums.
   // Add the two lowers to the two raises,
   // then add those two results together
   //*****************************************************
   vec1 = SHUFFLE(vec1, vec0, 0x40);
   vec0 += vec1;
   vec1 = SHUFFLE(vec1, vec0, 0x30);
   vec0 += vec1;
   vec0 = SHUFFLE(vec0, vec0, 2);
   _mm_store_ss (result, vec0); // Store the final sum 
} 

Compiler Reference   

493



void main(int argc, char *argv[]) {
   int i;
 
//Initialize the array
   for (i=0; i < SIZE; i++) { array[i] = (float) i; }

//Call function to add all array elements
   Add20ArrayElements (array, &result);

//Print average array element value
   printf ("Average of all array values = %f\n", result/20.);
   printf ("The correct answer is %f\n\n\n", 9.5); 
}

Intel's valarray Implementation
The Intel® oneAPI DPC++/C++ Compiler provides a high performance implementation of specialized one-
dimensional valarray operations for the C++ standard STL valarray container.

The standard C++ valarray template consists of array/vector operations for high performance computing.
These operations are designed to exploit high performance hardware features such as parallelism and
achieve performance benefits.

Intel's valarray implementation uses the Intel® Integrated Performance Primitives (Intel® IPP), which is part
of the product. Select Intel® IPP when you install the product.

The valarray implementation consists of a replacement header, <valarray>, that provides a specialized,
high-performance implementation for the following operators and types:

Operator Type

abs, acos, acosh, asin, asinh, atan, atan2,
atanh, cbrt, cdfnorm, ceil, cos, cosh, erf,
erfc, erfinv, exp, expm1, floor, hypot, inv,
invcbrt, invsqrt, ln, log, log10, log1p,
nearbyint, pow, pow2o3, pow3o2, powx,
rint, round, sin, sinh, sqrt, tan, tanh, trunk

float, double

add, conj, div, mul, mulbyconj, mul, sub Ipp32fc, Ipp64fc

addition, subtraction, division, multiplication float, double

bitwise or, and, xor (all unsigned) char, short, int

min, max, sum signed or short/signed int, float, double

Use valarray in Source Code
valarray is not available for SYCL.

Intel's valarray implementation allows you to declare large arrays for parallel processing. Improved
implementation of valarray is tied up with calling the Intel® IPP libraries that are part of Intel® IPP.

To use valarrays in your source code, include the valarray header file, <valarray>. The <valarray> header
file is located in the path <installdir>/perf_header.

The following example shows a valarray addition operation (+) specialized through use of Intel's
implementation of valarray:

#include <valarray>
void test( )
{

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

494



    std::valarray<float> vi(N), va(N);
    …
    vi = vi + va;  //array addition
    …
}

NOTE
To use the static merged library containing all CPU-specific optimized versions of the library code, you
need to call the ippStaticInit function first, before any Intel® IPP calls. This ensures automatic
dispatch to the appropriate version of the library code for Intel® processor and the generic version of
the library code for non-Intel processors at runtime. If you do not call ippStaticInit first, the
merged library will use the generic instance of the code. If you are using the dynamic version of the
libraries, you do not need to call ippStaticInit.

Compiling valarray Source Code
To compile your valarray source code, the compiler option, /Quse-intel-optimized-headers (for
Windows) or -use-intel-optimized-headers (for Linux), is used to include the required valarray header
file and all the necessary Intel® IPP library files.

The following examples illustrate how to compile and link a program to include the Intel valarray replacement
header file and link with the Intel® IPP libraries. Refer to the Intel® IPP documentation for details.

In the following examples, the merged libraries use a static library that contains all the CPU-specific variants
of the library code.

Linux Examples
The following command line performs a one-step compilation for a system based on Intel® 64 architecture,
running Linux OS:

icpx -use-intel-optimized-headers source.cpp
The following command lines perform separate compile and link steps for a system based on Intel® 64
architecture, running Linux OS:

so (dynamic):

icpx -use-intel-optimized-headers -c source.cpp
icpx source.o -use-intel-optimized-headers -shared-intel

Merged (static):

icpx -use-intel-optimized-headers -c source.cpp
icpx source.o -use-intel-optimized-headers

Windows Examples
The following command line performs a one-step compilation for a system based on IA-32 architecture,
running Windows OS:

icx /Quse-intel-optimized-headers source.cpp
The following command lines perform separate compile and link steps for a system based on IA-32
architecture, running Windows OS:

Compiler Reference   

495



DLL (dynamic):

icx /Quse-intel-optimized-headers /c source.cpp
icx source.obj /Quse-intel-optimized-headers

Merged (static):

icx /Quse-intel-optimized-headers /Qipp-link:static /c source.cpp
icx source.obj /Quse-intel-optimized-headers /Qipp-link:static

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Intel's C++ Asynchronous I/O Extensions for Windows
Intel's C/C++ asynchronous input/output (Intel's C/C++ AIO) extensions, like library functions or classes,
can be used to improve the performance of C/C++ applications by executing I/O operations in asynchronous
mode. The extensions initiate I/O operation and immediately resume normal tasks while the I/O operations
are executed in parallel.

Intel's C/C++ asynchronous I/O extensions are supported on IA-32 architecture-based (C/C++ only) and
Intel® 64 architecture-based Windows platforms.

Intel's C/C++ AIO library functions and template class are implemented in the libicaio.lib library. This
library is supplied as part of the Intel® oneAPI DPC++/C++ Compiler package and is installed into the
common directory: <install-dir>/lib.

Types of Intel's C/C++ Asynchronous I/O Extensions
Intel's C/C++ asynchronous I/O extensions comprise the following:

• Asynchronous I/O Library: A set of POSIX-based asynchronous I/O library functions, supported on
Windows operating systems, for applications written in C/C++ language. The interface file is aio.h.

• Asynchronous I/O Template Class: An asych_class template class, supported on Windows operating
systems, for applications written in C++ language. This template class can be used to introduce
asynchronous execution of I/O operations with the Standard Template Library's (STL's) streams classes.
The interface file is aiostream.h.

See Also
Intel's C++ Asynchronous I/O Library for Windows
Intel's C++ Asynchronous I/O Class for Windows

Intel's C++ Asynchronous I/O Library for Windows
Intel's C/C++ asynchronous I/O (AIO) library implementation for the Windows operating system (on IA-32
(C/C++ only) and Intel® 64 platforms) is similar to the POSIX AIO library implementation for the Linux
operating system.

The differences between Intel's C/C++ AIO Windows OS implementation and the standard POSIX AIO
implementation are listed below:

• In struct aiocb,
• The Windows OS compatible type HANDLE replaces the POSIX AIO type unsigned int for the file

descriptor aio_fildes.
• The type intptr_t replaces the POSIX AIO types ssize_t and __off_t.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

496

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


• The structure specifying the signal event descriptor, struct sigevent is similar to the Linux operating
system implementation of the POSIX AIO library. It differs from the Linux implementation in the following
ways:

• Signal notification and non-notification for thread call-back is supported
• Signal notification on completion of the AIO operation is not supported

This is true for programs that were already written for Linux/Unix and ported to Windows OS that wish
to setup an AIO completion handler without the name of the handler set in the aiocb struct.
Because of the way that signals are supported in Windows, this is impossible to implement. For new
applications, or to port existing applications, the programmer should set the name of the handler
before calling the aio_read or aio_write routines. For example:

static void aio_CompletionRoutine(sigval_t sigval)
{
    // … code …
}

… code …

my_aio.aio_sigevent.sigev_notify          = SIGEV_THREAD;
my_aio.aio_sigevent.sigev_notify_function = aio_CompletionRoutine;

NOTE
The POSIX AIO library and the Microsoft SDK provide similar AIO functions. The main difference
between the POSIX AIO functions and the Windows operating system-based AIO functions is that while
POSIX allows you to execute AIO operations with any file, the Windows operating system executes AIO
operations only with files flagged with FILE_FLAG_OVERLAPPED.

Intel's asynchronous I/O library functions listed below are all based on POSIX AIO functions. They are
defined in the aio.h file.

• aio_read()
• aio_write()
• aio_suspend()
• aio_error()
• aio_return()
• aio_fsync()
• aio_cancel()
• lio_listio()

aio_read
Performs an asynchronous read operation.

Syntax

int aio_read(struct aiocb *aiocbp);

Description

The aio_read() function requests an asynchronous read operation, calling the function,

"ReadFile(hFile, lpBuffer, nNumberOfBytesToRead, lpNumberOfBytesRead, NULL);" 
where,

• hFile is given by aiocbp->aio_fildes
• lpBuffer is given by aiocbp->aio_buf
• nNumberOfBytesToRead is given by aiocbp->aio_nbytes

Compiler Reference   

497



Use the function aio_return() to retrieve the actual bytes read in lpNumberOfBytesRead.

Use the extension aiocb->aio_offset == (intptr_t)-1 to start the read operation after the last read record.
This extension avoids extra file positioning and enhances performance.

Returns

0: On success

-1: On error

To get the correct error code, use errno. To get the error that occurred during asynchronous read operation,
use aio_error() function.

See Also
Example Code for aio_read()

aio_write
Performs an asynchronous write operation.

Syntax

int aio_write(struct aiocb *aiocbp);

Description

The aio_write() function requests an asynchronous write operation, calling the function,

"WriteFile(hFile, lpBuffer, nNumberOfBytesToWrite, lpNumberOfBytesWritten, NULL); 
where,

• hFile is given by aiocbp->aio_fildes
• lpBuffer is given by aiocbp->aio_buf
• nNumberOfBytesToWrite is given by aiocbp->aio_nbytes

Use the function aio_return() to retrieve the actual bytes written in lpNumberOfBytesWritten.

Use the extension aiocb->aio_offset == (intptr_t)-1 to start the write operation after the last written record.
This extension avoids extra file positioning and enhances performance.

Returns

0: On success

-1: On error

To get the correct error code, use errno. To get the error that occurred during asynchronous write operation,
use aio_error() function.

See Also
Example Code for aio_write()

Example for aio_read and aio_write Functions
The example illustrates the performance gain of the asynchronous I/O usage in comparison with synchronous
I/O usage. In the example, 5.6 MB of data is asynchronously written with the main program computation,
which is the scalar multiplication of two vectors with some normalization.

С-source File Executing a Scalar Multiplication

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
 

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

498



double do_compute(double A, double B, int arr_len)
{
  int i;
  double   res = 0;
  double  *xA = malloc(arr_len * sizeof(double));
  double  *xB = malloc(arr_len * sizeof(double));
  if ( !xA || !xB )
   abort();
   for (i = 0; i < arr_len; i++) {
    xA[i] = sin(A);
    xB[i] = cos(B);
    res = res + xA[i]*xA[i];
   }
  free(xA);
  free(xB);
 return res;
}

C-main-source File Using Asynchronous I/O Implementation (Example One)

#define DIM_X   123/*123*/
#define DIM_Y   70000
double  aio_dat[DIM_Y /*12MB*/] = {0};
double  aio_dat_tmp[DIM_Y /*12MB*/];

#include <stdio.h>
#include <aio.h>

typedef struct aiocb  aiocb_t;
   aiocb_t   my_aio;
   aiocb_t  *my_aio_list[1] = {&my_aio};
   
int main()
{
  double do_compute(double A, double B, int arr_len);
  int i, j;
  HANDLE fd = CreateFile("aio.dat",
  GENERIC_READ | GENERIC_WRITE,
  FILE_SHARE_READ,
  NULL,
  OPEN_ALWAYS,
  FILE_ATTRIBUTE_NORMAL,
  NULL);
/* Do some complex computation */
for (i = 0; i < DIM_X; i++) {
 for ( j = 0; j < DIM_Y; j++ )
 aio_dat[j] = do_compute(i, j, DIM_X);
 
  if (i) aio_suspend(my_aio_list, 1, 0);
  my_aio.aio_fildes = fd;
  my_aio.aio_buf    = memcpy(aio_dat_tmp, aio_dat, sizeof(aio_dat_tmp));
  my_aio.aio_nbytes = sizeof(aio_dat_tmp);
  my_aio.aio_offset = (intptr_t)-1;
  my_aio.aio_sigevent.sigev_notify = SIGEV_NONE;
  
  if ( aio_write((void*)&my_aio) == -1 ) {
  printf("ERROR!!! %s\n", "aio_write()==-1");
  abort();}
  }

Compiler Reference   

499



 aio_suspend(my_aio_list, 1, 0);
 return 0;
}

C-main-source File Using Asynchronous I/O Implementation (Example Two)

// icx -c do_compute.c
// icx aio_sample2.c do_compute.obj
// aio_sample2.exe

#define DIM_X   123
#define DIM_Y    70
double  aio_dat[DIM_Y] = {0};
double  aio_dat_tmp[DIM_Y];
static volatile int aio_flg = 1;

#include <aio.h>
typedef struct aiocb  aiocb_t;
aiocb_t               my_aio;
#define WAIT { while (!aio_flg); aio_flg = 0; }
#define aio_OPEN(_fname )\
CreateFile(_fname,                       \
           GENERIC_READ | GENERIC_WRITE, \
           FILE_SHARE_READ,              \
           NULL,                         \
           OPEN_ALWAYS,                  \
           FILE_ATTRIBUTE_NORMAL,        \
           NULL)

static void aio_CompletionRoutine(sigval_t sigval)
{
    aio_flg = 1;
}

int main()
{
    double do_compute(double A, double B, int arr_len);
    int      i, j, res;
    char    *fname = "aio_sample2.dat";
    HANDLE   aio_fildes = aio_OPEN(fname);

    my_aio.aio_fildes = aio_fildes;
    my_aio.aio_nbytes = sizeof(aio_dat_tmp);
    my_aio.aio_sigevent.sigev_notify          = SIGEV_THREAD;
    my_aio.aio_sigevent.sigev_notify_function = aio_CompletionRoutine;

    /*
    ** writing
    */
    my_aio.aio_offset = -1;
    printf("Writing\n");
    for (i = 0; i < DIM_X; i++) {
        for (j = 0; j < DIM_Y; j++)
            aio_dat[j] = do_compute(i, j, DIM_X);
        WAIT;
        my_aio.aio_buf = memcpy(aio_dat_tmp, aio_dat, sizeof(aio_dat_tmp));
        res = aio_write(&my_aio);
        if (res) {printf("res!=0\n");abort();}
    }

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

500



    //
    // flushing
    //
    printf("Flushing\n");
    WAIT;
    res = aio_fsync(O_SYNC, &my_aio);
    if (res) {printf("res!=0\n");abort();}
    WAIT;

    //
    // reading
    //
    printf("Reading\n");
    my_aio.aio_offset = 0;
    my_aio.aio_buf    = (volatile char*)aio_dat_tmp;
    for (i = 0; i < DIM_X; i++) {
        aio_read(&my_aio);
        for (j = 0; j < DIM_Y; j++)
            aio_dat[j] = do_compute(i, j, DIM_X);
        WAIT;
        res = aio_return(&my_aio);
        if (res != sizeof(aio_dat)) {
            printf("aio_read() did read %d bytes, expecting %d bytes\n", res, sizeof(aio_dat));
        }

        for (j = 0; j < DIM_Y; j++)
            if ( aio_dat[j] != aio_dat_tmp[j] )
                {printf("ERROR: aio_dat[j] != aio_dat_tmp[j]\n I=%d J=%d\n", i, j); abort();}
        my_aio.aio_offset += my_aio.aio_nbytes;
    }

    CloseHandle(aio_fildes);

    printf("\nDone\n");

return 0;
}

See Also
aio_read()

aio_write()

aio_suspend
Suspends the calling process until one of the
asynchronous I/O operations completes.

Syntax

int aio_suspend(const struct aiocb * const cblist[], int n, const struct timespec
*timeout);

Arguments

cblist[] Pointer to a control block on which I/O is initiated

Compiler Reference   

501



n Length of cblist list

*timeout Time interval to suspend the calling process

Description

The aio_suspend() function is like a wait operation. It suspends the calling process until,

• At least one of the asynchronous I/O requests in the list cblist of length n has completed
• A signal is delivered
• The time interval indicated in timeout is not NULL and has passed.

Each item in the cblist list must either be NULL (when it is ignored), or a pointer to a control block on which
I/O was initiated using aio_read(), aio_write(), or lio_listio() functions.

Returns

0: On success

-1: On error

To get the correct error code, use errno.

See Also
Example Code for aio_suspend()

Example for aio_suspend Function
The following example illustrates a wait operation execution using the aio_suspend() function.

int aio_ex_2(HANDLE fd)
{ 
    static struct aiocb   aio[2]; 
    static struct aiocb  *aio_list[2] = {&aio[0], &aio[1]}; 
    int i, ret; 
 
/* Data initialization */ 
IC_AIO_DATA_INIT(aio[0], fd, "rec#1\n", strlen("rec#1\n"), 0)
IC_AIO_DATA_INIT(aio[1], fd, "rec#2\n", strlen("rec#2\n"), aio[0].aio_nbytes)

/* Asynch-write */
if (aio_write(&aio[0]) == -1) return errno;
if (aio_write(&aio[1]) == -1) return errno;

/* Do some complex computation */ 
printf("do_compute(1000, 1.123)=%f", do_compute(1000, 1.123));

/* do the wait operation using sleep() */ 
ret = aio_suspend(aio_list, 2, 0); 
if (ret == -1) return errno; 

return 0; 
}/* aio_ex_2 */

Result upon execution:

-bash-3.00$ ./a.out
-bash-3.00$ cat dat
rec#1
rec#2

Remarks:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

502



1. In the example, the IC_AIO_DATA_INIT is defined as follows:

#define IC_AIO_DATA_INIT(_aio, _fd, _dat, _len, _off)\
  {memset(&_aio, 0, sizeof(_aio)); \
  _aio.aio_fildes = _fd;          \
  _aio.aio_buf    = _dat;         \
  _aio.aio_nbytes = _len;         \
  _aio.aio_offset = _off;}

2. The file descriptor fd is obtained as:

HANDLE fd = CreateFile("dat",
  GENERIC_READ | GENERIC_WRITE,
  FILE_SHARE_READ,
  NULL,
  OPEN_ALWAYS,
  FILE_ATTRIBUTE_NORMAL/*|FILE_FLAG_OVERLAPPED*/,
  NULL);

See Also
aio_suspend()

aio_error
Returns error status for asynchronous I/O requests.

Syntax

int aio_error(const struct aiocb *aiocbp);

Arguments

*aiocbp Pointer to control block from where asynchronous I/O
request is generated

Description

The aio_error() function returns the error status for the asynchronous I/O request in the control block,
which is pointed to by aiocbp.

Returns

EINPROGRESS: When asynchronous I/O request is not completed

ECANCELED: When asynchronous I/O request is cancelled

0: On success

Error value: On error

To get the correct error value/code, use errno. This is the same error value returned when an error occurs
during a ReadFile(), WriteFile(), or a FlushFileBuffers() operation.

See Also
Example Code for aio_error()

aio_return
Returns the final return status for the asynchronous
I/O request.

Syntax

ssize_t aio_return(struct aiocb *aiocbp);

Compiler Reference   

503



Arguments

*aiocbp Pointer to control block from where asynchronous I/O
request is generated

Description

The aio_return function returns the final return status for the asynchronous I/O request with control block
pointed to by aiocbp.

Call this function only once for any given request, after aio_error() returns a value other than
EINPROGRESS.

Returns

Return value for synchronous ReadFile()/WriteFile()/FlushFileBuffer() requests: When
asynchronous I/O operation is completed

Undefined return value: When asynchronous I/O operation is not completed

Error value: When an error occurs

To get the correct error code/value, use errno.

See Also
Example Code for aio_return()

Example for aio_error and aio_return Functions
The following example illustrates how the aio_error() and aio_return() functions can be used.

int aio_ex_3(HANDLE fd)
{
 static struct aiocb aio;
 static struct aiocb *aio_list[] = {&aio};
 int    ret;
 char  *dat = "Hello from Ex-3\n";
  
/* Data initialization and asynchronously writing */
 
 IC_AIO_DATA_INIT(aio, fd, dat, strlen(dat), 0);
 if (aio_write(& aio) == -1) return errno;
 
 ret = aio_error(&aio);
 if ( ret == EINPROGRESS ) {
 fprintf(stderr, "ERRNO=%d STR=%s\n", ret, strerror(ret));
 
 ret = aio_suspend(aio_list, 1, NULL);
 if (ret == -1) return errno;}
 else if (ret)
 return ret;
 
 ret = aio_error(&aio);
 if (ret) return ret;
 
 ret = aio_return(&aio);
 printf("ret=%d\n", ret);
 
 return 0;
}/* aio_ex_3 */

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

504



Result upon execution:

-bash-3.00$ ./a.out
ERRNO=115 STR=Operation now in progress
ret=16
-bash-3.00$ cat dat
Hello from Ex-3

Remarks:

1. In the example, the IC_AIO_DATA_INIT is defined as follows:

#define IC_AIO_DATA_INIT(_aio, _fd, _dat, _len, _off)\
 {memset(&_aio, 0, sizeof(_aio)); \
 _aio.aio_fildes = _fd;  \
 _aio.aio_buf    = _dat;  \
 _aio.aio_nbytes = _len;  \
 _aio.aio_offset = _off;}

2. The file descriptor fd is obtained as:

HANDLE fd  = CreateFile("dat",
  GENERIC_READ | GENERIC_WRITE,
  FILE_SHARE_READ,
  NULL,
  OPEN_ALWAYS,
  FILE_ATTRIBUTE_NORMAL/*|FILE_FLAG_OVERLAPPED*/,
  NULL);

See Also
aio_error()

aio_return()

aio_fsync
Synchronizes all outstanding asynchronous I/O
operations.

Syntax

int aio_fsync(int op, struct aiocb *aiocbp);

Arguments

op Type of synchronization request operation

*aiocbp Pointer to control block from where asynchronous I/O
request is generated

Description

The aio_fsync() function performs a synchronization request operation on all outstanding asynchronous
I/O operations associated with aiocbp->aio_fildes.

Returns

0: On successfully performing a synchronization request.

-1: On error; to get the correct error code, use errno.

Compiler Reference   

505



aio_cancel
Cancels outstanding asynchronous I/O requests for
the file descriptor fd.

Syntax

int aio_cancel(HANDLE fd, struct aiocb *aiocbp);

Arguments

fd File descriptor

*aiocbp Pointer to control block from where asynchronous I/O
request is generated

Description

The aio_cancel() function cancels outstanding asynchronous I/O requests for the file descriptor fd. If
aiocbp is NULL, all outstanding asynchronous I/O requests are cancelled. If aiocbp is not NULL, only the
requests described by the control block pointed to by aiocbp are cancelled.

Normal asynchronous notification occurs for cancelled requests. The request return status is set to -1, and
the request error status is set to ECANCELED. The control block of requests that cannot be cancelled is not
changed.

Unspecified results occur if aiocbp is not NULL and the fd differs from the file descriptor with which the
asynchronous operation was initiated.

Returns

AIO_CANCELLED: When all specified requests are cancellled successfully.

AIO_NOTCANCELLED: When at least one of the specified requests is still in process of being cancelled;
check the status of request using aio_error.

AIO_ALLDONE: When all specified requests were completed before cancel call was placed.

-1: When some error occurs. To get the correct error code, use errno.

See Also
Example Code for aio_cancel()

Example for aio_cancel Function
The following example illustrates how aio_cancel() function can be used.

int aio_ex_4(HANDLE fd)
{
  static struct aiocb   aio;
  static struct aiocb  *aio_list[] = {&aio};
  int    ret;
  char  *dat = "Hello from Ex-4\n";
 
 printf("AIO_CANCELED=%d AIO_NOTCANCELED=%d\n", 
 AIO_CANCELED,   AIO_NOTCANCELED);
     
/* Data initialization and asynchronously writing */
     
 IC_AIO_DATA_INIT(aio, fd, dat, strlen(dat), 0);
 if (aio_write(&aio) == -1) return errno;
     

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

506



 ret = aio_cancel(fd, &aio);
 if ( ret == AIO_NOTCANCELED ) {
 fprintf(stderr, "ERRNO=%d STR=%s\n", ret, strerror(ret));
 ret = aio_suspend(aio_list, 1, NULL);
 if (ret == -1) return errno;}
 
 ret = aio_cancel(fd, &aio);
 if ( ret == AIO_CANCELED )
 fprintf(stderr, "ERRNO=%d STR=%s\n", ret, strerror(ret));
 else if (ret) return ret;
 
 return 0;
}/* aio_ex_4 */

Result upon execution:

-bash-3.00$ ./a.out
AIO_CANCELED=0 AIO_NOTCANCELED=1
ERRNO=1 STR=Operation not permitted
-bash-3.00$ cat dat
Hello from Ex-4
-bash-3.00$

Remarks:

1. In the example, the IC_AIO_DATA_INIT is defined as follows:

#define IC_AIO_DATA_INIT(_aio, _fd, _dat, _len, _off)\
 {memset(&_aio, 0, sizeof(_aio)); \
 _aio.aio_fildes = _fd;          \
 _aio.aio_buf    = _dat;         \
 _aio.aio_nbytes = _len;         \
 _aio.aio_offset = _off;}

2. The file descriptor fd is obtained as:

HANDLE fd = CreateFile("dat",
  GENERIC_READ | GENERIC_WRITE,
  FILE_SHARE_READ,
  NULL,
  OPEN_ALWAYS,
  FILE_ATTRIBUTE_NORMAL/*|FILE_FLAG_OVERLAPPED*/,
  NULL);

See Also
aio_cancel()

lio_listio
Performs an asynchronous read operation.

Syntax

int lio_listio(int mode, struct aiocb *list[], int nent, struct sigevent *sig);

Arguments

mode Takes following values declared in <aio.h> file:

Compiler Reference   

507



• LIO_WAIT: Use when you want the function to
return only after completing I/O operations
(synchronous I/O operations)

• LIO_NOWAIT: Use when you want the function to
return as soon as I/O operations are queued
(asynchronous I/O requests)

*list[] Array of the aiocb pointers specifying the submitted
I/O requests; NULL elements in the array are ignored

nent Number of elements in the array

*sig Determines if asynchronous notification is sent after
all I/O operations completes; takes following values:

• 0: Asynchronous notification occurs; a queued
signal, with an application-defined value, is
generated when an asynchronous I/O request
occurs

• 1: Asynchronous notification does not occur even
when asynchronous I/O requests are processed

• 2: Asynchronous notification occurs; a notification
function is called to perform notification

Description

The lio_listio() function initiates a list of I/O requests with a single function call.

The mode argument determines whether the function returns when all the I/O operations are completed, or
as soon as the operations are queued.

If the mode argument is LIO_WAIT, the function waits until all I/O operations are complete. The sig
argument is ignored in this case.

If the mode argument is LIO_NOWAIT, the function returns immediately. Asynchronous notification occurs
according to the sig argument after all the I/O operations complete.

Returns

When mode=LIO_NOWAIT the lio_listio() function returns:

• 0: I/O operations are successfully queued
• -1: Error; I/O operations not queued; to get the proper error code, use errno.

When mode=LIO_WAIT the lio_listio() function returns:

• 0: I/O operations specified completed successfully
• -1: Error; I/O operations not completed; to get the proper error code, use errno.

See Also
Example Code for lio_listio()

Example for lio_listio Function
The following example illustrates how the lio_listio() function can be used.

int aio_ex_5(HANDLE fd)
{
  static struct aiocb   aio[2];
  static struct aiocb  *aio_list[2] = {&aio[0], &aio[1]};
   int               i, ret;

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

508



 
/*
 ** Data initialization and Synchronously writing
*/
 IC_AIO_DATA_INIT(aio[0], fd, "rec#1\n", strlen("rec#1\n"), 0)
 IC_AIO_DATA_INIT(aio[1], fd, "rec#2\n", strlen("rec#2\n"),
 aio[0].aio_nbytes)
 aio[0].aio_lio_opcode = aio[1].aio_lio_opcode = LIO_WRITE;
 ret = lio_listio(LIO_WAIT, aio_list, 2, 0);
 if (ret) return ret;
 
 return 0;
}/* aio_ex_5 */

Result upon execution:

-bash-3.00$ ./a.out
-bash-3.00$ cat dat
rec#1
rec#2
-bash-3.00$

Remarks:

1. In the example, the IC_AIO_DATA_INIT is defined as follows:

#define IC_AIO_DATA_INIT(_aio, _fd, _dat, _len, _off)\
  {memset(&_aio, 0, sizeof(_aio)); \
   _aio.aio_fildes = _fd;          \
   _aio.aio_buf    = _dat;         \
   _aio.aio_nbytes = _len;         \
   _aio.aio_offset = _off;}

2. The file descriptor fd is obtained as:

HANDLE fd = CreateFile("dat",
   GENERIC_READ | GENERIC_WRITE,
   FILE_SHARE_READ,
   NULL,
   OPEN_ALWAYS,
   FILE_ATTRIBUTE_NORMAL/*|FILE_FLAG_OVERLAPPED*/,
   NULL);

3. The aio_lio_opcode refers to the field of each aiocb structure that specifies the operation to be
performed. The supported operations are LIO_READ (do a 'read' operation), LIO_WRITE (do a 'write'
operation), and LIO_NOP (do no operation); these symbols are defined in <aio.h>.

See Also
lio_listio()

Asynchronous I/O Function Errors
This topic only applies to Windows* OS.

The errno macro is used to obtain the errors that occur during asynchronous request functions such as
aio_read(), aio_write(), aio_fsync(), and lio_listio() or asynchronous control functions, such as
aio_cancel(), aio_error(), aio_return(), and aio_suspend().

The following example illustrates how errno can be used.

#include <stdio.h>
#include <stdlib.h>
#include <aio.h>

Compiler Reference   

509



 
struct aiocb    my_aio;
struct aiocb   *my_aio_list[1] = {&my_aio};
 
int main()
{
  int   res;
  double  arr[123456];
 timespec_t   my_t = {1, 0};
     
/* Data initialization */
 my_aio.aio_fildes = CreateFile("dat",
   GENERIC_READ | GENERIC_WRITE,
   FILE_SHARE_READ,
   NULL,
   OPEN_ALWAYS,
   FILE_ATTRIBUTE_NORMAL,
   NULL);
 my_aio.aio_buf    = (volatile char *)arr;
 my_aio.aio_nbytes = sizeof(arr);
 
/* Do asynchronous writing with computation overlapping */
 aio_write(&my_aio);
 do_compute(arr, 123456);
 
/* Suspend the asynchronous writing for 1 sec */
 res = aio_suspend(my_aio_list, 1, &my_t);
 if ( res ) {
 
/* The call was ended by timeout, before the indicated operations had completed. */
  if ( errno == EAGAIN ) {
  res = aio_suspend(my_aio_list, 1, 0);
  if ( res ) {
  printf("aio_suspend returned non-0\n"); return errno;}
  }
  else
  if ( res ) {
  printf("aio_suspend returned neither 0 nor EAGAIN\n");
  return errno;
  }
 }
 
 CloseHandle(my_aio.aio_fildes);
 printf("\nPass\n");
 
 return 0;
}

In the example, the program executes an asynchronous write operation, using aio_write(), overlapping
with some computation, the do_compute() function execution. The pending write operation is suspended for
one second using aio_suspend().

On successful execution of the asynchronous write operation, zero is returned. EAGAIN or any other error
value is returned when the call is ended by timeout before the indicated operation has completed.

You can check EAGAIN using the errno macro.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

510



Intel's C++ Asynchronous I/O Class for Windows
Intel's C++ asynchronous I/O template class, async_class, is an implementation for the Windows operating
system on IA-32 (for C/C++ only) and Intel® 64 architectures.

The async_class template class allows users to perform I/O operations asynchronously to the main
program thread. In particular, the async_class template class can be used to introduce asynchronous
execution of I/O operations with the STL streams classes. Users can quickly switch any of the I/O operations
of the STL streams to asynchronous mode with minimal changes to the application code.

The template class async_class is defined in the aiostream.h file.

See Also
Details of template class async_class

Template Class async_class
This topic only applies to Windows* OS.

Intel's C++ asynchronous I/O class implementation contains two main classes within the async namespace:
the async_class template class and the thread_control base class.

The header/typedef definitions are as follows:

namespace async {

template<class A>
class async_class:
public thread_control, public A
}

The template class async_class inherits support for asynchronous execution of I/O operations that are
integrated within the base thread_control class.

All functionality to control asynchronous execution of a queue of STL stream operations is encapsulated in
the base class thread_control and is inherited by template class async_class.

In most cases it is enough to add the header file aiostream.h to the source file and declare the file object
as an instance of the new template class async:async_class. The initial stream class must be the
parameter for the template class. Consequently, the defined output operator << and input operator >> are
executed asynchronously.

NOTE
The header file aiostream.h includes all necessary declarations for the STL stream I/O operations to
add asynchronous functionality of the thread_control class. It also contains the necessary
declarations of extensions for the standard C++ STL streams I/O operations: output operator >> and
input operator <<.

You can call synchronization method wait() to wait for completion of any I/O operations with the file object.
If the wait() method is not called explicitly, it is called implicitly in the object destructor.

Public Interface of Template Class async_class
The following methods define the public interface of the template class async_class:

• get_last_operation_id()
• wait()
• get_status()
• get_last_error()

Compiler Reference   

511



• get_error_operation_id()
• stop_queue()
• resume_queue()
• clear_queue()

Library Restrictions
Intel's C++ asynchronous I/O template class does not control the integrity or validity of the objects during
asynchronous operation. Such control should be done by the user.

For application stability in the Visual Studio 2003 environment, link the C++ part of libacaio.lib library
with multi-threaded msvcrt run-time library. Use /MT or /MTd compiler option.

See Also
Example of Using async_class Template Class

get_last_operation_id
Returns ID of the last added operation.

Syntax

void get_last_operation_id(void)

Description

This method returns the ID of the last added operation. Use this ID to get the status of operation or to wait
for the operation to complete.

Return Values

Nothing

wait
Stops execution of current thread.

Syntax

int wait(void)
int wait(unsigned int operation_id)

Description

Method wait(void) stops execution of the current thread until all the asynchronous operations are
completed.

Method wait(operation_id) stops execution of the current thread until the operation identified by
operation_id is completed.

Return Values

-1 : On error during queue execution

Call the get_last_error() method to check the error code.

get_status
Returns status of specified operation.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

512



Syntax

void get_status(unsigned int operation_id)

Description

This method returns the status of an operation, specified by operation_id, without stopping current thread
execution.

Return Values

STATUS_WAIT: Operation is waiting for execution.

STATUS_COMPLETED: Operation finished execution.

STATUS_ERROR: An error occurred during operation execution.

STATUS_EXECUTE: Operation is executing.

STATUS_BLOCKED: Execution of the queue was blocked after some earlier errors.

get_last_error
Returns the error code of the last failed operation.

Syntax

unsigned int get_last_error()

Description

This method returns the error code of the last failed operation. If the error occurs during the execution of an
asynchronous operation, the asynchronous thread stops executing the queue of asynchronous operations and
waits for new user requests.

To obtain the error status, use the wait() and get_status() methods.

Return Values

Error code of last failed operation.

This error code is equal to the value returned by GetLastError() function on the Windows* platform. If the
error occurs during the execution of an asynchronous operation, the asynchronous thread stops executing
the queue of asynchronous operations and waits for new user requests.

get_error_operation_id
Returns the ID of the last failed operation.

Syntax

unsigned int get_error_operation_id()

Description

This method returns the ID of the last failed operation. If the error occurs during the execution of an
asynchronous operation, the asynchronous thread stops executing the queue of the asynchronous operations
and waits for new user requests.

To obtain the error status of the failed operation, use the wait() and get_status() methods.

Return Values

ID of last failed operation.

Compiler Reference   

513



stop_queue
Stops queue execution.

Syntax

int stop_queue()

Description

This method allows you to control the asynchronous operations queue by stopping queue execution.

Return Values

0: On success

-1: On error

resume_queue
Resumes queue execution.

Syntax

int resume_queue()

Description

This method allows you to control the asynchronous operations queue by resuming queue execution.

Return Values

0: On success

-1: On error

clear_queue
Clears stopped or error-interrupted queues.

Syntax

void push_back_operation(class base_operation*)

Description

This method clears the content of stopped queues or queues interrupted by errors.

Return Values

0: On success

-1: On error

Example for Using async_class Template Class
The following example illustrates how Intel's C++ asynchronous I/O template class can be used. Consider
the following code that writes arrays of floats to an external file.

// Data is array of floats
std::vector<float>  v(10000);
 
// User defines new operator << for std::vector<float> type
std::ofstream& operator << (std::ofstream & str, std::vector<float> & vec)

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

514



{
// User’s output actions
...
 }
...
// Output file declaration – object of standard ofstream STL class
std::ofstream external_file(“output.txt”);
...
// Output operations
external_file << v;

The following code illustrates the changes to be made to the above code to execute the output operation
asynchronously.

// Add new header to support STL asynchronous IO operations
 
#include <aiostream.h>
...
 
std::vector<float>  v(10000); 
 
std::ofstream& operator << (std::ofstream & str, std::vector<float> & vec)
{... }
...
// Declare output file as the instance of new async::async_class template
// class.
// New inherited from STL ofstream type is declared
async::async_class<std::ofstream> external_file(“output.txt”);
...
external_file << v;
...
// Add stop operation, to wait the completion of all asynchronous IO //operations
external_file.wait();
…

Performance Recommendations

It is recommended not to use asynchronous mode for small objects. For example, do not use asynchronous
mode when the output standard type value in a loop where execution of other loop operations takes less time
than output of the same value to the STL stream.

However, if you can find the balance between output of small data and its previous calculation inside the
loop, you still have some stable performance improvement.

For example, in the following code, the program reads two matrices from external files, calculates the
elements of a third matrix, and prints out the elements inside the loop.

#define ARR_LEN 900
{
  std::ifstream fA("A.txt");
  fA >> A;
  std::ifstream fB("B.txt");
  fB >> B;
  std::ofstream fC(f);
 
  for(int i=0; i< ARR_LEN; i++)
   {
    for(int j=0; j< ARR_LEN; j++)
    {
     C[i][j] = 0;
     for(int k=0; k < ARR_LEN; k++)

Compiler Reference   

515



     C[i][j]+ = A[i][k]*B[k][j]*sin((float)(k))*cos((float)(-k))*sin((float)(k+1)
     )*cos((float)(-k-1));
     fC << C[i][j] << std::endl;
    }
   }
}

By increasing matrix size, you can also achieve performance improvement during parallel data reading from
two files.

IEEE 754-2008 Binary Floating-Point Conformance Library
The Intel® IEEE 754-2008 Binary Floating-Point Conformance Library provides all operations mandated by the
IEEE 754-2008 standard for binary32 and binary64 binary floating-point interchange formats.

Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Intel® IEEE 754-2008 Binary Floating-Point Conformance Library and Usage
The Intel® IEEE 754-2008 Binary Floating-Point Conformance Library provides all operations mandated by the
IEEE 754-2008 standard for binary32 and binary64 binary floating-point interchange formats. The minimum
requirements for correct operation of the library are an Intel® Pentium® 4 processor and an operating system
supporting Intel® Streaming SIMD Extensions 2 (Intel® SSE2) instructions.

The library supports all four rounding-direction attributes mandated by the IEEE 754-2008 standard for
binary floating-point arithmetic: roundTiesToEven, roundTowardPositive, roundTowardNegative,
roundTowardZero. The additional rounding-direction attribute, roundTiesToAway, is not required by the
standard, hence, not fully supported in this library. The default rounding-direction attribute is set as
roundTiesToEven.

The library also supports all mandated exceptions (invalid operation, division by zero, overflow, underflow,
and inexact) and sets flags accordingly under default exception handling. Alternate exception handling, which
is optional in the standard, is not supported.

The bfp754.h header file includes prototypes for the library functions. For a complete list of the functions
available, refer to the Function List. The user also needs to specify linker option -lbfp754 and floating-point
semantics control option -fp-model strict in order to use the library.

Note: The libbfp754 library is not available for SYCL.

Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

Operations
The IEEE standard 754-2008 defines four types of operations.

1. General-computational operations that produce correctly rounded floating-point or integer results.
These operations might signal the floating-point exceptions.

2. Quiet-computational operations that produce floating-point results. These operations do not signal any
floating-point exceptions.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

516

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


3. Signaling-computational operations that produce no floating-point results. These operations might
signal floating-point exceptions.

4. Non-computational operations that produce no floating-point results. These operations do not signal
floating-point exceptions.

Produce result Produce no result

Might signal FP exception General-computational Signaling-computational

Do not signal FP exception Quiet-computational Non-computational

The standard also distinguishes among operations by their floating-point operand formats and result format
for general-computational operations:

1. Homogenous general-computational operations whose floating-point operands and floating-point result
are in the same format.

2. formatOf general-computational operations whose floating-point operands and floating-point result have
different formats.

NOTE
The IEEE 754-2008 standard requires that all formatOf general-computational operations be computed
without any loss of precision before converting to the destination format. This may differ from how
these operations are implemented on most hardware and software.

For example, when all operands are in binary64 format and the destination format is binary32, most
hardware and software implementations would first compute an intermediate result rounded in
binary64 and then convert the intermediate result to binary32. This double rounding procedure may
produce a result different from what is defined in the standard under certain rounding mode. For
example: x = 0x3ff0000010000000 = 1.000000000000000000000001_2, y =
0x3ca0000000000000 = 1.0_2*2^(-53) x+y =
1.00000000000000000000000100000000000000000000000000001_2
When the rounding-direction attribute is set to roundTiesToEven, using double rounding procedure,
the addition result rounds to 1.000000000000000000000001_2 (0x3ff0000010000000) in
binary64, which would then round to 1 (0x3f800000) in binary32. On the other hand, according to
the standard, the addition result should round to 1.00000000000000000000001_2 (0x3f800001) in
binary32.

Data Types
The following table correlates the names of the formats used in defining operations in the standard with their
C99 types used in this library.

Format Name Definition C99 Type

binary32 IEEE 754-2008 binary32
interchange format

float

binary64 IEEE 754-2008 binary64
interchange format

double

int Integer operand formats int, unsigned int, long
long int, unsigned long
long int

int32 Signed 32-bit integer int

Compiler Reference   

517



Format Name Definition C99 Type

uint32 Unsigned 32-bit integer unsigned int

int64 Signed 64-bit integer long long int

uint64 Unsigned 64-bit integer unsigned long long int

boolean Boolean value represented by
generic integer type

int

enum Enumerated values of floating-
point class

int

Enumerated values of floating-
point radix

int

logBFormat Type for the destination of the
logB operation and the scale
exponent operand of the scaleB
operation

int

decimalCharacterSequence Decimal character sequence char*

hexCharacterSequence Hexadecimal-significand
character sequence

exceptionGroup Set of exceptions as a set of
booleans

int

flags Set of status flags int

binaryRoundingDirection Rounding direction for binary int

modeGroup Dynamically-specifiable modes int

void No explicit operand or result void

Use the Intel® IEEE 754-2008 Binary Floating-Point Conformance Library
Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

To use the library, include the header file, bfp754.h, in your program.

Here is an example program illustrating the use of the library on Linux* OS.

You cannot use these libraries with SYCL kernels.

//binary.c
#include <stdio.h>
#include <bfp754.h>
int main(){
  double a64, b64;
  float c32;
  a64 = 1.000000059604644775390625;
  b64 = 1.1102230246251565404236316680908203125e-16;
  c32 = __binary32_add_binary64_binary64(a64, b64);
  printf("The addition result using the libary: %8.8f\n", c32);
  c32 = a64 + b64;

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

518



  printf("The addition result without the libary: %8.8f\n", c32);
  return 0;
}

To compile binary.c, use the command:

icx -fp-model source -fp-model except binary.c –lbfp754
The output of a.out will look similar to the following:

The addition result using the libary: 1.00000012
The addition result without the libary: 1.00000000

See Also
Function List

Function List
Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

The Intel® IEEE 754-2008 Binary Conformance Library supports the following functions for homogeneous
general-computational operations:

Function Group Function IEEE standard equivalent
Homogeneous General-
Computational Operations Functions ilogb logB

maxnum maxNum
maxnum_mag maxNumMag
minnum minNum
minnum_mag minNumMag
next_down nextDown
next_up nextUp

rem remainder

round_integral_exact roundToIntegralExact
round_integral_nearest_away roundToIntegralTiesToAway
round_integral_nearest_even roundToIntegralTiesToEven
round_integral_negative roundToIntegralTowardNegat

ive
round_integral_positive roundToIntegralTowardPosit

ive
round_integral_zero roundToIntegralTowardZero
scalbn scaleB

General-Computational Operations
Functions add addition

binary32_to_binary64
binary64_to_binary32

convertFormat

div division

fma fusedMultiplyAdd

from_int32 convert

Compiler Reference   

519



Function Group Function IEEE standard equivalent

from_uint32
from_int64
from_uint64
from_hexstring convertFromHexCharacter
from_string convertFromDecimalCharacte

r
mul multiplication

sqrt squareRoot

sub subtraction

to_hexstring convertToHexCharacter

to_int32_ceil
to_uint32_ceil
to_int64_ceil
to_uint64_ceil

convertToIntegerTowardPosi
tive

to_int32_floor
to_uint32_floor
to_int64_floor
to_uint64_floor

convertToIntegerTowardNega
tive

to_int32_int
to_uint32_int
to_int64_int
to_uint64_int

convertToIntegerTowardZero

to_int32_rnint
to_uint32_rnint
to_int64_rnint
to_uint64_rnint

convertToIntegerTiesToEven

to_int32_xrnint
to_uint32_xrnint
to_int64_xrnint
to_uint64_xrnint

convertToIntegerExactTiesT
oEven

to_int32_rninta
to_uint32_rninta
to_int64_rninta
to_uint64_rninta

convertToIntegerTiesToAway

to_int32_xceil
to_uint32_xceil

convertToIntegerExactTowar
dPositive

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

520



Function Group Function IEEE standard equivalent

to_int64_xceil
to_uint64_xceil

to_int32_xfloor
to_uint32_xfloor
to_int64_xfloor
to_uint64_xfloor

convertToIntegerExactTowar
dNegative

to_int32_xint
to_uint32_xint
to_int64_xint
to_uint64_xint

convertToIntegerExactTowar
dZero

to_int32_xrninta
to_uint32_xrninta
to_int64_xrninta
to_uint64_xrninta

convertToIntegerExactTiesT
oAway

to_string convertToDecimalCharacter
Quiet-Computational Operations
Functions

abs abs
copy copy

copysign copySign
negate negate

Signaling-Computational Operations
Functions

quiet_equal compareQuietEqual
quiet_greater compareQuietGreater
quiet_greater_equal compareQuietGreaterEqual
quiet_greater_unordered compareQuietGreaterUnorder

ed
quiet_less compareQuietLess
quiet_less_equal compareQuietLessEqual
quiet_less_unordered compareQuietLessUnordered
quiet_not_equal compareQuietNotEqual
quiet_not_greater compareQuietNotGreater
quiet_not_less compareQuietNotLess
quiet_ordered compareQuietOrdered
quiet_unordered compareQuietUnordered
signaling_equal compareSignalingEqual
signaling_greater compareSignalingGreater
signaling_greater_equal compareSignalingGreaterEqu

al
signaling_greater_unordered compareSignalingGreaterUno

rdered
signaling_less compareSignalingLess
signaling_less_equal compareSignalingLessEqual
signaling_less_unordered compareSignalingLessUnorde

red

Compiler Reference   

521



Function Group Function IEEE standard equivalent
signaling_not_equal compareSignalingNotEqual
signaling_not_greater compareSignalingNotGreater
signaling_not_less compareSignalingNotLess

Non-Computational Operations
Functions class class

defaultMode defaultModes
getBinaryRoundingDirection getBinaryRoundingDirection
is754version1985 is754version1985
is754version2008 is754version2008
isCanonical isCanonical
isFinite isFinite
isInfinite isInfinite
isNaN isNaN
isNormal isNormal
isSignaling isSignaling
isSignMinus isSignMinus
isSubnormal isSubnormal
isZero isZero
lowerFlags lowerFlags
radix radix
raiseFlags raiseFlags
restoreFlags restoreFlags
restoreModes restoreModes
saveFlags saveAllFlags
saveModes saveModes

setBinaryRoundingDirection setBinaryRoundingDirection
testFlags testFlags
testSavedFlags testSavedFlags
totalOrder totalOrder
totalOrderMag totalOrderMag

Homogeneous General-Computational Operations Functions

Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

The Intel® IEEE 754-2008 Binary Conformance Library supports the following functions for homogeneous
general-computational operations:

round_integral_nearest_even
Description: The function rounds floating-point number x to its nearest integral value, with the halfway
(tied) case rounding to even.

Calling interface:
float __binary32_round_integral_nearest_even(float x);
double __binary64_round_integral_nearest_even(double x);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

522



round_integral_nearest_away
Description: The function rounds floating-point number x to its nearest integral value, with the halfway
(tied) case rounding away from zero.

Calling interface:
float __binary32_round_integral_nearest_away(float x);
double __binary64_round_integral_nearest_away(double x);

round_integral_zero
Description: The function rounds floating-point number x to the closest integral value toward zero.

Calling interface:
float __binary32_round_integral_zero(float x);
double __binary64_round_integral_zero(double x);

round_integral_positive
Description: The function rounds floating-point number x to the closest integral value toward positive
infinity.

Calling interface:
float __binary32_round_integral_positive(float x);
double __binary64_round_integral_positive(double x);

round_integral_negative
Description: The function rounds floating-point number x to the closest integral value toward negative
infinity.

Calling interface:
float __binary32_round_integral_negative(float x);
double __binary64_round_integral_negative(double x);

round_integral_exact
Description: The function rounds floating-point number x to the closest integral value according to the
rounding-direction applicable.

Calling interface:
float __binary32_round_integral_exact(float x);
double __binary64_round_integral_exact(double x);

next_up
Description:The function returns the least floating-point number in the same format as x that is greater
than x.

Calling interface:
float __binary32_next_up(float x);
double __binary64_next_up(double x);

next_down
Description: The function returns the largest floating-point number in the same format as x that is less than
x.

Calling interface:
float __binary32_next_down(float x);

Compiler Reference   

523



double __binary64_next_down(double x);

rem
Description: The function returns the remainder of x and y.

Calling interface:
float __binary32_rem(float x, float y);
double __binary64_rem(double x, double y);

minnum
Description: The function returns the minimal value of x and y.

Calling interface:
float __binary32_minnum(float x, float y);
double __binary64_minnum(double x, double y);

maxnum
Description: The function returns the maximal value of x and y.

Calling interface:
float __binary32_maxnum(float x, float y);
double __binary64_maxnum(double x, double y);

minnum_mag
Description: The function returns the minimal absolute value of x and y.

Calling interface:
float __binary32_minnum_mag(float x, float y);
double __binary64_minnum_mag(double x, double y);

maxnum_mag
Description: The function returns the maximal absolute value of x and y.

Calling interface:
float __binary32_maxnum_mag(float x, float y);
double __binary64_maxnum_mag(double x, double y);

scalbn
Description: The function computes x X 2n for integer value n.

Calling interface:
float __binary32_scalbn(float x, int n);
double __binary64_scalbn(double x, int n);

ilogb
Description: The function returns the exponent part of x as integer.

Calling interface:
int __binary32_ilogb(float x);
int __binary64_ilogb(double x);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

524



General-Computational Operations Functions
Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

The Intel® IEEE 754-2008 Binary Conformance Library supports the following functions for formatOf general-
computational operations:

add
Description: The function computes the addition of two floating-point numbers; the result is then converted
to the destination format.

Calling interface:
float __binary32_add_binary32_binary32(float x, float y);
float __binary32_add_binary32_binary64(float x, double y);
float __binary32_add_binary64_binary32(double x, float y);
float __binary32_add_binary64_binary64(double x, double y);
double __binary64_add_binary32_binary32(float x, float y);
double __binary64_add_binary32_binary64(float x, double y);
double __binary64_add_binary64_binary32(double x, float y);
double __binary64_add_binary64_binary64(double x, double y);

sub
Description: The function computes the subtraction of two floating-point numbers; the result is then
converted to the destination format.

Calling interface:
float __binary32_sub_binary32_binary32(float x, float y);
float __binary32_sub_binary32_binary64(float x, double y);
float __binary32_sub_binary64_binary32(double x, float y);
float __binary32_sub_binary64_binary64(double x, double y);
double __binary64_sub_binary32_binary32(float x, float y);
double __binary64_sub_binary32_binary64(float x, double y);
double __binary64_sub_binary64_binary32(double x, float y);
double __binary64_sub_binary64_binary64(double x, double y);

mul
Description: The function computes the multiplication of two floating-point numbers; the result is then
converted to the destination format.

Calling interface:
float __binary32_mul_binary32_binary32(float x, float y);
float __binary32_mul_binary32_binary64(float x, double y);
float __binary32_mul_binary64_binary32(double x, float y);
float __binary32_mul_binary64_binary64(double x, double y);
double __binary64_mul_binary32_binary32(float x, float y);
double __binary64_mul_binary32_binary64(float x, double y);
double __binary64_mul_binary64_binary32(double x, float y);
double __binary64_mul_binary64_binary64(double x, double y);

Compiler Reference   

525



div
Description: The function computes the division of two floating-point numbers; the result is then converted
to the destination format.

Calling interface:
float __binary32_div_binary32_binary32(float x, float y);
float __binary32_div_binary32_binary64(float x, double y);
float __binary32_div_binary64_binary32(double x, float y);
float __binary32_div_binary64_binary64(double x, double y);
double __binary64_div_binary32_binary32(float x, float y);
double __binary64_div_binary32_binary64(float x, double y);
double __binary64_div_binary64_binary32(double x, float y);
double __binary64_div_binary64_binary64(double x, double y);

sqrt
Description: The function computes the square root of floating-point number; the result is then converted
to the destination format.

Calling interface:
float __binary32_sqrt_binary32(float x);
float __binary32_sqrt_binary64(double x);
double __binary32_sqrt_binary32(float x);
double __binary32_sqrt_binary64(double x);

fma
Description: The function computes the fused multiply and add of three floating-point numbers x, y, and z
as (x×y) +z; the result is then converted to the destination format.

Calling interface:
float __binary32_fma_binary32_binary32_binary32(float x, float y, float z);
float __binary32_fma_binary32_binary32_binary64(float x, float y, double z);
float __binary32_fma_binary32_binary64_binary32(float x, double y, float z);
float __binary32_fma_binary32_binary64_binary64(float x, double y, double z);
float __binary32_fma_binary64_binary32_binary32(double x, float y, float z);
float __binary32_fma_binary64_binary32_binary64(double x, float y, double z);
float __binary32_fma_binary64_binary64_binary32(double x, double y, float z);
float __binary32_fma_binary64_binary64_binary64(double x, double y, double z);
double __binary64_fma_binary32_binary32_binary32(float x, float y, float z);
double __binary64_fma_binary32_binary32_binary64(float x, float y, double z);
double __binary64_fma_binary32_binary64_binary32(float x, double y, float z);
double __binary64_fma_binary32_binary64_binary64(float x, double y, double z);
double __binary64_fma_binary64_binary32_binary32(double x, float y, float z);
double __binary64_fma_binary64_binary32_binary64(double x, float y, double z);
double __binary64_fma_binary64_binary64_binary32(double x, double y, float z);
double __binary64_fma_binary64_binary64_binary64(double x, double y, double z);

from_int32 / from_uint32 / from_int64 / from_uint64
Description: This function converts integral values in the specified integer format to floating-point number.

Calling interface:
float __binary32_from_int32(int n);
double __binary64_from_int32(int n);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

526



float __binary32_from_uint32(unsigned int n);
double __binary64_from_uint32(unsigned int n);
float __binary32_from_int64(long long int n);
double __binary64_from_int64(long long int n);
float __binary32_from_uint64(unsigned long long int n);
double __binary64_from_uint64(unsigned long long int n);

to_int32_rnint / to_uint32_rnint / to_int64_rnint / to_uint64_rnint
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format, with halfway cases rounded to even, without signaling the inexact exception.

Calling interface:
int __binary32_to_int32_rnint(float x);
int __binary64_to_int32_rnint(double x);
unsigned int __binary32_to_uint32_rnint(float x);
unsigned int __binary64_to_uint32_rnint(double x);
long long int __binary32_to_int64_rnint(float x);
long long int __binary64_to_int64_rnint(double x);
unsigned long long int __binary32_to_uint64_rnint(float x);
unsigned long long int __binary64_to_uint64_rnint(double x);

to_int32_int / to_uint32_int / to_int64_int / to_uint64_int
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format toward zero, without signaling the inexact exception.

Calling interface:
int __binary32_to_int32_int(float x);
int __binary64_to_int32_int(double x);
unsigned int __binary32_to_uint32_int(float x);
unsigned int __binary64_to_uint32_int(double x);
long long int __binary32_to_int64_int(float x);
long long int __binary64_to_int64_int(double x);
unsigned long long int __binary32_to_uint64_int(float x);
unsigned long long int __binary64_to_uint64_int(double x);

to_int32_ceil/ to_uint32_ceil / to_int64_ceil / to_uint64_ceil
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format toward positive infinity, without signaling the inexact exception.

Calling interface:
int __binary32_to_int32_ceil(float x);
int __binary64_to_int32_ceil(double x);
unsigned int __binary32_to_uint32_ceil(float x);
unsigned int __binary64_to_uint32_ceil(double x);
long long int __binary32_to_int64_ceil(float x);
long long int __binary64_to_int64_ceil(double x);
unsigned long long int __binary32_to_uint64_ceil(float x);
unsigned long long int __binary64_to_uint64_ceil(double x);

Compiler Reference   

527



to_int32_floor/ to_uint32_floor / to_int64_floor / to_uint64_floor
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format toward negative infinity, without signaling the inexact exception.

Calling interface:
int __binary32_to_int32_floor(float x);
int __binary64_to_int32_floor(double x);
unsigned int __binary32_to_uint32_floor(float x);
unsigned int __binary64_to_uint32_floor(double x);
long long int __binary32_to_int64_floor(float x);
long long int __binary64_to_int64_floor(double x);
unsigned long long int __binary32_to_uint64_floor(float x);
unsigned long long int __binary64_to_uint64_floor(double x);

to_int32_rninta / to_uint32_rninta / to_int64_rninta / to_uint64_rninta
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format, with halfway cases rounded away from zero, without signaling the inexact exception.

Calling interface:
int __binary32_to_int32_rninta(float x);
int __binary64_to_int32_rninta(double x);
unsigned int __binary32_to_uint32_rninta(float x);
unsigned int __binary64_to_uint32_rninta(double x);
long long int __binary32_to_int64_rninta(float x);
long long int __binary64_to_int64_rninta(double x);
unsigned long long int __binary32_to_uint64_rninta(float x);
unsigned long long int __binary64_to_uint64_rninta(double x);

to_int32_xrnint / to_uint32_xrnint / to_int64_xrnint / to_uint64_xrnint
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format, with halfway cases rounded to even, signaling if inexact.

Calling interface:
int __binary32_to_int32_xrnint(float x);
int __binary64_to_int32_xrnint(double x);
unsigned int __binary32_to_uint32_xrnint(float x);
unsigned int __binary64_to_uint32_xrnint(double x);
long long int __binary32_to_int64_xrnint(float x);
long long int __binary64_to_int64_xrnint(double x);
unsigned long long int __binary32_to_uint64_xrnint(float x);
unsigned long long int __binary64_to_uint64_xrnint(double x);

to_int32_xint / to_uint32_xint / to_int64_xint / to_uint64_xint
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format toward zero, signaling if inexact.

Calling interface:
int __binary32_to_int32_xint(float x);
int __binary64_to_int32_xint(double x);
unsigned int __binary32_to_uint32_xint(float x);
unsigned int __binary64_to_uint32_xint(double x);
long long int __binary32_to_int64_xint(float x);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

528



long long int __binary64_to_int64_xint(double x);
unsigned long long int __binary32_to_uint64_xint(float x);
unsigned long long int __binary64_to_uint64_xint(double x);

to_int32_xceil / to_uint32_xceil / to_int64_xceil / to_uint64_xceil
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format toward positive infinity, signaling if inexact.

Calling interface:
int __binary32_to_int32_xceil(float x);
int __binary64_to_int32_xceil(double x);
unsigned int __binary32_to_uint32_xceil(float x);
unsigned int __binary64_to_uint32_xceil(double x);
long long int __binary32_to_int64_xceil(float x);
long long int __binary64_to_int64_xceil(double x);
unsigned long long int __binary32_to_uint64_xceil(float x);
unsigned long long int __binary64_to_uint64_xceil(double x);

to_int32_xfloor / to_uint32_xfloor / to_int64_xfloor / to_uint64_xfloor
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format toward negative infinity, signaling if inexact.

Calling interface:
int __binary32_to_int32_xfloor(float x);
int __binary64_to_int32_xfloor(double x);
unsigned int __binary32_to_uint32_xfloor(float x);
unsigned int __binary64_to_uint32_xfloor(double x);
long long int __binary32_to_int64_xfloor(float x);
long long int __binary64_to_int64_xfloor(double x);
unsigned long long int __binary32_to_uint64_xfloor(float x);
unsigned long long int __binary64_to_uint64_xfloor(double x);

to_int32_xrninta / to_uint32_xrninta / to_int64_xrninta / to_uint64_xrninta
Description: This function rounds floating-point number to the nearest integral value in the specified integer
format, with halfway cases rounded away from zero, signaling if inexact.

Calling interface:
int __binary32_to_int32_xrninta(float x);
int __binary64_to_int32_xrninta(double x);
unsigned int __binary32_to_uint32_xrninta(float x);
unsigned int __binary64_to_uint32_xrninta(double x);
long long int __binary32_to_int64_xrninta(float x);
long long int __binary64_to_int64_xrninta(double x);
unsigned long long int __binary32_to_uint64_xrninta(float x);
unsigned long long int __binary64_to_uint64_xrninta(double x);

binary32_to_binary64
Description: This function converts floating-point number in binary32 format to binary64 format.

Calling interface:
double __binary32_to_binary64(float x);

Compiler Reference   

529



binary64_to_binary32
Description: This function rounds floating-point number in binary64 format to binary32 format.

Calling interface:
float __binary64_to_binary32(double x);

from_string
Description: This function converts decimal character sequence to floating-point number.

Calling interface:
float __binary32_from_string(char * s);
double __binary64_from_string(char * s);

to_string
Description: This function converts floating-point number to decimal character sequence.

Calling interface:
void__binary32_to_string(char * s, float x);
void__binary64_to_string(char * s, double x);

from_hexstring
Description: This function converts hexadecimal character sequence to floating-point number.

Calling interface:
float __binary32_from_hexstring(char * s);
double __binary64_from_hexstring(char * s);

to_hexstring
Description: This function converts floating-point number to hexadecimal character sequence.

Calling interface:
void__binary32_to_hexstring(cgar * s, float x);
void__binary64_to_hexstring(char * s, double x);

Quiet-Computational Operations Functions
Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

The Intel® IEEE 754-2008 Binary Conformance Library supports the following functions for quiet-
computational operations:

copy
Description: The function copies input floating-point number x to output in the same floating-point format,
without any change to the sign.

Calling interface:
float __binary32_copy(float x);
double __binary64_copy(double x);

negate
Description: The function copies input floating-point number x to output in the same floating-point format,
reversing the sign.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

530



Calling interface:
float __binary32_negate(float x);
double __binary64_negate(double x);

abs
Description: The function copies input floating-point number x to output in the same floating-point format,
setting the sign to positive.

Calling interface:
float __binary32_abs(float x);
double __binary64_abs(double x);

copysign
Description: The function copies input floating-point number x to output in the same floating-point format,
with the same sign as y.

Calling interface:
float __binary32_copysign(float x, float y);
double __binary64_copysign(double x, double y);

NOTE
For the listed quiet-computational operations functions, when the first input is a signaling NaN, two
different outcomes are allowed by the standard. The operation could either signal invalid exception
with quieted signaling NaN as output, or deliver signaling NaN as output without signaling any
exception.

Signaling-Computational Operations Functions
Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

The Intel® IEEE 754-2008 Binary Conformance Library supports the following functions for signaling-
computational operations:

quiet_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is equal, returns 0
(false) otherwise. The function signals invalid operation exception when signaling NaN is in the inputs.

Calling interface:
int __binary32_quiet_equal_binary32 (float x, float y);
int __binary32_quiet_equal_binary64(float x, double y);
int __binary64_quiet_equal_binary32(double x, float y);
int __binary64_quiet_equal_ binary64(double x, double y);

quiet_not_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is not equal,
returns 0 (false) otherwise. The function signals invalid operation exception when signaling NaN is one of the
inputs.

Calling interface:
int __binary32_quiet_not_equal_binary32(float x, float y);
int __binary32_quiet_not_equal_binary64(float x, double y);

Compiler Reference   

531



int __binary64_quiet_not_equal_binary32(double x, float y);
int __binary64_quiet_not_equal_binary64(double x, double y);

signaling_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is equal, returns 0
(false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_equal_binary32(float x, float y);
int __binary32_signaling_equal_binary64(float x, double y);
int __binary64_signaling_equal_binary32(double x, float y);
int __binary64_signaling_equal_binary64(double x, double y);

signaling_greater
Description: The function returns 1 (true) if the relation between the two inputs x and y is greater, returns
0 (false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_greater_binary32(float x, float y);
int __binary32_signaling_greater_binary64(float x, double y);
int __binary64_signaling_greater_binary32(double x, float y);
int __binary64_signaling_greater_binary64(double x, double y);

signaling_greater_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is greater or equal,
returns 0 (false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_greater_equal_binary32(float x, float y);
int __binary32_signaling_greater_equal_binary64(float x, double y);
int __binary64_signaling_greater_equal_binary32(double x, float y);
int __binary64_signaling_greater_equal_binary64(double x, double y);

signaling_less
Description: The function returns 1 (true) if the relation between the two inputs x and y is less, returns 0
(false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_less_binary32(float x, float y);
int __binary32_signaling_less_binary64(float x, double y);
int __binary64_signaling_less_binary32(double x, float y);
int __binary64_signaling_less_binary64(double x, double y);

signaling_less_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is less or equal,
returns 0 (false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_less_equal_binary32(float x, float y);
int __binary32_signaling_less_equal_binary64(float x, double y);
int __binary64_signaling_less_equal_binary32(double x, float y);
int __binary64_signaling_less_equal_binary64(double x, double y);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

532



signaling_not_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is not equal,
returns 0 (false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_not_equal_binary32(float x, float y);
int __binary32_signaling_not_equal_binary64(float x, double y);
int __binary64_signaling_not_equal_binary32(double x, float y);
int __binary64_signaling_not_equal_binary64(double x, double y);

signaling_not_greater
Description: The function returns 1 (true) if the relation between the two inputs x and y is not greater,
returns 0 (false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_not_greater_binary32(float x, float y);
int __binary32_signaling_not_greater_binary64(float x, double y);
int __binary64_signaling_not_greater_binary32(double x, float y);
int __binary64_signaling_not_greater_binary64(double x, double y);

signaling_less_unordered
Description: The function returns 1 (true) if the relation between the two inputs x and y is less or
unordered, returns 0 (false) otherwise. The function signals invalid operation exception when NaN is in the
inputs.

Calling interface:
int __binary32_signaling_less_unordered_binary32(float x, float y);
int __binary32_signaling_less_unordered_binary64(float x, double y);
int __binary64_signaling_less_unordered_binary32(double x, float y);
int __binary64_signaling_less_unordered_binary64(double x, double y);

signaling_not_less
Description: The function returns 1 (true) if the relation between the two inputs x and y is not less, returns
0 (false) otherwise. The function signals invalid operation exception when NaN is in the inputs.

Calling interface:
int __binary32_signaling_not_less_ binary32(float x, float y);
int __binary32_signaling_not_less_binary64(float x, double y);
int __binary64_signaling_not_less_binary32(double x, float y);
int __binary64_signaling_not_less_binary64 (double x, double y);

signaling_greater_unordered
Description: The function returns 1 (true) if the relation between the two inputs x and y is greater or
unordered, returns 0 (false) otherwise. The function signals invalid operation exception when NaN is in the
inputs.

Calling interface:
int __binary32_signaling_greater_unordered_binary32(float x, float y);
int __binary32_signaling_greater_unordered_binary64(float x, double y);
int __binary64_ signaling_greater_unordered_binary32(double x, float y);
int __binary64_signaling_greater_unordered_binary64(double x, double y);

Compiler Reference   

533



quiet_greater
Description: The function returns 1 (true) if the relation between the two inputs x and y is greater, returns
0 (false) otherwise. The function signals invalid operation exception when signaling NaN is one of the inputs.

Calling interface:
int __binary32_quiet_greater_binary32(float x, float y);
int __binary32_quiet_greater_binary64(float x, double y);
int __binary64_quiet_greater_binary32(double x, float y);
int __binary64_quiet_greater_binary64(double x, double y);

quiet_greater_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is greater or equal,
returns 0 (false) otherwise. The function signals invalid operation exception when signaling NaN is one of the
inputs.

Calling interface:
int __binary32_quiet_greater_equal_binary32(float x, float y);
int __binary32_quiet_greater_equal_binary64(float x, double y);
int __binary64_quiet_greater_equal_binary32(double x, float y);
int __binary64_quiet_greater_equal_binary64(double x, double y);

quiet_less
Description: The function returns 1 (true) if the relation between the two inputs x and y is less, returns 0
(false) otherwise. The function signals invalid operation exception when signaling NaN is one of the inputs.

Calling interface:
int __binary32_quiet_less_binary32(float x, float y);
int __binary32_quiet_less_binary64(float x, double y);
int __binary64_quiet_less_binary32(double x, float y);
int __binary64_quiet_less_binary64(double x, double y);

quiet_less_equal
Description: The function returns 1 (true) if the relation between the two inputs x and y is less or equal,
returns 0 (false) otherwise. The function signals invalid operation exception when signaling NaN is one of the
inputs.

Calling interface:
int __binary32_quiet_less_equal_binary32(float x, float y);
int __binary32_quiet_less_equal_binary64(float x, double y)
int __binary64_quiet_less_equal_binary32(double x, float y);
int __binary64_quiet_less_equal_binary64(double x, double y);

quiet_unordered
Description: The function returns 1 (true) if the relation between the two inputs x and y is unordered,
returns zero (false) otherwise. The function signals invalid operation exception when signaling NaN is one of
the inputs

Calling interface:
int __binary32_quiet_unordered_binary32(float x, float y);
int __binary32_quiet_unordered_binary64(float x, double y);
int __binary64_quiet_unordered_binary32(double x, float y);
int __binary64_quiet_unordered_binary64(double x, double y);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

534



quiet_not_greater
Description: The function returns 1 (true) if the relation between the two inputs x and y is not greater,
returns zero (false) otherwise. The function signals invalid operation exception when signaling NaN is one of
the inputs.

Calling interface:
int __binary32_quiet_not_greater_binary32(float x, float y);
int __binary32_quiet_not_greater_binary64(float x, double y);
int __binary64_quiet_not_greater_binary32(double x, float y);
int __binary64_quiet_not_greater_binary64(double x, double y);

quiet_less_unordered
Description: The function returns 1 (true) if the relation between the two inputs x and y is less or
unordered, returns 0 (false) otherwise. The function signals invalid operation exception when signaling NaN is
one of the inputs.

Calling interface:
int __binary32_quiet_less_unordered_binary32(float x, float y);
int __binary32_quiet_less_unordered_binary64(float x, double y);
int __binary64_quiet_less_unordered_binary32(double x, float y);
int __binary64_quiet_less_unordered_binary64(double x, double y);

quiet_not_less
Description: The function returns 1 (true) if the relation between the two inputs x and y is not less, returns
zero (false) otherwise. The function signals invalid operation exception when signaling NaN is one of the
inputs.

Calling interface:
int __binary32_quiet_not_less_binary32(float x, float y);
int __binary32_quiet_not_less_binary64(float x, double y);
int __binary64_quiet_not_less_binary32(double x, float y);
int __binary64_quiet_not_less_binary64(double x, double y);

quiet_greater_unordered
Description: The function returns 1 (true) if the relation between the two inputs x and y is greater or
unordered, returns 0 (false) otherwise. The function signals invalid operation exception when signaling NaN is
one of the inputs.

Calling interface:
int __binary32_quiet_greater_unordered_binary32(float x, float y);
int __binary32_quiet_greater_unordered_binary64(float x, double y);
int __binary64_quiet_greater_unordered_binary32(double x, float y);
int __binary64_quiet_greater_unordered_binary64(double x, double y);

quiet_ordered
Description: The function returns 1 (true) if the relation between the two inputs x and y is ordered, returns
0 (false) otherwise. The function signals invalid operation exception when signaling NaN is one of the inputs.

Calling interface:
int __binary32_quiet_ordered_binary32(float x, float y);
int __binary32_quiet_ordered_binary64(float x, double y);
int __binary64_quiet_ordered_binary32(double x, float y);

Compiler Reference   

535



int __binary64_quiet_ordered_binary64(double x, double y);

Non-Computational Operations Functions
Many routines in the libbfp754 Library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

The Intel® IEEE 754-2008 Binary Conformance Library supports the following functions for non-computational
operations:

is754version1985
Description: The function returns 1, if and only if this programming environment conforms to IEEE Std.
754-1985, otherwise returns 0.

Calling interface:
int __binary_is754version1985(void);

NOTE
This function in this library always returns 0.

is754version2008
Description: The function returns 1, if and only if this programming environment conforms to IEEE Std.
754-2008, otherwise returns 0.

Calling interface:
int __binary_is754version2008(void);

NOTE
This function in this library always returns 1.

class
Description: The function returns which class of the ten classes (signalingNaN, quietNaN,
negativeInfinity, negativeNormal, negativeSubnormal, negativeZero, positiveZero,
positiveSubnormal, positiveNormal, positiveInfinity) the input floating-point number x belongs.

Return value Class

0 signalingNaN

1 quietNaN

2 negativeInfinity

3 negativeNormal

4 negativeSubnormal

5 negativeZero

6 positiveZero

7 positiveSubnormal

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

536



Return value Class

8 positiveNormal

9 positiveInfinity

Calling interface:
int __binary32_class(float x);
int __binary64_class(double x);

isSignMinus
Description: The function returns 1, if and only if its argument has negative sign.

Calling interface:
int __binary32_isSignMinus(float x);
int __binary64_isSignMinus(double x);

isNormal
Description: The function returns 1, if and only if its argument is normal (not zero, subnormal, infinite,
or NaN).

Calling interface:
int __binary32_isNormal(float x);
int __binary64_isNormal(double x);

isFinite
Description: The function returns 1, if and only if its argument is finite (not infinite or NaN).

Calling interface:

isZero
Description: The function returns 1, if and only if its argument is ±0.

Calling interface:
int __binary32_isZero(float x);
int __binary64_isZero(double x);

isSubnormal
Description: The function returns 1, if and only if its argument is subnormal.
Calling interface:
int __binary32_isSubnormal(float x);
int __binary64_isSubnormal(double x);

isInfinite
Description: The function returns 1, if and only if its argument is infinite
Calling interface:
int __binary32_isInfinite(float x);
int __binary64_isInfinite(double x);

Compiler Reference   

537



isNaN
Description:The function returns 1, if and only if its argument is a NaN.
Calling interface:
int __binary32_isNaN(float x);
int __binary64_isNaN(double x);

isSignaling
Description: The function returns 1, if and only if its argument is a signaling NaN.

Calling interface:
int __binary32_isSignaling(float x);
int __binary64_isSignaling(double x);

isCanonical
Description: The function returns 1, if and only if its argument is a finite number, infinity, or NaN that is
canonical.

Calling interface:
int __binary32_isCanonical(float x);
int __binary64_isCanonical(double x);

NOTE
This function in this library always returns 1, as only canonical floating-point numbers are expected.

radix
Description:The function returns the radix of the format of the input floating-point number.

Calling interface:
int __binary32_radix(float x);
int __binary64_radix(double x);

NOTE
This function in this library always returns 2, as the library is intended for binary floating-point
numbers.

totalOrder
Description: The function returns 1 if and only if two floating-point inputs x and y is total ordered and 0
otherwise.

Calling interface:
int _binary32_totalOrder(float x, float y);
int _binary64_totalOrder(double x, double y);

totalOrderMag
Description:totalOrderMag(x, y) is the same as totalOrder(abs(x), abs(y)).

Calling interface:
int _binary32_totalOrderMag(float x, float y);
int _binary64_totalOrderMag(double x, double y);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

538



lowerFlags
Description: The function lowers the flags of the exception group specified by the input.

Value Exception name

1 __BFP754_INVALID

2 __BFP754_DIVBYZERO

4 __BFP754_OVERFLOW

8 __BFP754_UNDERFLOW

16 __BFP754_INEXACT

Calling interface:
void __binary_lowerFlags(int x);

raiseFlags
Description: The function raises the flags of the exception group specified by the input.

Calling interface:
void __binary_raiseFlags(int x);

testFlags
Description: The function returns 1, if and only if any flag of the exception group specified by the input is
raised, and 0 otherwise.

Calling interface:
int __binary_testFlags(int x);

testSavedFlags
Description: The function returns 1, if and only if any flag of the exception group specified by the input y is
raised in x, and 0 otherwise.

Calling interface:
int __binary_testSavedFlags(int x, int y);

restoreFlags
Description: The function restores the flags to their states represented in x.

Calling interface:
void __binary_restoreFlags(int x);

saveFlags
Description: The function returns a representation of the state of all status flags.

Calling interface:
int __binary_saveFlags(void);

getBinaryRoundingDirection
Description: The function returns an integer representing the rounding direction in use.

Compiler Reference   

539



Value Exception name

0 __BFP754_ROUND_TO_NEAREST_EVEN

1 __BFP754_ROUND_TOWARD_POSITIVE

2 __BFP754_ROUND_TOWARD_NEGATIVE

3 __BFP754_ROUND_TOWARD_ZERO

Calling interface:
int __binary_getBinaryRoundingDirection(void);

setBinaryRoundingDirection
Description: The function sets the rounding direction based on input integer.

Calling interface:
void __binary_setBinaryRoundingDirection(int x);

saveModes
Description: The function saves the values of all dynamic-specifiable modes.

Calling interface:
int __binary_saveModes(void);

NOTE
saveModes behaves in the same way as getBinaryRoundingDirection does, as the rounding mode
is the only dynamic-specifiable mode supported.

restoreModes
Description:The function restores the values of all dynamic-specifiable modes to the input.

Calling interface:
int __binary_restoreModes(void);

NOTE
restoreModes behaves in the same way as setBinaryRoundingDirection does, as the rounding
mode is the only dynamic-specifiable mode supported.

defaultMode
Description: The function sets the values of all dynamic-specifiable modes to default.

Calling interface:
void __binary_defaultMode(void);

NOTE
defaultMode sets the rounding-direction attribute to roundTiesToEven, as the rounding mode is the
only dynamic-specifiable mode supported.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

540



Intel's Numeric String Conversion Library
Intel's Numeric String Conversion Library, libistrconv, provides a collection of routines for converting
between ASCII strings and C data types, which are optimized for performance.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Use Intel's Numeric String Conversion Library
Intel's Numeric String Conversion Library, libistrconv, provides a collection of routines for converting
between ASCII strings and C data types, which are optimized for performance. The istrconv.h header file
declares prototypes for the library functions.

You can link the libistrconv library as a static or shared library on Linux* platforms.On Windows*
platforms, you must link libistrconv as a static library only.

Using Intel's Numeric String Conversion Library
To use the libistrconv library, include the header file, istrconv.h, in your program.

Consider the following example conv.c file that illustrates how to use the library to convert between string
and floating-point data type.

// conv.c 
#include <stdio.h> 
#include <istrconv.h> 
#define LENGTH 20 

int main() {
 const char pi[] = "3.14159265358979323";
 char s[LENGTH];
 int prec;
 float fx;
 double dx;
 printf("PI: %s\n", pi);
 printf("single-precision\n");
 fx = __IML_string_to_float(pi, NULL);
 prec = 6;
 __IML_float_to_string(s, LENGTH, prec, fx);
 printf("prec: %2d, val: %s\n", prec, s);
 printf("double-precision\n");
 dx = __IML_string_to_double(pi, NULL);
 prec = 15;
 __IML_double_to_string(s, LENGTH, prec, dx);
 printf("prec: %2d, val: %s\n", prec, s);    
 return 0; 
}

To compile the conv.c file with Intel's Numeric String Conversion Library (libistrconv) use one of the
following commands. See Invoke the Compiler for information about all available compilers and drivers.

Linux

icpx conv.c –libistrconv

Compiler Reference   

541

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Windows

icx conv.c libistrconv.lib

After you compile this example and run the program, you should get the following results:

PI: 3.14159265358979323 

single-precision        
prec: 6, val: 3.14159 

double-precision        
prec: 15, val: 3.14159265358979

Integer Conversion Functions Optimized with SSE4.2 Instructions
The following integer conversion functions are optimized for better performance with SSE4.2 string
processing instructions:

• __IML_int_to_string
• __IML_uint_to_string
• __IML_int64_to_string
• __IML_uint64_to_string
• __IML_i_to_str
• __IML_u_to_str
• __IML_ll_to_str
• __IML_ull_to_str
• __IML_string_to_int
• __IML_string_to_uint
• __IML_string_to_int64
• __IML_string_to_uint64
• __IML_str_to_i
• __IML_str_to_u
• __IML_str_to_ll
• __IML_str_to_ull
The SSE4.2 optimized versions of these functions can be deployed in the following situations:

• Used automatically on post-SSE4.2 processors through Intel run-time processor dispatching
• Called directly by defining the "__SSE4_2__" macro to the C preprocessor where <istrconv.h> is included.

The generic versions of these functions can be deployed in the following situations:

• Used automatically on pre-SSE4.2 processors through Intel run-time processor dispatching
• Called directly by adding _generic suffix to the function names

The SSE4.2 optimized versions of these functions moves strings from memory to XMM registers and vice
versa directly to maximize performance. The functions would not overwrite the memory beyond the
boundary; however, this may introduce memory access violation when the memory location immediately
trailing the strings is not allocated or accessible. Users with concerns about potential memory access
violation should use the generic versions instead.

Function List
Intel's Numeric String Conversion library (libistrconv) functions are listed in this topic.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

542



Routines to Convert Floating-point Numbers to ASCII Strings
Intel's Numeric String Conversion Library supports the following functions to convert floating-point number x
to string s in various formats, where l represents the length of the formatted string allowing for full
conversion (not including the null terminator).

__IML_float_to_string, __IML_double_to_string
Description: These functions are similar to snprintf(s, n, "%.*g", p, x) in stdio.h, where p
specifies the maximum number of significant digits in either fixed-point or exponential notation format. If n is
zero, nothing is written and s may be a null pointer. Output characters beyond the (n-1)th character are
discarded and a null character is appended at the end. l is returned on success; otherwise the result is
undefined.

Calling interface:

int __IML_float_to_string(char * s, size_t n, int p, float x);
int __IML_double_to_string(char * s, size_t n, int p, double x);

__IML_float_to_string_f, __IML_double_to_string_f
Description: These functions are similar to snprintf(s, n, "%.*f", p, x) in stdio.h, where p
specifies the number of digits after the decimal point in the fixed-point notation format. If n is zero, nothing
is written and s may be a null pointer. Output characters beyond the (n-1)th character are discarded and a
null character is appended at the end. l is returned on success; otherwise the result is undefined.

Calling interface:

int __IML_float_to_string_f(char * s, size_t n, int p, float x);
int __IML_double_to_string_f(char * s, size_t n, int p, double x);

__IML_float_to_string_e, __IML_double_to_string_e
Description: These functions are similar to snprintf(s, n, "%.*e", p, x) in stdio.h, where p
specifies the number of digits after the decimal point in the exponential notation format. If n is zero, nothing
is written and s may be a null pointer. Output characters beyond the (n-1)th character are discarded and a
null character is appended at the end. l is returned on success; otherwise, the result is undefined.

Calling interface:

int __IML_float_to_string_e(char * s, size_t n, int p, float x);
int __IML_double_to_string_e(char * s, size_t n, int p, double x);

__IML_f_to_str, __IML_d_to_str
Description: These functions are similar to snprintf(s, n, “%.*g”, p, x) in stdio.h, where p
specifies the maximum number of significant digits in either fixed-point or exponential notation format. If l <
n, all output characters are stored in s with a null terminator at the end. Otherwise, output characters
beyond the nth character are discarded and no null character is appended at the end. If n is zero, nothing is
written and s may be a null pointer. l is returned on success; otherwise the result is undefined.

Calling interface:

int __IML_f_to_str(char * s, size_t n, int p, float x);
int __IML_d_to_str(char * s, size_t n, int p, double x);

__IML_f_to_str_f, __IML_d_to_str_f

Compiler Reference   

543



Description: These functions are similar to snprintf(s, n, “%.*f”, p, x) in stdio.h, where p
specifies the number of digits after the decimal point in the fixed-point notation format. If l < n, all output
characters are stored in s with a null terminator at the end. Otherwise, output characters beyond the nth

character are discarded and no null character is appended at the end. If n is zero, nothing is written and s
may be a null pointer. l is returned on success; otherwise the result is undefined.

Calling interface:

int __IML_f_to_str_f(char * s, size_t n, int p, float x);
int __IML_d_to_str_f(char * s, size_t n, int p, double x);

__IML_f_to_str_e, __IML_d_to_str_e
Description: These functions are similar to snprintf(s, n, “%.*e”, p, x) in stdio.h, where pspecifies
the number of digits after the decimal point in the exponential notation format. If l < n, all output characters
are stored in s with a null terminator at the end. Otherwise, output characters beyond the nth character are
discarded and no null character is appended at the end. If n is zero, nothing is written and s may be a null
pointer. l is returned on success; otherwise the result is undefined.

Calling interface:

int __IML_f_to_str_e(char * s, size_t n, int p, float x);
int __IML_d_to_str_e(char * s, size_t n, int p, double x);

Routines to Convert Integers to ASCII Strings
Intel's Numeric String Conversion Library supports the following functions to convert integer x to string s,
where l represents the length of the formatted string allowing for full conversion (not including the null
terminator).

__IML_int_to_string, __IML_uint_to_string, __IML_int64_to_string, __IML_uint64_to_string
Description: These functions are similar to snprintf(s, n, "%[d|u|lld|llu]", x) in stdio.h. If n is
zero, nothing is written and s may be a null pointer. Output characters beyond the (n-1)th character are
discarded and a null character is appended at the end. l is returned on success; otherwise the result is
undefined.

Calling interface:

int __IML_int_to_string(char * s, size_t n, int x);
int __IML_uint_to_string(char * s, size_t n, unsigned int x);
int __IML_int64_to_string(char * s, size_t n, long long x);
int __IML_uint64_to_string(char * s, size_t n, unsigned long long x);

__IML_int_to_oct_string, __IML_uint_to_oct_string, __IML_int64_to_oct_string,
__IML_uint64_to_oct_string
Description: These functions are similar to snprintf(s, n, "%[o|llo]", x) in stdio.h. If n is zero,
nothing is written and s may be a null pointer. Output characters beyond the (n-1)th character are discarded
and a null character is appended at the end. l is returned on success; otherwise the result is undefined.

Calling interface:

int __IML_int_to_oct_string(char * s, size_t n, int x);
int __IML_uint_to_oct_string(char * s, size_t n, unsigned int x);
int __IML_int64_to_oct_string(char * s, size_t n, long long x);
int __IML_uint64_to_oct_string(char * s, size_t n, unsigned long long x);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

544



__IML_int_to_hex_string, __IML_uint_to_hex_string, __IML_int64_to_hex_string,
__IML_uint64_to_hex_string
Description: These functions are similar to snprintf(s, n, "%[x|llx]", x) in stdio.h. If n is zero,
nothing is written and s may be a null pointer. Output characters beyond the (n-1)th character are discarded
and a null character is appended at the end. l is returned on success; otherwise the result is undefined.

Calling interface:

int __IML_int_to_hex_string(char * s, size_t n, int x);
int __IML_uint_to_hex_string(char * s, size_t n, unsigned int x);
int __IML_int64_to_hex_string(char * s, size_t n, long long x);
int __IML_uint64_to_hex_string(char * s, size_t n, unsigned long long x);

__IML_i_to_str, __IML_u_to_str, __IML_ll_to_str, __IML_ull_to_str
Description: These functions are similar to snprintf(s, n, "%[d|u|lld|llu]", x) in stdio.h. If l < n,
all output characters are stored in s with a null terminator at the end. Otherwise, output characters beyond
the nth character are discarded and no null character is appended at the end. If n is zero, nothing is written,
and s may be a null pointer. l is returned on success, otherwise the result is undefined.

Calling interface:

int __IML_i_to_str(char * s, size_t n, int x);
int __IML_u_to_str(char * s, size_t n, unsigned int x);
int __IML_ll_to_str(char * s, size_t n, long long x);
int __IML_ull_to_str(char * s, size_t n, unsigned long long x);

__IML_i_to_oct_str, __IML_u_to_oct_str, __IML_ll_to_oct_str, __IML_ull_to_oct_str
Description: These functions are similar to snprintf(s, n, "%[o|llo]", x) in stdio.h. If l < n, all
output characters are stored in s with a null terminator at the end. Otherwise, output characters beyond the
nth character are discarded and no null character is appended at the end. If n is zero, nothing is written, and
s may be a null pointer. l is returned on success, otherwise the result is undefined.

Calling interface:

int __IML_i_to_oct_str(char * s, size_t n, int x);
int __IML_u_to_oct_str(char * s, size_t n, unsigned int x);
int __IML_ll_to_oct_str(char * s, size_t n, long long x);
int __IML_ull_to_oct_str(char * s, size_t n, unsigned long long x);

__IML_i_to_hex_str, __IML_u_to_hex_str, __IML_ll_to_hex_str, __IML_ull_to_hex_str
Description: These functions are similar to snprintf(s, n, "%[x|llx]", x) in stdio.h. If l < n, all
output characters are stored in s with a null terminator at the end. Otherwise, output characters beyond the
nth character are discarded and no null character is appended at the end. If n is zero, nothing is written, and
s may be a null pointer. l is returned on success, otherwise the result is undefined.

Calling interface:

int __IML_i_to_hex_str(char * s, size_t n, int x);
int __IML_u_to_hex_str(char * s, size_t n, unsigned int x);
int __IML_ll_to_hex_str(char * s, size_t n, long long x);
int __IML_ull_to_hex_str(char * s, size_t n, unsigned long long x);

Compiler Reference   

545



Routines to Convert ASCII Strings to Floating-point Numbers
Intel's Numeric String Conversion Library supports the following functions to convert the initial portion of
decimal string s to floating-point number x. If no conversion could be performed, zero is returned. If the
correct value is outside the range of the return type, plus (+) or minus (-) HUGE_VALF, HUGE_VAL, or
HUGE_VALL is returned, and the value of macro ERANGE is stored in errno.

__IML_string_to_float, __IML_string_to_double, __IML_string_to_long_double
Description: These functions are similar to strtof(nptr, endptr), strtod(nptr, endptr), and
strtold(nptr, endptr) in stdlib.h, where endptr points to the object that stores the final part of nptr
when endptr is not a null pointer.

Calling interface:

float __IML_string_to_float(const char * nptr, char ** endptr);
double __IML_string_to_double(const char * nptr, char ** endptr);
long double __IML_string_to_long_double(const char * nptr, char ** endptr);

__IML_str_to_f, __IML_str_to_d, __IML_str_to_ld
Description: These functions convert the initial n decimal digits of the significand string multiplied by 10
raised to power of exponent to floating-point number as return. endptr points to the object that stores the
final part of significand, provided that endptr is not a null pointer.

Calling interface:

float __IML_str_to_f(const char * significand, size_t n, int exponent, char ** endptr);
double __IML_str_to_d(const char * significand, size_t n, int exponent, char **
endptr);
long double __IML_str_to_ld(const char * significand, size_t n, int exponent, char **
endptr);

Routines to Convert ASCII Strings to Integers
Intel's Numeric String Conversion Library supports the following functions to convert the initial portion of
string s to integer x. If no conversion could be performed, zero is returned. If the correct value is outside the
range of the return type, INT_MIN, INT_MAX, UINT_MAX, LLONG_MIN, LLONG_MAX, ULLONG_MAX is returned,
and the value of macro ERANGE is stored in errno.

__IML_string_to_int, __IML_string_to_uint, __IML_string_to_int64, __IML_string_to_uint64
Description: These functions are similar to ([unsigned] int)strto[u]l(nptr, endptr, 10) and
strto[u]ll(nptr, endptr, 10) functions in stdlib.h, where endptr points to the object that stores the
final part of nptr when endptr is not a null pointer.

Calling interface:

int __IML_string_to_int(const char * nptr, char ** endptr);
unsigned int __IML_string_to_uint(const char * nptr, char ** endptr);
long long __IML_string_to_int64(const char * nptr, char ** endptr);
unsigned long long __IML_string_to_uint64(const char * nptr, char ** endptr);

__IML_oct_string_to_int, __IML_oct_string_to_uint, __IML_oct_string_to_int64,
__IML_oct_string_to_uint64

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

546



Description: These functions are similar to ([unsigned] int)strto[u]l(nptr, endptr, 8) and
strto[u]ll(nptr, endptr, 8) functions in stdlib.h, where endptr points to the object that stores the
final part of nptr when endptr is not a null pointer.

Calling interface:

int __IML_oct_string_to_int(const char * nptr,char ** endptr);
unsigned int __IML_oct_string_to_uint(const char * nptr,char ** endptr);
long long __IML_oct_string_to_int64(const char * nptr,char ** endptr);
unsigned long long __IML_oct_string_to_uint64(const char * nptr,char ** endptr);

__IML_hex_string_to_int, __IML_hex_string_to_uint, __IML_hex_string_to_int64,
__IML_hex_string_to_uint64
Description: These functions are similar to ([unsigned] int)strto[u]l(nptr, endptr, 16) and
strto[u]ll(nptr, endptr, 16) functions in stdlib.h, where endptr points to the object that stores the
final part of nptr when endptr is not a null pointer.

Calling interface:

int __IML_hex_string_to_int(const char * nptr,char ** endptr);
unsigned int __IML_hex_string_to_uint(const char * nptr,char ** endptr);
long long __IML_hex_string_to_int64(const char * nptr,char ** endptr);
unsigned long long __IML_hex_string_to_uint64(const char * nptr,char ** endptr);

__IML_str_to_i, __IML_str_to_u, __IML_str_to_ll, __IML_str_to_ull
Description: These functions convert the initial n decimal digits (including an optional + or - sign) pointed to
by nptr to integral values. When endptr is not a null pointer it points to the object that stores the final part of
nptr. These functions treat any leading whitespace as invalid.

Calling interface:

int __IML_str_to_i(const char * nptr, size_t n, char ** endptr);
unsigned int __IML_str_to_u(const char * nptr, size_t n, char ** endptr);
long long __IML_str_to_ll(const char * nptr, size_t n, char ** endptr);
unsigned long long __IML_str_to_ull(const char * nptr, size_t n, char ** endptr);

__IML_oct_str_to_i, __IML_oct_str_to_u, __IML_oct_str_to_ll, __IML_oct_str_to_ull
Description: These functions convert the initial n octal digits (including an optional + or - sign) pointed to
by nptr to integral values. When endptr is not a null pointer it points to the object that stores the final part of
nptr. These functions treat any leading whitespace as invalid.

Calling interface:

int __IML_oct_str_to_i(const char * nptr,size_t n,char ** endptr);
unsigned int __IML_oct_str_to_u(const char * nptr,size_t n,char ** endptr);
long long __IML_oct_str_to_ll(const char * nptr,size_t n,char ** endptr);
unsigned long long __IML_oct_str_to_ull(const char * nptr,size_t n,char ** endptr);

__IML_hex_str_to_i, __IML_hex_str_to_u, __IML_hex_str_to_ll, __IML_hex_str_to_ull

Compiler Reference   

547



Description: These functions convert the initial n hexadecimal digits (including an optional + or - sign)
pointed to by nptr to integral values. When endptr is not a null pointer it points to the object that stores the
final part of nptr. These functions treat any leading whitespace as invalid.

Calling interface:

int __IML_hex_str_to_i(const char * nptr,size_t n,char ** endptr);
unsigned int __IML_hex_str_to_u(const char * nptr,size_t n,char ** endptr);
long long __IML_hex_str_to_ll(const char * nptr,size_t n,char ** endptr);
unsigned long long __IML_hex_str_to_ull(const char * nptr,size_t n,char ** endptr);

Macros
The Intel® oneAPI DPC++/C++ Compiler supports the ISO Standard predefined macros and additional
predefined macros.

ISO Standard Predefined Macros
The ISO/ANSI standard for the C language requires that certain predefined macros be supplied with
conforming compilers.

The compiler includes predefined macros in addition to those required by the standard. The default
predefined macros differ among Windows*, Linux* operating systems. Differences also exist on Linux as a
result of the -std compiler option.

The following table lists the macros that the Intel® oneAPI DPC++/C++ Compiler supplies in accordance with
this standard:

Macro Value

__DATE__ The date of compilation as an 11-character string literal in the form mm dd yyyy. If
the day is less than 10 characters, a space is added before the day value.

__FILE__ A string literal representing the name of the file being compiled.

__LINE__ The current line number as a decimal constant.

__STDC_HOSTED__ Defined and value is 1 only when compiling a C translation unit with /Qstd=c99.

__STDC_VERSION_
_

Defined and value is 199901L only when compiling a C translation unit
with /Qstd=c99.

__TIME__ The time of compilation as a string literal in the form hh:mm:ss.

See Also
Additional Predefined Macros

Additional Predefined Macros
The compiler includes predefined macros specified by the ISO/ANSI standard and it also supports the
predefined macros listed in the table below.

Unless otherwise stated, the macros are supported on systems based on IA-32 (C/C++ only) and Intel® 64
architectures.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

548



Macro Description

__AVX__ On Linux, defined as '1' when option
-march=corei7-avx, or higher processor targeting
options are specified.

NOTE
Available only for compilations targeting Intel® 64
architecture.

__AVX2__
( Linux)

On Linux, defined as '1' when option
-march=core-avx2, or higher processor targeting
options are specified.

NOTE
Available only for compilations targeting Intel® 64
architecture.

__AVX512BW__
(Windows, Linux)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Byte and Word Instructions (BWI).

__AVX512CD__
(Windows, Linux)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Conflict Detection Instructions (CDI).

__AVX512DQ__
(Windows, Linux)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Doubleword and Quadword Instructions (DQI).

__AVX512ER__
(Windows, Linux)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Exponential and Reciprocal Instructions.

__AVX512F__
(Windows, Linux)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Foundation instructions.

__AVX512PF__
(Windows, Linux)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
PreFetch Instructions (PFI).

__AVX512VL__
(Windows, Linux)

Defined as '1' for processors that support Intel®
Advanced Vector Extensions 512 (Intel® AVX-512)
Vector Length Extensions (VLE).

__BASE_FILE__
(Linux)

Name of source file

__COUNTER__
(Windows)

Defined as '0'.

__cplusplus
(Linux)

Defined as '1' (for the Intel® oneAPI DPC++/C++
Compiler).

__ELF__
(Linux)

Defined as '1' at the start of compilation.

Compiler Reference   

549



Macro Description

__EXCEPTIONS
(Linux)

Defined as '1' when option fno-exceptions is not
used.

__gnu_linux__
(Linux)

Defined as '1' at the start of compilation.

__GNUC__
(Linux)

The major version number of GCC installed on the
system.

__GNUC_MINOR__
(Linux)

The minor version number of GCC or G++ installed
on the system.

__GNUC_PATCHLEVEL__
(Linux)

The patch level version number of GCC or G++
installed on the system.

__GNUG__
(Linux)

The major version number of G++ installed on the
system.

__i386__
__i386
i386
(Linux)

Defined as '1' for compilations targeting IA-32
architecture (C++ only).

_INTEGRAL_MAX_BITS
(Windows)

64

__INTEL_LLVM_COMPILER
(Windows, Linux)

The version of the compiler in the form
VVVVMMUU , where VVVV is the major release
version, MM is the minor release version, and UU is
the update number. For example, the base release
of 2021.1 is represented by the value 20210100.

This symbol is also recognized by CMake.

NOTE To identify the Intel® oneAPI DPC++/C++
Compiler, you must check for the existence of both
__INTEL_LLVM_COMPILER and
SYCL_LANGUAGE_VERSION, where
SYCL_LANGUAGE_VERSION is part of the SYCL spec.

__INTEL_MS_COMPAT_LEVEL
(Windows)

Defined as '1'.

__LIBSYCL_MAJOR_VERSION Used to set the SYCL runtime library major version.

__LIBSYCL_MINOR_VERSION Used to set the SYCL runtime library minor version.

__LIBSYCL_PATCH_VERSION Used to set the SYCL runtime library patch version.

__linux__
__linux
linux

Defined as '1' at the start of compilation.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

550



Macro Description

(Linux)

__LONG_DOUBLE_SIZE__
(Windows, Linux)

On Linux, defined as 80.

On Windows, defined as 64; defined as 80 when
option /Qlong-double is specified.

__LONG_MAX__
(Linux)

9223372036854775807L

NOTE
Available only for compilations targeting Intel® 64
architecture.

__LP64__ (Linux)

__LP64 (Linux)

Defined as '1'.

NOTE
Available only for compilations targeting Intel® 64
architecture.

_M_IX86
(Windows)

700

_M_X64
(Windows)

Defined as '1' while building code targeting Intel®
64 architecture.

__MMX__
(Linux)

Defined as '1'.

On Linux, it is available only on systems based on
Intel® 64 architecture.

_MSC_EXTENSIONS
(Windows)

This macro is defined when Microsoft extensions
are enabled.

_MSC_FULL_VER
(Windows)

The Visual C++ version being used.

_MSC_VER
(Windows)

The Visual C++ version being used.

_MT
(Windows)

On Windows, defined as '1' when a multithreaded
delay-locked loop (DLL) or library is used (when
option /MD[d] or /MT[d] is specified).

__NO_MATH_INLINES
__NO_STRING_INLINES
(Linux)

Defined as '1'.

_OPENMP
(Windows, Linux)

201611 when you specify option [Q]openmp.

__OPTIMIZE__
(Linux)

Defined as '1'.

__pentium4 Defined as '1'.

Compiler Reference   

551



Macro Description

__pentium4__
(Linux)

__PIC__
__pic__
(Linux)

On Linux, defined as '1' when option fPIC is
specified.

__PTRDIFF_TYPE__
(Linux)

On Linux, defined as int on IA-32 architecture (C++
only); defined as long on Intel® 64 architecture.

__QMSPP_
(Windows)

Defined as '1'.

__REGISTER_PREFIX__
(Linux)

 

RESTRICT_WRITE_ACCESS_TO_CONSTANT_PTR The specification assumes that the SYCL
implementation addresses space deduction.
However, the deduction is performed in the middle
end, where it is hard to provide user friendly
diagnostics. When you write to raw pointers
obtained from constant_ptr, there are no
available diagnostics. You can enable diagnostics by
enabling the
RESTRICT_WRITE_ACCESS_TO_CONSTANT_PTR
macro, which allows constant_ptr to use constant
pointers as underlying pointer types. After enabling
the macro, conversions from constant_ptr to raw
pointers return constant pointers, and writing to
const pointers is diagnosed by the front-end. This
behavior does not follow the SYCL specification,
since constant_ptr conversions to the underlying
pointer type will return pointers without any
additional qualifiers. The macro is disabled by
default.

__SIGNED_CHARS__
(Windows, Linux)

Defined as '1'.

_SIZE_T_DEFINED
(Windows)

Defined, no value.

__SIZE_TYPE__
(Linux)

On Linux, defined as unsigned on IA-32
architecture (C++ only); defined as unsigned long
on Intel® 64 architecture.

__SSE__
(Windows, Linux)

On Linux, defined as '1' for processors that support
SSE instructions.

On Windows, defined as '1'.

__SSE2__
(Windows, Linux)

On Linux, defined as '1' for processors that support
Intel® SSE2 instructions.

__SSE3__ On Linux, defined as '1' for processors that support
Intel® SSE3 instructions.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

552



Macro Description

(Windows, Linux)

__SSE4_1__
(Windows, Linux)

On Linux, defined as '1' for processors that support
Intel® SSE4 instructions.

__SSE4_2__
(Windows, Linux)

On Linux, defined as '1' for processors that support
SSSE4 instructions.

__SSSE3__
(Windows, Linux)

On Linux, defined as '1' for processors that support
SSSE3 instructions.

__SYCL_COMPILER_VERSION (Windows, Linux) The build date of the SYCL library, presented in the
format YYYYMMDD.

NOTE This is only available after the SYCL library
headers are included in the source code.

SYCL_DISABLE_CPP_VERSION_CHECK_WARNING
(Windows, Linux)

Disables the warning displayed if the user tries to
compile using an unsupported version of C++.

SYCL_LANGUAGE_VERSION The SYCL_LANGUAGE_VERSION is defined only when
compiling SYCL code.

SYCL_USE_NATIVE_FP_ATOMICS Enable functions to generate built-in floating-point
atomics on the target device by enabling the
SYCL_USE_NATIVE_FP_ATOMICS macro. If the
target device does not support floating-point
atomics, emulated atomics are used instead. The
macro is disabled by default.

SYCL2020_CONFORMANT_APIS Enable compliance with the SYCL 2020 specification
for non-compliant functions.

Some current SYCL function implementations do
not conform to the SYCL 2020 specification and
may result in an API break with a direct change.

The following non-compliant functions are
deprecated:

• sycl::get_native<backend::opencl,event
>() with return type cl_event.

If a nonconforming function is used, the user is
notified of the deprecated function and the compiler
will suggest that the SYCL2020_CONFORMANT_APIS
macro be enabled to enforce compliance. The user
should re-write the non-compliant code to be
compliant and re-compile with the
SYCL2020_CONFORMANT_APIS macro enabled.

unix
__unix
__unix__
(Linux)

Defined as '1'.

__USER_LABEL_PREFIX__  

Compiler Reference   

553

https://www.khronos.org/registry/SYCL/specs/sycl-2020-provisional.pdf


Macro Description

(Linux)

_VA_LIST_DEFINED
(Windows)

Defined, no value.

__VERSION__
(Linux)

The compiler version string

__w64
(Windows)

Defined, no value.

__WCHAR_T
(Linux)

Defined as '1'.

_WCHAR_T_DEFINED
(Windows)

Defined when option /Zc:wchar_t is specified or
"wctype_t" is defined in the header file.

__WCHAR_TYPE__
(Linux)

On Linux, defined as long int on IA-32 architecture
(C++ only); defined as int on Intel® 64
architecture.

_WCTYPE_T_DEFINED
(Windows)

Defined when "wctype_t" is defined in the header
file.

_WIN32
(Windows)

Defined as '1' while building code targeting IA-32
(C++ only) or Intel® 64 architecture.

_WIN64
(Windows)

Defined as '1' while building code targeting Intel®
64 architecture.

__WINT_TYPE__
(Linux)

Defined as unsigned int.

__x86_64
__x86_64__
(Linux)

Defined as '1' while building code targeting Intel®
64 architecture.

See Also
march compiler option
D compiler option
U compiler option
qopenmp, Qopenmp compiler option
ISO Standard Predefined Macros 

Use Predefined Macros to Specify Intel® Compilers
This topic shows how to use predefined macros to specify an Intel® compiler or version of an Intel compiler.

Predefined Macros to Specify Compiler and Version
When you install both the Intel® oneAPI Base Toolkit (Base Kit) and the Intel® oneAPI HPC Toolkit (HPC Kit),
you will notice that there are three compilers installed:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

554



• Intel® DPC++ Compiler
• Intel® C++ Compiler
• Intel® C++ Compiler Classic

You can use the following predefined macros to invoke a specific compiler or version of a compiler:

Compiler Predefined Macros to
Differentiate from Other
Compiler

Notes

Intel® DPC++ Compiler • SYCL_LANGUAGE_VERSIO
N

• __INTEL_LLVM_COMPILE
R

• __VERSION

SYCL_LANGUAGE_VERSION is defined in
SYCL specification and should be defined by
all SYCL compilers.

__INTEL_LLVM_COMPILER is used to select
the compiler.

Intel® C++ Compiler • __INTEL_LLVM_COMPILE
R

• __VERSION

__INTEL_LLVM_COMPILER is used to select
the compiler.

__VERSION is used to select the compiler
version.

Predefined Macros for Intel® DPC++ Compiler
The following example uses #if defined(SYCL_LANGUAGE_VERSION) && defined
(__INTEL_LLVM_COMPILER) to define a code block specific to the Intel® DPC++ Compiler:

// dpcpp only
#if defined(SYCL_LANGUAGE_VERSION) && defined (__INTEL_LLVM_COMPILER)
   // code specific for DPC++ compiler below
   // ... ...

   // example only
   std::cout << "SYCL_LANGUAGE_VERSION: " << SYCL_LANGUAGE_VERSION << std::endl;
   std::cout << "__INTEL_LLVM_COMPILER: " << __INTEL_LLVM_COMPILER << std::endl;
   std::cout << "__VERSION__: " << __VERSION__ << std::endl;
#endif

Example output using the Intel® oneAPI Toolkit Gold release with an Intel DPC++ Compiler patch release of
2021.1.2:

Linux

SYCL_LANGUAGE_VERSION: 202001

__INTEL_LLVM_COMPILER: 202110

__VERSION__: Intel(R) Clang Based C++, gcc 4.2.1 mode
Windows

SYCL_LANGUAGE_VERSION: 202001

__INTEL_LLVM_COMPILER: 202110

__VERSION__: Intel(R) Clang Based C++, clang 12.0.0

Compiler Reference   

555



Predefined Macros for Intel® C++ Compiler
The following example uses #if !defined(SYCL_LANGUAGE_VERSION) && defined
(__INTEL_LLVM_COMPILER) to define a code block specific to the Intel® C++ Compiler:

// icx only
#if !defined(SYCL_LANGUAGE_VERSION) && defined (__INTEL_LLVM_COMPILER)
   // code specific for Intel C++ Compiler below
   // ... ...

   // example only
   std::cout << "__INTEL_LLVM_COMPILER: " << __INTEL_LLVM_COMPILER << std::endl;
   std::cout << "__VERSION__: " << __VERSION__ << std::endl;
#endif

Example output using the Intel® oneAPI Toolkit Gold release with an Intel C++ Compiler patch release of
2021.1.2:

Linux

__INTEL_LLVM_COMPILER: 202110

__VERSION__: Intel(R) Clang Based C++, gcc 4.2.1 mode
Windows

__INTEL_LLVM_COMPILER: 202110

__VERSION__: Intel(R) Clang Based C++, clang 12.0.0

Pragmas
Pragmas are directives that provide instructions to the compiler for use in specific cases. For example, you
can use the novector pragma to specify that a loop should never be vectorized. The keyword #pragma is
standard in the C++ language, but individual pragmas are machine-specific or operating system-specific, and
vary by compiler.

Some pragmas provide the same functionality as compiler options. Pragmas override behavior specified by
compiler options.

Some pragmas are available for both Intel® and non-Intel microprocessors but they may perform additional
optimizations for Intel® microprocessors than they perform for non-Intel microprocessors. Refer to the
individual pragma name for detailed description.

The Intel® oneAPI DPC++/C++ Compiler pragmas are categorized as follows:

• Intel-specific Pragmas - pragmas developed or modified by Intel to work specifically with the Intel oneAPI
DPC++/C++ Compiler

• Intel Supported Pragmas - pragmas developed by external sources that are supported by the Intel oneAPI
DPC++/C++ Compiler for compatibility reasons

Using Pragmas
You enter pragmas into your C++ source code using the following syntax:

#pragma <pragma name>

Individual Pragma Descriptions
Each pragma description has the following details:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

556



Section Description

Short Description Contains a brief description of what the pragma does.

Syntax Contains the pragma syntax.

Arguments Contains a list of the arguments (parameters).

Description Contains a detailed description of what the pragma does.

Example Contains typical usage example/s.

See Also Contains links or paths to other pragmas or related topics.

Intel-Specific Pragma Reference
Pragmas specific to the Intel® oneAPI DPC++/C++ Compiler are listed in the following table.

Most Intel-specific pragmas support host code only unless otherwise noted.

Some pragmas are available for both Intel® microprocessors and non-Intel microprocessors, but may perform
additional optimizations for Intel® microprocessors than for non-Intel microprocessors.

Pragma Description

block_loop/
noblock_loop

Enables or disables loop blocking for the immediately following nested loops.
block_loop enables loop blocking for the nested loops. noblock_loop disables
loop blocking for the nested loops.

distribute_point Instructs the compiler to prefer loop distribution at the location indicated.

inline/noinline/
forceinline

Specifies inlining of all calls in a statement. This also describes pragmas
forceinline and noinline.

ivdep Instructs the compiler to ignore assumed vector dependencies.

loop_count Specifies the iterations for a for loop.

nofusion Prevents a loop from fusing with adjacent loops.

novector Specifies that a particular loop should never be vectorized.

omp target variant
dispatch

Conditionally calls a procedure offload variant if the specified device is available;
otherwise, executes the procedure on the host.

prefetch/noprefetch Invites the compiler to issue or disable requests to prefetch data from memory.
This pragma applies only to Intel® Advanced Vector Extensions 512 (Intel®
AVX-512).

unroll/nounroll Tells the compiler to unroll or not to unroll a counted loop.

unroll_and_jam/
nounroll_and_jam

Enables or disables loop unrolling and jamming. These pragmas can only be
applied to iterative for loops.

vector Tells the compiler that the loop should be vectorized according to the argument
keywords.

block_loop/noblock_loop
Enables or disables loop blocking for the immediately
following nested loops. block_loop enables loop
blocking for the nested loops. noblock_loop disables
loop blocking for the nested loops.

Compiler Reference   

557



Syntax

#pragma block_loop [clause[,clause]...]
#pragma noblock_loop

Arguments

clause Can be any of the following:

factor (expr) expr is a positive scalar constant integer
expression representing the blocking factor
for the specified loops. This clause is
optional. If the factor clause is not present,
the blocking factor will be determined based
on processor type and memory access
patterns and will be applied to the specified
levels in the nested loop following the
pragma.

At most only one factor clause can appear in
a block_loop pragma.

level (level_expr[,
level_expr]... )

level_expr is specified in the form const1 or
const1:const2 where const1 is a positive
integer constant m<= 8 representing the
loop at level m, where the immediate
following loop is level 1. The const2 is a
positive integer constant n<= 8 representing
the loop at level n, where n > m.
const1:const2 represents the nested loops
from level const1 through const2.

The clauses can be specified in any order. If you do not specify any
clause, the compiler chooses the best blocking factor to apply to all
levels of the immediately following nested loop.

Description

The block_loop pragma lets you exert greater control over optimizations on a specific loop inside a nested
loop.

Using a technique called loop blocking, the block_loop pragma separates large iteration counted loops into
smaller iteration groups. Execution of these smaller groups can increase the efficiency of cache space use
and augment performance.

If there is no level and factor clause, the blocking factor will be determined based on the processor's type
and memory access patterns and it will apply to all the levels in the nested loops following this pragma.

You can use the noblock_loop pragma to tune the performance by disabling loop blocking for nested loops.

The loop-carried dependence is ignored during the processing of block_loop pragmas.

The block_loop pragma is supported in host code only.

#pragma  block_loop factor(256) level(1)    /* applies blocking factor 256 to               */
#pragma  block_loop factor(512) level(2)    /* the top level loop in the following          
                                               nested loop and blocking factor 512 to       
                                               the 2nd level (1st nested) loop              */

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

558



#pragma  block_loop factor(256) level(2) 
#pragma  block_loop factor(512) level(1)     /* levels can be specified in any order        */

#pragma  block_loop factor(256) level(1:2)   /* adjacent loops can be specified as a range  */

#pragma  block_loop factor(256)              /* the blocking factor applies to all levels   
                                                of loop nest                                */

#pragma  block_loop               /* the blocking factor will be determined based on 
                                     processor type and memory access patterns and will 
                                     be applied to all the levels in the nested loop 
                                     following the directive                                */

#pragma  noblock_loop             /* None of the levels in the nested loop following this 
                                     directive will have a blocking factor applied          */

Consider the following:

#pragma block_loop factor(256) level(1:2)
for (j = 1 ; j<n ; j++){ 
  f  = 0 ; 
  for (i =1 ;i<n  i++){
    f  =  f +   a[i]  *  b  [i] ;
  }
  c [j]  = c[j]  + f ; 
}

The above code produces the following result after loop blocking:

for ( jj=1 ; jj<n/256+1 ; jj+){
  for ( ii = 1 ; ii<n/256+1 ;ii++){ 
    for ( j = (jj-1)*256+1 ;  min(jj*256, n) ;j++){ 
      f = 0 ; 
      for ( i = (ii-1)*256+1 ;i<min(ii*256,n) ;i++){
        f = f + a[i] * b [i]; 
      } 
      c[j]  = c[j] + f ; 
    } 
  } 
}

distribute_point
Instructs the compiler to prefer loop distribution at the
location indicated.

Syntax

#pragma distribute_point

Arguments

None

Description

The distribute_point pragma is used to suggest to the compiler to split large loops into smaller ones; this
is particularly useful in cases where optimizations like vectorization cannot take place due to excessive
register usage.

The following rules apply to this pragma:

Compiler Reference   

559



• When the pragma is placed inside a loop, the compiler distributes the loop at that point. All loop-carried
dependencies are ignored.

• When inside the loop, pragmas cannot be placed within an if statement.
• When the pragma is placed outside the loop, the compiler distributes the loop based on an internal

heuristic. The compiler determines where to distribute the loops and observes data dependency. If the
pragmas are placed inside the loop, the compiler supports multiple instances of the pragma.

The distribute_point pragma is supported in host code only.

Examples
Use the distribute_point pragma outside the loop:

#define NUM 1024 
void loop_distribution_pragma1(
       double a[NUM], double b[NUM], double c[NUM],
       double x[NUM], double y[NUM], double z[NUM] ) {
  int i;

  // Before distribution or splitting the loop
  #pragma distribute_point
  for (i=0; i< NUM; i++) {
    a[i] = a[i] + i;
    b[i] = b[i] + i;
    c[i] = c[i] + i;
    x[i] = x[i] + i;
    y[i] = y[i] + i;
    z[i] = z[i] + i;
  } 
}

Use the distribute_point pragma inside the loop:

#define NUM 1024 
void loop_distribution_pragma2(
       double a[NUM], double b[NUM], double c[NUM],
       double x[NUM], double y[NUM], double z[NUM] ) {
  int i;

  // After distribution or splitting the loop.
  for (i=0; i< NUM; i++) {
    a[i] = a[i] +i;
    b[i] = b[i] +i;
    c[i] = c[i] +i;
    #pragma distribute_point
    x[i] = x[i] +i;
    y[i] = y[i] +i;
    z[i] = z[i] +i;
  } 
}

Use the distribute_point pragma inside and outside the loop:

void dist1(int a[], int b[], int c[], int d[]) {
  #pragma distribute_point 
    // Compiler will automatically decide where to 
    // distribute. Data dependency is observed.
  for (int i=1; i<1000; i++) {
    b[i] = a[i] + 1;
    c[i] = a[i] + b[i];

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

560



    d[i] = c[i] + 1;
  } 
}
 
void dist2(int a[], int b[], int c[], int d[]) {
  for (int i=1; i<1000; i++) {
    b[i] = a[i] + 1;

    #pragma distribute_point 
      // Distribution will start here, 
      // ignoring all loop-carried dependency.
      c[i] = a[i] + b[i];
      d[i] = c[i] + 1;
  } 
}

inline, noinline, forceinline
Specifies inlining of all calls in a statement. This also
describes pragmas forceinline and noinline.

Syntax

#pragma inline [recursive]
#pragma forceinline [recursive]
#pragma noinline

Arguments

recursive Indicates that the pragma applies to all of the calls
that are called by these calls, recursively, down the
call chain.

Description

inline, forceinline, and noinline are statement-specific inlining pragmas. Each can be placed before a
C/C++ statement, and it will then apply to all of the calls within a statement and all calls within statements
nested within that statement.

The forceinline pragma indicates that the calls in question should be inlined whenever the compiler is
capable of doing so.

The inline pragma is a hint to the compiler that the user prefers that the calls in question be inlined, but
expects the compiler not to inline them if its heuristics determine that the inlining would be overly aggressive
and might slow down the compilation of the source code excessively, create too large of an executable, or
degrade performance.

The noinline pragma indicates that the calls in question should not be inlined.

These statement-specific pragmas take precedence over the corresponding function-specific pragmas.

The inline, forceinline, and noinline pragmas are supported in host code only.

Compiler Reference   

561



Examples
Use the forceinline recursive pragma:

#include <stdio.h> 

static void fun(float a[100][100], float b[100][100]) {
  inti , j;
  for (i = 0; i < 100; i++) {
    for (j = 0; j < 100; j++) {
      a[i][j] = 2 * i;
      b[i][j] = 4 * j;
    }
  } 
} 

static void sun(float a[100][100], float b[100][100]) {
  int i, j;

  for (i = 0; i < 100; i++) {
    for (j = 0; j < 100; j++) {
      a[i][j] = 2 * i;
      b[i][j] = 4 * j;
    }
    fun(a, b);
  } 
} 
static float a[100][100]; 
static float b[100][100]; 

extern int main() {
  int i, j;

  for (i = 0; i < 100; i++) {
    for (j = 0; j < 100; j++) {
      a[i][j] = i + j;
      b[i][j] = i - j;
    }
  }
  for (i = 0; i < 99; i++) {
    fun(a, b); 
#pragma forceinline recursive
    for (j = 0; j < 99; j++) {
      sun(a, b);
    }
  }
  fprintf(stderr, "%d %d\n", a[99][9], b[99][99]); 
}

The forceinline recursive pragma applies to the call 'sun(a,b)' as well as the call 'fun(a,b)' called inside
'sun(a,b)'.

ivdep
Instructs the compiler to ignore assumed vector
dependencies.

Syntax

#pragma ivdep

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

562



Arguments

None

Description

The ivdep pragma instructs the compiler to ignore assumed vector dependencies. To ensure correct code,
the compiler treats an assumed dependence as a proven dependence, which prevents vectorization. This
pragma overrides that decision. Use this pragma only when you know that the assumed loop dependencies
are safe to ignore.

The ivdep pragma is supported in host code only.

In addition to the ivdep pragma, the vector pragma can be used to override the efficiency heuristics of the
vectorizer.

NOTE
The proven dependencies that prevent vectorization are not ignored, only assumed dependencies are
ignored.

Examples
The loop in this example will not vectorize without the ivdep pragma, since the value of k is not known;
vectorization would be illegal if k < 0:

void ignore_vec_dep(int *a, int k, int c, int m) {
  #pragma ivdep
  for (int i = 0; i < m; i++)
    a[i] = a[i + k] * c; 
}

The pragma binds only the for loop contained in current function. This includes a for loop contained in a
sub-function called by the current function:

#pragma ivdep 
  for (i=1; i<n; i++) {
    e[ix[2][i]] = e[ix[2][i]]+1.0;
    e[ix[3][i]] = e[ix[3][i]]+2.0; 
}

This loop requires the parallel option in addition to the ivdep pragma to indicate there is no loop-carried
dependencies:

#pragma ivdep 
  for (j=0; j<n; j++) { a[b[j]] = a[b[j]] + 1; }

This loop requires the parallel option in addition to the ivdep pragma to ensure there is no loop-carried
dependency for the store into a().

See Also
Function Annotations and the SIMD Directive for Vectorization
novector pragma
vector pragma

loop_count
Specifies the iterations for a for loop.

Compiler Reference   

563



Syntax

#pragma loop_count(n)
#pragma loop_count=n
or

#pragma loop_count(n1[, n2]...)
#pragma loop_count=n1[, n2]...
or

#pragma loop_count min(n),max(n),avg(n)
#pragma loop_count min=n, max=n, avg=n

Arguments

(n) or =n A non-negative integer value. The compiler will
attempt to iterate the next loop the number of times
specified in n; however, the number of iterations is
not guaranteed.

(n1[,n2]...) or = n1[,n2]... Non-negative integer values. The compiler will
attempt to iterate the next loop the number of time
specified by n1 or n2, or some other unspecified
number of times. This behavior allows the compiler
some flexibility in attempting to unroll the loop. The
number of iterations is not guaranteed.

min(n), max(n), avg(n) or min=n, max=n, avg=n Non-negative integer values. Specify one or more in
any order without duplication. The compiler insures
the next loop iterates for the specified maximum,
minimum, or average number (n1) of times. The
specified number of iterations is guaranteed for min
and max.

Description

The loop_count pragma specifies the minimum, maximum, or average number of iterations for a for loop.
In addition, a list of commonly occurring values can be specified to help the compiler generate multiple
versions and perform complete unrolling.

You can specify more than one pragma for a single loop; however, do not duplicate the pragma.

The loop_count pragma is supported in host code only.

Examples
Use the loop_count pragma to iterate through the loop a minimum of three, a maximum of ten, and
average of five times:

#include <stdio.h> 
int i; 
int mysum(int start, int end, int a) {
  int iret=0; 
  #pragma loop_count min(3), max(10), avg(5)
    for (i=start;i<=end;i++)
    iret += a;
    return iret; 

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

564



} 

int main() {
  int t;
  t = mysum(1, 10, 3);
  printf("t1=%d\r\n",t);
  t = mysum(2, 6, 2);
  printf("t2=%d\r\n",t);
  t = mysum(5, 12, 1);
  printf("t3=%d\r\n",t); 
}

nofusion
Prevents a loop from fusing with adjacent loops.

Syntax

#pragma nofusion

Arguments

None

Description

The nofusion pragma lets you fine tune your program on a loop-by-loop basis. This pragma should be
placed immediately before the loop that should not be fused.

The nofusion pragma is supported in host code only.

Examples
#define SIZE 1024

int sub () {
int B[SIZE], A[SIZE];        
  int i, j, k=0;
  for(j=0; j<SIZE; j++)
    A[j] = A[j] + B[j];

#pragma nofusion
  for (i=0; i<SIZE; i++)
    k += A[i] + 1;
  return k;
}

novector
Specifies that a particular loop should never be
vectorized.

Syntax

#pragma novector

Arguments

None

Compiler Reference   

565



Description

The novector pragma specifies that a particular loop should never be vectorized, even if it is legal to do so.
When avoiding vectorization of a loop is desirable (when vectorization results in a performance regression
rather than improvement), the novector pragma can be used in the source text to disable vectorization of a
loop. This behavior is in contrast to the vector always pragma.

The novector pragma is supported in host code only.

Examples
Use the novector pragma:

void foo(int lb, int ub) {
  #pragma novector
  for(j=lb; j<ub; j++) { a[j]=a[j]+b[j]; } 
}

When the trip count (ub - lb) is too low to make vectorization worthwhile, you can use the novector
pragma to tell the compiler not to vectorize, even if the loop is considered vectorizable.

See Also
Function Annotations and the SIMD Directive for Vectorization
vector pragma

omp target variant dispatch
Conditionally calls a procedure offload variant if the
specified device is available; otherwise, executes the
procedure on the host.

Syntax

#pragma omp target variant dispatch {device(integer-expression) | nowait |
subdevice([integer-constant ,] integer-expression [ : integer-expression [ : integer-
expression] ] ) | use_device_pointer (ptr-list)}

Arguments

device Tells the compiler to call the variant only if device n is
available.

subdevice Tells the compiler to call the variant only if the
specified tiles or compute slices are available.

nowait Tells the compiler that calls to the procedure can
occur asynchronously. If nowait is not specified, calls
occur synchronously.

use_device_ptr Tells the compiler to use the corresponding device
pointer instead of the host pointer when the variant
procedure is called.

If both device and subdevice are specified, the variant is called only if the specified tiles or compute slices
are available on device n. Otherwise, the base version of the procedure is called on the host.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

566



Description

The omp target variant dispatch pragma causes the compiler to emit conditional dispatch code around
the associated procedure call that follows the pragma. If the specified device is available, the variant version
is called.

The name of the procedure associated with the omp target variant dispatch pragma must have
appeared in an omp declare variant pragma in the specification part of the calling scope. The interface of
the variant procedure must be accessible in the base procedure where omp target variant dispatch
appears.

The omp target variant dispatch pragma is supported in host code only.

NOTE
Use pragma omp target variant dispatch when calling Intel® oneAPI Math Kernel Library
(oneMKL).

In other cases, we recommend you use the OpenMP* pragma omp dispatch. For more information
about pragma omp dispatch, see the OpenMP* documentation.

prefetch/noprefetch
Invites the compiler to issue or disable requests to
prefetch data from memory. This pragma applies only
to Intel® Advanced Vector Extensions 512 (Intel®
AVX-512).

Syntax

#pragma prefetch
#pragma prefetch *:hint[:distance]
#pragma prefetch [var1 [: hint1 [: distance1]] [, var2 [: hint2 [: distance2]]]...]
#pragma noprefetch [var1 [, var2]...]

Arguments

var An optional memory reference (data to be prefetched)

hint An optional hint to the compiler to specify the type of
prefetch. Possible values:

• 1: For integer data that will be reused
• 2: For integer and floating point data that will be

reused from L2 cache
• 3: For data that will be reused from L3 cache
• 4: For data that will not be reused

To use this argument, you must also specify var.

distance An optional integer argument with a value greater
than 0. It indicates the number of loop iterations
ahead of which a prefetch is issued, before the
corresponding load or store instruction. To use this
argument, you must also specify var and hint.

Compiler Reference   

567



Description

The prefetch pragma hints to the compiler to generate data prefetches for some memory references. These
hints affect the heuristics used in the compiler. Prefetching data can minimize the effects of memory latency.

If you specify the prefetch pragma with no arguments, all arrays accessed in the immediately following loop
are prefetched.

If the loop includes the expression A(j), placing #pragma prefetch A in front of the loop instructs the
compiler to insert prefetches for A(j + d) within the loop. Here, d is the number of iterations ahead of
which to prefetch the data, and is determined by the compiler.

If you specify #pragma prefetch *, then hint and distance prefetches all array accesses in the loop.

To use these pragmas, the compiler general optimization level must be set at option O2 or higher.

The noprefetch pragma hints to the compiler not to generate data prefetches for some memory references.
This affects the heuristics used in the compiler.

The prefetch and noprefetch pragmas are supported in host code only.

Examples
Use the prefetch pragma:

#pragma prefetch htab_p:1:30 
#pragma prefetch htab_p:0:6

// Issue vprefetch1 for htab_p with a distance of 30 vectorized iterations ahead
// Issue vprefetch0 for htab_p with a distance of 6 vectorized iterations ahead
// If pragmas are not present, compiler chooses both distance values 

for (j=0; j<2*N; j++) { htab_p[i*m1 + j] = -1; }
Use noprefetch and prefetch pragmas together:

#pragma noprefetch b
#pragma prefetch a 
for(i=0; i<m; i++) { a[i]=b[i]+1; }

Use noprefetch and prefetch pragmas together:

for (i=i0; i!=i1; i+=is) {
 
float sum = b[i]; 
int ip = srow[i]; 
int c = col[ip];

#pragma noprefetch col 
#pragma prefetch value:1:80 
#pragma prefetch x:1:40

for(; ip<srow[i+1]; c=col[++ip])
  sum -= value[ip] * x[c];
  y[i] = sum; 
}

unroll/nounroll
Tells the compiler to unroll or not to unroll a counted
loop.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

568



Syntax

#pragma unroll
#pragma unroll(n)
#pragma nounroll

Arguments

n The unrolling factor representing the number of times
to unroll a loop; it must be an integer constant from 0
through 255.

Description

The unroll[n] pragma tells the compiler how many times to unroll a counted loop.

The unroll pragma must precede the for statement for each for loop it affects. If n is specified, the
optimizer unrolls the loop n times. If n is omitted or if it is outside the allowed range, the optimizer assigns
the number of times to unroll the loop.

This pragma is supported only when option O3 is set. The unroll pragma overrides any setting of loop
unrolling from the command line.

The pragma can be applied for the innermost loop nest as well as for the outer loop nest. If applied to outer
loop nests, the current implementation supports complete outer loop unrolling. The loops inside the loop nest
are either not unrolled at all or completely unrolled. The compiler generates correct code by comparing n and
the loop count.

When unrolling a loop increases register pressure and code size it may be necessary to prevent unrolling of a
loop. In such cases, use the nounroll pragma. The nounroll pragma instructs the compiler not to unroll a
specified loop.

The unroll and nounroll pragmas are supported in both host and device code.

Target device support: CPU, GPU, FPGA.

Examples
Use the unroll pragma for innermost loop unrolling:

void unroll(int a[], int b[], int c[], int d[]) {
  #pragma unroll(4)
  for (int i = 1; i < 100; i++) {
    b[i] = a[i] + 1;
    d[i] = c[i] + 1;
  } 
}

Use the unroll pragma for outer loop unrolling:

int m = 0; 
int dir[4]= {1,2,3,4}; 
int data[10]; 
#pragma unroll (4)  // outer loop unrolling
  for (int i = 0; i < 4; i++) {
     for (int j = dir[i]; data[j]==N ; j+=dir[i])
        m++;
  }

Compiler Reference   

569



When you place the unroll pragma before the first for loop, it causes the compiler to unroll the outer loop
completely. If an unroll pragma is placed before the inner for loop as well as before the outer for loop,
the compiler ignores the inner for loop unroll pragma. If the unroll pragma is placed only for the
innermost loop, the compiler unrolls the innermost loop according to some factor.

unroll_and_jam/nounroll_and_jam
Enables or disables loop unrolling and jamming. These
pragmas can only be applied to iterative for loops.

Syntax

#pragma unroll_and_jam
#pragma unroll_and_jam (n)
#pragma nounroll_and_jam

Arguments

n The unrolling factor representing the number of times
to unroll a loop; it must be an integer constant from 0
through 255

Description

The unroll_and_jam pragma partially unrolls one or more loops higher in the nest than the innermost loop
and fuses/jams the resulting loops back together. This transformation allows more reuses in the loop.

This pragma is not effective on innermost loops. Ensure that the immediately following loop is not the
innermost loop after compiler-initiated interchanges are completed.

Specifying this pragma is a hint to the compiler that the unroll and jam sequence is legal and profitable. The
compiler enables this transformation whenever possible.

The unroll_and_jam pragma must precede the for statement for each for loop it affects. If n is specified,
the optimizer unrolls the loop n times. If n is omitted or if it is outside the allowed range, the optimizer
assigns the number of times to unroll the loop. The compiler generates correct code by comparing n and the
loop count.

This pragma is supported only when compiler option O3 is set. The unroll_and_jam pragma overrides any
setting of loop unrolling from the command line.

When unrolling a loop increases register pressure and code size it may be necessary to prevent unrolling of a
nested loop or an imperfect nested loop. In such cases, use the nounroll_and_jam pragma. The
nounroll_and_jam pragma hints to the compiler not to unroll a specified loop.

The unroll_and_jam and nounroll_and_jam pragmas are supported in host code only.

Examples
Use the unroll_and_jam pragma:

int a[10][10]; 
int b[10][10]; 
int c[10][10]; 
int d[10][10]; 
void unroll(int n) {
    int i,j,k;
    #pragma unroll_and_jam (6)
    for (i = 1; i < n; i++) {
       #pragma unroll_and_jam (6)

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

570



       for (j = 1; j < n; j++) {
          for (k = 1; k < n; k++){
            a[i][j] += b[i][k]*c[k][j];
            }
       }
    } 
}

vector
Tells the compiler that the loop should be vectorized
according to the argument keywords.

Syntax

#pragma vector {always[assert]|dynamic_align|nodynamic_align|temporal|nontemporal|
[no]vecremainder|vectorlength(n1[, n2]...)}
#pragma vector nontemporal[(var1[, var2, ...])]

Arguments

always Instructs the compiler to override any efficiency
heuristic during the decision to vectorize or not, and
vectorize non-unit strides or very unaligned memory
accesses; controls the vectorization of the subsequent
loop in the program; optionally takes the keyword
assert.

dynamic_align Instructs the compiler to perform dynamic alignment
optimization for the loop.

nodynamic_align Disables dynamic alignment optimization for the loop.

nontemporal Instructs the compiler to use non-temporal (that is,
streaming) stores on systems based on all supported
architectures, unless otherwise specified; optionally
takes a comma-separated list of variables.

When this pragma is specified, it is your responsibility
to also insert any fences as required to ensure correct
memory ordering within a thread or across threads.
One typical way to do this is to insert a _mm_sfence
intrinsic call just after the loops (such as the
initialization loop) where the compiler may insert
streaming store instructions.

temporal Instructs the compiler to use temporal (that is, non-
streaming) stores on systems based on all supported
architectures, unless otherwise specified.

vecremainder Instructs the compiler to vectorize the remainder loop
when the original loop is vectorized.

novecremainder Instructs the compiler not to vectorize the remainder
loop when the original loop is vectorized.

vectorlength (n1[, n2]...) Instructs the vectorizer which vector length/factor to
use when generating the main vector loop.

Compiler Reference   

571



Description

The vector pragma indicates that the loop should be vectorized, if it is legal to do so, ignoring normal
heuristic decisions about profitability. The vector pragma takes several argument keywords to specify the
kind of loop vectorization required. The compiler does not apply the vector pragma to nested loops, each
nested loop needs a preceding pragma statement. Place the pragma before the loop control statement.

The vector pragma is supported in host code only.

Using the always keyword

When the always argument keyword is used, the pragma will ignore compiler efficiency heuristics for the
subsequent loop. When assert is added, the compiler will generate a diagnostic message if the loop cannot
be vectorized for any reason.

Using the dynamic_align and nodynamic_align keywords

Dynamic alignment is an optimization the compiler can perform to improve alignment of memory references
inside the loop. It involves peeling iterations from the vector loop into a scalar loop (which may, in turn, also
be vectorized) before the vector loop so that the vector loop aligns with a particular memory reference.
Specifying dynamic_align enables the optimization to be performed, but the compiler will still use efficiency
heuristics to determine whether the optimization will be applied to the loop. Specifying nodynamic_align
disables the optimization. By default, the compiler does not perform optimization.

Using the nontemporal and temporal keywords

The nontemporal and temporal argument keywords are used to control how the "stores" of register
contents to storage are performed (streaming versus non-streaming) on systems based on IA-32 and Intel®
64 architectures.

By default, the compiler automatically determines whether a streaming store should be used for each
variable.

Streaming stores may cause significant performance improvements over non-streaming stores for large
numbers on certain processors. However, the misuse of streaming stores can significantly degrade
performance.

Using the [no]vecremainder keyword

If keyword vecremainder is specified, the compiler tries to vectorize the remainder loop when the main loop
is vectorized. Even if the always keyword is specified, the remainder loop vectorization is still a subject of
compiler efficiency heuristics.

If keyword novecremainder is specified, the compiler vectorizes the main loop, but it does not vectorize the
remainder loop.

Using the vectorlength keyword

n is an integer power of 2; the value must be 2, 4, 6, 8, 16, 32, or 64. If more than one value is specified,
the vectorizer will choose one of the specified vector lengths based on a cost model decision.

NOTE
The pragma vector should be used with care.

Overriding the efficiency heuristics of the compiler should only be done if the programmer is absolutely
sure that vectorization will improve performance.

See Also
Function Annotations and the SIMD Directive for Vectorization

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

572



Intel-supported Pragma Reference
The Intel® oneAPI DPC++/C++ Compiler supports the following pragmas to ensure compatibility with other
compilers.

Pragmas Compatible with the Microsoft* Compiler
The following pragmas are compatible with the Microsoft Compiler. For more information about these
pragmas, go to the Microsoft Developer Network (http://msdn.microsoft.com).

Pragma Description

alloc_text Names the code section where the specified function definitions are to
reside.

auto_inline Excludes any function defined within the range where off is specified
from being considered as candidates for automatic inline expansion.

bss_seg Indicates to the compiler the segment where uninitialized variables are
stored in the .obj file.

check_stack The on argument indicates that stack checking should be enabled for
functions that follow and the off argument indicates that stack checking
should be disabled for functions that follow.

code_seg Specifies a code section where functions are to be allocated.

comment Places a comment record into an object file or executable file.

component Controls collecting of browse information or dependency information from
within source files.

conform Specifies the run-time behavior of the /Zc:forScope compiler option.

const_seg Specifies the segment where functions are stored in the .obj file.

data_seg Specifies the default section for initialized data.

deprecated Indicates that a function, type, or any other identifier may not be
supported in a future release or indicates that a function, type, or any
other identifier should not be used any more.

fenv_access Informs an implementation that a program may test status flags or run
under a non-default control mode.

float_control Specifies floating-point behavior for a function.

fp_contract Allows or disallows the implementation to contract expressions.

loop Controls how the loop code will be considered or excluded from
consideration by the auto-vectorizer.

init_seg Specifies the section to contain C++ initialization code for the translation
unit.

message Displays the specified string literal to the standard output device
(stdout).

Compiler Reference   

573



Pragma Description

optimize Specifies optimizations to be performed on functions below the pragma or
until the next optimize pragma; implemented to partly support the
Microsoft implementation of same pragma; for the Intel oneAPI
DPC++/C++ Compiler implementation, see the optimize reference
page.

pointers_to_members Specifies whether a pointer to a class member can be declared before its
associated class definition and is used to control the pointer size and the
code required to interpret the pointer.

pop_macro Sets the value of the specified macro to the value on the top of the stack.

push_macro Saves the value of the specified macro on the top of the stack.

region/endregion Specifies a code segment in the Microsoft Visual Studio* Code Editor that
expands and contracts by using the outlining feature.

section Creates a section in an .obj file. Once a section is defined, it remains
valid for the remainder of the compilation.

vtordisp The on argument enables the generation of hidden vtordisp members
and the off disables them.

push argument pushes the current vtordisp setting to the internal
compiler stack. pop argument removes the top record from the compiler
stack and restores the removed value of vtordisp.

warning Allows selective modification of the behavior of compiler warning
messages.

weak Declares symbol you enter to be weak.

OpenMP* Standard Pragmas
The Intel oneAPI DPC++/C++ Compiler currently supports OpenMP* 5.0 Version TR4, and some OpenMP
Version 5.1 pragmas. Supported pragmas are isted below. For more information about these pragmas,
reference the OpenMP* Version 5.1 specification.

Intel-specific clauses are noted in the affected pragma description.

Pragma Description

omp allocate Specifies memory allocators to use for object allocation and deallocation

omp atomic Specifies a computation that must be executed atomically.

omp barrier Specifies a point in the code where each thread must wait until all threads in the
team arrive.

omp cancel Requests cancellation of the innermost enclosing region of the type specified,
and causes the encountering task to proceed to the end of the cancelled
construct.

omp cancellation point Defines a point at which implicit or explicit tasks check to see if cancellation has
been requested for the innermost enclosing region of the type specified. This
construct does not implement a synchronization between threads or tasks.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

574



Pragma Description

omp critical Specifies a code block that is restricted to access by only one thread at a time.

omp declare reduction Declares User-Defined Reduction (UDR) functions (reduction identifiers) that can
be used as reduction operators in a reduction clause.

omp declare simd Creates a version of a function that can process multiple arguments using Single
Instruction Multiple Data (SIMD) instructions from a single invocation from a
SIMD loop.

omp declare target Specifies functions and variables that are created or mapped to a device.

omp declare variant Identifies a variant of a base procedure and specifies the context in which this
variant is used.

omp dispatch Determines if a procedure variant is called for a given procedure.

omp distribute Specifies that the iterations of one or more loops should be distributed among
the initial threads of all thread teams in a league.

omp distribute parallel for Specifies a loop that can be executed in parallel by multiple threads that are
members of multiple teams.

omp distribute parallel for
simd

Specifies a loop that will be executed in parallel by multiple threads that are
members of multiple teams. It will be executed concurrently using SIMD
instructions.

omp distribute simd Specifies a loop that will be distributed across the primary threads of the teams
region. It will be executed concurrently using SIMD instructions.

omp flush Identifies a point at which a thread's temporary view of memory becomes
consistent with the memory.

omp for Specifies a work-sharing loop. Iterations of the loop are executed in parallel by
the threads in the team.

omp for simd Specifies that the iterations of the loop will be distributed across threads in the
team. Iterations executed by each thread can also be executed concurrently
using SIMD instructions.

omp interop Identifies a foreign runtime context and identifies runtime characteristics of that
context, enabling interoperability with it.

omp loop Specifies that the iterations of the associated loops can execute in any order or
concurrently.

omp masked Specifies a structured block that is executed by a subset of the threads of the
current team.

omp master (deprecated;
see omp masked)

Specifies a code block that must be executed only once by the primary thread of
the team.

omp ordered Specifies a block of code that the threads in a team must execute in the natural
order of the loop iterations, or as a stand-alone directive, specifies cross-
iteration dependences in a doacross loop-nest.

omp parallel Specifies that a structured block should be run in parallel by a team of threads.

Compiler Reference   

575



Pragma Description

omp parallel for Provides an abbreviated way to specify a parallel region containing only a FOR
construct.

omp parallel for simd Specifies a parallel construct that contains one for simd construct and no other
statement.

omp parallel sections Specifies a parallel construct that contains only a sections construct.

omp requires Lists the features that an implementation must support so that the program
compiles and runs correctly.

omp scan Specifies a scan computation that updates each list item in each iteration of the
loop.

omp scope Defines a structured block that is executed by all threads in a team but where
additional OpenMP* operations can be specified.

omp sections Defines a set of structured blocks that will be distributed among the threads in
the team.

omp simd Transforms the loop into a loop that will be executed concurrently using SIMD
instructions.

omp single Specifies that a block of code is to be executed by only one thread in the team.

omp target Creates a device data environment and executes the construct on that device.

omp target data Specifies that variables are mapped to a device data environment for the extent
of the region.

omp target enter data Specifies that variables are mapped to a device data environment.

omp target exit data Specifies that variables are unmapped from a device data environment.

omp target parallel loop Provides an abbreviated way to specify a target region that contains only a
parallel loop construct.

omp target teams Creates a device data environment and executes the construct on the same
device. It also creates a league of thread teams with the primary thread in each
team executing the structured block.

omp target teams
distribute

Creates a device data environment and then executes the construct on that
device. It also specifies that loop iterations will be distributed among the
primary threads of all thread teams in a league created by a teams construct.

omp target teams
distribute parallel for

Creates a device data environment and then executes the construct on that
device. It also specifies a loop that can be executed in parallel by multiple
threads that are members of multiple teams created by a teams construct.

omp target teams
distribute parallel for
simd

Creates a device data environment and then executes the construct on that
device. It also specifies a loop that can be executed in parallel by multiple
threads that are members of multiple teams created by a teams construct. The
loop will be distributed across the teams, which will be executed concurrently
using SIMD instructions.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

576



Pragma Description

omp target teams
distribute simd

Creates a device data environment and then executes the construct on that
device. It also specifies that loop iterations will be distributed among the
primary threads of all thread teams in a league created by a teams construct. It
will be executed concurrently using SIMD instructions.

omp target teams loop Provides an abbreviated way to specify a target region that contains only a
teams loop construct.

omp target update Makes the items listed in the device data environment consistent between the
device and host, in accordance with the motion clauses on the pragma.

omp task Specifies a code block whose execution may be deferred.

omp taskgroup Causes the program to wait until the completion of all enclosed and descendant
tasks.

omp taskwait Specifies a wait on the completion of child tasks generated since the beginning
of the current task.

omp taskyield Specifies that the current task can be suspended at this point in favor of
execution of a different task.

omp teams Creates a league of thread teams inside a target region to execute a structured
block in the initial thread of each team.

omp teams distribute Creates a league of thread teams and specifies that loop iterations will be
distributed among the primary threads of all thread teams in the league.

omp teams distribute
parallel for

Creates a league of thread teams and specifies that the associated loop can be
executed in parallel by multiple threads that are members of multiple teams.

omp teams distribute
parallel for simd

Creates a league of thread teams and specifies that the associated loop can be
executed concurrently using SIMD instructions in parallel by multiple threads
that are members of multiple teams.

omp teams distribute
simd

Creates a league of thread teams and specifies that the associated loop will be
distributed across the primary threads of the teams and executed concurrently
using SIMD instructions.

omp teams loop Provides an abbreviated way to specify a teams construct that contains only a
loop construct.

omp threadprivate Specifies a list of globally-visible variables that will be allocated private to each
thread.

Pragmas Compatible with Other Compilers
The following pragmas are compatible with other compilers. For more information about these pragmas, see
the documentation for the specified compiler.

Pragma Description

include_directory HP-compatible pragma. It appends the string argument to the list of
places to search for #include files.

Compiler Reference   

577



Pragma Description

poison GCC-compatible pragma. It labels the identifiers you want removed from
your program; an error results when compiling a "poisoned"
identifier; #pragma POISON is also supported.

options GCC-compatible pragma; It sets the alignment of fields in structures.

weak GCC-compatible pragma, it declares the symbol you enter to be weak.

See Also
Intel-specific Pragmas 
Zc compiler option

Error Handling
This topic describes compiler warnings and errors. The compiler sends these messages, along with the
erroneous source line, to stderr.

Warnings
Warning messages report legal but questionable use of C or C++. The compiler displays warnings by default.
You can suppress warning messages by specifying an appropriate compiler option. Warnings do not stop
translation or linking. Warnings do not interfere with any output files.

The following is a representative warning message:

   unknown pragma ignored [-Wunknown-pragmas] 
Some warnings that start with -W can be disabled using the negative form of the option -Wno-. For example,
option -Wno-unknown-pragmas disables option -Wunknown-pragmas.

Errors
Error messages report syntactic or semantic misuse of C or C++. The compiler always displays error
messages. Errors suppress object code for the module containing the error and prevent linking, but they
allow parsing to continue to detect other possible errors.

The following are some representative error messages:

expected ';' at end of declaration
unexpected type name 'b': expected expression

For a summary of warning and error options, see the Clang documentation.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

578

https://clang.llvm.org/docs/UsersManual.html#options-to-control-error-and-warning-messages


Compilation

Part

I
V

This section contains information about features that can affect compilation, such as environment variables,
and using configuration files.

Compilation Overview
Compilation Environment
You can customize the environment used during compilation using a combination of

• Configuration Files
• Environment variables
• Response Files

You can also modify the compilation by adding additional include directories for the compiler to search during
compilation. See Specify Compiler Files for more information.

Default Compiler Behavior
The Intel® oneAPI DPC++/C++ Compiler processes C/C++ and SYCL source files. Compilation can be divided
into these major phases: :

• Preprocessing
• Semantic parsing
• Optimization
• Code generation
• Linking

By default, the compiler performs the first four phases of compilation and then invokes the linker to perform
the linking phase. The default linkers are ld for Linux and link for Windows.

Default settings for the compiler include:

• Optimization level O2 (-O2)
• Floating point model = fast (-fp-model=fast)
• icpx C++ language standard: C++14
• dpcpp C++ language standard: C++17
• C++ runtime:

• Linux: libstdc++, using headers and libraries installed on the system
• Windows: Microsoft Visual C++ (MSVC) provided headers and libraries

• SVML and specific interfaces enabled to call into the Intel libirc library

Compilation   

579



Customize the Compilation Process
The Intel® oneAPI DPC++/C++ Compiler provides multiple options to customize compilation.

Preprocessing

Several options are available to customize preprocessing. For example, you can:

• Specify the location of system and user header files
• Specify macros
• Stop the compilation process after preprocessing
• Send preprocessed output to stdout

You can optionally use your own preprocessor to generate a preprocessed file which can then be passed to
the compiler.

For a detailed list of preprocessing options, see Preprocessor Options.

Compiling

Compiler options are not required to compile your program, but can be used to control different aspects of
your application, such as:

• Code generation
• Optimization
• Output file (type, name, location)
• Linking properties
• Size of the executable
• Speed of the executable

For a detailed list of all compiler options, see Compiler Options.

Linking

You can perform the linking phase using the Intel compiler to invoke the linker (default) or by calling the
linker directly.

NOTE On Linux, calling the linker directly requires explicit understanding of which specific system and
Intel libraries need to be linked in, as they will need to be passed directly to the linker.

To prevent default linking at compilation time, use the -c option. You must then explicitly pass along the
generated object on the compilation command line and the compiler will create the final binary.

You can pass options to the linker for additional control of the linking phase. See Pass Options to the Linker
for additional information.

See Also
Compiler Options 
Specify Compiler Files 
Preprocessor Options 
Pass Options to the Linker 

Supported Environment Variables
You can customize your system environment by specifying paths where the compiler searches for certain files
such as libraries, include files, configuration files, and certain settings.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

580



Compiler Compile-Time Environment Variables
The following table shows the compile-time environment variables that affect the compiler:

Compile-Time
Environment
Variable

Description

CL (Windows)

_CL_ (Windows)

Define the files and options you use most often with the CL variable. Note: You
cannot set the CL environment variable to a string that contains an equal sign. You
can use the pound sign instead. In the following example, the pound sign (#) is
used as a substitute for an equal sign in the assigned string: SET CL=/Dtest#100

IA32ROOT (IA-32
architecture and
Intel® 64
architecture)

Points to the directories containing the include and library files for a non-standard
installation structure.

ICXCFG Specifies the configuration file for customizing compilations when invoking the
compiler using icx. Used instead of the default configuration file.

ICPXCFG Specifies the configuration file for customizing compilations when invoking the
compiler using icpx. Used instead of the default configuration file.

__INTEL_PRE_CFL
AGS
__INTEL_POST_CF
LAGS

Specifies a set of compiler options to add to the compile line.

This is an extension to the facility already provided in the compiler configuration file
icx.cfg.

NOTE By default, a configuration file named icx.cfg (Windows, Linux), or icpx.cfg
(Linux) is used. This file is in the same directory as the compiler executable. To use
another configuration file in another location, you can use the ICXCFG (Windows, Linux),
ICPXCFG (Linux) environment variable to assign the directory and file name for the
configuration file.

You can insert command line options in the prefix position using
__INTEL_PRE_CFLAGS , or in the suffix position using __INTEL_POST_CFLAGS. The
command line is built as follows:

Syntax:icx <PRE flags> <flags from configuration file> <flags from
the compiler invocation> <POST flags>

NOTE The driver issues a warning that the compiler is overriding an option because of an
environment variable, but only when you include the option /W5 (Windows) or -w3
(Linux).

PATH Specifies the directories the system searches for binary executable files.

NOTE On Windows, this also affects the search for Dynamic Link Libraries
(DLLs).

Compilation   

581



Compile-Time
Environment
Variable

Description

TMP
TMPDIR
TEMP

Specifies the location for temporary files. If none of these are specified, or writeable,
or found, the compiler stores temporary files in /tmp (Linux) or the current directory
(Windows).

The compiler searches for these variables in the following order: TMP, TMPDIR, and
TEMP.

NOTE
On Windows, these environment variables cannot be set from Visual Studio.

LD_LIBRARY_PATH
(Linux)

Specifies the location for shared objects (.so files).

INCLUDE
(Windows)

Specifies the directories for the source header files (include files).

LIB (Windows) Specifies the directories for all libraries used by the compiler and linker.

GNU Environment Variables and Extensions

CPATH (Linux) Specifies the path to include directory for C/C++ compilations.

C_INCLUDE_PATH
(Linux)

Specifies path to include directory for C compilations.

CPLUS_INCLUDE_P
ATH (Linux)

Specifies path to include directory for C++ compilations.

DEPENDENCIES_OU
TPUT (Linux)

Specifies how to output dependencies for make based on the non-system header
files processed by the compiler. System header files are ignored in the dependency
output.

GCC_EXEC_PREFIX
(Linux)

Specifies alternative names for the linker (ld) and assembler (as).

LIBRARY_PATH
(Linux)

Specifies the path for libraries to be used during the link phase.

SUNPRO_DEPENDEN
CIES (Linux)

This variable is the same as DEPENDENCIES_OUTPUT, except that system header files
are not ignored.

NOTE INTEL_ROOT is an environment variable that is reserved for the Intel® Compiler. Its use is not
supported.

Compiler Run-Time Environment Variables
The following table summarizes compiler environment variables that are recognized at run time.

Run-Time Environment Variable Description

GNU extensions (recognized by the Intel OpenMP* compatibility library)

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

582



Run-Time Environment Variable Description

GOMP_CPU_AFFINITY (Linux) GNU extension recognized by the Intel OpenMP
compatibility library. Specifies a list of OS processor
IDs.

You must set this environment variable before the
first parallel region or before certain API calls
including omp_get_max_threads(),
omp_get_num_procs() and any affinity API calls.
For detailed information on this environment
variable, see Thread Affinity Interface.

Default: Affinity is disabled

GOMP_STACKSIZE (Linux) GNU extension recognized by the Intel OpenMP
compatibility library. Same as
OMP_STACKSIZE.KMP_STACKSIZE overrides
GOMP_STACKSIZE, which overrides
OMP_STACKSIZE.
Default: See the description for OMP_STACKSIZE.

OpenMP Environment Variables (OMP_) and Extensions (KMP_)

OMP_CANCELLATION Activates cancellation of the innermost enclosing
region of the type specified. If set to TRUE, the
effects of the cancel construct and of cancellation
points are enabled and cancellation is activated. If
set to FALSE, cancellation is disabled and the
cancel construct and cancellation points are
effectively ignored.

NOTE
Internal barrier code will work differently depending
on whether the cancellation is enabled. Barrier code
should repeatedly check the global flag to figure out if
the cancellation had been triggered. If a thread
observes the cancellation it should leave the barrier
prematurely with the return value 1 (may wake up
other threads). Otherwise, it should leave the barrier
with the return value 0.

Enables (TRUE) or disables (FALSE) cancellation of
the innermost enclosing region of the type
specified.

Default: FALSE

Example: OMP_CANCELLATION=TRUE

OMP_DISPLAY_ENV Enables (TRUE) or disables (FALSE) the printing to
stderr of the OpenMP version number and the
values associated with the OpenMP environment
variable.

Possible values are: TRUE, FALSE, or VERBOSE.

Compilation   

583



Run-Time Environment Variable Description

Default: FALSE

Example: OMP_DISPLAY_ENV=TRUE

OMP_DEFAULT_DEVICE Sets the device that will be used in a target region.
The OpenMP routine omp_set_default_device or
a device clause in a target pragma can override
this variable.

If no device with the specified device number
exists, the code is executed on the host. If this
environment variable is not set, device number 0 is
used.

OMP_DYNAMIC Enables (TRUE) or disables (FALSE) the dynamic
adjustment of the number of threads.

Default: FALSE

Example: OMP_DYNAMIC=TRUE

OMP_MAX_ACTIVE_LEVELS The maximum number of levels of parallel nesting
for the program.

Possible values: Non-negative integer.

Default: 1

OMP_NESTED Deprecated; use OMP_MAX_ACTIVE_LEVELS instead.

OMP_NUM_THREADS Sets the maximum number of threads to use for
OpenMP parallel regions if no other value is
specified in the application.

The value can be a single integer, in which case it
specifies the number of threads for all parallel
regions. The value can also be a comma-separated
list of integers, in which case each integer specifies
the number of threads for a parallel region at a
nesting level.

The first position in the list represents the outer-
most parallel nesting level, the second position
represents the next-inner parallel nesting level, and
so on. At any level, the integer can be left out of
the list. If the first integer in a list is left out, it
implies the normal default value for threads is used
at the outer-most level. If the integer is left out of
any other level, the number of threads for that level
is inherited from the previous level.

This environment variable applies to the options 
Qopenmp (Windows) or qopenmp (Linux).

Default: The number of processors visible to the
operating system on which the program is
executed.

Syntax: OMP_NUM_THREADS=value[,value]*

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

584



Run-Time Environment Variable Description

OMP_PLACES Specifies an explicit ordered list of places, either as
an abstract name describing a set of places or as
an explicit list of places described by nonnegative
numbers. An exclusion operator “!” can also be
used to exclude the number or place immediately
following the operator.

For explicit lists, the meaning of the numbers and
how the numbering is done for a list of nonnegative
numbers are implementation defined. Generally,
the numbers represent the smallest unit of
execution exposed by the execution environment,
typically a hardware thread.

Intervals can be specified using the <lower-
bound> : <length> : <stride> notation to
represent the following list of numbers:

"<lower-bound>, <lower-bound> + 
<stride>, ..., 
<lower-bound> +(<length>-1)*<stride>."
When <stride> is omitted, a unit stride is
assumed. Intervals can specify numbers within a
place as well as sequences of places.

# EXPLICIT LIST EXAMPLE
setenv OMP_PLACES "{0,1,2,3},{4,5,6,7},
{8,9,10,11},{12,13,14,15}"
setenv OMP_PLACES "{0:4},{4:4},{8:4},{12:4}"
setenv OMP_PLACES "{0:4}:4:4"
The abstract names listed below should be
understood by the execution and run-time
environment:

• threads: Each place corresponds to a single
hardware thread on the target machine.

• cores: Each place corresponds to a single core
(having one or more hardware threads) on the
target machine.

• ll_caches: Each place corresponds to a set of
cores that share the last level cache on the
device.

• numa_domains: Each place corresponds to a set
of cores for which their closest memory on the
device is 1) the same memory and 2) at a
similar distance from the cores.

• sockets: Each place corresponds to a single
socket (consisting of one or more cores) on the
target machine.

When requesting fewer places or more resources
than available on the system, the determination of
which resources of type abstract_name are to be
included in the place list is implementation-defined.

Compilation   

585



Run-Time Environment Variable Description

The precise definitions of the abstract names are
implementation defined. An implementation may
also add abstract names as appropriate for the
target platform. The abstract name may be
appended by a positive number in parentheses to
denote the length of the place list to be created,
that is abstract_name(num-places).

# ABSTRACT NAMES EXAMPLE
  setenv OMP_PLACES threads
  setenv OMP_PLACES threads(4)

NOTE
If any numerical values cannot be mapped to a
processor on the target platform the behavior is
implementation-defined. The behavior is also
implementation-defined when the OMP_PLACES
environment variable is defined using an abstract
name.

OMP_PROC_BIND (Windows, Linux) Sets the thread affinity policy to be used for parallel
regions at the corresponding nested level. Enables
(TRUE) or disables (FALSE) the binding of threads
to processor contexts. If enabled, this is the same
as specifying KMP_AFFINITY=scatter. If disabled,
this is the same as specifying KMP_AFFINITY=none.

Acceptable values: TRUE, FALSE, or a comma
separated list, each element of which is one of the
following values: PRIMARY, MASTER (deprecated),
CLOSE, SPREAD.

Default: FALSE
If set to FALSE, the execution environment may
move OpenMP threads between OpenMP places,
thread affinity is disabled, and proc_bind clauses on
parallel constructs are ignored. Otherwise, the
execution environment should not move OpenMP
threads between OpenMP places, thread affinity is
enabled, and the initial thread is bound to the first
place in the OpenMP place list.

If set to PRIMARY, all threads are bound to the
same place as the primary thread. If set to CLOSE,
threads are bound to successive places, close to
where the primary thread is bound. If set to
SPREAD, the primary thread's partition is subdivided
and threads are bound to single place successive
sub-partitions.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

586



Run-Time Environment Variable Description

NOTE
KMP_AFFINITY takes precedence over
GOMP_CPU_AFFINITY and OMP_PROC_BIND.
GOMP_CPU_AFFINITY takes precedence over
OMP_PROC_BIND.

OMP_SCHEDULE Sets the run-time schedule type and an optional
chunk size.

Default: static, no chunk size specified

Example syntax:
OMP_SCHEDULE="[modifier:]kind[,chunk_size
]" where

• modifier is one of monotonic or
nonmonotonic

• kind is one of static, dynamic, guided, or
auto

• chunk_size is a positive integer

NOTE
Some environment variables are available for
both Intel® microprocessors and non-Intel
microprocessors, but may perform additional
optimizations for Intel® microprocessors than for
non-Intel microprocessors.

OMP_STACKSIZE Sets the number of bytes to allocate for each
OpenMP thread to use as the private stack for the
thread. Recommended size is 16M.

Use the optional suffixes to specify byte units: B
(bytes), K (Kilobytes), M (Megabytes), G
(Gigabytes), or T (Terabytes) to specify the units. If
you specify a value without a suffix, the byte unit is
assumed to be K (Kilobytes).

This variable does not affect the native operating
system threads created by the user program, or the
thread executing the sequential part of an OpenMP
program.

The kmp_{set,get}_stacksize_s() routines set/
retrieve the value. The kmp_set_stacksize_s()
routine must be called from sequential part, before
first parallel region is created. Otherwise, calling
kmp_set_stacksize_s() has no effect. Default
(IA-32 architecture): 2M

Default (Intel® 64 architecture): 4M

Compilation   

587



Run-Time Environment Variable Description

Related environment variables:
KMP_STACKSIZE (overrides OMP_STACKSIZE).

Syntax: OMP_STACKSIZE=value

OMP_THREAD_LIMIT Limits the number of simultaneously-executing
threads in an OpenMP program.

If this limit is reached and another native operating
system thread encounters OpenMP API calls or
constructs, the program can abort with an error
message. If this limit is reached when an OpenMP
parallel region begins, a one-time warning message
might be generated indicating that the number of
threads in the team was reduced, but the program
will continue.

This environment variable is only used for programs
compiled with the following option: Qopenmp
(Windows) or qopenmp (Linux).

The omp_get_thread_limit() routine returns the
value of the limit.

Default: No enforced limit

Related environment variable:
KMP_ALL_THREADS (overrides OMP_THREAD_LIMIT).

Example syntax: OMP_THREAD_LIMIT=value

OMP_WAIT_POLICY Decides whether threads spin (active) or yield
(passive) while they are waiting.

OMP_WAIT_POLICY=ACTIVE is an alias for
KMP_LIBRARY=turnaround, and
OMP_WAIT_POLICY=PASSIVE is an alias for
KMP_LIBRARY=throughput.

Default: Passive

Syntax: OMP_WAIT_POLICY=value

OMP_DISPLAY_AFFINITY Instructs the runtime to display formatted affinity
information for all OpenMP threads in the parallel
region upon entering the first parallel region and
when any change occurs in the information
accessible by the format specifiers listed in the
OMP_AFFINITY_FORMAT entry.

Possible values: TRUE or FALSE
Default: FALSE

OMP_AFFINITY_FORMAT Defines the format when displaying OpenMP thread
affinity information. Possible values are any string
with the following format field available:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

588



Run-Time Environment Variable Description

• %t or %{team_num}: Value returned by
omp_get_team_num()

• %T or %{num_teams}: Value returned by
omp_get_num_teams()

• %L or %{nesting_level}: Value returned by
omp_get_level()

• %n or %{thread_num}: Value returned by
omp_get_thread_num()

• %a or %{ancestor_tnum}: Value returned by
omp_get_ancestor_thread_num(omp_get_lev
el() – 1)

• %H or %{host}: Name of host device
• %P or %{process_id}: Process ID
• %i or %{native_thread_id}: Native thread ID

on the platform
• %A or %{thread_affinity}: List of processor

ID on which a thread may execute

Default: 'OMP: pid %P tid %i thread %n
bound to OS proc set {%A}'

OMP_MAX_TASK_PRIORITY Controls the use of task priorities by setting the
initial value.

Possible values: Non-negative integer.

Default: 0

OMP_TOOL Controls whether the OpenMP runtime will try to
register a first party tool that uses OMPT interface.

Possible values: ENABLED or DISABLED.

Default: ENABLED

NOTE Only the host OpenMP runtime is supported.

OMP_TOOL_LIBRARIES Sets a list of first-party tool locations that use the
OMPT interface. The list enumerates names of
dynamically-loadable libraries with OS-specific path
separator.

Default: Empty

NOTE Only the host OpenMP runtime is supported.

OMP_TOOL_VERBOSE_INIT Controls whether the OpenMP runtime will
verbosely log the registration of a tool that uses the
OMPT interface.

Possible values:

• DISABLED: Do not log the registration.

Compilation   

589



Run-Time Environment Variable Description

• STDOUT: Log the registration to stdout.
• STDERR: Log the registration to stderr.
• File_Name: Log the registration to the location

specified by File_Name.

Default:DISABLED

NOTE Only the host OpenMP runtime is supported.

OMP_DEBUG Controls whether the OpenMP runtime collects
information that an OMPD library may need to
support a tool.

Possible values: ENABLED or DISABLED.

Default: DISABLED

NOTE Only the host OpenMP runtime is supported.

OMP_ALLOCATOR Specifies the default allocator for allocation calls,
directives, and clauses that do not specify an
allocator.

Default: omp_default_mem_alloc
Syntax: <PredefinedMemAllocator> |
<PredefinedMemSpace> |
<PredefinedMemSpace>:<Traits>
Currently supported values for
<PredefinedMemAllocator> and
<PredefinedMemSpace> :

• omp_default_mem_alloc and
omp_default_mem_space

Additional values are supported if libmemkind is
available and there is system support for it:

• omp_high_bw_mem_alloc and
omp_high_bw_mem_space

• omp_large_cap_mem_alloc and
omp_large_cap_mem_space

Refer to the OpenMP specification for more
information.

OMP_NUM_TEAMS Sets the maximum number of teams created by a
teams construct by setting nteams-var ICV.

Possible values: Positive integer.

Default: 1

OMP_TEAMS_THREAD_LIMIT Sets the maximum number of OpenMP threads to
use in each team created by a teams construct.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

590

https://www.openmp.org/spec-html/5.1/openmp.html


Run-Time Environment Variable Description

Possible values: Positive integer.

Default: <NumberOfProcessors> / <nteams-var
ICV>

KMP_AFFINITY (Linux, Windows) Enables run-time library to bind threads to physical
processing units.

You must set this environment variable before the
first parallel region, or certain API calls including
omp_get_max_threads(), omp_get_num_procs()
and any affinity API calls. For detailed information
on this environment variable, see Thread Affinity
Interface.

Default:
noverbose,warnings,noreset,respect,granularity=co
re,none

Default (Windows with multiple processor groups):
noverbose,warnings,noreset,norespect,granularity=
group,compact,0,0

NOTE On Windows with multiple processor groups,
the norespect affinity modifier is assumed when the
process affinity mask equals a single processor group
(which is default on Windows). Otherwise, the respect
affinity modifier is used.

KMP_ALL_THREADS Limits the number of simultaneously-executing
threads in an OpenMP program. If this limit is
reached and another native operating system
thread encounters OpenMP API calls or constructs,
then the program may abort with an error
message. If this limit is reached at the time an
OpenMP parallel region begins, a one-time warning
message may be generated indicating that the
number of threads in the team was reduced, but
the program will continue execution.

This environment variable is only used for programs
compiled with the Qopenmp(Windows) or qopenmp
(Linux) option.

Default: No enforced limit.

KMP_BLOCKTIME Sets the time, in milliseconds, that a thread should
wait, after completing the execution of a parallel
region, before sleeping.

Use the optional character suffixes: s (seconds), m
(minutes), h (hours), or d (days) to specify the
units.

Specify infinite for an unlimited wait time.

Compilation   

591



Run-Time Environment Variable Description

Default: 200 milliseconds

Related Environment Variable: KMP_LIBRARY
environment variable.

KMP_CPUINFO_FILE Specifies an alternate file name for a file containing
the machine topology description. The file must be
in the same format as /proc/cpuinfo.

Default: None

KMP_DETERMINISTIC_REDUCTION Enables (TRUE) or disables (FALSE) the use of a
specific ordering of the reduction operations for
implementing the reduction clause for an OpenMP
parallel region. This has the effect that, for a given
number of threads, in a given parallel region, for a
given data set and reduction operation, a floating
point reduction done for an OpenMP reduction
clause has a consistent floating point result from
run to run, since round-off errors are identical.

NOTE When compiling, you must set the following flag
to ensure correct behavior:

• -fp-model precise (Linux)
• -fp:precise (Windows)

Default: FALSE

KMP_DYNAMIC_MODE Selects the method used to determine the number
of threads to use for a parallel region when
OMP_DYNAMIC=TRUE. Possible values: (asat |
load_balance | thread_limit), where,

• asat: estimates number of threads based on
parallel start time;

NOTE
Support for asat (automatic self-allocating
threads) is now deprecated and will be removed
in a future release.

• load_balance: tries to avoid using more
threads than available execution units on the
machine;

• thread_limit: tries to avoid using more
threads than total execution units on the
machine.

Default (IA-32 architecture): load_balance
(on all supported OSes)

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

592



Run-Time Environment Variable Description

Default (Intel® 64 architecture):
load_balance (on all supported OSes)

KMP_HOT_TEAMS_MAX_LEVEL Sets the maximum nested level to which teams of
threads will be hot.

NOTE
A hot team is a team of threads optimized for faster
reuse by subsequent parallel regions. In a hot team,
threads are kept ready for execution of the next
parallel region, in contrast to the cold team, which is
freed after each parallel region, with its threads going
into a common pool of threads.

For values of 2 and above, nested parallelism
should be enabled.

Default: 1

KMP_HOT_TEAMS_MODE Specifies the run-time behavior when the number
of threads in a hot team is reduced.

Possible values:

• 0: Extra threads are freed and put into a
common pool of threads.

• 1: Extra threads are kept in the team in reserve,
for faster reuse in subsequent parallel regions.

Default: 0

KMP_HW_SUBSET Specifies the subset of available hardware
resources for the hardware topology hierarchy. The
subset is specified in terms of number of units per
upper layer unit starting from top layer downwards.
For example, it can specify the number of sockets
(top layer units), cores per socket, and the threads
per core, to use with an OpenMP application. It is a
convenient alternative to writing complicated
explicit affinity settings or a limiting process affinity
mask. You can also specify an offset value to set
which resources to use. When available, you can
specify attributes to select different subsets of
resources.

An extended syntax is available when
KMP_TOPOLOGY_METHOD=hwloc. Depending on what
resources are detected, you may be able to specify
additional resources, such as NUMA nodes and
groups of hardware resources that share certain
cache levels.

Basic syntax:

Compilation   

593



Run-Time Environment Variable Description

[num_units]ID[@offset][:attribute] [,
[num_units]ID[@offset][:attribute]...]
where

• num_units is either a positive integer, which
requests an exact number of resources, or an
asterisk (*), which means using all available
resources at that layer (for example, using all
cores per socket). If num_units is not specified,
the asterisk (*) semantics are assumed.

• ID is a supported ID:

S - socket num_units specifies the
requested number of sockets.

D - die num_units specifies the
requested number of dies per
socket.

C - core num_units specifies the
requested number of cores per
die - if any - otherwise, per
socket.

T - thread num_units specifies the
requested number of HW
threads per core.

Supported unit IDs are not case-sensitive.
• offset is the number of units to skip (optional).
• attribute is an attribute differentiating

resources at a particular layer (optional).

This is only available for the core layer on
machines with Intel® Hybrid Technology. The
attributes available to users are:

• Core type: Either intel_atom or intel_core
• Core efficiency: Specified as effnum where

num is a number from 0 to the number of
core efficiencies detected in the machine
topology minus one. For example: eff0. The
greater the efficiency number, the more
performant the core. There may be more
core efficiencies than core types, which can
be viewed by setting
KMP_AFFINITY=verbose.

NOTE The hardware cache can be specified as a unit,
for example L2 for L2 cache, or LL for last level cache.

Extended syntax when
KMP_TOPOLOGY_METHOD=hwloc:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

594



Run-Time Environment Variable Description

Additional IDs can be specified if detected. For
example:

N - numa num_units specifies the requested
number of NUMA nodes per upper
layer unit, e.g. per socket.

TI - tile num_units specifies the requested
number of tiles to use per upper layer
unit, e.g. per NUMA node.

When any numa or tile units are specified in
KMP_HW_SUBSET, the KMP_TOPOLOGY_METHOD will
be automatically set to hwloc,so there is no need
to set it explicitly.

If you don't specify one or more types of resource,
such as socket or thread, all available resources of
that type are used.

The run-time library prints a warning, and the
setting of KMP_HW_SUBSET is ignored if:

• a resource is specified, but detection of that
resource is not supported by the chosen
topology detection method and/or

• a resource is specified twice. An exception to
this condition is if attributes differentiate the
resource.

• attributes are used when unavailable, not
detected in the machine topology, or conflict
with each other.

This variable does not work if the OpenMP affinity is
set to disabled.

Default: If omitted, the default value is to use all
the available hardware resources.

Examples:

• 2s,4c,2t: Use the first 2 sockets (s0 and s1),
the first 4 cores on each socket (c0 - c3), and 2
threads per core.

• 2s@2,4c@8,2t: Skip the first 2 sockets (s0 and
s1) and use 2 sockets (s2-s3), skip the first 8
cores (c0-c7) and use 4 cores on each socket
(c8-c11), and use 2 threads per core.

• 5C@1,3T: Use all available sockets, skip the first
core and use 5 cores, and use 3 threads per
core.

• 1T: Use all cores on all sockets, 1 thread per
core.

• 1s, 1d, 1n, 1c, 1t: Use 1 socket, 1 die, 1
NUMA node, 1 core, 1 thread - use HW thread
as a result.

Compilation   

595



Run-Time Environment Variable Description

• 4c:intel_atom,5c:intel_core: Use all
available sockets and use 4 Intel Atom®
processor cores and 5 Intel® Core™ processor
cores per socket.

• 2c:eff0,3c:eff1: Use all available sockets and
use 2 cores with efficiency 0 and 3 cores with
efficiency 1 per socket.

• 1s, 1c, 1t: Use 1 socket, 1 core, 1 thread.
This may result in using single thread on a 3-
layer topology architecture, or multiple threads
on 4-layer or 5-layer architecture. Result may
even be different on the same architecture,
depending on KMP_TOPOLOGY_METHOD specified,
as hwloc can often detect more topology layers
than default method used by the OpenMP run-
time library.

To see the result of the setting, you can specify the
verbose modifier in for the KMP_AFFINITY
environment variable. The OpenMP run-time library
will output to stderr stream the information about
discovered HW topology before and after the
KMP_HW_SUBSET setting was applied. For example,
on Intel® Xeon Phi™ 7210 CPU in SNC-4 Clustering
Mode, the setting KMP_AFFINITY=verbose
KMP_HW_SUBSET=1N,1L2,1L1,1T outputs various
verbose information to stderr, including the
following lines about discovered HW topology
before and after KMP_HW_SUBSET was applied:

• Info #191: KMP_AFFINITY: 1 socket x 4 NUMA
domains/socket x 8 tiles/NUMA domain x 2
cores/tile x 4 threads/core. (64 total cores)

• Info #191: KMP_HW_SUBSET 1 socket x 1 NUMA
domain/socket x 1 tile/NUMA domain x 1 core/
tile x 1 thread/core (1 total cores)

KMP_INHERIT_FP_CONTROL Enables (TRUE) or disables (FALSE) the copying of
the floating-point control settings of the primary
thread to the floating-point control settings of the
OpenMP worker threads at the start of each parallel
region.

Default: TRUE

KMP_LIBRARY Selects the OpenMP run-time library execution
mode. The values for this variable are serial,
turnaround, or throughput.

Default: throughput

KMP_PLACE_THREADS Deprecated; use KMP_HW_SUBSET instead.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

596



Run-Time Environment Variable Description

KMP_SETTINGS Enables (TRUE) or disables (FALSE) the printing of
OpenMP run-time library environment variables
during program execution. Two lists of variables are
printed: user-defined environment variables
settings and effective values of variables used by
OpenMP run-time library.

Default: FALSE

KMP_STACKSIZE Sets the number of bytes to allocate for each
OpenMP thread to use as its private stack.

Recommended size is 16m.

Use the optional suffixes to specify byte units: B
(bytes), K (Kilobytes), M (Megabytes), G
(Gigabytes), or T (Terabytes) to specify the units. If
you specify a value without a suffix, the byte unit is
assumed to be K (Kilobytes).

KMP_STACKSIZE overrides GOMP_STACKSIZE,
which overrides OMP_STACKSIZE.Default (IA-32
architecture): 2m

Default (Intel® 64 architecture): 4m

KMP_TOPOLOGY_METHOD Forces OpenMP to use a particular machine
topology modeling method.

Possible values are:

• all: Lets OpenMP choose which topology
method is most appropriate based on the
platform and possibly other environment
variable settings.

• cpuid_leaf11: Decodes the APIC identifiers as
specified by leaf 11 of the cpuid instruction.

• cpuid_leaf4: Decodes the APIC identifiers as
specified in leaf 4 of the cpuid instruction.

• cpuinfo: If KMP_CPUINFO_FILE is not specified,
forces OpenMP to parse /proc/cpuinfo to
determine the topology (Linux only). If
KMP_CPUINFO_FILE is specified as described
above, uses it (Windows or Linux).

• group: Models the machine as a 2-level map,
with level 0 specifying the different processors in
a group, and level 1 specifying the different
groups (Windows 64-bit only) .

NOTE
Support for group is now deprecated and will be
removed in a future release. Use all instead.

Compilation   

597



Run-Time Environment Variable Description

• flat: Models the machine as a flat (linear) list
of processors.

• hwloc: Models the machine as the Portable
Hardware Locality* (hwloc) library does. This
model is the most detailed and includes, but is
not limited to: numa nodes, packages, cores,
hardware threads, caches, and Windows
processor groups.

Default: all

KMP_USER_LEVEL_MWAIT Enables (TRUE) or disables (FALSE) the use of user-
level mwait as alternative to putting waiting threads
to sleep, if available, either from ring3 or WAITPKG.

Default: FALSE

KMP_VERSION Enables (TRUE) or disables (FALSE) the printing of
OpenMP run-time library version information during
program execution.

Default: FALSE

KMP_WARNINGS Enables (TRUE) or disables (FALSE) displaying
warnings from the OpenMP run-time library during
program execution.

Default: TRUE
OpenMP Offload Environment Variables (OMP_, LIBOMPTARGET)

OMP_TARGET_OFFLOAD Controls the program behavior when offloading a
target region.

Possible values:

• MANDATORY: Program execution is terminated if
a device construct or device memory routine is
encountered and the device is not available or is
not supported.

• DISABLED: Disables target offloading to devices
and execution occurs on the host.

• DEFAULT: Target offloading is enabled if the
device is available and supported.

Default: DEFAULT

LIBOMPTARGET_DEBUG Controls whether debugging information will be
displayed from the offload runtime.

Possible values:

• 0: Disabled.
• 1: Displays basic debug information from the

plugin actions such as device detection, kernel
compilation, memory copy operations, kernel
invocations, and other plugin-dependent actions.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

598



Run-Time Environment Variable Description

• 2: Displays which GPU runtime API functions are
invoked with which arguments and parameters
in addition to the information displayed with
value 1.

Default: 0

LIBOMPTARGET_INFO Controls whether basic offloading information will
be displayed from the offload runtime.

Possible values:

• 0: Disabled.
• 1: Prints all data arguments upon entering an

OpenMP device kernel.
• 2: Indicates when a mapped address already

exists in the device mapping table.
• 4: Dump the contents of the device pointer map

if target offloading fails.
• 8: Indicates when an entry is changed in the

device mapping table.
• 32: Indicates when data is copied to and from

the device.

Default: 0

LIBOMPTARGET_PLUGIN Specifies which offload plugin is used when
offloading a target region.

Possible values:

• LEVEL_ZERO | LEVEL0 | level_zero | level0:
Uses Intel® oneAPI Level Zero (Level Zero)
offload plugin.

• OPENCL | opencl: Uses OpenCL offload plugin.
• X86_64 | x86_64: Uses X86_64 plugin.

Default: LEVEL_ZERO

LIBOMPTARGET_DEVICETYPE Selects device type to which a target region is
offloaded.

Possible values:

• GPU | gpu: GPU device is used.
• CPU | cpu: CPU device is used.

Offload plugin support for device type:

• Level Zero offload plugin only supports GPU
type.

• OpenCL offload plugin supports both GPU and
CPU types.

• X86_64 offload plugin ignores this variable.

Default: GPU

LIBOMPTARGET_PLUGIN_PROFILE Enables basic plugin profiling and displays the
result when program finishes.

Compilation   

599



Run-Time Environment Variable Description

Default: Disabled
Syntax: <Value>[,usec], where <Value>=1 |
T | t
The unit of reported time is microsecond if “,usec”
is appended, millisecond otherwise.

LIBOMPTARGET_DYNAMIC_MEMORY_SIZE Sets the size of preallocated memory in MB to
service malloc calls on the device.

Currently, calls to free memory on the device do
not release memory. All the allocated memory is
released only when the program exits.

Possible values: Non-negative integer.

Default: 0
OpenMP Offload Environment Variables for Level Zero Offload Plugin

LIBOMPTARGET_LEVEL0_COMPILATION_OPTIONS Passes extra build options when building native
target program binaries.

Possible values: Valid Level Zero build options.

LIBOMPTARGET_DEVICES Controls how subdevices or sub-subdevices are
exposed to users if device supports subdevices.

Possible values:

• DEVICE | device: Only top-level devices are
reported as OpenMP devices and subdevice
clause is supported.

• SUBDEVICE | subdevice: Only first-level
subdevices are reported as OpenMP devices and
subdevice clause is ignored.

• SUBSUBDEVICE | subsubdevice: Only second-
level subdevices are reported as OpenMP
devices and subdevice clause is ignored.

• ALL | all: All devices and subdevices are
reported as OpenMP devices and subdevice
clause is ignored.

Default: DEVICE

LIBOMPTARGET_LEVEL0_MEMORY_POOL Controls memory pool configuration.

Possible values:

• 0 : Disables using memory pool.
• <PoolInfoList>=<PoolInfo>[,<PoolInfoLis

t>]
<PoolInfo>=<MemType>[,<AllocMax>[,<Capa
city>[,<PoolSize>]]]
<MemType>=all | device | host | shared
<AllocMax> is a positive integer or empty

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

600

https://spec.oneapi.io/level-zero/latest/core/api.html#_CPPv416ze_module_desc_t


Run-Time Environment Variable Description

<Capacity> is a positive integer or empty

<PoolSize> is a positive integer or empty

<AllocMax> means maximum allocation size in
MB supported by the pool, <Capacity> means
number of allocations supported by a single
memory block allocated from the Level Zero
runtime, and <PoolSize> means maximum size
of the total pool size in MB.

Examples:

• all,2,8,1024: Enables memory pool for all
memory types which can allocate up to eight
2MB blocks from a single block allocated from
Level Zero with 1GB total pool size allowed.

• device,1,4,512: Enables memory pool only for
device memory type which can allocate up to
four 1MB blocks from a single block allocated
from Level Zero with 512MB total pool size
allowed.

Default: all,1,4,256

LIBOMPTARGET_LEVEL0_USE_COPY_ENGINE Disables use of copy engine for memory transfers.

Possible values:

• 0 | F | f: Disables use of copy engine.

Default: Enabled

LIBOMPTARGET_LEVEL0_DEFAULT_TARGET_MEM Selects memory type returned by the
omp_target_alloc routine.

Possible values:

• DEVICE | device: Returned memory type is
device type. Device owns the memory and data
movement is explicit.

• SHARED | shared: Returned memory type is
shared type. Ownership of the memory is
shared between host and device, and data
movement is implicit.

• HOST | host: Returned memory type is host
type. Host owns the memory and data
movement is implicit.

Default: DEVICE

LIBOMPTARGET_LEVEL0_STAGING_BUFFER_SIZE Sets the staging buffer size in KB that is used in
data transfer between host and device.

Possible values: Non-negative integers where 0
disables use of staging buffer.

Default: 4
OpenMP Offload Environment Variables for OpenCL Offload Plugin

Compilation   

601



Run-Time Environment Variable Description

LIBOMPTARGET_OPENCL_COMPILATION_OPTIONS Passes extra compilation options when compiling
target programs from SPIRV target images.

Possible values: Valid OpenCL compilation options.

LIBOMPTARGET_OPENCL_LINKING_OPTIONS Passes extra linking options when linking target
programs.

Possible values: Valid OpenCL linking options.

LIBOMPTARGET_OPENCL_USE_SVM Enables or disables using OpenCL SVM memory for
default target memory type.

Possible values:

• 1 | T | t: Enables using OpenCL SVM memory.
• 0 | F | f: Disables using OpenCL SVM memory.

Default: Disabled

LIBOMPTARGET_OPENCL_DATA_TRANSFER_METHOD Selects memory transfer method to use. This is
only effective when OpenCL SVM memory is
enabled by setting
LIBOMPTARGET_OPENCL_USE_SVM.

Possible values:

• 0: Uses clEnqueueRead and WriteBuffer API
on a temporary OpenCL buffer.

• 1: Uses clEnqueueSVMMap and Unmap API.
• 2: Uses clEnqueueSVMMemcpy API.

Default: 1

DPC++ Environment Variables

DPCPP_CPU_CU_AFFINITY Set thread affinity to CPU. The value and meaning
is the following:

• close - threads are pinned to CPU cores
successively through available cores.

• spread - threads are spread to available cores.
• master - threads are put in the same cores as

master. If DPCPP_CPU_CU_AFFINITY is set,
master thread is pinned as well, otherwise
master thread is not pinned

This environment variable is similar to the
OMP_PROC_BIND variable used by OpenMP.

Default: Not set

DPCPP_CPU_NUM_CUS Set the numbers threads used for kernel execution.

To avoid over subscription, maximum value of
DPCPP_CPU_NUM_CUS should be the number of
hardware threads. If DPCPP_CPU_NUM_CUS is 1, all
the workgroups are executed sequentially by a
single thread and this is useful for debugging.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

602

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_API.html#compiler-options
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_API.html#program-linking-options


Run-Time Environment Variable Description

This environment variable is similar to
OMP_NUM_THREADS variable used by OpenMP.

Default: Not set. Determined by Intel® oneAPI
Threading Building Blocks (oneTBB).

DPCPP_CPU_PLACES Specify the places that affinities are set. The value
is { sockets | numa_domains | cores | threads }.

This environment variable is similar to the
OMP_PLACES variable used by OpenMP.

If value is numa_domains, oneTBB NUMA API will
be used. This is analogous to
OMP_PLACES=numa_domains in the OpenMP 5.1
Specification. oneTBB task arena is bound to numa
node and SYCL nd range is uniformly distributed to
task arenas.

DPCPP_CPU_PLACES is suggested to be used
together with DPCPP_CPU_CU_AFFINITY.

Default: cores

DPCPP_CPU_SCHEDULE Specify the algorithm for scheduling work-groups
by the scheduler. Currently, DPC++ uses oneTBB
for scheduling when using the OpenCL CPU driver.
The value selects the petitioner used by the oneTBB
scheduler. The value and meaning is the following:

• dynamic - oneTBB auto_partitioner. It performs
sufficient splitting to balance load.

• affinity - oneTBB affinity_partitioner. It improves
auto_partitioner's cache affinity by its choice of
mapping subranges to worker threads compared
to

• static - oneTBB static_partitioner. It distributes
range iterations among worker threads as
uniformly as possible. oneTBB partitioner relies
grain-size to control chunking. Grain-size is 1 by
default, indicating every work-group can be
executed independently.

Default: dynamic

The following table summarizes CPU environment variables that are recognized at run time.

Runtime configuration Default value Description

CL_CONFIG_CPU_FORCE_PRIVAT
E_MEM_SIZE

32KB Forces
CL_DEVICE_PRIVATE_MEM_SIZE
for the CPU device to be the
given value. The value must
include the unit; for example:
8MB, 8192KB, 8388608B.

Compilation   

603



Runtime configuration Default value Description

NOTE You must compile your host
application with sufficient stack
size.

CL_CONFIG_CPU_FORCE_LOCAL_
MEM_SIZE

32KB Forces
CL_DEVICE_LOCAL_MEM_SIZE
for CPU device to be the given
value. The value needs to be set
with size including units,
examples: 8MB, 8192KB,
8388608B.

NOTE You must compile your host
application with sufficient stack
size. Our recommendation is to set
the stack size equal to twice the
local memory size to cover possible
application and OpenCL Runtime
overheads.

CL_CONFIG_CPU_EXPENSIVE_ME
M_OPT

0 A bitmap indicating enabled
expensive memory optimizations.
These optimizations may lead to
more JIT compilation time, but
give some performance benefit.

NOTE Currently, only the least
significant bit is available.

Available bits:

• 0: OpenCL address space alias
analysis

CL_CONFIG_CPU_STREAMING_AL
WAYS

False Controls whether non-temporal
instructions are used.

See Also
Qopenmp compiler option
Thread Affinity Interface

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

604



Pass Options to the Linker
Specify Linker Options
This topic describes the options that let you control and customize linking with tools and libraries and define
the output of the linker.

Linux
This section describes options specified at compile-time that take effect at link-time to define the output of
the ld linker. See the ld man page for more information on the linker.

Option Description

-Ldirectory Instruct the linker to search directory for libraries.

-Qoption,tool,list Passes an argument list to another program in the compilation sequence,
such as the assembler or linker.

-shared Instructs the compiler to build a Dynamic Shared Object (DSO) instead of
an executable.

-shared-libgcc -shared-libgcc has the opposite effect of -static-libgcc . When it
is used, the GNU standard libraries are linked in dynamically, allowing the
user to override the static linking behavior when the -static option is
used.

NOTE
Note: By default, all C++ standard and support libraries are linked
dynamically.

-shared-intel Specifies that all Intel-provided libraries should be linked dynamically.

-static Causes the executable to link all libraries statically, as opposed to
dynamically.

When -static is not used:

• /lib/ld-linux.so.2 is linked in
• all other libs are linked dynamically

When -static is used:

• /lib/ld-linux.so.2 is not linked in
• all other libs are linked statically

-static-libgcc This option causes the GNU standard libraries to be linked in statically.

-Bstatic
-Bdynamic

Either option is placed in the linker command line corresponding to its
location on the user command line to control the linking behavior of any
library being passed in via the command line.

-static-intel This option causes Intel-provided libraries to be linked in statically. It is
the opposite of -shared-intel.

Pass Options to the Linker   

605



Option Description

-Wl,optlist This option passes a comma-separated list (optlist) of options to the
linker.

-Xlinker val This option passes a value (val), such as a linker option, an object, or a
library, directly to the linker.

Windows
This section describes options specified at compile-time that take effect at link-time.

You can use the link option to pass options specifically to the linker at compile time. For example:

icx a.cpp libfoo.lib /link -delayload:comct132.dll
In this example, the compiler recognizes that libfoo.lib is a library that should be linked with a.cpp, so it
does not need to follow the link option on the command line. The compiler does not recognize -
delayload:comct132.dll, so the link option is used to direct the option to the linking phase. On C++,
you can use the Qoption option to pass options to various tools, including the linker. You can also use
#pragma comment on C++ to pass options to the linker. Linker options do not work for SYCL kernels, but
they do work for host code (including pragmas for linker options). For example:

#pragma comment(linker, "/defaultlib:mylib.lib")
OR

#pragma comment(lib, "mylib.lib")
Both examples instruct the compiler to link mylib.lib at link time.

Specify Alternate Tools and Paths
This content does not apply to SYCL.

Use the Qlocation option to specify an alternate path for a tool. This option accepts two arguments using
the following syntax:

Linux

-Qlocation,tool,path
Windows

/Qlocation,tool,path
where tool designates which compilation tool is associated with the alternate path.

tool Description

cpp Specifies the preprocessor for the compiler.

c Specifies the Intel® oneAPI DPC++/C++ Compiler .

asm Specifies the assembler.

link Specifies the linker.

Use the Qoption option to pass an option specified by optlist to a tool, where optlist is a comma-separated
list of options. The syntax for this command is:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

606



Linux

-Qoption,tool,optlist
Windows

/Qoption,tool,optlist
where

• tool designates which compilation tool receives the optlist
• optlist indicates one or more valid argument strings for the designated program. If the argument is a

command-line option, you must include the hyphen. If the argument contains a space or tab character,
the entire argument must be enclosed in quotation characters (""). Separate multiple arguments with
commas.

Use Configuration Files
You can decrease the time you spend entering command-line options by using the configuration file to
automate command-line entries. Configuration files are automatically processed every time you run the
Intel® oneAPI DPC++/C++ Compiler. You can insert any valid command-line options into the configuration
file. The compiler processes options in the configuration file in the order in which they appear, followed by the
specified command-line options when the compiler is invoked.

NOTE
Options in the configuration file are executed every time you run the compiler. If you have varying
option requirements for different projects, use Using Response Files .

Sample Configuration Files

NOTE
Anytime you instruct the compiler to use a different configuration file, the default configuration file(s)
are ignored.

The following examples illustrate basic configuration files.

Linux

## Sample icpx.cfg file
  -I/my_headers 

Windows

## Sample icx.cfg file
  /Ic:\my_headers 

In the Windows examples, the compiler reads the configuration file and invokes the I option every time you
run the compiler, along with any options specified on the command line.

See Also
Supported Environment Variables
Using Response Files

Use Configuration Files   

607



Use Response Files
You can use response files to:

• Specify options used during particular compilations or projects.
• Save this information in individual files.

Response files are invoked as options on the command line. Options in response files are inserted in the
command line at the point where the response file is invoked. Unlike configuration files, which are
automatically processed every time you run the compiler, response files must be invoked as an option on the
command line. If you create a response file without specifying it on the command line, it will not be invoked.

Sample Response Files
Linux

# response file: response1.txt
# compile with these options 
  -w0  
# end of response1 file 

# response file: response2.txt 
# compile with these options 
  -O0  
# end of response2 file

Windows

# response file: response1.txt
# compile with these options 
  /W0 
# end of response1 file 

# response file: response2.txt 
# compile with these options 
  /Od 
# end of response2 file

Use response files to decrease the time spent entering command-line options and to ensure consistency by
automating command-line entries. Use individual response files to maintain options for specific projects.

Any number of options or file names can be placed on a line in a response file. Several response files can be
referenced in the same command line. The following example shows how to specify a response file on the
command line:

Linux

  icpx @response1.txt prog1.cpp @response2.txt prog2.cpp
Windows

  icx @response1.txt prog1.cpp @response2.txt prog2.cpp

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

608



NOTE
An "at" sign (@) must precede the name of the response file on the command line.

See Also
Using Configuration Files 

Global Symbols and Visibility
Attributes for Linux*
A global symbol is one that is visible outside the compilation unit (single source file and its include files) in
which it is declared. In C/C++, this means anything declared at file level without the static keyword. For
example:

int x = 5;        // global data definition 
extern int y;     // global data reference 
int five()        // global function definition 
  { return 5; } 
extern int four(); // global function reference

A complete program consists of a main program file and possibly one or more shareable object (.so) files
that contain the definitions for data or functions referenced by the main program. Similarly, shareable objects
might reference data or functions defined in other shareable objects. Shareable objects are so called because
if more than one simultaneously executing process has the shareable object mapped into its virtual memory,
there is only one copy of the read-only portion of the object resident in physical memory. The main program
file and any shareable objects that it references are collectively called the components of the program.

Each global symbol definition or reference in a compilation unit has a visibility attribute that controls
how (or if) it may be referenced from outside the component in which it is defined. The visibility
attribute accepts one of five keywords values:

• external: The compiler must treat the symbol as though it is defined in another component. For a
definition, this means that the compiler must assume that the symbol will be overridden (preempted) by a
definition of the same name in another component. See Symbol Preemption. If a function symbol has
external visibility, the compiler knows that it must be called indirectly and can inline the indirect call stub.

• default: Other components can reference the symbol. Furthermore, the symbol definition may be
overridden (preempted) by a definition of the same name in another component.

• protected: Other components can reference the symbol, but it cannot be preempted by a definition of
the same name in another component.

• hidden: Other components cannot directly reference the symbol. However, its address might be passed to
other components indirectly (for example, as an argument to a call to a function in another component, or
by having its address stored in a data item reference by a function in another component).

• internal: The symbol cannot be referenced outside its defining component, either directly or indirectly.

Static local symbols (in C/C++, declared at file scope or elsewhere with the keyword static) usually have
hidden visibility— they cannot be referenced directly by other components (or, for that matter, other
compilation units within the same component), but they might be referenced indirectly.

NOTE
Visibility applies to references as well as definitions. A symbol reference's visibility attribute is an
assertion that the corresponding definition will have that visibility.

Global Symbols and Visibility Attributes for Linux*   

609



Specify Symbol Visibility Explicitly
You can explicitly set the visibility of an individual symbol using the visibility attribute on a data or
function declaration. For example:

int i __attribute__ ((visibility("default"))); 
void __attribute__ ((visibility("hidden"))) x () {...} 
extern void y() __attribute__ ((visibility("protected")));

The value of the visibility declaration attribute overrides the default set by the options -fpic or
-fno-common .

Save Compiler Information in Your
Executable
Linux
To view the information stored in the object file, use the objdump command. For example:

objdump -sj comment a.out
strings -a a.out | grep comment:

Windows
To view the linker directives stored in string format in the object file, use the link command. For example:

link /dump /directives filename.obj
In the output, the ?-comment linker directive displays the compiler version information. To search your
executable for compiler information, use the findstr command. For example, to search for any strings that
contain the substring "Compiler":

findstr "Compiler" filename.exe

Link Debug Information
Linux*
Use option g at compile time to tell the compiler to generate symbolic debugging information in the object
file.

Use option gsplit-dwarf to create a separate object file containing DWARF debug information. Because the
DWARF object file is not used by the linker, this reduces the amount of debug information the linker must
process and it results in a smaller executable file. See gsplit-dwarf for detailed information.

Windows*
Use option Z7 at compile time or option debug at link time to tell the compiler to generate symbolic
debugging information in the object file. Alternately, use option Zi at link time to generate executables with
debug information in the .pdb file.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

610



Ahead of Time Compilation
Ahead of Time (AOT) Compilation is a helpful feature for your development lifecycle or distribution time. It
benefits you when you know beforehand what your target device is going to be at application execution time.
The AOT feature provides the following benefits:

• No additional compilation time is done when running your application.
• No just-in-time (JIT) bugs encountered due to compilation for the target device, because this step is

skipped with AOT compilation.
• Your final code, executing on the target device, can be tested as-is before you deliver it to end-users.

A program built with AOT compilation for a specific target device will not run on a non-specific device. You
must detect the proper target device at runtime and report an error if the targeted device is not present. The
use of exception handling with an asynchronous exception handler is recommended.

SYCL supports AOT compilation for the following targets: Intel® CPUs, Intel® Processor Graphics (Gen9 or
above), and Intel® FPGA.

Prerequisites
To target a GPU with the AOT feature, you must have the OpenCL™ Offline Compiler (OCLOC) tool installed.
OCLOC can generate binaries that use OpenCL™ or the Intel® oneAPI Level Zero (Level Zero) backend.

Linux

OCLOC is not packaged with the Linux version of Intel® oneAPI DPC++/C++ Compiler and must be installed
separately. Refer to Install OpenCL™ Offline Compiler (OCLOC) for details.

Windows

OCLOC is packaged with the Windows version of Intel® oneAPI DPC++/C++ Compiler.

AOT Compilation Supported Options
Use the following options to target a specific device for AOT compilation:

• -fsycl-targets, to specify the device target
• -Xs, to pass options to the backend tool

-Xs is a general device target option. If there are multiple targets desired (example: -fsycl-
targets=spir64_gen,spir64_x86_64) the options specified with -Xs apply to all targets. This is not
desired for multiple targets. You can use -Xsycl-target-backend=spir64_gen <option> and -Xsycl-
target-backend=spir64_x86_64 <option> to add specificity.

When using Ahead of Time (AOT) compilation, the options passed with -Xs are not compiler options.

To see a list of the options you can pass with -Xs when using AOT, specify -fsycl-help=gen,
-fsycl-help=x86_64, or -fsycl-help=fpga on the command line.

Use AOT for the Target Device (Intel® CPUs)
Use the following option arguments to specify Intel® CPUs as the target device for AOT compilation:

• -fsycl-targets=spir64_x86_64
• -Xs "-march=<arch>", where <arch> is one of the following:

Switch Display Name

avx Intel® Advanced Vector Extensions (Intel® AVX)

Ahead of Time Compilation   

611

https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-opencl-offline-compiler-ocloc.html


Switch Display Name

avx2 Intel® Advanced Vector Extensions 2 (Intel® AVX2)

avx512 Intel® Advanced Vector Extensions 512 (Intel®
AVX-512)

sse4.2 Intel® Streaming SIMD Extensions 4.2 (Intel®
SSE4.2)

The following examples tell the compiler to generate code that uses Intel® AVX2 instructions:

Linux

dpcpp -fsycl-targets=spir64_x86_64 -Xs "-march=avx2" main.cpp
Windows

dpcpp-cl /EHsc -fsycl-targets=spir64_x86_64 -Xs "-march=avx2" main.cpp
Build an Application with Multiple Source Files for CPU Targeting

Method 1: Compile your normal files (with no SYCL kernels) to create host objects. Then compile the file
with the kernel code and link it with the rest of the application.

Linux

1.dpcpp -c main.cpp
2.dpcpp -fsycl-targets=spir64_x86_64 -Xs "-march=avx2" mandel.cpp main.o 
Windows

1.dpcpp-cl -c /EHsc main.cpp
2.dpcpp-cl /EHsc -fsycl-targets=spir64_x86_64 -Xs "-march=avx2" mandel.cpp main.obj
Method 2: Compile the file with the kernel code and create a fat object. Then compile the rest of the files
and linking to create a fat executable:

NOTE Currently, Method 2 only works on a HOST selector.

Linux

1.dpcpp -c -fsycl-targets=spir64_x86_64 -Xs "-march=avx2" mandel.cpp
2.dpcpp main.cpp mandel.o -fsycl-targets=spir64_x86_64 -Xs "-march=avx2"
Windows

1.dpcpp-cl -c /EHsc -fsycl-targets=spir64_x86_64 -Xs "-march=avx2" mandel.cpp 
2.dpcpp-cl /EHsc main.cpp mandel.obj -fsycl-targets=spir64_x86_64 -Xs "-march=avx2"

Use AOT for Integrated Graphics (Intel® GPU)
Use the following option arguments to specify Intel® GPU as the target device for AOT compilation:

• -fsycl-targets=spir64_gen
• -Xs "-device <arch>" option, where <arch> is the target device. Possible values:

Switch Display Name

skl 6th generation Intel® Core™ processor (Skylake
with Intel® Processor Graphics Gen9)

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

612



Switch Display Name

kbl 7th generation Intel® Core™ processor (Kaby Lake
with Intel® Processor Graphics Gen9)

cfl 8th generation Intel® Core™ processor (Coffee
Lake with Intel® Processor Graphics Gen9)

glk Gemini Lake with Intel® Processor Graphics Gen9

icllp 10th generation Intel® Core™ processor (Ice Lake
with Intel® Processor Graphics Gen11)

tgllp 11th generation Intel® Core™ processor (Tiger
Lake with Intel® Processor Graphics Gen12)

dg1 Intel® Iris® Xe MAX graphics

Gen9 Intel® Processor Graphics Gen9

Gen11 Intel® Processor Graphics Gen11

Gen12LP Intel® Processor Graphics Gen12 (Lower Power)

adls 12th generation Intel® Core™ processor (Alder
Lake S with Intel® Processor Graphics Gen12.2)

aldp 12th generation Intel® Core™ processor (Alder
Lake P with Intel® Processor Graphics Gen12.2)

To see the complete list of supported target device types for your installed version of OCLOC, run:

ocloc compile --help
If multiple target devices are listed in the compile command, the Intel® oneAPI DPC++/C++ Compiler
compiles for each of these targets and creates a fat-binary that contains all the device binaries produced this
way.

Examples of supported -device patterns:

Linux

• To compile for a single target, using skl as an example, use:

dpcpp -fsycl-targets=spir64_gen -Xs "-device skl" vector-add.cpp
• To compile for two targets, using skl and icllp as examples, use:

dpcpp -fsycl-targets=spir64_gen -Xs "-device skl,icllp" vector-add.cpp
• To compile for all the targets known to OCLOC, use:

dpcpp -fsycl-targets=spir64_gen -Xs "-device *" vector-add.cpp
Windows

• To compile for a single target, using skl as an example, use:

dpcpp-cl /EHsc -fsycl-targets=spir64_gen -Xs "-device skl" vector-add.cpp
• To compile for two targets, using skl and icllp as examples, use:

dpcpp-cl /EHsc -fsycl-targets=spir64_gen -Xs "-device skl,icllp" vector-add.cpp
• To compile for all the targets known to OCLOC, use:

dpcpp-cl /EHsc -fsycl-targets=spir64_gen -Xs "-device *" vector-add.cpp

Compilation   

613



Build an Application with Multiple Source Files for GPU Targeting

Method 1: Compile your normal files (with no SYCL kernels) to create host objects. Then compile the file
with the kernel code and link it with the rest of the application.

Linux

1.dpcpp -c main.cpp
2.dpcpp -fsycl-targets=spir64_gen -Xs "-device *" mandel.cpp main.o
Windows

1.dpcpp-cl -c /EHsc main.cpp
2.dpcpp-cl /EHsc -fsycl-targets=spir64_gen -Xs "-device *" mandel.cpp main.obj
Method 2: Compile the file with the kernel code and create a fat object. Then compile the rest of the files
and linking to create a fat executable:

NOTE Currently, Method 2 only works on a HOST selector.

Linux

1.dpcpp -c -fsycl-targets=spir64_gen mandel.cpp
2.dpcpp main.cpp mandel.o -fsycl-targets=spir64_gen -Xs "-device *"
Windows

1.dpcpp-cl -c /EHsc -fsycl-targets=spir64_gen mandel.cpp 
2.dpcpp-cl /EHsc main.cpp mandel.obj -fsycl-targets=spir64_gen -Xs "-device *"

Use AOT in Microsoft Visual Studio
You can use Microsoft Visual Studio for compiling and linking. Set the following flags to use AOT compilation
for CPU or GPU:

CPU:

• To compile, in the dialog box, select: Configuration Properties > DPC++ > General > Specify SYCL
offloading targets for AOT compilation

• To link, in the dialog box, select: Configuration Properties > Linker > General > Specify CPU Target
Device for AOT compilation

GPU:

• To compile, in the dialog box, select: Configuration Properties > DPC++ > General > Specify SYCL
offloading targets for AOT compilation

• To link, in the dialog box, select: Configuration Properties > Linker > General > Specify GPU
Target Device for AOT compilation

See Also
-fsycl-targets  compiler option
-Xs  compiler option

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

614



Device Offload Compilation
Considerations
SYCL compilation performs a compile that generates both host and target binaries for a single source file.
The SYCL compilation flow generates file dependencies from the device compilation to the host compilation.
These dependent files are considered to be integration files that are included in the host side compilation.

A file, called an integration footer, is added to the end of the original source file before being compiled. To
accomplish this process, a new temporary source file is generated and is considered the host source file for
the compilation. The file is a new source dependency and could break your build environments that track the
generated files during a compilation. These build environments need to be configured in the SYCL space for
the additional intermediate file to be part of the compilation flow.

The location of the additional file is generated in the common temporary file location, specified by the TMP
then TEMP environment variables.

Use a Third-Party Compiler as a Host
Compiler for SYCL Code
This content describes the steps needed to use an
external host compiler (G++) along with the Intel®
oneAPI DPC++/C++ Compiler.

In this example, you will use a host compiler to generate the host objects and perform the final link. The host
compiler needs to know where to find the required headers and libraries. Follow the example instructions to
build a SYCL program using a G++ Compiler (g++) for host code and an Intel® oneAPI DPC++/C++ Compiler
(dpcpp) for SYCL code.

For Linux
This example includes the following:

• a.cpp: SYCL code
• b.cpp: SYCL code
• main.cpp: C++ code

1. Follow the Get Started with the Intel® oneAPI Base Toolkit for Linux guide to set up the build
environment:

NOTE The build environment requires GCC version 5.1 or above to be installed and accessible.

source /opt/intel/oneapi/setvars.sh
2. Set up the headers and library locations:

export LIBDIR=<Location of libsycl.so>
export INCLUDEDIR=<Location of SYCL headers>

3. Build the objects for your device:

dpcpp -c a.cpp -fPIC -o a.o
dpcpp -c b.cpp -fPIC -o b.o

Device Offload Compilation Considerations    

615

https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-intel-oneapi-base-linux/top/run-a-sample-project-using-the-command-line.html


4. Create the integration header files (used by the host compiler):

dpcpp -fsycl-device-only -Xclang -fsycl-int-header=a_host.h a.cpp
dpcpp -fsycl-device-only -Xclang -fsycl-int-header=b_host.h b.cpp

5. Create the host objects:

g++ -std=c++17 -c a.cpp -o a_host.o -include a_host.h -fPIC -I$INCLUDEDIR
g++ -std=c++17 -c b.cpp -o b_host.o -include b_host.h -fPIC -I$INCLUDEDIR

6. Compile other C++ code (or non-SYCL code) using G++:

g++ -std=c++17 main.cpp -c -fPIC -I$INCLUDEDIR
7. Create a device object:

dpcpp -fPIC -fsycl -fsycl-link a.o b.o -o device.o
8. Create an archive libuser.a that contains the necessary host and device objects:

NOTE This step is optional.

ar -rcs libuser.a a_host.o b_host.o device.o
9. Perform the final link to create a final.exe executable:

g++ main.o a_host.o b_host.o device.o -L$LIBDIR -lOpenCL -lsycl -o finalexe.exe 
10. Build the final.exe with an archive:

NOTE This step is optional.

g++ main.o -Wl,--whole-archive libuser.a -Wl,--no-whole-archive -L$LIBDIR -lOpenCL -lsycl -o 
finalexe.exe

For Windows
Windows is not supported in this release.

Options
The compiler has two options that let you use an external compiler to perform host side compilation. The
options are:

• fsycl-host-compiler: Tells the compiler to use the specified compiler for host compilation of the
performed offloading compilation.

• fsycl-host-compiler-options: Passes options to the compiler specified by the option fsycl-host-
compiler.

See Also
fsycl-host-compiler 
fsycl-host-compiler-options 

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

616



Optimization and Programming

Part

V
This section contains information about features related to code optimization and program performance
improvement.

Extensions
For the latest information about extensions, see the oneAPI Specification and the SYCL Reference.

OpenMP* Support
The Intel® oneAPI DPC++/C++ Compiler supports most of the OpenMP* Application Programming Interface
versions 5.0 and 5.1. For the complete OpenMP specification, read the specifications available from the
OpenMP web site (http://www.openmp.org; see OpenMP Specifications on that site). The descriptions of
OpenMP language characteristics in this documentation often use terms defined in that specification.

The OpenMP API provides symmetric multiprocessing (SMP) with the following major features:

• Relieves you from implementing the low-level details of iteration space partitioning, data sharing, thread
creation, scheduling, or synchronization.

• Provides the benefit of performance available from shared memory multiprocessor and multi-core
processor systems on all supported Intel architectures, including those processors with Intel® Hyper-
Threading Technology (Intel® HT Technology).

The compiler performs transformations to generate multithreaded code based on your placement of OpenMP
pragmas in the source program, making it simple to add threading to existing software. The compiler
compiles parallel programs and supports the industry-standard OpenMP pragmas.

The compiler provides Intel®-specific extensions to the OpenMP specification including run-time library
routines and environment variables. A summary of the compiler options appear in the OpenMP Options Quick
Reference.

Parallel Processing with OpenMP
To compile with the OpenMP API, add the pragmas to your code. The compiler processes the code and
internally produces a multithreaded version which is then compiled into an executable with the parallelism
implemented by threads that execute parallel regions or constructs.

Using Other Compilers
The OpenMP specification does not define interoperability of multiple implementations, so the OpenMP
implementation supported by other compilers and OpenMP support in the Intel® oneAPI DPC++/C++
Compiler might not be interoperable. Even if you compile and build the entire application with one compiler,
be aware that different compilers might not provide OpenMP source compatibility that enable you to compile
and link the same set of application sources with a different compiler and get the expected parallel execution
results.

Optimization and Programming   

617

https://spec.oneapi.com/versions/latest/elements/dpcpp/source/index.html
https://docs.oneapi.com/versions/latest/dpcpp/index.html


Add OpenMP* Support
To add OpenMP* support to your application, do the following:

1. Add the appropriate OpenMP pragmas to your source code.
2. Compile the application with the /Qopenmp (Windows*) or -qopenmp (Linux*) option.
3. For applications with large local or temporary arrays, you may need to increase the stack space

available at runtime. In addition, you may need to increase the stack allocated to individual threads by
using the OMP_STACKSIZE environment variable or by setting the corresponding library routines.

You can set other environment variables to control multi-threaded code execution.

OpenMP Pragma Syntax
To add OpenMP support to your application, first declare the OpenMP header and then add appropriate
OpenMP pragmas to your source code.

To declare the OpenMP header, add the following in your code:

#include <omp.h>
OpenMP pragmas use a specific format and syntax. Intel Extension Routines to OpenMP describes the
OpenMP extensions to the specification that have been added to the Intel® oneAPI DPC++/C++ Compiler.

To use pragmas in your source, use this syntax:

<prefix> <pragma> [<clause>, ...] <newline>
where:

• <prefix> - Required for all OpenMP pragmas. The prefix must be #pragma omp.
• <pragma> - A valid OpenMP pragma. Must immediately follow the prefix.
• [<clause>] - Optional. Clauses can be in any order and repeated as necessary, unless otherwise

restricted.
• <newline> - A required component of pragma syntax. It precedes the structured block that is enclosed by

this pragma.

The pragmas are interpreted as comments if you omit the /Qopenmp (Windows) or -qopenmp (Linux) option.

The following example demonstrates one way of using an OpenMP pragma to parallelize a loop:

#include <omp.h> 
void simple_omp(int *a){
  int i;
  #pragma omp parallel for
  for (i=0; i<1024; i++)
    a[i] = i*2; 
}

Compile the Application
The /Qopenmp (Windows) or -qopenmp (Linux) option enables the parallelizer to generate multi-threaded
code based on the OpenMP pragmas in the source. The code can be executed in parallel on single processor,
multi-processor, or multi-core processor systems.

The /Qopenmp (Windows) or -qopenmp (Linux) option works with both -O0 (Linux) and /Od (Windows*) and
with any optimization level of O1, O2 and O3.

Specifying -O0 (Linux) or /Od (Windows) with the /Qopenmp (Windows) or -qopenmp (Linux) option helps to
debug OpenMP applications.

Compile your application using a command similar to one of the following:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

618



Linux

icpx -qopenmp source_file
Windows

icx /Qopenmp source_file
For example, to compile the previous code example without generating an executable, use the c option:

Linux

icpx -qopenmp -c parallel.cpp
Windows

icx /Qopenmp /c parallel.c
To build your application with target offload support (introduced since OpenMP 4.0) use compiler options to
specify the target for which the regions marked with OpenMP "target" pragmas must be compiled. For
example:

Linux

icpx -qopenmp -fopenmp-targets=spir64 offload.cpp
Windows

icx /Qopenmp /Qopenmp-targets=spir64 offload.c
Refer to Get Started with OpenMP* Offload to GPU for the Intel® oneAPI DPC/C++ Compiler and Intel®
Fortran Compiler for more information.

Configure the OpenMP Environment

Before you run the multi-threaded code, you can set the number of desired threads using the OpenMP
environment variable, OMP_NUM_THREADS.

See Also
c compiler option
O compiler option
OpenMP* Examples 
qopenmp, Qopenmp compiler option
Supported Environment Variables 

Parallel Processing Model
A program containing OpenMP* pragmas begins execution as a single thread, called the initial thread of
execution. The initial thread executes sequentially until the first parallel construct is encountered.

The omp parallel pragma defines the extent of the parallel construct. When the initial thread encounters a
parallel construct, it creates a team of threads, with the initial thread becoming the primary thread of the
team. All program statements enclosed by the parallel construct are executed in parallel by each thread in
the team, including all routines called from within the enclosed statements.

The statements enclosed lexically within a construct define the static extent of the construct. The dynamic
extent includes all statements encountered during the execution of a construct by a thread, including all
called routines.

When a thread encounters the end of a structured block enclosed by a parallel construct, the thread waits
until all threads in the team have arrived. When that happens the team is dissolved, and only the primary
thread continues execution of the code following the parallel construct. The other threads in the team enter a
wait state until they are needed to form another team. You can specify any number of parallel constructs in a
single program. As a result, thread teams can be created and dissolved many times during program
execution.

Optimization and Programming   

619

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html


The following example illustrates, from a high level, the execution model for the OpenMP constructs. The
comments in the code explain the structure of each construct or section.

main() {                     // Begin serial execution.
  ...                        // Only the initial thread executes 
  #pragma omp parallel       // Begin a parallel construct and form a team.
  {
    #pragma omp sections     // Begin a worksharing construct.
    {
       #pragma omp section   // One unit of work.
       {...}
       #pragma omp section   // Another unit of work.
       {...}
    }                        // Wait until both units of work complete.
    ...                      // This code is executed by each team member.
    #pragma omp for nowait   // Begin a worksharing Construct
    for(...) {               // Each iteration chunk is unit of work.
      ...                    // Work is distributed among the team members. 
    }                        // End of worksharing construct.
                             // nowait was specified so threads proceed.
    #pragma omp critical     // Begin a critical section.
    {...}                    // Only one thread executes at a time.
    ...                      // This code is executed by each team member.
    #pragma omp barrier      // Wait for all team members to arrive.
    ...                      // This code is executed by each team member. 
  }                          // End of Parallel Construct
                             // Disband team and continue serial execution.  
  ...                        // Possibly more parallel constructs. 
}                            // End serial execution.

Use Orphaned Pragmas
In routines called from within parallel constructs, you can also use pragmas. Pragmas that are not in the
static extent of the parallel construct, but are in the dynamic extent, are called orphaned pragmas. Orphaned
pragmas allow you to execute portions of your program in parallel with only minimal changes to the
sequential version of the program. Using this functionality, you can code parallel constructs at the top levels
of your program call tree and use directives to control execution in any of the called routines. For example:

int main(void) {
  #pragma omp parallel {
     phase1();
  } 
} 

void phase1(void) {
  #pragma omp for // This is an orphaned pragma.
  for(i=0; i < n; i++) { some_work(i); } 
}

This is an orphaned omp for loop pragma since the parallel region is not lexically present in routine phase1.

Data Environment
You can control the data environment of OpenMP constructs by using data environment clauses supported by
the construct. You can also privatize named global-lifetime objects by using the threadprivate pragma.

Refer to the OpenMP specification for the full list of data environment clauses. Some commonly used ones
include:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

620



• default
• shared
• private
• firstprivate
• lastprivate
• reduction
• linear
• map
You can use several pragma clauses to control the data scope attributes of variables for the duration of the
construct in which you specify them; however, if you do not specify a data scope attribute clause on a
pragma, the behavior for the variable is determined by the default scoping rules, which are described in the
OpenMP specification, for the variables affected by the directive.

Determine How Many Threads to Use
For applications where the workload depends on application input that can vary widely, delay the decision
about the number of threads to employ until runtime when the input sizes can be examined. Examples of
workload input parameters that affect the thread count include things like matrix size, database size, image/
video size and resolution, depth/breadth/bushiness of tree-based structures, and size of list-based
structures. Similarly, for applications designed to run on systems where the processor count can vary widely,
defer choosing the number of threads to employ until application runtime when the machine size can be
examined.

For applications where the amount of work is unpredictable from the input data, consider using a calibration
step to understand the workload and system characteristics to aid in choosing an appropriate number of
threads. If the calibration step is expensive, the calibration results can be made persistent by storing the
results in a permanent place like the file system.

Avoid simultaneously using more threads than the number of processing units on the system. This situation
causes the operating system to multiplex threads on the processors and typically yields sub-optimal
performance.

When developing a library as opposed to an entire application, provide a mechanism whereby the user of the
library can conveniently select the number of threads used by the library, because it is possible that the user
has outer-level parallelism that renders the parallelism in the library unnecessary or even disruptive.

Use the num_threads clause on parallel regions to control the number of threads employed and use the if
clause on parallel regions to decide whether to employ multiple threads at all. The omp_set_num_threads()
routine can also be used, but it also affects parallel regions created by the calling thread. The num_threads
clause is local in its effect, so it does not impact other parallel regions. The disadvantages of explicitly setting
the number of threads are:

1. In a system with a large number of processors, your application will use some but not all of the
processors.

2. In a system with a small number of processors, your application may force over subscription that
results in poor performance.

The Intel OpenMP runtime will create the same number of threads as the available number of logical
processors unless you use the omp_set_num_threads() routine. To determine the actual limits, use
omp_get_thread_limit() and omp_get_max_active_levels(). Developers should carefully consider their thread
usage and nesting of parallelism to avoid overloading the system. The OMP_THREAD_LIMIT environment
variable limits the number of OpenMP threads to use for the whole OpenMP program. The
OMP_MAX_ACTIVE_LEVELS environment variable limits the number of active nested parallel regions.

Optimization and Programming   

621



Binding Sets and Binding Regions
The binding task set for an OpenMP construct is the set of tasks that are affected by, or provide the context
for, the execution of its region. It can be all tasks, the current team tasks, all tasks of the current team that
are generated in the region, the binding implicit task, or the generating task.

The binding thread set for an OpenMP construct is the set of threads that are affected by, or provide the
context for, the execution of its region. It can be all threads on a device, all threads in a contention group, all
primary threads executing an enclosing teams region, the current team, or the encountering thread.

The binding region for an OpenMP construct is the enclosing region that determines the execution context
and the scope of the effects of the directive:

• The binding region for an omp ordered construct is the innermost enclosing omp for loop region.
• The binding region for a omp taskwait construct is the innermost enclosing omp task region.
• For all other constructs for which the binding thread set is the current team or the binding task set is the

current team tasks, the binding region is the innermost enclosing region.
• For constructs for which the binding task set is the generating task, the binding region is the region of the

generating task.
• A omp parallel construct need not be active to be a binding region.
• A construct need not be explicit to be a binding region.
• A region never binds to any region outside of the innermost enclosing parallel region.

Worksharing Using OpenMP*
To get the maximum performance benefit from a processor with multi-core and Intel® Hyper-Threading
Technology (Intel® HT Technology), an application needs to be executed in parallel. Parallel execution
requires threads, and threading an application is not a simple thing to do; using OpenMP* can make the
process a lot easier. Using the OpenMP pragmas, most loops with no loop-carried dependencies can be
threaded with one simple statement. This topic explains how to start using OpenMP to parallelize loops,
which is also called worksharing.

Options that use OpenMP are available for both Intel® and non-Intel microprocessors, but these options may
perform additional optimizations on Intel® microprocessors than they perform on non-Intel microprocessors.
The list of major, user-visible OpenMP constructs and features that may perform differently on Intel®
microprocessors than on non-Intel microprocessors includes: locks (internal and user visible), the SINGLE
construct, barriers (explicit and implicit), parallel loop scheduling, reductions, memory allocation, and thread
affinity and binding.

Most loops can be threaded by inserting one pragma immediately prior to the loop. Further, by leaving the
details to the Intel® oneAPI DPC++/C++ Compiler and OpenMP, you can spend more time determining which
loops should be threaded and how to best restructure the algorithms for maximum performance. The
maximum performance of OpenMP is realized when it is used to thread hotspots, the most time-consuming
loops in your application.

The power and simplicity of OpenMP is demonstrated by looking at an example. The following loop converts a
32-bit RGB (red, green, blue) pixel to an 8-bit gray-scale pixel. One pragma, which has been inserted
immediately before the loop, is all that is needed for parallel execution.

#pragma omp parallel for 
for (i=0; i < numPixels; i++) {
  pGrayScaleBitmap[i] = (unsigned BYTE)
    (pRGBBitmap[i].red * 0.299 +
     pRGBBitmap[i].green * 0.587 +
     pRGBBitmap[i].blue * 0.114); 
}

First, the example uses worksharing, which is the general term used in OpenMP to describe distribution of
work across threads. When worksharing is used with the for construct, as shown in the example, the
iterations of the loop are distributed among multiple threads so that each loop iteration is executed exactly
once with different iterations executing if there is more than one available threads. The for construct on its
own only distributes the loop iterations among existing threads. The example uses a parallel for

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

622



construct, which combines parallel and for constructs to first create a team of threads and then distribute
the loop iterations among the threads. Since there is no explicit num_threads clause, OpenMP determines
the number of threads to create and how to best create, synchronize, and destroy them. OpenMP places the
following five restrictions on which loops can be threaded:

• The loop variable must be of type signed or unsigned integer, random access iterator, or pointer.
• The comparison operation must be in the form loop_variable <, <=, >, >=, or !=

loop_invariant_expression of a compatible type.
• The third expression or increment portion of the for loop must be either addition or subtraction by a loop

invariant value.
• If the comparison operation is < or <=, the loop variable must increment on every iteration; conversely, if

the comparison operation is > or >=, the loop variable must decrement on every iteration.
• The loop body must be single-entry-single-exit, meaning no jumps are permitted from inside to outside

the loop, with the exception of the exit statement that terminates the whole application. If the
statements goto or break are used, the statements must jump within the loop, not outside it. Similarly,
for exception handling, exceptions must be caught within the loop.

Although these restrictions might sound somewhat limiting, non-conforming loops can frequently be
rewritten to follow these restrictions.

Basics of Compilation
Using the OpenMP pragmas requires an OpenMP-compatible compiler and thread-safe libraries. Adding
the /Qopenmp (Windows*) or -qopenmp (Linux*) option to the compiler instructs the compiler to pay
attention to the OpenMP pragmas and to generate multi-threaded code. If you omit the /Qopenmp (Windows)
or -qopenmp (Linux) option, the compiler will ignore OpenMP pragmas, which provides a very simple way to
generate a single-threaded version without changing any source code. To compile programs containing target
and related constructs for offloading to a GPU, the -fopenmp-targets=spir64 and /Qopenmp-
targets:spir64 flags are needed on Linux and Windows respectively.

For conditional compilation, the compiler defines the _OPENMP macro. If needed, the macro can be tested as
shown in the following example.

#ifdef _OPENMP
   fn(); 
#endif

A Few Simple Examples
The following examples illustrate how simple OpenMP is to use. In common practice, additional issues need
to be addressed, but these examples illustrate a good starting point.

In the first example, the loop clips an array to the range from 0 to 255.

// clip an array to 0 <= x <= 255 
for (i=0; i < numElements; i++) {
  if (array[i] < 0)
  array[i] = 0;
  else if (array[i] > 255)
    array[i] = 255; 
}

You can thread it using a single OpenMP pragma; insert the pragma immediately prior to the loop:

#pragma omp parallel for 
for (i=0; i < numElements; i++) {
  if (array[i] < 0)
  array[i] = 0;
  else if (array[i] > 255)
    array[i] = 255; 
}

Optimization and Programming   

623



In the second example, the loop generates a table of square roots for the numbers from 0 to 100.

double value; 
double roots[100]; 
for (value = 0.0; value < 100.0; value ++) { roots[(int)value] = sqrt(value); }

Thread the loop by changing the loop variable to a signed integer or unsigned integer and inserting a
#pragma omp parallel for pragma.

int value; 
double roots[100]; 
#pragma omp parallel for 
for (value = 0; value < 100; value ++) { roots[value] = sqrt((double)value); }

Avoid Data Dependencies and Race Conditions
When a loop meets all five loop restrictions (listed above) and the compiler threads the loop, the loop still
might not work correctly due to the existence of data dependencies.

Data dependencies exist when different iterations of a loop (more specifically a loop iteration that is executed
on a different thread) read or write the same location in shared memory. Consider the following example that
calculates factorials.

// Each loop iteration writes a value that a different iteration reads. 
#pragma omp parallel for 
for (i=2; i < 10; i++) { factorial[i] = i * factorial[i-1]; }

The compiler will thread this loop, but the threading will fail because at least one of the loop iterations is
data-dependent upon a different iteration. This situation is referred to as a race condition. Race conditions
can only occur when using shared resources (like memory) and parallel execution. To address this problem
either rewrite the loop or pick a different algorithm, one that does not contain the race condition.

Race conditions are difficult to detect because, for a given case or system, the threads might win the race in
the order that happens to make the program function correctly. Because a program works once does not
mean that the program will work under all conditions. Testing your program on various machines, some with
Intel® Hyper-Threading Technology and some with multiple physical processors, is a good starting point to
help identify race conditions.

Traditional debuggers are useless for detecting race conditions because they cause one thread to stop the
race while the other threads continue to significantly change the runtime behavior; however, thread checking
tools can help.

Manage Shared and Private Data
Nearly every loop (in real applications) reads from or writes to memory; it's your responsibility, as the
developer, to instruct the compiler what memory should be shared among the threads and what memory
should be kept private. When memory is identified as shared, all threads access the same memory location.
When memory is identified as private, however, a separate copy of the variable is made for each thread to
access in private. When the loop ends, the private copies are destroyed. By default, all variables are shared
except for the loop variable, which is private.

Memory can be declared as private in two ways:

• Declare the variable inside the loop-really inside the parallel OpenMP pragma-without the static keyword.
• Specify the private clause on an OpenMP pragma.

The following loop fails to function correctly because the variable temp is shared. It should be private.

// Variable temp is shared among all threads, so while one thread 
// is reading variable temp another thread might be writing to it 
#pragma omp parallel for 
for (i=0; i < 100; i++) {

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

624



  temp = array[i];
  array[i] = do_something(temp); 
}

The following two examples both declare the variable temp as private memory, which solves the problem.

#pragma omp parallel for 
for (i=0; i < 100; i++) {
  int temp; // variables declared within a parallel construct
            // are, by definition, private
  temp = array[i];
  array[i] = do_something(temp); 
}

The temp variable can also be made private in the following way:

#pragma omp parallel for private(temp) 
for (i=0; i < 100; i++) {
  temp = array[i];
  array[i] = do_something(temp); 
}

Every time you use OpenMP to parallelize a loop, you should carefully examine all memory references,
including the references made by called functions. Variables declared within a parallel construct are defined
as private except when they are declared with the static declarator, because static variables are not
allocated on the stack.

Reductions
Loops that accumulate a value are fairly common, and OpenMP has a specific clause to accommodate them.
Consider the following loop that calculates the sum of an array of integers.

sum = 0; 
for (i=0; i < 100; i++) { 
  sum += array[i]; // this variable needs to be shared to generate
                   // the correct results, but private to avoid
                   // race conditions from parallel execution 
}

The variable sum in the previous loop must be shared to generate the correct result, but it also must be
private to permit access by multiple threads. OpenMP provides the reduction clause that is used to
efficiently combine the mathematical reduction of one or more variables in a loop. The following example
demonstrates how the loop can use the reduction clause to generate the correct results.

sum = 0; 
#pragma omp parallel for reduction(+:sum) 
for (i=0; i < 100; i++) { sum += array[i]; }

In the case of the example listed above, the reduction provides private copies of the variable sum for each
thread, and when the threads exit, it adds the values together and places the result in the one global copy of
the variable.

The following table lists the possible reduction operations, along with their initial values (mathematical
identity values).

Operation private Variable Initialization Value

+ (addition) 0

- (subtraction) 0

Optimization and Programming   

625



Operation private Variable Initialization Value

* (multiplication) 1

& (bitwise and) ~0

| (bitwise or) 0

^ (bitwise exclusive
or)

0

&& (conditional and) 1

|| (conditional or) 0

Multiple reductions in a loop are possible by specifying comma-separated variables and operations on a given
parallel construct. Reduction variables must meet the following requirements:

• can be listed in just one reduction.
• cannot be declared constant.
• cannot be declared private in the parallel construct.

Load Balancing and Loop Scheduling
Load balancing, the equal division of work among threads, is among the most important attributes for
parallel application performance. Load balancing is extremely important, because it ensures that the
processors are busy most, if not all, of the time. Without a balanced load, some threads may finish
significantly before others, leaving processor resources idle and wasting performance opportunities.

Within loop constructs, poor load balancing is often caused by variations in compute time among loop
iterations. It is usually easy to determine the variability of loop iteration compute time by examining the
source code. In most cases, you will see that loop iterations consume a uniform amount of time. When that
is not true, it may be possible to find a set of iterations that consume similar amounts of time. For example,
sometimes the set of all even iterations consumes about as much time as the set of all odd iterations.
Similarly, it might be the case that the set of the first half of the loop consumes about as much time as the
second half. In contrast, it might be impossible to find sets of loop iterations that have a uniform execution
time. Regardless of the case, you should provide this extra loop scheduling information to OpenMP so it can
better distribute the iterations of the loop across the threads (and therefore processors) for optimum load
balancing.

If you know that all loop iterations consume roughly the same amount of time, the OpenMP schedule clause
should be used to distribute the iterations of the loop among the threads in roughly equal amounts via the
scheduling policy. In addition, you need to minimize the chances of memory conflicts that may arise because
of false sharing due to using large chunks. This behavior is possible because loops generally touch memory
sequentially, so splitting up the loop in large chunks— like the first half and second half when using two
threads— will result in the least chance for overlapping memory. While this may be the best choice for
memory issues, it may be bad for load balancing. Unfortunately, the reverse is also true; what might be best
for load balancing may be bad for memory performance. You must strike a balance between optimal memory
usage and optimal load balancing by measuring the performance to see what method produces the best
results.

Use the following general form on the parallel construct to schedule an OpenMP loop:

#pragma omp parallel for schedule(kind [, chunk size])
Four different loop scheduling types (kinds) can be provided to OpenMP, as shown in the following table. The
optional parameter (chunk), when specified, must be a positive integer.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

626



Kind Description

static Divide the loop into equal-sized chunks or as equal as possible in the case where the
number of loop iterations is not evenly divisible by the number of threads multiplied
by the chunk size. By default, chunk size is loop_count/number_of_threads.

Set chunk to 1 to interleave the iterations.

dynamic Use the internal work queue to give a chunk-sized block of loop iterations to each
thread. When a thread is finished, it retrieves the next block of loop iterations from
the top of the work queue.

By default, the chunk size is 1. Be careful when using this scheduling type because
of the extra overhead involved.

guided Similar to dynamic scheduling, but the chunk size starts off large and decreases to
better handle load imbalance between iterations. The optional chunk parameter
specifies them minimum size chunk to use.

By default the chunk size is approximately loop_count/number_of_threads.

auto When schedule (auto) is specified, the decision regarding scheduling is delegated to
the compiler. The programmer gives the compiler the freedom to choose any
possible mapping of iterations to threads in the team.

runtime Uses the OMP_SCHEDULE environment variable to specify which one of the three
loop-scheduling types should be used.

OMP_SCHEDULE is a string formatted exactly the same as would appear on the
parallel construct.

Assume that you want to parallelize the following loop.

for (i=0; i < NumElements; i++) {
   array[i] = StartVal;
   StartVal++; 
}

As written, the loop contains a data dependency, making it impossible to parallelize without a change. The
new loop, shown below, fills the array in the same manner, but without data dependencies. The new loop
benefits from using the SIMD instructions generated by the compiler.

#pragma omp parallel for
for (i=0; i < NumElements; i++) 
{ 
     array[i] = StartVal + i; 
}

Observe that the code is not 100% identical because the value of variable StartVal is not incremented. As a
result, when the parallel loop is finished, the variable will have a value different from the one produced by
the serial version. If the value of StartVal is needed after the loop, the additional statement, shown below,
is needed.

// This works and is identical to the serial version. 
#pragma omp parallel for 
for (i=0; i < NumElements; i++) 
{ 
     array[i] = StartVal + i; 
} 
StartVal += NumElements;

Optimization and Programming   

627



OpenMP Tasking Model
The OpenMP tasking model enables parallelization of a large range of applications. A task is an instance of
executable code and its data environment that can be scheduled for execution by threads.

The task Construct

The task construct defines an explicit task region as shown in the following example:

void test1(LIST *head) {
  #pragma omp parallel shared(head) 
  {
    #pragma omp single 
     {
      LIST *p = head; 
      while (p != NULL) {
        #pragma omp task firstprivate(p) 
        { 
          do_work1(p); 
        }
        p = p->next;
     }
    }
  }

The binding thread set of the task region is the current parallel team. A task region binds to the innermost
enclosing parallel region. When a thread encounters a task construct, a task is generated from the
structured block enclosed in the construct. The encountering thread may immediately execute the task, or
defer its execution. A task construct may be nested inside an outer task, but the task region of the inner
task is not a part of the task region of the outer task.

Use Clauses with the task Construct

The task construct can take optional clauses. The data environment of the task is created according to the
data-sharing attribute clauses on the task construct and any defaults that apply. The example below shows
a way to generate N tasks with one thread and execute the generated tasks with the threads in the parallel
team:

double data[N];
int i;
#pragma omp parallel shared(data)
{  
  #pragma omp single private(i)
  {
    for (i=0, i<N; i++) 
    {
      #pragma omp task firstprivate(i) shared(data))
      {
        do_work(data, i); 
      }
    }
  } 
}

Task Scheduling

When a thread reaches a task scheduling point, it may perform a task switch, suspending the current task
and beginning or resuming execution of a different task bound to the current team. Refer to the OpenMP 5.1
specifications for the full list of task scheduling point locations. Some examples include:

• the point where a task is explicitly generated.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

628



• the point immediately following the generation of an explicit task.
• after the last instruction of a task region.
• in a taskwait region.
• in a taskyield region.
• in implicit and explicit barrier regions.

NOTE
Task scheduling points dynamically divide task regions into parts. Each part is executed from start to
finish without interruption. Different parts of the same task region are executed in the order in which
they are encountered. In the absence of task synchronization constructs, the order in which a thread
executes parts of different schedulable tasks is unspecified. A correct program must behave correctly
and consistently with all conceivable scheduling sequences.

The taskwait Construct

The taskwait construct specifies a wait on the completion of child tasks generated since the beginning of
the current task. A taskwait region binds to the current task region. The binding thread set of the
taskwait region is the current team.

The taskwait region includes an implicit task scheduling point in the current task region. The current task
region is suspended at the task scheduling point until execution of all its child tasks generated before the
taskwait region is completed.

#pragma omp task // TASK1
{ 
  ...
  #pragma omp task // TASK 2 (child of TASK1)
  {
    do_work1();
  }
  #pragma omp task // TASK3 (child of TASK 1)
  {  
    ...
    #pragma omp task // TASK4 (child of TASK3, not TASK1)
    {
      do_work2(); 
    }
    ...
  }
  #pragma omp taskwait // suspend TASK1; wait for TASK2 and TASK3 to complete
  ... 
}

The taskyield Construct

The taskyield construct specifies that the current task can be suspended at that point and the thread may
switch to the execution of a different task. You can use this construct to provide an explicit task scheduling
point at a particular point in the task.

See Also
OMP_SCHEDULE 
qopenmp, Qopenmp 
Supported Environment Variables

Optimization and Programming   

629



Control Thread Allocation
The KMP_HW_SUBSET and KMP_AFFINITY environment variables allow you to control how the OpenMP*
runtime uses the hardware threads on the processors. These environment variables allow you to try different
thread distributions on the cores of the processors and determine how these threads are bound to the cores.
You can use the environment variables to work out what is optimal for your application.

The KMP_HW_SUBSET variable controls the allocation of hardware resources and the KMP_AFFINITY variable
controls how the OpenMP threads are bound to those resources.

Control Thread Distribution
The KMP_HW_SUBSET variable controls the hardware resources that will be used by the program. This variable
often specifies three layers of machine topology: the number of sockets to use, how many cores to use per
socket, and how many threads to use per core. For example, KMP_HW_SUBSET=2s,12c,2t means to use two
sockets, 12 cores per socket, and two threads per core, giving a total of 48 available hardware threads.

When more layers exist (NUMA domain, tile, etc.) in the machine topology, you can specify those layers as
well. For example, KMP_HW_SUBSET=2s,2n,8c,2t means to use two sockets, two NUMA domains per socket,
eight cores per NUMA domain, and two threads per core, giving a total of 64 available hardware threads. For
historical reasons, when a layer is not explicitly specified in KMP_HW_SUBSET, it is assumed you want all the
resources in that unspecified layer. You can use KMP_AFFINITY=verbose to see all the different detected
layers in the machine. For example, KMP_HW_SUBSET=2s,2t is interpreted to mean use two sockets, all cores
per socket (and possibly all resources of other detected layers as well), and two threads per layer.

When available, you can specify core attributes to choose different sets of cores. The core attributes are
appended to the regular core layer specification with a colon (:) and attribute. There are two attributes to
help filter types of cores:

1. Core type, specified as intel_core, or intel_atom.
2. Core efficiency, specified as effnum where num is a non-negative integer from zero to the number of

core efficiencies detected minus one. The larger the efficiency the more performant the core. For
example, KMP_HW_SUBSET=4c:eff0,5c:eff1 will select all sockets, four cores of efficiency 0, five
cores of efficiency 1, and all threads per those cores.

There is also a special syntax to explicitly request all resources at a specific layer. Instead of specifying a
positive integer, you can use an optional asterisk (* ). For example, KMP_HW_SUBSET=’*c:eff0’ or
KMP_HW_SUBSET=c:eff0 will request all the cores of efficiency 0.

Consider a system with 24 cores and four hardware threads per core. While specifying two threads per core
often yields better performance than one thread per core, specifying three or four threads per core may or
may not improve the performance. This variable enables you to conveniently measure the performance of up
to four threads per core.

For example, you can determine the effects of assigning 24, 48, 72, or the maximum 96 OpenMP threads in
a system with 24 cores by specifying the following variable settings:

To Assign This Number of
Threads ...

... Use This Setting

24 KMP_HW_SUBSET=24c,1t

48 KMP_HW_SUBSET=24c,2t

72 KMP_HW_SUBSET=24c,3t

96 KMP_HW_SUBSET=24c,4t

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

630



Caution
Take care when using the OMP_NUM_THREADS variable along with this variable. Using the
OMP_NUM_THREADS variable can result in over or under subscription.

NOTE
If you use KMP_HW_SUBSET to specify more resources than the system has, the runtime will issue a
warning and ignore the setting. For example, setting KMP_HW_SUBSET=24c,5t will be ignored on a
system where each core has four hardware threads.

Control Thread Bindings
The KMP_AFFINITY variable controls how the OpenMP threads are bound to the hardware resources allocated
by the KMP_HW_SUBSET variable. While this variable can be set to several binding or affinity types, the
following are the recommended affinity types to use to run your OpenMP threads on the processor:

• compact: Distribute the threads sequentially among the cores.
• scatter: Distribute the threads among the cores in a round robin manner. Distribution is one thread per

core initially, followed by repeat distribution among the cores.

The following table shows how the threads are bound to the cores when you want to use three threads per
core on two cores by specifying KMP_HW_SUBSET=2c,3t:

Affinity OpenMP Threads on Core
0

OpenMP Threads on Core 1

KMP_AFFINITY=compact 0, 1, 2 3, 4, 5

KMP_AFFINITY=scatter 0, 2, 4 1, 3, 5

Determine the Best Setting
To determine the best thread distribution and bindings using these variables, use the following:

1. Ensure that your OpenMP code is working properly before using these environment variables.
2. Establish a baseline with your current OpenMP code to compare to the performance when you allocate

the threads to a processor.
3. Measure the performance of distributing one, two, three, or four threads per core by use the

KMP_HW_SUBSET variable.
4. Measure the performance of binding the threads to the cores by using the KMP_AFFINITY variable.

See Also
Thread Affinity Interface 
Supported Environment Variables

OpenMP* Pragmas
This is a summary of the OpenMP* pragmas supported in the Intel® oneAPI DPC++/C++ Compiler. For
detailed information about the OpenMP API, see the OpenMP Application Program Interface Version 5.1
specification, which is available from the OpenMP web site.

PARALLEL Pragma
Use this pragma to form a team of threads and execute those threads in parallel.

Optimization and Programming   

631



Pragma Description

omp parallel Specifies that a structured block should be run in parallel by a team of
threads.

TASKING Pragma
Use these pragmas for deferring execution.

Pragma Description

omp task Specifies a code block whose execution may be deferred.

omp taskloop Specifies that the iterations of one or more associated for loops
should be executed using OpenMP tasks. The iterations are distributed
across tasks that are created by the construct and scheduled to be
executed in parallel by the current team.

WORKSHARING Pragmas
Use these pragmas to share work among a team of threads.

Pragma Description

omp for Specifies a work-sharing loop. Iterations of the loop are executed in
parallel by the threads in the team.

omp loop Specifies that the iterations of the associated loops can execute in any
order or concurrently.

omp sections Defines a set of structured blocks that will be distributed among the
threads in the team.

omp single Specifies that a block of code is to be executed by only one thread in
the team.

SYNCHRONIZATION Pragmas
Use these pragmas to synchronize between threads.

Pragma Description

omp atomic Specifies a computation that must be executed atomically.

omp barrier Specifies a point in the code where each thread must wait until all
threads in the team arrive.

omp critical Specifies a code block that is restricted to access by only one thread
at a time.

omp flush Identifies a point at which a thread's temporary view of memory
becomes consistent with the memory.

omp masked Specifies a structured block that is executed by a subset of the
threads of the current team.

omp master (deprecated, see
omp masked)

Specifies a code block that must be executed only once by the
primary thread of the team.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

632



Pragma Description

omp ordered Specifies a block of code that the threads in a team must execute in
the natural order of the loop iterations, or as a stand-alone directive,
specifies cross-iteration dependences in a doacross loop-nest.

omp taskgroup Causes the program to wait until the completion of all enclosed and
descendant tasks.

omp taskwait Specifies a wait on the completion of child tasks generated since the
beginning of the current task.

omp taskyield Specifies that the current task can be suspended at this point in favor
of execution of a different task.

Data Environment Pragmas
Use these pragmas to affect the data environment.

Pragma Description

omp threadprivate Specifies a list of globally-visible variables that will be allocated
private to each thread.

Offload Target Control Pragmas
Use these pragmas to control execution on one or more offload targets.

Pragma Description

omp declare target Specifies functions and variables that are created or mapped to a
device.

omp declare variant Identifies a variant of a base procedure and specifies the context in
which this variant is used.

omp dispatch Determines if a procedure variant is called for a given procedure.

omp distribute Specifies that the iterations of one or more loops should be
distributed among the initial threads of all thread teams in a league.

omp interop Identifies a foreign runtime context and identifies runtime
characteristics of that context, enabling interoperability with it.

omp requires Lists the features that an implementation must support so that the
program compiles and runs correctly.

omp target enter data Specifies that variables are mapped to a device data environment.

omp target exit data Specifies that variables are unmapped from a device data
environment.

omp teams Creates a league of thread teams inside a target region to execute a
structured block in the initial thread of each team.

Vectorization Pragmas
Use these pragmas to control execution on vector hardware.

Optimization and Programming   

633



Pragma Description

omp simd Transforms the loop into a loop that will be executed concurrently
using SIMD instructions.

omp declare simd Creates a version of a function that can process multiple arguments
using Single Instruction Multiple Data (SIMD) instructions from a
single invocation from a SIMD loop.

Cancellation Constructs

Pragma Description

omp cancel Requests cancellation of the innermost enclosing region of the type
specified, and causes the encountering task to proceed to the end of
the cancelled construct.

omp cancellation point Defines a point at which implicit or explicit tasks check to see if
cancellation has been requested for the innermost enclosing region of
the type specified. This construct does not implement a
synchronization between threads or tasks.

User-Defined Reduction Pragma
Use this pragma to define reduction identifiers that can be used as reduction operators in a reduction clause.

Pragma Description

omp declare reduction Declares User-Defined Reduction (UDR) functions (reduction
identifiers) that can be used as reduction operators in a reduction
clause.

Memory Space Allocation Pragma
Use this declarative directive to allocate memory space.

Pragma Description

omp allocate Specifies memory allocators to use for object allocation and
deallocation

Combined and Composite Pragmas
Use these pragmas as shortcuts for multiple pragmas in sequence. A combined construct is a shortcut for
specifying one construct immediately nested inside another construct. A combined construct is semantically
identical to that of explicitly specifying the first construct containing one instance of the second construct and
no other statements.

A composite construct is composed of two constructs but does not have identical semantics to specifying one
of the constructs immediately nested inside the other. A composite construct either adds semantics not
included in the constructs from which it is composed or the nesting of the one construct inside the other is
not conforming.

Pragma Description

omp distribute parallel for 1 Specifies a loop that can be executed in parallel by multiple threads
that are members of multiple teams.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

634



Pragma Description

omp distribute parallel for simd1 Specifies a loop that will be executed in parallel by multiple threads
that are members of multiple teams. It will be executed concurrently
using SIMD instructions.

omp distribute simd 1 Specifies a loop that will be distributed across the primary threads of
the teams region. It will be executed concurrently using SIMD
instructions.

omp for simd1 Specifies that the iterations of the loop will be distributed across
threads in the team. Iterations executed by each thread can also be
executed concurrently using SIMD instructions.

omp parallel for Provides an abbreviated way to specify a parallel region containing
only a FOR construct.

omp parallel for simd Specifies a parallel construct that contains one for simd construct and
no other statement.

omp parallel sections Specifies a parallel construct that contains only a sections construct.

omp target parallel Creates a device data environment and executes the parallel region
on that device.

omp target parallel for Provides an abbreviated way to specify a target construct that
contains an omp target parallel for construct and no other statement
between them.

omp target parallel for simd Specifies a target construct that contains an omp target parallel for
simd construct and no other statement between them.

omp target parallel loop Provides an abbreviated way to specify a target region that contains
only a parallel loop construct.

omp target simd Specifies a target construct that contains an omp simd construct and
no other statement between them.

omp target teams Creates a device data environment and executes the construct on the
same device. It also creates a league of thread teams with the
primary thread in each team executing the structured block.

omp target teams distribute Creates a device data environment and then executes the construct
on that device. It also specifies that loop iterations will be distributed
among the primary threads of all thread teams in a league created by
a teams construct.

omp target teams distribute
parallel for

Creates a device data environment and then executes the construct
on that device. It also specifies a loop that can be executed in parallel
by multiple threads that are members of multiple teams created by a
teams construct.

omp target teams distribute
parallel for simd

Creates a device data environment and then executes the construct
on that device. It also specifies a loop that can be executed in parallel
by multiple threads that are members of multiple teams created by a
teams construct. The loop will be distributed across the teams, which
will be executed concurrently using SIMD instructions.

Optimization and Programming   

635



Pragma Description

omp target teams distribute simd Creates a device data environment and then executes the construct
on that device. It also specifies that loop iterations will be distributed
among the primary threads of all thread teams in a league created by
a teams construct. It will be executed concurrently using SIMD
instructions.

omp target teams loop Provides an abbreviated way to specify a target region that contains
only a teams loop construct.

omp taskloop simd 1 Specifies a loop that can be executed concurrently using SIMD
instructions and that those iterations will also be executed in parallel
using OpenMP* tasks.

omp teams distribute Creates a league of thread teams and specifies that loop iterations
will be distributed among the primary threads of all thread teams in
the league.

omp teams distribute parallel for Creates a league of thread teams and specifies that the associated
loop can be executed in parallel by multiple threads that are members
of multiple teams.

omp teams distribute parallel for
simd

Creates a league of thread teams and specifies that the associated
loop can be executed concurrently using SIMD instructions in parallel
by multiple threads that are members of multiple teams.

omp teams distribute simd Creates a league of thread teams and specifies that the associated
loop will be distributed across the primary threads of the teams and
executed concurrently using SIMD instructions.

omp teams loop Provides an abbreviated way to specify a teams construct that
contains only a loop construct.

Footnotes:
1 This directive specifies a composite construct.

OpenMP* Library Support
This section provides information about OpenMP* run-time library routines, Intel® compiler extension
routines to OpenMP, OpenMP support libraries and how to use them, and the thread affinity interface.

OpenMP* Run-time Library Routines
OpenMP* provides run-time library routines to help you manage your program in parallel mode. Many of
these run-time library routines have corresponding environment variables that can be set as defaults. The
run-time library routines let you dynamically change these factors to assist in controlling your program. In all
cases, a call to a run-time library routine overrides any corresponding environment variable.

Caution
Running OpenMP runtime library routines may initialize the OpenMP runtime environment, which might
cause a situation where subsequent programmatic setting of OpenMP environment variables has no
effect. To avoid this situation, you can use the Intel extension routine kmp_set_defaults() to set
OpenMP environment variables.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

636



The compiler supports all the OpenMP run-time library routines. Refer to the OpenMP API specification for
detailed information about using these routines.

Include the appropriate declarations of the routines in your source code by adding a statement similar to the
following:

#include <omp.h>
The header files are provided in the ../include (Linux*) or ..\include (Windows*) directory of your
compiler installation.

Thread Team Routines
Routines that affect and monitor thread teams in the current contention group.

Routine Description

void omp_set_num_threads(int nthreads) Sets the number of threads to use for
subsequent parallel regions created by
the calling thread.

int omp_get_num_threads(void) Returns the number of threads that are
being used in the current parallel region.

This function does not necessarily return
the value inherited by the calling thread
from the omp_set_num_threads()
function.

int omp_get_max_threads(void) Returns the number of threads available
to subsequent parallel regions created
by the calling thread.

int omp_get_thread_num(void) Returns the thread number of the calling
thread, within the context of the current
parallel region.

int omp_in_parallel(void) Returns TRUE if called within the
dynamic extent of a parallel region
executing in parallel; otherwise returns
FALSE.

void omp_set_dynamic(int dynamic_threads) Enables or disables dynamic adjustment
of the number of threads used to
execute a parallel region. If
dynamic_threads is TRUE, dynamic
threads are enabled. If
dynamic_threads is FALSE, dynamic
threads are disabled. Dynamic threads
are disabled by default.

int omp_get_dynamic(void) Returns TRUE if dynamic thread
adjustment is enabled, otherwise returns
FALSE.

int omp_get_cancellation(void) Returns TRUE if cancellation is enabled,
otherwise returns FALSE.

This routine can be affected by the setting for
environment variable OMP_CANCELLATION.

Optimization and Programming   

637



Routine Description

void omp_set_nested(int nested)

NOTE This has been deprecated.

Enables or disables nested parallelism. If
nested is TRUE, nested parallelism is
enabled. If nested is FALSE, nested
parallelism is disabled. Nested
parallelism is disabled by default.

int omp_get_nested(void)

NOTE This has been deprecated.

Returns TRUE if nested parallelism is enabled,
otherwise returns FALSE.

void omp_set_schedule(omp_sched_t kind,int
chunk_size)

Determines the schedule of a
worksharing loop that is applied when
'runtime' is used as the schedule kind.

void omp_get_schedule(omp_sched_kind *kind,int
*chunk_size)

Returns the schedule of a worksharing
loop that is applied when the 'runtime'
schedule is used.

int omp_get_thread_limit(void) Returns the maximum number of
simultaneously executing threads in an
OpenMP program.

int omp_get_supported_active_levels(void) Returns the number of active levels of
parallelism supported by the
implementation.

void omp_set_max_active_levels(int
max_active_levels)

Limits the number of nested active
parallel regions. The value of
max_active_levels must evaluate to a
non-negative integer.

int omp_get_max_active_levels(void) Returns the maximum number of nested
active parallel regions.

int omp_get_level(void) Returns the number of nested parallel
regions (whether active or inactive)
enclosing the task that contains the call,
not including the implicit parallel region.

int omp_get_ancestor_thread_num(int level) Returns the thread number of the
ancestor at a given nest level of the
current thread.

int omp_get_team_size(int level) Returns the size of the thread team to
which the ancestor or the current thread
belongs for a given nested level.

int omp_get_active_level(void) Returns the number of nested, active
parallel regions enclosing the task that
contains the call.

Thread Affinity Routines
Routines that affect and access thread affinity policies that are in effect.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

638



Function Description

omp_proc_bind_t omp_get_proc_bind(void) Returns the currently active thread affinity policy,
which can be initialized by the environment variable
OMP_PROC_BIND.

This policy is used for subsequent nested parallel
regions.

int omp_get_num_places(void) Returns the number of places available to the
execution environment in the place list of the initial
task, usually threads, cores, or sockets.

int omp_get_place_num_procs(int
place_num)

Returns the number of processors associated with
the place numbered place_num. The routine
returns zero when place_num is negative or is
greater than or equal to omp_get_num_places().

void omp_get_place_proc_ids(int
place_num, int *ids)

Returns the numerical identifiers of each processor
associated with the place numbered place_num.
The numerical identifiers are non-negative and their
meaning is implementation defined. The numerical
identifiers are returned in the array ids and their
order in the array is implementation defined.The
array ids must be sufficiently large to contain
omp_get_place_num_procs(place_num)
elements. The routine has no effect when
place_num is negative or greater than or equal to
omp_get_num_places().

int omp_get_place_num(void) Returns the place number of the place to which the
encountering thread is bound. The returned value is
between 0 and omp_get_num_places() - 1,
inclusive. When the encountering thread is not
bound to a place, the routine returns -1.

int omp_get_partition_num_places(void) Returns the number of places in the place partition
of the innermost implicit task.

void omp_get_partition_place_nums(int
*place_nums)

Returns the list of place numbers corresponding to
the places in the place-partition-var ICV of the
innermost implicit task. The array place_nums
must be sufficiently large to contain
omp_get_partition_num_places() elements.

void omp_set_affinity_format(const char
*format)

Sets the affinity format to be used on the device by
setting the value of the affinity-format-var ICV.

size_t omp_get_affinity_format(char
*buffer, size_t size)

Returns the value of the affinity-format-var ICV on
the device.

void omp_display_affinity(const char
*format)

Prints the OpenMP thread affinity information using
the format specification provided.

size_t omp_capture_affinity(char *buffer,
size_t size, const char *format)

Prints the OpenMP thread affinity information into a
buffer using the format specification provided.

Optimization and Programming   

639



Teams Region Routines
Routines that affect and monitor the league of teams that may execute a teams region.

Function Description

int omp_get_num_teams(void) Returns the number of initial teams in the current
teams region.

int omp_get_team_num(void) Returns the initial team number of the calling
thread.

void omp_set_num_teams(int num_teams) Affects the number of threads to be used for
subsequent teams regions that do not specify a
num_teams clause.

int omp_get_max_teams(void) Returns an upper bound on the number of teams
that could be created by a teams construct without
a num_teams clause that is encountered after
execution returns from this routine.

void omp_set_teams_thread_limit(int
thread_limit)

Defines the maximum number of OpenMP threads
that can participate in each contention group
created by a teams construct.

int omp_get_teams_thread_limit(void) Returns the maximum number of OpenMP threads
available to participate in each contention group
created by a teams construct.

Tasking Routines
Routines that pertain to OpenMP explicit tasks.

Function Description

int omp_get_max_task_priority(void) Returns the maximum value that can be specified in
the priority clause.

int omp_in_explicit_task(void) Returns TRUE if called within an explicit task region;
otherwise returns FALSE.

int omp_in_final(void) Returns TRUE if called within a final task region;
otherwise returns FALSE.

Resource Relinquishing Routines
Routines that relinquish resources used by the OpenMP runtime. These routines are only effective on the host
device.

Function Description

int
omp_pause_resource(omp_pause_resource_t
kind, int device_num)

Allows the runtime to relinquish resources used by
OpenMP on the specified device. The routine
returns zero in case of success, and non-zero
otherwise.

int
omp_pause_resource_all(omp_pause_resource
_t kind)

Allows the runtime to relinquish resources used by
OpenMP on all devices. The routine returns zero in
case of success, and non-zero otherwise.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

640



Device Information Routines
Routines that pertain to the set of devices that are accessible to an OpenMP program.

Function Description

int omp_get_num_procs(void) Returns the number of processors available to the
program.

void omp_set_default_device(int
device_number)

Sets the default device number.

int omp_get_default_device(void) Returns the default device number.

int omp_get_num_devices(void) Returns the number of target devices.

int omp_get_device_num(void) Returns the device number of the device on which
the calling thread is executing.

int omp_is_initial_device(void) Returns TRUE if the current task is running on the
host device; otherwise, FALSE.

int omp_get_initial_device(void) Returns the device number of the host device. The
value of the device number is implementation
defined. If it is between 0 and
omp_get_num_devices()-1, then it is valid in all
device constructs and routines; if it is outside that
range, then it is only valid in the device memory
routines and not in the device clause.

Device Memory Routines
Routines that support allocation of memory and management of pointers in the data environments of target
devices.

Routine Description

void *omp_target_alloc(size_t size, int
device_num)

Allocates memory in a device data environment
and returns a device pointer to that memory.

void omp_target_free(void *device_ptr,
int device_num)

Frees device memory that was allocated by the
omp_target_alloc.

int omp_target_is_present(const void
*ptr, int device_num)

Returns TRUE if device_num refers to the host
device or if ptr refers to storage that has
corresponding storage in the device data
environment of device_num. Otherwise, it returns
FALSE.

int omp_target_is_accessible(const void
*ptr, size_t size, int device_num)

Returns TRUE if the storage of size bytes starting at
the address given by ptr is accessible from device
device_num. Otherwise, it returns FALSE.

int omp_target_memcpy(void *dst, const
void *src, size_t length, size_t
dst_offset, size_t src_offset, int
dst_device_num, int src_device_num)

This routine copies length bytes of memory at
offset src _offset from src in the device data
environment of device src_device_num to dst,
starting at offset dst_offset in the device data
environment of the device specified by

Optimization and Programming   

641



Routine Description

dst_device_num. Returns zero on success and a
non-zero value on failure. Use
omp_get_initial_device to return the device
number you can use to reference the host device
and host device data environment. This routine
includes a task scheduling point.

The effect of this routine is unspecified when it is
called from within a target region.

int omp_target_memcpy_rect(void *dst,
const void *src, size_t element_size, int
num_dims, const size_t *volume, const
size_t *dst_offsets, const size_t
*src_offsets, const size_t
*dst_dimensions, const size_t
*src_dimensions, int dst_device_num, int
src_device_num)

This routine copies a rectangular subvolume of
src, in the device data environment of the device
specified by src_device_num, to dst, in the
device data environment of the device specified by
dst_device_num. Specify the volume in terms of
the size of an element, the number of its
dimensions, and constant arrays of length
num_dims. The maximum number of dimensions
supported is three or more. The volume array
specifies the length, in number of elements, to
copy in each dimension from src to dst. The
dst_offsets and src_offsets parameters
specify the number of elements from the origin of
dst and src, in elements. The dst_dimensions
and src_dimensions parameters specify the
length of each dimension of dst and src. The
routine returns zero if successful. Otherwise, it
returns a non-zero value. If both dst and src are
NULL pointers, the routine returns the number of
dimensions supported by the implementation for
the specified device numbers. You can use the
device number returned by
omp_get_initial_device to reference the host
device and host device data environment. This
routine contains a task scheduling point.

The effect of this routine is unspecified when called
from within a target region.

int omp_target_associate_ptr(const void
*host_ptr, const void *device_ptr, size_t
size, size_t device_offset, int
device_num)

Maps a device pointer, which might be returned by
omp_target_alloc, to a host pointer.

int omp_target_disassociate_ptr(const
void *ptr, int device_num)

Removes the associated pointer for a given device
from a host pointer.

void *omp_get_mapped_ptr(const void *ptr,
int device_num)

Returns the device pointer that is associated with a
host pointer for a given device.

Lock Routines
Use these routines to affect OpenMP locks.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

642



Function Description

void omp_init_lock(omp_lock_t *lock) Initializes the lock to the unlocked state.

void omp_init_nest_lock(omp_nest_lock_t
*lock)

Initializes the nested lock to the unlocked state.
The nesting count for the nested lock is set to zero.

void omp_init_lock_with_hint(omp_lock_t
*lock, omp_sync_hint_t hint)

Initializes the lock to the unlocked state, optionally
choosing a specific lock implementation based on
hint. See the OpenMP specification for the
available hints.

void
omp_init_nest_lock_with_hint(omp_nest_loc
k_t *lock, omp_sync_hint_t hint)

Initializes the nested lock to the unlocked state,
optionally choosing a specific lock implementation
based on hint. The nesting count for the nested
lock is set to zero. See the OpenMP specification for
the available hints.

void omp_destroy_lock(omp_lock_t *lock) Changes the state of the lock to uninitialized.

void
omp_destroy_nest_lock(omp_nest_lock_t
*lock)

Changes the state of the nested lock to
uninitialized.

void omp_set_lock(omp_lock_t *lock) Forces the executing thread to wait until the lock is
available. The thread is granted ownership of the
lock when it becomes available.

void omp_set_nest_lock(omp_nest_lock_t
*lock)

Forces the executing thread to wait until the nested
lock is available. If the thread already owns the
lock, then the lock nesting count is incremented.

void omp_unset_lock(omp_lock_t *lock) Releases the executing thread from ownership of
the lock. The behavior is undefined if the executing
thread does not own the lock.

void omp_unset_nest_lock(omp_nest_lock_t
*lock)

Decrements the nesting count for the nested lock
and releases the executing thread from ownership
of the nested lock if the resulting nesting count is
zero. Behavior is undefined if the executing thread
does not own the nested lock.

int omp_test_lock(omp_lock_t *lock) Attempts to set the lock. If successful, returns
TRUE, otherwise returns FALSE.

int omp_test_nest_lock(omp_nest_lock_t
*lock)

Attempts to set the nested lock. If successful,
returns the nesting count, otherwise returns zero.

Timing Routines

Function Description

double omp_get_wtime(void) Returns a double precision value equal to the
elapsed wall clock time (in seconds) relative to an
arbitrary reference time. The reference time does
not change during program execution.

Optimization and Programming   

643



Function Description

double omp_get_wtick(void) Returns a double precision value equal to the
number of seconds between successive clock ticks.

Event Routines

Function Description

void omp_fulfill_event(omp_event_handle_t
event)

Fulfills the event associated with the event handle
event and destroys the event.

Interoperability Routines

Function Description

int omp_get_num_interop_properties(const
omp_interop_t interop)

Returns the number of implementation-defined
properties available for interop. The total number of
properties available for interop is the returned
value minus omp_ipr_first.

omp_intptr_t omp_get_interop_int(const
omp_interop_t interop,
omp_interop_property_t property_id, int
*ret_code)

Returns the requested integer property, if available,
and zero if an error occurs or no value is available.

void *omp_get_interop_ptr(const
omp_interop_t interop,
omp_interop_property_t property_id, int
*ret_code)

Returns the requested pointer property, if available,
and NULL if an error occurs or no value is available.

const char *omp_get_interop_str(const
omp_interop_t interop,
omp_interop_property_t property_id, int
*ret_code)

Returns the requested string property as a C string,
if available, and NULL if an error occurs or no value
is available.

const char *omp_get_interop_name(const
omp_interop_t interop,
omp_interop_property_t property_id)

Returns the name of the property identified by
property_id as a C string.

const char
*omp_get_interop_type_desc(const
omp_interop_t interop,
omp_interop_property_t property_id)

Returns a C string that describes the type of the
property identified by property_id in human-
readable form.

const char *omp_get_interop_rc_desc(const
omp_interop_t interop, omp_interop_rc_t
ret_code)

Returns a C string that describes the return code
ret_code in human-readable form.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

644



Memory Management Routines

Function Description

omp_allocator_handle_t
omp_init_allocator(omp_memspace_handle_t
memspace, int ntraits, const
omp_alloctrait_t traits[])

Creates a new allocator that is associated with the
memspace memory space and returns a handle to
it.

void
omp_destroy_allocator(omp_allocator_handl
e_t allocator)

Releases all resources used to implement the
allocator handle.

void
omp_set_default_allocator(omp_allocator_h
andle_t allocator)

Sets the default memory allocator to be used by
allocation calls, allocate directives and allocate
clauses that do not specify an allocator.

omp_allocator_handle_t
omp_get_default_allocator(void)

Returns a handle to the memory allocator to be
used by allocation calls, allocate directives and
allocate clauses that do not specify an allocator.

void *omp_alloc(size_t size,
omp_allocator_handle_t allocator)

Requests a memory allocation of size bytes from
the specified memory allocator.

void *omp_aligned_alloc(size_t alignment,
size_t size, omp_allocator_handle_t
allocator)

Requests a memory allocation of size bytes from
the specified memory allocator. Memory allocated
by omp_aligned_alloc will be byte-aligned to at
least the maximum of the alignment required by
malloc, the alignment trait of the allocator and the
alignment argument value.

void omp_free(void *ptr,
omp_allocator_handle_t allocator)

Deallocates the memory to which ptr points. The
ptr argument must have been returned by an
OpenMP allocation routine.

void *omp_calloc(size_t nmemb, size_t
size, omp_allocator_handle_t allocator)

Requests a memory allocation from the specified
memory allocator for an array of nmemb elements
each of which has a size of size bytes.

void *omp_aligned_calloc(size_t
alignment, size_t nmemb, size_t size,
omp_allocator_handle_t allocator)

Requests a memory allocation from the specified
memory allocator for an array of nmemb elements
each of which has a size of size bytes. Memory
allocated by omp_aligned_calloc will be byte-
aligned to at least the maximum of the alignment
required by malloc, the alignment trait of the
allocator and the alignment argument value.

void *omp_realloc(void *ptr, size_t size,
omp_allocator_handle_t allocator,
omp_allocator_handle_t free_allocator)

Deallocates the memory to which ptr points and
requests a new memory allocation of size bytes
from the specified memory allocator. Upon success
it returns a pointer to the allocated memory and
the contents of the new object shall be the same as
that of the old object prior to deallocation up to the
minimum size of old allocated size and size
argument.

Optimization and Programming   

645



Tool Control Routines

Function Description

int omp_control_tool(int command, int
modifier, void *arg)

Enables a program to pass commands to an active
tool.

Environment Display Routines

Function Description

void omp_display_env(int verbose) Displays the OpenMP version number and the initial
values of ICVs associated with the environment
variables.

See Also
Intel Extension Routines to OpenMP*

Intel® Compiler Extension Routines to OpenMP*
The Intel® compiler implements the following group of routines as extensions to the OpenMP* run-time
library:

• Get and set the execution environment
• Get and set the stack size for parallel threads
• Memory allocation
• Get and set the thread sleep time for the throughput execution mode
• Target memory allocation

The Intel® extension routines described in this section can be used for low-level tuning to verify that the
library code and application are functioning as intended. These routines are generally not recognized by other
OpenMP-compliant compilers, which may cause the link stage to fail in the other compiler. To execute these
OpenMP routines, use the /Qopenmp-stubs (Windows*) or -qopenmp-stubs (Linux*) option.

In most cases, environment variables can be used in place of the extension library routines. For example, the
stack size of the parallel threads may be set using the OMP_STACKSIZE environment variable rather than the
kmp_set_stacksize_s() library routine.

NOTE
A run-time call to an Intel extension routine takes precedence over the corresponding environment
variable setting.

Execution Environment

Function Description

void kmp_set_defaults(char const *) Sets OpenMP environment variables defined as a
list of variables separated by "|" in the argument.

void kmp_set_library_throughput(void) Sets execution mode to throughput, which is the
default. Allows the application to determine the
runtime environment. Use in multi-user
environments.

void kmp_set_library_turnaround(void) Sets execution mode to turnaround. Use in
dedicated parallel (single user) environments.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

646



Function Description

void kmp_set_library_serial(void) Sets execution mode to serial.

void kmp_set_library(int) Sets execution mode indicated by the value passed
to the function. Valid values are:

• 1 - serial mode
• 2 - turnaround mode
• 3 - throughput mode

Call this routine before the first parallel region is
executed.

int kmp_get_library(void) Returns a value corresponding to the current
execution mode:

• 1 - serial
• 2 - turnaround
• 3 - throughput

Stack Size

Function Description

size_t kmp_get_stacksize_s(void) Returns the number of bytes that will be allocated
for each parallel thread to use as its private stack.
This value can be changed with
kmp_set_stacksize_s() routine, prior to the first
parallel region or via the KMP_STACKSIZE
environment variable.

int kmp_get_stacksize(void) Provided for backwards compatibility only. Use
kmp_get_stacksize_s() routine for compatibility
across different families of Intel processors.

void kmp_set_stacksize_s(size_tsize) Sets to size the number of bytes that will be
allocated for each parallel thread to use as its
private stack. This value can also be set via the
KMP_STACKSIZE environment variable. In order for
kmp_set_stacksize_s() to have an effect, it
must be called before the beginning of the first
(dynamically executed) parallel region in the
program.

void kmp_set_stacksize(int size) Provided for backward compatibility only. Use
kmp_set_stacksize_s() for compatibility across
different families of Intel® processors.

Memory Allocation
The Intel® compiler implements a group of memory allocation routines as an extension to the OpenMP run-
time library to enable threads to allocate memory from a heap local to each thread. These routines are:
kmp_malloc(), kmp_calloc(), and kmp_realloc().

Optimization and Programming   

647



The memory allocated by these routines must also be freed by the kmp_free() routine. While you can
allocate memory in one thread and then free that memory in a different thread, this mode of operation incurs
a slight performance penalty.

Function Description

void* kmp_malloc(size_t size) Allocate memory block of size bytes from thread-
local heap.

void* kmp_calloc(size_t nelem, size_t
elsize)

Allocate array of nelem elements of size elsize from
thread-local heap.

void* kmp_realloc(void* ptr, size_t size) Reallocate memory block at address ptr and size
bytes from thread-local heap.

void* kmp_free(void* ptr) Free memory block at address ptr from thread-local
heap.

Memory must have been previously allocated with
kmp_malloc(), kmp_calloc(), or
kmp_realloc().

Thread Sleep Time
In the throughput OpenMP* Support Libraries, threads wait for new parallel work at the ends of parallel
regions, and then sleep, after a specified period of time. This time interval can be set by the KMP_BLOCKTIME
environment variable or by the kmp_set_blocktime() function.

Function Description

int kmp_get_blocktime(void) Returns the number of milliseconds that a thread
should wait, after completing the execution of a
parallel region, before sleeping, as set either by the
KMP_BLOCKTIME environment variable or by
kmp_set_blocktime().

void kmp_set_blocktime(int msec) Sets the number of milliseconds that a thread
should wait, after completing the execution of a
parallel region, before sleeping. This routine affects
the block time setting for the calling thread and any
OpenMP team threads formed by the calling thread.
The routine does not affect the block time for any
other threads.

Target Memory Allocation

Function Description

void *omp_target_alloc_host(size_t size,
int device_num)

Returns the address of a storage location that is
size bytes in length allocated in host memory. The
same pointer may be used to access the memory
on the host and all supported devices. If the
allocation request fails, a null pointer is returned.

void *omp_target_alloc_device(size_t
size, int device_num)

Returns the address of a storage allocation that is
size bytes in length. Device allocations are owned
by the device specified by device_num in device

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

648



memory if present. Generally, the allocation can be
accessed only by the device, but may be copied to
other device or host allocated memory. A null
pointer return value indicates the allocation was not
successful.

void *omp_target_alloc_shared(size_t
size, int device_num)

Returns the address of a storage allocation that is
size bytes in length. The same pointer may be
used to access the memory on the host and the
specified device. Shared allocations are shared by
the host and the specified device, and are intended
to migrate between the host and the device. A null
pointer is returned if the allocation is unsuccessful.

void *ompx_target_realloc(void *ptr,
size_t size, int device_num)

Deallocates the device memory specified with ptr
and allocates a new device memory with the
specified size in bytes for the given device
device_num. The returned memory can be
accessed only by the specified device. The contents
of the new memory object are the same as that of
the old object prior to deallocation up to the
minimum size of old allocated size and size
argument.

void *ompx_target_realloc_host(void *ptr,
size_t size, int device_num)

Deallocates the device memory specified with ptr
and allocates a new device memory with the
specified size in bytes for the given device
device_num. The returned memory can be
accessed by the host and all supported devices. The
contents of the new memory object are the same
as that of the old object prior to deallocation up to
the minimum size of old allocated size and size
argument.

void *ompx_target_realloc_device(void
*ptr, size_t size, int device_num)

Deallocates the device memory specified with ptr
and allocates a new device memory with the
specified size in bytes for the given device
device_num. The returned memory can be
accessed only by the specified device. The contents
of the new memory object are the same as that of
the old object prior to deallocation up to the
minimum size of old allocated size and size
argument.

void *ompx_target_realloc_shared(void
*ptr, size_t size, int device_num)

Deallocates the device memory specified with ptr
and allocates a new device memory with the
specified size in bytes for the given device
device_num. The returned memory can be
accessed by the host and the specified device. The
contents of the new memory object are the same
as that of the old object prior to deallocation up to
the minimum size of old allocated size and size
argument.

Optimization and Programming   

649



void *ompx_target_aligned_alloc(size_t
alignment, size_t size, int device_num)

Allocates device memory that is aligned to the
specified alignment argument align for the
specified device device_num. The returned
memory can be accessed only by the specified
device.

void
*ompx_target_aligned_alloc_host(size_t
alignment, size_t size, int device_num)

Allocates device memory that is aligned to the
specified alignment argument align for the
specified device device_num. The returned
memory can be accessed by the host and all
supported devices.

void
*ompx_target_aligned_alloc_device(size_t
alignment, size_t size, int device_num)

Allocates device memory that is aligned to the
specified alignment argument align for the
specified device device_num. The returned
memory can be accessed only by the specified
device.

void
*ompx_target_aligned_alloc_shared(size_t
alignment, size_t size, int device_num)

Allocates device memory that is aligned to the
specified alignment argument align for the
specified device device_num. The returned
memory can be accessed by the host and the
specified device.

See Also
openmp-stubs, Qopenmp-stubs compiler option
OpenMP* Run-time Library Routines 
OpenMP* Support Libraries 

OpenMP* Support Libraries
The Intel® oneAPI DPC++/C++ Compiler provides support libraries for OpenMP*. There are several kinds of
libraries:

• Performance: supports parallel OpenMP execution.
• Stubs: supports serial execution of OpenMP applications.

Each kind of library is available for both dynamic and static linking on Linux* operating systems. Only
dynamic linking is supported on Windows* operating systems.

Performance Libraries
To use these libraries, specify the /Qopenmp (Windows*) or -qopenmp (Linux*) option.

Options that use OpenMP are available for both Intel® and non-Intel microprocessors, but these options may
perform additional optimizations on Intel® microprocessors than they perform on non-Intel microprocessors.
The list of major, user-visible OpenMP constructs and features that may perform differently on Intel®
microprocessors than on non-Intel microprocessors includes: locks (internal and user visible), the SINGLE
construct, barriers (explicit and implicit), parallel loop scheduling, reductions, memory allocation, and thread
affinity and binding.

Operating System Dynamic Link Static Link

Linux libiomp5.so libiomp5.a

Windows libiomp5md.lib None

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

650



Operating System Dynamic Link Static Link

libiomp5md.dll

Many routines in the OpenMP support libraries are more optimized for Intel® microprocessors than for non-
Intel microprocessors.

Stubs Libraries
To use these libraries, specify /Qopenmp-stubs (Windows*) or -qopenmp-stubs (Linux*) option. These
allow you to compile OpenMP applications in serial mode and provide stubs for OpenMP routines and
extended Intel-specific routines.

Operating System Dynamic Link Static Link

Linux libiompstubs5.so libiompstubs5.a

Windows
libiompstubs5md.lib
libiompstubs5md.dll None

Execution Modes
The compiler enables you to run an application under different execution modes specified at run time; the
libraries support the turnaround, throughput, and serial modes. Use the KMP_LIBRARY environment variable
to select the modes at run time.

Mode Description

throughput (default)

The throughput mode allows the program to yield to other running programs
and adjust resource usage to produce efficient execution in a dynamic
environment.

In a multi-user environment where the load on the parallel machine is not
constant or where the job stream is not predictable, it may be better to design
and tune for throughput. This minimizes the total time to run multiple jobs
simultaneously. In this mode, the worker threads yield to other threads while
waiting for more parallel work.

After completing the execution of a parallel region, threads wait for new
parallel work to become available. After a certain period of time has elapsed,
they stop waiting and sleep. Until more parallel work becomes available,
sleeping allows processor and resources to be used for other work by non-
OpenMP threaded code that may execute between parallel regions, or by other
applications.

The amount of time to wait before sleeping is set either by the
KMP_BLOCKTIME environment variable or by the kmp_set_blocktime()
function. A small blocktime value may offer better overall performance if your
application contains non-OpenMP threaded code that executes between parallel
regions. A larger blocktime value may be more appropriate if threads are to be
reserved solely for use for OpenMP execution, but may penalize other
concurrently-running OpenMP or threaded applications.

turnaround

The turnaround mode is designed to keep active all processors involved in the
parallel computation, which minimizes execution time of a single job. In this
mode, the worker threads actively wait for more parallel work, without yielding
to other threads (although they are still subject to KMP_BLOCKTIME control). In

Optimization and Programming   

651



Mode Description

a dedicated (batch or single user) parallel environment where all processors
are exclusively allocated to the program for its entire run, it is most important
to effectively use all processors all of the time.

NOTE
Avoid over-allocating system resources. The condition can occur if either too many
threads have been specified, or if too few processors are available at run time. If
system resources are over-allocated, this mode will cause poor performance. The
throughput mode should be used instead if this occurs.

serial The serial mode forces parallel applications to run as a single thread.

See Also
qopenmp, Qopenmp compiler option
qopenmp-stubs, Qopenmp-stubs compiler option

Use the OpenMP Libraries
This section describes the steps needed to set up and use the OpenMP Libraries from the command line. On
Windows systems, you can also build applications compiled with the OpenMP libraries in the Microsoft Visual
Studio development environment.

For a list of the options and libraries used by the OpenMP libraries, see OpenMP Support Libraries.

Set Up Environment
Set up your environment for access to the compiler to ensure that the appropriate OpenMP library is
available during linking.

Linux

On Linux systems you can source the appropriate script file (setvars file).

Windows

On Windows systems you can either execute the appropriate batch (.bat) file or use the command-line
window supplied in the compiler program folder that already has the environment set up.

During compilation, ensure that the version of omp.h used when compiling is the version provided by that
compiler. For example, use the omp.h provided with GCC when you compile with GCC.

Caution
Be aware that when using the GCC or Microsoft Compiler, you may inadvertently use inappropriate
header or module files. To avoid this, copy the header or module file(s) to a separate directory and put
it in the appropriate include path using the -I option.

If a program uses data structures or classes that contain members with data types defined in the omp.h file,
then source files that use those data structures should all be compiled with the same omp.h file.

Linux Examples
This section shows several examples of using OpenMP with the Intel® oneAPI DPC++/C++ Compiler from the
command line on Linux.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

652



Compile and Link OpenMP Libraries

You can compile an application and link the Intel OpenMP libraries with a single command using the
-qopenmp option. For example:

icpx -qopenmp hello.cpp
By default, the Intel® oneAPI DPC++/C++ Compiler performs a dynamic link of the OpenMP libraries. To
perform a static link (not recommended), add the option -qopenmp-link=static. The option 
-qopenmp-link controls whether the linker uses static or dynamic OpenMP libraries on Linux systems
(default is -qopenmp-link=dynamic). See OpenMP Support Libraries for more information about dynamic
and static OpenMP libraries.

Link OpenMP Object Files Compiled with GCC or Intel® oneAPI DPC++/C++ Compiler

You can use the icx/icpx compilers with the gcc/g++ compilers to compile parts of an application and
create object files that can then be linked (object-level interoperability).

When using gcc or the g++ compiler to link the application with the Intel oneAPI DPC++/C++ Compiler
OpenMP compatibility library, you need to specify the following:

• The Intel OpenMP library name using the -l option
• The Linux pthread library using the -l option
• The path to the Intel libraries where the Intel oneAPI DPC++/C++ Compiler is installed using the -L

option

For example:

1. Compile foo.c and bar.c with gcc, using the -fopenmp option to enable OpenMP support:

gcc -fopenmp -c foo.c bar.c
The -c prevents linking at this step.

2. Use the gcc compiler to link the application object code with the Intel OpenMP library:

gcc foo.o bar.o -liomp5 -lpthread -L<install_dir>/lib
where <install_dir> is the location of the installed Intel OpenMP library.

Alternately, you can use the Intel oneAPI DPC++/C++ Compiler to link the application so that you don't need
to specify the gcc-l option, -L option, and the -lpthread options.

For example:

1. Compile foo.c with gcc, using the gcc -fopenmp option to enable OpenMP:

gcc -fopenmp -c foo.c
2. Compile bar.c with icx, using the -qopenmp option to enable OpenMP:

icx -qopenmp -c bar.c
3. Use the icx compiler to link the resulting application object code with the Intel OpenMP library:

icx -qopenmp foo.o bar.o
Link Mixed C/C++ and Fortran Object Files

You can mix C/C++ and Fortran object files and link the Intel OpenMP libraries using GNU, GCC, or Intel
oneAPI DPC++/C++ Compiler compilers.

This example shows mixed C and Fortran sources, linked using the Intel oneAPI DPC++/C++ Compiler.
Consider the mixed source files ibar.c, gbar.c, and foo.f, where the main program is contained in ibar.c:

1. Compile ibar.c using the icx compiler:

icx -qopenmp -c ibar.c

Optimization and Programming   

653



2. Compile gbar.c using the gcc compiler:

gcc -fopenmp -c gbar.c
3. Compile foo.f using the ifort compiler:

ifort -qopenmp -c foo.f
4. Use the icx compiler to link the resulting object files:

icx -qopenmp foo.o ibar.o gbar.o
If the main program were contained in the Fortran file foo.f, the linking step must be performed by the ifort
compiler.

NOTE
Do not mix objects created by the Intel Fortran Compiler Classic and Intel Fortran Compiler with the
GNU Fortran Compiler (gfortran); instead, recompile all Fortran sources with either ifort or ifx, or
recompile all Fortran sources with the GNU Fortran Compiler . The GNU Fortran Compiler is only
available on Linux operating systems.

When using the GNU gfortran Compiler to link the application with the Intel oneAPI DPC++/C++ Compiler
OpenMP compatibility library, you need to specify the following:

• The Intel® OpenMP compatibility library name and the Intel®irc libraries using the -l option
• The Linux pthread library using the -l option
• The path to the Intel® libraries where the Intel oneAPI DPC++/C++ Compiler is installed using the -L

option

You do not need to specify the -fopenmp option on the link line.

For example, consider the mixed source files ibar.c, gbar.c, and foo.f:

1. Compile ibar.c using the icx compiler:

icx -qopenmp -c ibar.c
2. Compile gbar.c using the GCC compiler:

gcc -fopenmp -c gbar.c
3. Compile foo.f using the gfortran compiler:

gfortran -fopenmp -c foo.f
4. Use the gfortran compiler to link the application object code with the Intel OpenMP library. You do not

need to specify the -fopenmp option in the link command:

gfortran foo.o ibar.o gbar.o -lirc -liomp5 -lpthread -lc -L<install_dir>/lib
where <install_dir> is the location of the installed Intel OpenMP library.

Alternately, you can use the Intel oneAPI DPC++/C++ Compiler. to link the application object code but need
to pass multiple gfortran libraries using the -l options at the link step.

This example shows mixed C and GNU Fortran sources linked using the icx compiler. Consider the mixed
source files ibar.c and foo.f:

1. Compile the C source with the icx compiler:

icx -qopenmp -c ibar.c
2. Compile the GNU Fortran source with gfortran:

gfortran -fopenmp -c foo.f

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

654



3. Use icx to link the resulting object files with the -l option to pass the needed gfortran libraries:

icx -qopenmp foo.o ibar.o -lgfortran

Windows Examples
This section shows several examples of using OpenMP with the Intel® C++ Compiler from the command line
on Windows.

Compile and Link OpenMP Libraries

You can compile an application and link the Compatibility libraries with a single command using
the /Qopenmp option. By default, the Intel oneAPI DPC++/C++ Compiler performs a dynamic link of the
OpenMP libraries.

For example, to compile source file hello.cpp and link Compatibility libraries using the Intel® C++
Compiler:

icx /MD /Qopenmp hello.cpp
When using the Microsoft Visual C++ Compiler, you should link with the Intel® OpenMP compatibility library.
You need to avoid linking the Microsoft OpenMP runtime library (vcomp) and explicitly pass the name of the
Intel® OpenMP compatibility library as linker options using the /link option. For example:

cl /MD /openmp hello.cpp /link /nodefaultlib:vcomp libiomp5md.lib
Mix OpenMP Object Files Compiled with Visual C++ Compiler or Intel oneAPI DPC++/C++
Compiler

You can use the Intel oneAPI DPC++/C++ Compiler with the Visual C++ Compiler to compile parts of an
application and create object files that can then be linked (object-level interoperability).

For example:

1. Compile f1.c and f2.c with the Visual C++ Compiler, using the /openmp option to enable OpenMP
support:

cl /MD /openmp /c f1.c f2.c
The /c prevents linking at this step.

2. Compile f3.c and f4.c with the icx compiler, using the /Qopenmp option to enable OpenMP support:

icx /MD /Qopenmp /c f3.c f4.c
3. Use the icx compiler to link the resulting application object code with the Intel C++ Compiler OpenMP

library:

icx /MD /Qopenmp f1.obj f2.obj f3.obj f4.obj /Feapp /link /nodefaultlib:vcomp
The /Fe specifies the generated executable file name.

Alternatively, use the Visual C++ linker to link the application object code with the Compatibility library
libiomp5md.lib:

link f1.obj f2.obj f3.obj f4.obj /out:app.exe /nodefaultlib:vcomp libiomp5md.lib

Use Intel OpenMP Libraries from Visual Studio
When running Windows, you can make certain changes in the Visual C++ Visual Studio development
environment to use the Intel oneAPI DPC++/C++ Compiler and Visual C++ to create applications that use
the Intel OpenMP libraries.

Set the project Property Pages to indicate the Intel OpenMP runtime library location:

1. Open the project's property pages in from the main menu: Project > Properties (or right-click the
Project name and select Properties) .

Optimization and Programming   

655



2. Select Configuration Properties > Linker > General > Additional Library Directories.
3. Enter the path to the Intel®-provided compiler libraries. For example, for an IA-32 architecture system

(C/C++ only), enter:

<Intel_compiler_installation_path>\windows\compiler\lib\ia32 win
Make the Intel OpenMP dynamic runtime library accessible at runtime; you must specify the corresponding
path:

1. Open the project's property pages in from the main menu: Project > Properties (or right-click the
Project name and select Properties).

2. Select Configuration Properties > Debugging > Environment.
3. Enter the path to the Intel®-provided compiler libraries. For example, for an IA-32 architecture system

(C/C++ only), enter:

PATH=%PATH%;<Intel_compiler_installation_path>\windows\redist\ia32 win\compiler
Add the Intel OpenMP runtime library name to the linker options and exclude the default Microsoft OpenMP
runtime library:

1. Open the project's property pages in from the main menu: Project > Properties (or right-click the
Project name and select Properties).

2. Select Configuration Properties > Linker > Command Line > Additional Options.
3. Enter the OpenMP library name and the Visual C++ linker

option, /nodefaultlib:vcomp libiomp5md.lib.

See Also
qopenmp, Qopenmp compiler option
Using IPO
OpenMP Support Libraries
qopenmp-link, Qopenmp-link compiler option

Thread Affinity Interface
The Intel® runtime library has the ability to bind OpenMP* threads to physical processing units. The interface
is controlled using the KMP_AFFINITY environment variable. Depending on the system (machine) topology,
application, and operating system, thread affinity can have a dramatic effect on the application speed.

Thread affinity restricts execution of certain threads (virtual execution units) to a subset of the physical
processing units in a multiprocessor computer. Depending upon the topology of the machine, thread affinity
can have a dramatic effect on the execution speed of a program.

Thread affinity is supported on Windows* systems and versions of Linux* systems that have kernel support
for thread affinity.

The Intel OpenMP runtime library has the ability to bind OpenMP threads to physical processing units. There
are three types of interfaces you can use to specify this binding, which are collectively referred to as the Intel
OpenMP Thread Affinity Interface:

• The high-level affinity interface uses an environment variable to determine the machine topology and
assigns OpenMP threads to the processors based upon their physical location in the machine. This
interface is controlled entirely by the KMP_AFFINITY environment variable.

• The mid-level affinity interface uses an environment variable to explicitly specifies which processors
(labeled with integer IDs) are bound to OpenMP threads. This interface provides compatibility with the
GCC* GOMP_AFFINITY environment variable, but you can also invoke it by using the KMP_AFFINITY
environment variable. The GOMP_AFFINITY environment variable is supported on Linux systems only, but
users on Windows or Linux systems can use the similar functionality provided by the KMP_AFFINITY
environment variable.

• The low-level affinity interface uses APIs to enable OpenMP threads to make calls into the OpenMP
runtime library to explicitly specify the set of processors on which they are to be run. This interface is
similar in nature to sched_setaffinity and related functions on Linux systems or to
SetThreadAffinityMask and related functions on Windows systems. In addition, you can specify certain

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

656



options of the KMP_AFFINITY environment variable to affect the behavior of the low-level API interface.
For example, you can set the affinity type KMP_AFFINITY to disabled, which disables the low-level affinity
interface, or you could use the KMP_AFFINITY or GOMP_AFFINITY environment variables to set the initial
affinity mask, and then retrieve the mask with the low-level API interface.

The following terms are used in this section:

• The total number of processing elements on the machine is referred to as the number of OS thread
contexts.

• Each processing element is referred to as an Operating System processor, or OS proc.
• Each OS processor has a unique integer identifier associated with it, called an OS proc ID.
• The term package refers to a single or multi-core processor chip.
• The term OpenMP Global Thread ID (GTID) refers to an integer which uniquely identifies all threads

known to the Intel OpenMP runtime library. The thread that first initializes the library is given GTID 0. In
the normal case where all other threads are created by the library and when there is no nested
parallelism, then n-threads-var - 1 new threads are created with GTIDs ranging from 1 to ntheads-var - 1,
and each thread's GTID is equal to the OpenMP thread number returned by function
omp_get_thread_num(). The high-level and mid-level interfaces rely heavily on this concept. Hence, their
usefulness is limited in programs containing nested parallelism. The low-level interface does not make use
of the concept of a GTID and can be used by programs containing arbitrarily many levels of parallelism.

Some environment variables are available for both Intel® microprocessors and non-Intel microprocessors, but
may perform additional optimizations for Intel® microprocessors than for non-Intel microprocessors.

The KMP_AFFINITY Environment Variable

NOTE
You must set the KMP_AFFINITY environment variable before the first parallel region, or certain API
calls including omp_get_max_threads(), omp_get_num_procs() and any affinity API calls, as
described in Low Level Affinity API, below.

The KMP_AFFINITY environment variable uses the following general syntax:

Syntax

KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

For example, to list a machine topology map, specify KMP_AFFINITY=verbose,none to use a modifier of
verbose and a type of none.

The following table describes the supported specific arguments.

Argument Default Description

modifier noverbose
respect
granularity=core

Optional. String consisting of
keyword and specifier.

• granularity=<specifier>
takes the following specifiers:
fine, thread, core, tile, die,
node, group, and socket

• norespect
• noverbose
• nowarnings
• noreset
• proclist={<proc-list>}
• respect

Optimization and Programming   

657



Argument Default Description

• verbose
• warnings
• reset
The syntax for <proc-list> is
explained in mid-level affinity
interface.

NOTE On Windows with
multiple processor groups, the
norespect affinity modifier is
assumed when the process
affinity mask equals a single
processor group (which is
default on Windows).
Otherwise, the respect affinity
modifier is used.

type none Required string. Indicates the
thread affinity to use.

• balanced
• compact
• disabled
• explicit
• none
• scatter
• logical (deprecated; instead

use compact, but omit any
permute value)

• physical (deprecated;
instead use scatter,
possibly with an offset
value)

The logical and physical
types are deprecated but
supported for backward
compatibility.

permute 0 Optional. Positive integer value.
Not valid with type values of
explicit, none, or disabled.

offset 0 Optional. Positive integer value.
Not valid with type values of
explicit, none, or disabled.

Affinity Types
Type is the only required argument.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

658



type = none (default)

Does not bind OpenMP threads to particular thread contexts; however, if the operating system supports
affinity, the compiler still uses the OpenMP thread affinity interface to determine machine topology. Specify
KMP_AFFINITY=verbose,none to list a machine topology map.

type = balanced

Places threads on separate cores until all cores have at least one thread, similar to the scatter type.
However, when the runtime must use multiple hardware thread contexts on the same core, the balanced
type ensures that the OpenMP thread numbers are close to each other, which scatter does not do. This
affinity type is supported on the CPU only for single socket systems.

NOTE
The OpenMP* environment variable OMP_PROC_BIND=spread is similar to KMP_AFFINITY=balanced
and is available on all platforms, including multi-socket CPU systems.

type = compact

Specifying compact assigns the OpenMP thread <n>+1 to a free thread context as close as possible to the
thread context where the <n> OpenMP thread was placed. For example, in a topology map, the nearer a
node is to the root, the more significance the node has when sorting the threads.

type = disabled

Specifying disabled completely disables the thread affinity interfaces. This forces the OpenMP run-time
library to behave as if the affinity interface was not supported by the operating system. This includes the
low-level API interfaces such as kmp_set_affinity and kmp_get_affinity, which have no effect and will
return a nonzero error code.

type = explicit

Specifying explicit assigns OpenMP threads to a list of OS proc IDs that have been explicitly specified by
using the proclist= modifier, which is required for this affinity type. See Explicitly Specifying OS Proc IDs
(GOMP_CPU_AFFINITY).

type = scatter

Specifying scatter distributes the threads as evenly as possible across the entire system. scatter is the
opposite of compact; so the leaves of the node are most significant when sorting through the machine
topology map.

Deprecated Types: logical and physical

Types logical and physical are deprecated and may become unsupported in a future release. Both are
supported for backward compatibility.

For logical and physical affinity types, a single trailing integer is interpreted as an offset specifier
instead of a permute specifier. In contrast, with compact and scatter types, a single trailing integer is
interpreted as a permute specifier.

• Specifying logical assigns OpenMP threads to consecutive logical processors, which are also called
hardware thread contexts. The type is equivalent to compact, except that the permute specifier is not
allowed. Thus, KMP_AFFINITY=logical,n is equivalent to KMP_AFFINITY=compact,0,n (this
equivalence is true regardless of the whether or not a granularity=fine modifier is present).

• Specifying physical assigns threads to consecutive physical processors (cores). For systems where there
is only a single thread context per core, the type is equivalent to logical. For systems where multiple
thread contexts exist per core, physical is equivalent to compact with a permute specifier of 1; that is,
KMP_AFFINITY=physical,n is equivalent to KMP_AFFINITY=compact,1,n (regardless of the whether or

Optimization and Programming   

659



not a granularity=fine modifier is present). This equivalence means that when the compiler sorts the
map it should permute the innermost level of the machine topology map to the outermost, presumably
the thread context level. This type does not support the permute specifier.

Examples of Types compact and scatter
The following figure illustrates the topology for a machine with two processors, and each processor has two
cores; further, each core has Intel® Hyper-Threading Technology (Intel® HT Technology) enabled.

The following figure also illustrates the binding of OpenMP thread to hardware thread contexts when
specifying KMP_AFFINITY=granularity=fine,compact.

Specifying scatter on the same system as shown in the figure above, the OpenMP threads would be
assigned the thread contexts as shown in the following figure, which shows the result of specifying
KMP_AFFINITY=granularity=fine,scatter.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

660



permute and offset combinations
For both compact and scatter, permute and offset are allowed; however, if you specify only one integer,
the compiler interprets the value as a permute specifier. Both permute and offset default to 0.

The permute specifier controls which levels are most significant when sorting the machine topology map. A
value for permute forces the mappings to make the specified number of most significant levels of the sort the
least significant, and it inverts the order of significance. The root node of the tree is not considered a
separate level for the sort operations.

The offset specifier indicates the starting position for thread assignment.

The following figure illustrates the result of specifying KMP_AFFINITY=granularity=fine,compact,0,5.

Consider the hardware configuration from the previous example, running an OpenMP application which
exhibits data sharing between consecutive iterations of loops. We would therefore like consecutive threads to
be bound close together, as is done with KMP_AFFINITY=compact, so that communication overhead, cache
line invalidation overhead, and page thrashing are minimized. Now, suppose the application also had a
number of parallel regions which did not utilize all of the available OpenMP threads. It is desirable to avoid
binding multiple threads to the same core and leaving other cores not utilized, since a thread normally
executes faster on a core where it is not competing for resources with another active thread on the same
core. Since a thread normally executes faster on a core where it is not competing for resources with another
active thread on the same core, you might want to avoid binding multiple threads to the same core while
leaving other cores unused. The following figure illustrates this strategy of using
KMP_AFFINITY=granularity=fine,compact,1,0 as a setting.

Optimization and Programming   

661



The OpenMP thread n+1 is bound to a thread context as close as possible to OpenMP thread n, but on a
different core. Once each core has been assigned one OpenMP thread, the subsequent OpenMP threads are
assigned to the available cores in the same order, but they are assigned on different thread contexts.

Modifier Values for Affinity Types
Modifiers are optional arguments that precede type. If you do not specify a modifier, the noverbose,
respect, and granularity=core modifiers are used automatically.

Modifiers are interpreted in order from left to right, and they may conflict. Following conflicting modifier is
ignored. For example, specifying KMP_AFFINITY=verbose,noverbose,scatter is therefore equivalent to
setting KMP_AFFINITY=verbose,scatter.

modifier = noverbose (default)

Does not print verbose messages.

modifier = verbose

Prints messages concerning the supported affinity. The messages include information about the number of
packages, number of cores in each package, number of thread contexts for each core, and OpenMP thread
bindings to physical thread contexts.

Information about binding OpenMP threads to physical thread contexts is indirectly shown in the form of the
mappings between hardware thread contexts and the operating system (OS) processor (proc) IDs. The
affinity mask for each OpenMP thread is printed as a set of OS processor IDs.

For example, specifying KMP_AFFINITY=verbose,scatter on a dual core system with two processors, with
Intel® Hyper-Threading Technology (Intel® HT Technology) disabled, results in a message listing similar to the
following when then program is executed:

Verbose, scatter message

... 
KMP_AFFINITY: Initial OS proc set respected: 0,1,2,3
KMP_AFFINITY: affinity capable, using hwloc.
KMP_AFFINITY: 4 available OS procs
KMP_AFFINITY: Uniform topology 
KMP_AFFINITY: 2 sockets x 2 cores/socket x 1 threads/core (4 total cores) 

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

662



Verbose, scatter message

KMP_AFFINITY: OS proc to physical thread map: 
KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0 
KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0 
KMP_AFFINITY: OS proc 1 maps to socket 3 core 0 thread 0 
KMP_AFFINITY: OS proc 3 maps to socket 3 core 1 thread 0 
KMP_AFFINITY: pid 79739 tid 79739 thread 0 bound to OS proc set 0 
KMP_AFFINITY: pid 79739 tid 79740 thread 2 bound to OS proc set 2 
KMP_AFFINITY: pid 79739 tid 79741 thread 3 bound to OS proc set 3 
KMP_AFFINITY: pid 79739 tid 79742 thread 1 bound to OS proc set 1

The verbose modifier generates several standard, general messages. The following table summarizes how to
read the messages.

Message String Description

"affinity capable" Indicates that all components (compiler, operating system, and hardware)
support affinity, so thread binding is possible.

"decoding x2APIC ids" Indicates that the machine topology was discovered by binding a thread to
each operating system processor and decoding the output of the cpuid
instruction.

"using hwloc" Indicates that the Portable Hardware Locality* (hwloc) library used to
determine machine topology.

"using /proc/cpuinfo" Linux only. Indicates that cpuinfo is being used to determine machine
topology.

"using flat" Operating system processor ID is assumed to be equivalent to physical
package ID. This method of determining machine topology is used if none of
the other methods will work, but may not accurately detect the actual
machine topology.

"uniform topology" The machine topology map is a full tree with no missing leaves at any level.

The mapping from the operating system processors to thread context ID is printed next. The binding of
OpenMP thread context ID is printed next unless the affinity type is none. For more information, see 
Determining Machine Topology.

modifier = granularity

Binding OpenMP threads to particular packages and cores will often result in a performance gain on systems
with Intel processors with Intel® Hyper-Threading Technology (Intel® HT Technology) enabled; however, it is
usually not beneficial to bind each OpenMP thread to a particular thread context on a specific core.
Granularity describes the lowest levels that OpenMP threads are allowed to float within a topology map.

This modifier supports the following additional specifiers.

Specifier Description

core Default. Allows all the OpenMP threads bound to a core to float
between the different thread contexts.

fine or thread The finest granularity level. Causes each OpenMP thread to be bound
to a single thread context. The two specifiers are functionally
equivalent.

Optimization and Programming   

663



Specifier Description

tile, or die, or node, or group,
or socket

Allows all the OpenMP threads bound to a tile, or die, or NUMA node,
or group, or socket to float between the different thread contexts of
cores the tile, or die, or NUMA node, or group, or socket consists of.

Specifying KMP_AFFINITY=verbose,granularity=core,compact on the same dual core system with two
processors as in the previous section, but with Intel® Hyper-Threading Technology (Intel® HT Technology)
enabled, results in a message listing similar to the following when the program is executed:

Verbose, granularity=core,compact message

KMP_AFFINITY: Initial OS proc set respected: 0-7
KMP_AFFINITY: decoding x2APIC ids.
KMP_AFFINITY: 8 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockects x 2 cores/socket x 2 threads/core (4 total cores) 
KMP_AFFINITY: OS proc to physical thread map: 
KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0 
KMP_AFFINITY: OS proc 4 maps to socket 0 core 0 thread 1 
KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0 
KMP_AFFINITY: OS proc 6 maps to socket 0 core 1 thread 1 
KMP_AFFINITY: OS proc 1 maps to socket 3 core 0 thread 0 
KMP_AFFINITY: OS proc 5 maps to socket 3 core 0 thread 1 
KMP_AFFINITY: OS proc 3 maps to socket 3 core 1 thread 0 
KMP_AFFINITY: OS proc 7 maps to socket 3 core 1 thread 1 
KMP_AFFINITY: pid 40880 tid 40880 thread 0 bound to OS proc set 0,4 
KMP_AFFINITY: pid 40880 tid 40881 thread 1 bound to OS proc set 0,4 
KMP_AFFINITY: pid 40880 tid 40882 thread 2 bound to OS proc set 2,6 
KMP_AFFINITY: pid 40880 tid 40883 thread 3 bound to OS proc set 2,6 
KMP_AFFINITY: pid 40880 tid 40884 thread 4 bound to OS proc set 1,5 
KMP_AFFINITY: pid 40880 tid 40885 thread 5 bound to OS proc set 1,5 
KMP_AFFINITY: pid 40880 tid 40886 thread 6 bound to OS proc set 3,7 
KMP_AFFINITY: pid 40880 tid 40887 thread 7 bound to OS proc set 3,7

The affinity mask for each OpenMP thread is shown in the listing (above) as the set of operating system
processor to which the OpenMP thread is bound.

The following figure illustrates the machine topology map, for the above listing, with OpenMP thread
bindings.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

664



In contrast, specifying KMP_AFFINITY=verbose,granularity=fine,compact or
KMP_AFFINITY=verbose,granularity=thread,compact binds each OpenMP thread to a single hardware
thread context when the program is executed:

Verbose, granularity=fine,compact message

KMP_AFFINITY: Initial OS proc set respected: 0-7
KMP_AFFINITY: decoding x2APIC ids.
KMP_AFFINITY: 8 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockets x 2 cores/socket x 2 threads/core (4 total cores) 
KMP_AFFINITY: OS proc to physical thread map: 
KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0 
KMP_AFFINITY: OS proc 4 maps to socket 0 core 0 thread 1 
KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0 
KMP_AFFINITY: OS proc 6 maps to socket 0 core 1 thread 1 
KMP_AFFINITY: OS proc 1 maps to socket 3 core 0 thread 0 
KMP_AFFINITY: OS proc 5 maps to socket 3 core 0 thread 1 
KMP_AFFINITY: OS proc 3 maps to socket 3 core 1 thread 0 
KMP_AFFINITY: OS proc 7 maps to socket 3 core 1 thread 1 
KMP_AFFINITY: pid 40895 tid 40895 thread 0 bound to OS proc set 0 
KMP_AFFINITY: pid 40895 tid 40896 thread 1 bound to OS proc set 4 
KMP_AFFINITY: pid 40895 tid 40897 thread 2 bound to OS proc set 2 
KMP_AFFINITY: pid 40895 tid 40898 thread 3 bound to OS proc set 6 
KMP_AFFINITY: pid 40895 tid 40899 thread 4 bound to OS proc set 1 
KMP_AFFINITY: pid 40895 tid 40900 thread 5 bound to OS proc set 5 
KMP_AFFINITY: pid 40895 tid 40901 thread 6 bound to OS proc set 3 
KMP_AFFINITY: pid 40895 tid 40902 thread 7 bound to OS proc set 7

The OpenMP to hardware context binding for this example was illustrated in the first example.

Specifying granularity=fine will always cause each OpenMP thread to be bound to a single OS processor.
This is equivalent to granularity=thread, currently the finest granularity level.

modifier = respect (default)

Respect the process' original affinity mask, or more specifically, the affinity mask in place for the thread that
initializes the OpenMP run-time library. The behavior differs between Linux and Windows:

Optimization and Programming   

665



• On Windows: Respect original affinity mask for the process.
• On Linux: Respect the affinity mask for the thread that initializes the OpenMP run-time library.

NOTE On Windows with multiple processor groups, the norespect affinity modifier is the default
when the process affinity mask equals a single processor group (which is default on Windows).
Otherwise, the respect affinity modifier is the default.

Specifying KMP_AFFINITY=verbose,compact for the same system used in the previous example, with Intel®
Hyper-Threading Technology (Intel® HT Technology) enabled, and invoking the library with an initial affinity
mask of {4,5,6,7} (thread context 1 on every core) causes the compiler to model the machine as a dual
core, two-processor system with Intel® HT Technology disabled.

Verbose,compact message

KMP_AFFINITY: Initial OS proc set respected: 4-7
KMP_AFFINITY: decoding x2APIC ids.
KMP_AFFINITY: 4 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockets x 2 cores/socket x 1 threads/core (4 total cores) 
KMP_AFFINITY: OS proc to physical thread map: 
KMP_AFFINITY: OS proc 4 maps to socket 0 core 0 thread 1 
KMP_AFFINITY: OS proc 6 maps to socket 0 core 1 thread 1 
KMP_AFFINITY: OS proc 5 maps to socket 3 core 0 thread 1 
KMP_AFFINITY: OS proc 7 maps to socket 3 core 1 thread 1 
KMP_AFFINITY: pid 41032 tid 41032 thread 0 bound to OS proc set 4 
KMP_AFFINITY: pid 41032 tid 41033 thread 1 bound to OS proc set 6 
KMP_AFFINITY: pid 41032 tid 41034 thread 2 bound to OS proc set 5 
KMP_AFFINITY: pid 41032 tid 41035 thread 3 bound to OS proc set 7 

Because there are four thread contexts accessible on the machine, by default the compiler created four
threads for an OpenMP parallel construct.

The following figure illustrates the corresponding machine topology map and threads placement in case eight
OpenMP threads requested via OMP_NUM_THREADS=8

When using the local cpuid information to determine the machine topology, it is not always possible to
distinguish between a machine that does not support Intel® Hyper-Threading Technology (Intel® HT
Technology) and a machine that supports it, but has it disabled. Therefore, the compiler does not include a

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

666



level in the map if the elements (nodes) at that level had no siblings, with the exception that the package
level is always modeled. As mentioned earlier, the package level will always appear in the topology map,
even if there only a single package in the machine.

modifier = norespect

Do not respect original affinity mask for the process. Binds OpenMP threads to all operating system
processors.

In early versions of the OpenMP run-time library that supported only the physical and logical affinity
types, norespect was the default and was not recognized as a modifier.

The default was changed to respect when types compact and scatter were added; therefore, thread
bindings may have changed with the newer compilers in situations where the application specified a partial
initial thread affinity mask.

modifier = nowarnings

Do not print warning messages from the affinity interface.

modifier = warnings (default)

Print warning messages from the affinity interface (default).

modifier = noreset (default)

Do not reset the primary thread's affinity after each outermost parallel region is complete. This setting
preserves the primary thread's OpenMP affinity setting between parallel regions. For example, if
KMP_AFFINITY=compact,granularity=core, then the primary thread's affinity is set to the first core for
the first parallel region and kept that way for the thread's lifetime, even during serial regions.

modifier = reset

Reset the primary thread's affinity after each outermost parallel region is complete. This setting will reset the
primary thread's affinity back to the initial affinity before OpenMP was initialized after each outermost parallel
region is complete.

Determining Machine Topology
On IA-32 and Intel® 64 architecture systems, if the package has an APIC (Advanced Programmable Interrupt
Controller), the compiler will use the cpuid instruction to obtain the package id, core id, and thread
context id. Under normal conditions, each thread context on the system is assigned a unique APIC ID at
boot time. The compiler obtains other pieces of information obtained by using the cpuid instruction, which
together with the number of OS thread contexts (total number of processing elements on the machine),
determine how to break the APIC ID down into the package ID, core ID, and thread context ID.

There are several ways to specify the APIC ID in the cpuid instruction - the legacy method in leaf 4, and the
more modern method in leaf 11 and leaf 31. Only 256 unique APIC IDs are available in leaf 4. Leaf 11 and
leaf 31 have no such limitation.

Normally, all core ids on a package and all thread context ids on a core are contiguous; however,
numbering assignment gaps are common for package ids, as shown in the figure above.

If the compiler cannot determine the machine topology using any other method, but the operating system
supports affinity, a warning message is printed, and the topology is assumed to be flat. For example, a flat
topology assumes the operating system process N maps to package N, and there exists only one thread
context per core and only one core for each package.

If the machine topology cannot be accurately determined as described above, the user can manually copy /
proc/cpuinfo to a temporary file, correct any errors, and specify the machine topology to the OpenMP
runtime library via the environment variable KMP_CPUINFO_FILE=<temp_filename>, as described in the
section KMP_CPUINFO_FILE and /proc/cpuinfo.

Optimization and Programming   

667



Regardless of the method used in determining the machine topology, if there is only one thread context per
core for every core on the machine, the thread context level will not appear in the topology map. If there is
only one core per package for every package in the machine, the core level will not appear in the machine
topology map. The topology map need not be a full tree, because different packages may contain a different
number of cores, and different cores may support a different number of thread contexts.

The package level will always appear in the topology map, even if there only a single package in the
machine.

KMP_CPUINFO_FILE and /proc/cpuinfo
One of the methods the Intel® oneAPI DPC++/C++ Compiler OpenMP runtime library can use to detect the
machine topology on Linux systems is to parse the contents of /proc/cpuinfo. If the contents of this file
(or a device mapped into the Linux file system) are insufficient or erroneous, you can consider copying its
contents to a writable temporary file <temp_file>, correct it or extend it with the necessary information,
and set KMP_CPUINFO_FILE=<temp_file>.

If you do this, the OpenMP runtime library will read the <temp_file> location pointed to by
KMP_CPUINFO_FILE instead of the information contained in /proc/cpuinfo or attempting to detect the
machine topology by decoding the APIC IDs. That is, the information contained in the <temp_file> overrides
these other methods. You can use the KMP_CPUINFO_FILE interface on Windows systems, where /proc/
cpuinfo does not exist.

The content of /proc/cpuinfo or <temp_file> should contain a list of entries for each processing element
on the machine. Each processor element contains a list of entries (descriptive name and value on each line).
A blank line separates the entries for each processor element. Only the following fields are used to determine
the machine topology from each entry, either in <temp_file> or /proc/cpuinfo:

Field Description

processor : Specifies the OS ID for the processing element. The
OS ID must be unique. The processor and
physical id fields are the only ones that are
required to use the interface.

physical id : Specifies the package ID, which is a physical chip
ID. Each package may contain multiple cores. The
package level always exists in the compiler's
OpenMP run-time library model of the machine
topology.

core id : Specifies the core ID. If it does not exist, it defaults
to 0. If every package on the machine contains only
a single core, the core level will not exist in the
machine topology map (even if some of the core ID
fields are non-zero).

apicid : Specifies the thread ID. If it does not exist, it
defaults to 0. If every core on the machine contains
only a single thread, the thread level will not exist
in the machine topology map (even if some thread
ID fields are non-zero).

node_n id : This is a extension to the normal contents of /
proc/cpuinfo that can be used to specify the
nodes at different levels of the memory
interconnect on Non-Uniform Memory Access

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

668



Field Description

(NUMA) systems. Arbitrarily many levels n are
supported. The node_0 level is closest to the
package level; multiple packages comprise a node
at level 0. Multiple nodes at level 0 comprise a node
at level 1, and so on.

Each entry must be spelled exactly as shown, in lowercase, followed by optional whitespace, a colon (:),
more optional whitespace, then the integer ID. Fields other than those listed are simply ignored.

NOTE
It is common for the thread id field to be missing from /proc/cpuinfo on many Linux variants, and
for a field labeled siblings to specify the number of threads per node or number of nodes per
package. However, the Intel OpenMP runtime library ignores fields labeled siblings so it can
distinguish between the thread id and siblings fields. When this situation arises, the warning
message Physical node/pkg/core/thread ids not unique appears (unless the type
specified is nowarnings).

Windows Processor Groups
On a 64-bit Windows operating system, it is possible for multiple processor groups to accommodate more
than 64 processors. Each group is limited in size, up to a maximum value of sixty-four (64) processors.

If multiple processor groups are detected, the default is to model the machine as a 2-level tree, where level
0 are for the processors in a group, and level 1 are for the different groups. Threads are assigned to a group
until there are as many OpenMP threads bound to the groups as there are processors in the group.
Subsequent threads are assigned to the next group, and so on.

By default, threads are allowed to float among all processors in a group, that is to say, granularity equals the
group [granularity=group]. You can override this binding and explicitly use another affinity type like compact,
scatter, and so on. If you do so, the granularity must be sufficiently fine to prevent a thread from being
bound to multiple processors in different groups.

Using a Specific Machine Topology Modeling Method (KMP_TOPOLOGY_METHOD)
You can set the KMP_TOPOLOGY_METHOD environment variable to force OpenMP to use a particular machine
topology modeling method.

Value Description

cpuid_leaf11 Decodes the APIC identifiers as specified by leaf 11
of the cpuid instruction.

cpuid_leaf4 Decodes the APIC identifiers as specified in leaf 4 of
the cpuid instruction.

cpuinfo If KMP_CPUINFO_FILE is not specified, forces
OpenMP to parse /proc/cpuinfo to determine the
topology (Linux only).

If KMP_CPUINFO_FILE is specified as described
above, uses it (Windows or Linux).

Optimization and Programming   

669



Value Description

group Models the machine as a 2-level map, with level 0
specifying the different processors in a group, and
level 1 specifying the different groups (Windows
64-bit only) .

flat Models the machine as a flat (linear) list of
processors.

hwloc Models the machine as the Portable Hardware
Locality* (hwloc) library does. This model is the
most detailed and includes, but is not limited to:
numa nodes, packages, cores, hardware threads,
caches, and Windows processor groups.

Explicitly Specifying OS Processor IDs (GOMP_CPU_AFFINITY)

NOTE
You must set the GOMP_CPU_AFFINITY environment variable before the first parallel region, or certain
API calls including omp_get_max_threads(), omp_get_num_procs() and any affinity API calls, as
described in Low Level Affinity API, below.

Instead of allowing the library to detect the hardware topology and automatically assign OpenMP threads to
processing elements, the user may explicitly specify the assignment by using a list of operating system (OS)
processor (proc) IDs. However, this requires knowledge of which processing elements the OS proc IDs
represent.

On Linux systems, when using the Intel OpenMP compatibility libraries enabled by the compiler option
-qopenmp-lib compat, you can use the GOMP_AFFINITY environment variable to specify a list of OS
processor IDs. Its syntax is identical to that accepted by libgomp (assume that <proc_list> produces the
entire GOMP_AFFINITY environment string):

Value Description

<proc_list> := <entry> | <elem> , <list> | <elem>
<whitespace> <list>

<elem> := <proc_spec> | <range>

<proc_spec> := <proc_id>

<range> := <proc_id> - <proc_id> | <proc_id> - <proc_id> :
<int>

<proc_id> := <positive_int>

OS processors specified in this list are then assigned to OpenMP threads, in order of OpenMP Global Thread
IDs. If more OpenMP threads are created than there are elements in the list, then the assignment occurs
modulo the size of the list. That is, OpenMP Global Thread ID n is bound to list element n mod <list_size>.

Consider the machine previously mentioned: a dual core, dual-package machine without Intel® Hyper-
Threading Technology (Intel® HT Technology) enabled, where the OS proc IDs are assigned in the same
manner as the example in a previous figure. Suppose that the application creates six OpenMP threads

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

670



instead of 4 (the default), oversubscribing the machine. If GOMP_AFFINITY=3,0-2, then OpenMP threads
are bound as shown in the figure below, just as should happen when compiling with gcc and linking with
libgomp:

The same syntax can be used to specify the OS proc ID list in the proclist=[<proc_list>] modifier in the
KMP_AFFINITY environment variable string. There is a slight difference: in order to have strictly the same
semantics as in the gcc OpenMP runtime library libgomp: the GOMP_AFFINITY environment variable implies
granularity=fine. If you specify the OS proc list in the KMP_AFFINITY environment variable without a
granularity= specifier, then the default granularity is not changed. That is, OpenMP threads are allowed
to float between the different thread contexts on a single core. Thus GOMP_AFFINITY=<proc_list> is an
alias for KMP_AFFINITY="granularity=fine,proclist=[<proc_list>],explicit".

In the KMP_AFFINITY environment variable string, the syntax is extended to handle operating system
processor ID sets. The user may specify a set of operating system processor IDs among which an OpenMP
thread may execute ("float") enclosed in brackets:

Value Description

<proc_list> := <proc_id> | { <float_list> }

<float_list> := <proc_id> | <proc_id> , <float_list>

This allows functionality similarity to the granularity= specifier, but it is more flexible. The OS
processors on which an OpenMP thread executes may exclude other OS processors nearby in the machine
topology, but include other distant OS processors. Building upon the previous example, we may allow
OpenMP threads 2 and 3 to "float" between OS processor 1 and OS processor 2 by using
KMP_AFFINITY="granularity=verbose,fine,proclist=[3,0,{1,2},{1,2}],explicit", as shown in
the figure below:

Optimization and Programming   

671



If verbose were also specified, the output when the application is executed would include:

KMP_AFFINITY="granularity=verbose,fine,proclist=[3,0,{1,2},{1,2}],explicit"

KMP_AFFINITY: Initial OS proc set respected: 0,1,2,3 
KMP_AFFINITY: decoding x2APIC ids.
KMP_AFFINITY: 4 available OS procs
KMP_AFFINITY: Uniform topology
KMP_AFFINITY: 2 sockets x 2 cores/socket x 1 threads/core (4 total cores) 
KMP_AFFINITY: OS proc to physical thread map: 
KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0 
KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0 
KMP_AFFINITY: OS proc 1 maps to socket 3 core 0 thread 0 
KMP_AFFINITY: OS proc 3 maps to socket 3 core 1 thread 0 
KMP_AFFINITY: pid 41464 tid 41464 thread 0 bound to OS proc set 3 
KMP_AFFINITY: pid 41464 tid 41465 thread 1 bound to OS proc set 0 
KMP_AFFINITY: pid 41464 tid 41466 thread 2 bound to OS proc set 1,2 
KMP_AFFINITY: pid 41464 tid 41467 thread 3 bound to OS proc set 1,2 
KMP_AFFINITY: pid 41464 tid 41468 thread 4 bound to OS proc set 3 
KMP_AFFINITY: pid 41464 tid 41469 thread 5 bound to OS proc set 0

Low Level Affinity API
Instead of relying on the user to specify the OpenMP thread to OS proc binding by setting an environment
variable before program execution starts (or by using the kmp_settings interface before the first parallel
region is reached), each OpenMP thread can determine the desired set of OS procs on which it is to execute
and bind to them with the kmp_set_affinity API call.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

672



Caution
When you use this affinity interface you take complete control of the hardware resources on which
your threads run. To do that sensibly you need to understand in detail how the logical CPUs, the
enumeration of hardware threads controlled by the OS, map to the physical hardware of the specific
machine on which you are running. That mapping can be, and likely is, different on different machines,
so you risk binding machine-specific information into your code, which can result in explicitly forcing
bad affinities when your code runs on a different machine. And if you are concerned with optimization
at this level of detail, your code is probably valuable, and therefore will probably move to another
machine.

This interface may also allow you to ignore the resource limitations that were set by the program
startup mechanism, such as Message Passing Interface (MPI), specifically to prevent multiple OpenMP
processes on the same node from using the same hardware threads. Again, this can result in explicitly
forcing affinities that cause bad performance, and the OpenMP runtime will neither prevent this from
happening, nor warn you when it does. These are expert interfaces and you must use them with
caution.

It is recommended, therefore, to use the higher level affinity settings if you possibly can, because they
are more portable and do not require this low level knowledge.

The C/C++ API interfaces follow, where the type name kmp_affinity_mask_t is defined in omp.h:

Syntax Description

int kmp_set_affinity (kmp_affinity_mask_t
*mask)

Sets the affinity mask for the current OpenMP
thread to *mask, where *mask is a set of OS proc
IDs that has been created using the API calls listed
below, and the thread will only execute on OS procs
in the set. Returns either a zero (0) upon success
or a nonzero error code.

int kmp_get_affinity (kmp_affinity_mask_t
*mask)

Retrieves the affinity mask for the current OpenMP
thread, and stores it in *mask, which must have
previously been initialized with a call to
kmp_create_affinity_mask(). Returns either a
zero (0) upon success or a nonzero error code.

int kmp_get_affinity_max_proc (void) Returns the maximum OS proc ID that is on the
machine, plus 1. All OS proc IDs are guaranteed to
be between 0 (inclusive) and
kmp_get_affinity_max_proc() (exclusive).

void kmp_create_affinity_mask
(kmp_affinity_mask_t *mask)

Allocates a new OpenMP thread affinity mask, and
initializes *mask to the empty set of OS procs. The
implementation is free to use an object of
kmp_affinity_mask_t either as the set itself, a
pointer to the actual set, or an index into a table
describing the set. Do not make any assumption as
to what the actual representation is.

void kmp_destroy_affinity_mask
(kmp_affinity_mask_t *mask)

Deallocates the OpenMP thread affinity mask. For
each call to kmp_create_affinity_mask(), there
should be a corresponding call to
kmp_destroy_affinity_mask().

Optimization and Programming   

673



Syntax Description

int kmp_set_affinity_mask_proc (int proc,
kmp_affinity_mask_t *mask)

Adds the OS proc ID proc to the set *mask, if it is
not already. Returns either a zero (0) upon success
or a nonzero error code.

int kmp_unset_affinity_mask_proc (int
proc, kmp_affinity_mask_t *mask)

If the OS proc ID proc is in the set *mask, it
removes it. Returns either a zero (0) upon success
or a nonzero error code.

int kmp_get_affinity_mask_proc (int proc,
kmp_affinity_mask_t *mask)

Returns 1 if the OS proc ID proc is in the set
*mask; if not, it returns 0.

Once an OpenMP thread has set its own affinity mask via a successful call to kmp_set_affinity(), then
that thread remains bound to the corresponding OS proc set until at least the end of the parallel region,
unless reset via a subsequent call to kmp_set_affinity().

Between parallel regions, the affinity mask (and the corresponding OpenMP thread to OS proc bindings) can
be considered thread private data objects, and have the same persistence as described in the OpenMP
Application Program Interface. For more information, see the OpenMP API specification (http://
www.openmp.org), some relevant parts of which are provided below:

In order for the affinity mask and thread binding to persist between two consecutive active parallel regions,
all three of the following conditions must hold:

• Neither parallel region is nested inside another explicit parallel region.
• The number of threads used to execute both parallel regions is the same.
• The value of the dyn-var internal control variable in the enclosing task region is false at entry to both

parallel regions."

Therefore, by creating a parallel region at the start of the program whose sole purpose is to set the affinity
mask for each thread, you can mimic the behavior of the KMP_AFFINITY environment variable with low-level
affinity API calls, if program execution obeys the three aforementioned rules from the OpenMP specification.

The following example shows how these low-level interfaces can be used. This code binds the executing
thread to the specified logical CPU:

Example

// Force the executing thread to execute on logical CPU i
// Returns 1 on success, 0 on failure.
int forceAffinity(int i)
{
kmp_affinity_mask_t mask;

kmp_create_affinity_mask(&mask); 
kmp_set_affinity_mask_proc(i, &mask); 
    
return (kmp_set_affinity(&mask) == 0); 
}

This program fragment was written with knowledge about the mapping of the OS proc IDs to the physical
processing elements of the target machine. On another machine, or on the same machine with a different OS
installed, the program would still run, but the OpenMP thread to physical processing element bindings could
differ and you might be explicitly force a bad distribution.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

674



OpenMP* Memory Spaces and Allocators
For storage and retrieval variables, OpenMP* provides memory known as memory spaces. Different memory
spaces have different traits. Depending on how a variable is to be used and accessed determines which
memory space is appropriate for allocation of the variable.

Each memory space has a unique allocator that is used to allocate and deallocate memory in that space. The
allocators allocate variables in contiguous space that does not overlap any other allocation in the memory
space. Multiple memory spaces with different traits may map to a single memory resource.

The behavior of the allocator is affected by the allocator traits that you specify. The allocator traits, their
possible values, and their default values are shown in the following table:

Allocator Trait Values That Can Be
Specified

Default Value

access • all
• cgroup
• pteam
• thread

All

alignment A positive integer value that
is a power of 2 specifying
number of bytes

1 byte

fallback • abort_fb
• allocator_fb
• default_mem_fb
• null_fb

default_mem_fb

fb_data An allocator handle None

partition • blocked
• environment
• interleaved
• nearest

environment

pinned • true
• false

false

pool_size a positive integer value Implementation defined

sync_hint • contended
• uncontended
• private
• serialized

contended

The access trait specifies the accessibility of the allocated memory. The following are values you can specify
for access:

• all
This value indicates that the allocated memory must be accessible by all threads in the device where the
memory allocation occurs.

This is the default setting.
• cgroup

This value indicates that the allocated memory must be accessible by all threads of the same contention
group as the thread that requested the allocation. Accessing the allocated memory thread that is not part
of the same contention group results in undefined behavior.

• pteam

Optimization and Programming   

675



This value indicates that the allocated memory is accessible by all threads that bind to the same parallel
region as the thread that requests the allocations. Access to the memory by a thread that does not bind
to the same parallel region as the thread that allocated the memory results in undefined behavior.

• thread
This value indicates that the memory allocated is accessible only by the thread that allocated it. Attempts
to allocate the memory by another thread result in undefined behavior.

The alignment trait specifies how allocated variables will be aligned. Variables will be byte-aligned to at
least the value specified for this trait. The default setting is 1 byte. Alignment can also be affected by
directives and OpenMP runtime allocator routines that specify alignment requirements.

The fallback trait indicates how an allocator behaves if it is unable to satisfy an allocation request. The
following are values you can specify for fallback:

• abort_fb
This value indicates that the program terminates if the allocation request fails.

• allocator_fb
If this value is specified and the allocation request fails, the allocation will be tried by the allocator
specified by the fb_data trait.

• default_mem_fb
This value indicates that a failed allocation request will be retried in the omp_default_mem_space
memory space. All traits for the omp_default_mem_space allocator should be set to the default trait
values, except the fallback trait should be set to null_fb. This is the default setting.

• null_fb
This value indicates the allocator returns a zero value when an allocation request fails.

The fb_data trait lets you specify a fall back allocator to be used if the requested allocator fails to satisfy the
allocation request. The fallback trait of the failing allocator must be set to allocator_fb in order for the
allocator specified by the fb_data trait to be used.

The partition trait describes the partitioning of allocated memory over the storage resources represented
by the memory space of the allocator. The following are values you can specify for partition:

• blocked
This value indicates the allocated memory is partitioned into blocks of memory of approximately equal
size with one block per storage resource.

• environment
This value indicates the allocated memory placement is determined by the runtime execution
environment. This is the default setting.

• interleaved
This value indicates the allocated memory is distributed in a round-robin fashion across the storage
resources.

• nearest
This value indicates that the allocated memory will be placed in the storage resource nearest to the thread
that requested the allocation.

If the pinned trait has the value true, the allocator ensures each allocation made by the allocator will
remain in the storage resource at the same location where it was allocated until it is deallocated. The default
setting is false.

The value of pool_size is the total number of bytes of storage available to an allocator when there have
been no allocations. The following affect pool_size:

• If the access trait has the value all, the value of pool_size is the limit for all allocations for all threads
having access to the allocator.

• If the access trait of the allocator has the value cgroup, the value of pool_size is the limit for
allocations made from the threads within the same contention group.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

676



• For allocators with the access access trait value of pteam, the value of pool_size is the limit for
allocations made within the same parallel team.

• If the access trait has the value thread, the value of pool_size is the limit for allocations made from
each thread using the allocator.

• An allocation request for more space than the value of pool_size results in the allocator not fulfilling the
allocation request.

The sync_hint trait describes the way that multiple threads can access an allocator. The following are values
you can specify for sync_hint:

• contended or uncontended
Value contended indicates that many threads are anticipated to make simultaneous allocation requests
while the value uncontended indicates that few threads are anticipated to make simultaneous allocation.
The default setting is contended.

• private
This value indicates that all allocation requests will come from the same thread. Specifying private when
this is not the case and two or more threads make allocation requests by the same allocator results in
undefined behavior.

• serialized
This value indicates that only one thread will request an allocation at a given time. The behavior is
undefined if two threads request an allocation simultaneously by an allocator whose sync_hint value is
serialized.

There are five predefined memory spaces in OpenMP:

• The system default memory is referred to as omp_default_mem_space.
• Large capacity memory is referred to as omp_large_cap_mem_space.
• High bandwidth memory is referred to as omp_high_bw_mem_space.
• Low latency memory is referred to as omp_low_lat_mem_space.
• Memory designed for optimal storage of constant values is referred to as omp_const_mem_space.

It can be initialized with compile-time constant expressions or by using a firstprivate clause.

Writing to variables in omp_const_mem_space results in undefined behavior.

There are three additional predefined memory spaces that are extensions to the OpenMP standard:

• omp_target_host_mem_space is host memory that is accessible by the device.
• omp_target_shared_mem_space is memory that can migrate between the host and the device.
• omp_target_device_mem_space is memory that is accessible to the device.

The following table shows the predefined memory allocators, the memory space they are associated with,
and the non-default memory trait values they possess.

Allocator Name Associated Memory Space Non-Default Trait Values

omp_default_mem_alloc omp_default_mem_space fallback=null_fb

omp_large_cap_mem_alloc omp_large_cap_mem_spac
e

none

omp_low_lat_mem_alloc omp_low_lat_mem_space none

omp_high_bw_mem_alloc omp_high_bw_mem_space none

omp_const_mem_alloc omp_const_mem_space none

omp_cgroup_mem_alloc implementation/system
defined

access=cgroup

omp_pteam_mem_alloc implementation/system
defined

access=pteam

Optimization and Programming   

677



Allocator Name Associated Memory Space Non-Default Trait Values

omp_thread_mem_alloc implementation/system
defined

access=thread

omp_target_host_mem_alloc omp_target_host_mem_sp
ace

none

omp_target_shared_mem_alloc omp_target_shared_mem_
space

none

omp_target_device_mem_alloc omp_target_device_mem_
space

none

See Also
OpenMP* Run-time Library Routines

OpenMP* Advanced Issues
This topic discusses how to use the OpenMP* library functions and environment variables and discusses some
guidelines for enhancing performance with OpenMP.

OpenMP provides specific function calls, and environment variables. See the following topics to refresh your
memory about the primary functions and environment variable used in this topic:

• OpenMP Run-time Library Routines
• OpenMP Environment Variables

To use the function calls, include the omp.h header file. This file is installed in the INCLUDE directory during
the compiler installation and compile the application using the /Qopenmp (Windows*) or -qopenmp (Linux*)
option.

The following example demonstrates how to use the OpenMP functions to print the alphabet and illustrates
several important concepts:

1. When using functions instead of pragmas, your code must be rewritten; rewrites can mean extra
debugging, testing, and maintenance efforts.

2. It becomes difficult to compile without OpenMP support.
3. It is very easy to introduce simple bugs, as in the loop (shown in example) that fails to print all the

letters of the alphabet when the number of threads is not a multiple of 26.
4. You lose the ability to adjust loop scheduling without creating your own work-queue algorithm, which is

a lot of extra effort. You are limited by your own scheduling, which is mostly likely static scheduling as
shown in the example.

#include <stdio.h>
#include <omp.h>

int main(void) {
    int i;
    omp_set_num_threads(4);
    
    #pragma omp parallel private(i)
    {
        // OMP_NUM_THREADS is not a multiple of 26,
        // which can be considered a bug in this code.
        int LettersPerThread = 26 / omp_get_num_threads();
        int ThisThreadNum = omp_get_thread_num();
        int StartLetter = 'a'+ThisThreadNum*LettersPerThread;
        int EndLetter = 'a'+ThisThreadNum*LettersPerThread+LettersPerThread;
        

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

678



        for (i=StartLetter; i<EndLetter; i++) { printf("%c", i); }
    }
    printf("\n");
    return 0;
}

Debugging threaded applications is a complex process because debuggers change the run-time performance,
which can mask race conditions. Even print statements can mask issues, because they use synchronization
and operating system functions. OpenMP itself also adds some complications, because it introduces additional
structure by distinguishing private variables and shared variables and inserts additional code. A debugger
that supports OpenMP can help you to examine variables and step through threaded code. You can use Intel®
Inspector to detect many hard-to-find threading errors analytically. Sometimes, a process of elimination can
help identify problems without resorting to sophisticated debugging tools.

Remember that most mistakes are race conditions. Most race conditions are caused by shared variables that
really should have been declared private. Start by looking at the variables inside the parallel regions and
make sure that the variables are declared private when necessary. Next, check functions called within parallel
constructs. By default, variables declared on the stack are private, but the C/C++ keyword static changes
the variable to be placed on the global heap and therefore shared for OpenMP loops.

The default(none) clause can be used to help find those hard-to-spot variables. If you specify
default(none), then every variable must be declared with a data-sharing attribute clause. For example:

#pragma omp parallel for default(none) private(x,y) shared(a,b)
Another common mistake is using uninitialized variables. Remember that private variables do not have initial
values upon entering a parallel construct. Use the firstprivate and lastprivate clauses to initialize them
only when necessary, because doing so adds extra overhead.

If you still can't find the bug, then consider the possibility of reducing the scope. Try a binary-hunt. Force
parallel sections to be serial again with if(0) on the parallel construct or commenting out the pragma
altogether. Another method is to force large chunks of a parallel region to be critical sections. Pick a region of
the code that you think contains the bug and place it within a critical section. Try to find the section of code
that suddenly works when it is within a critical section and fails when it is not. Now look at the variables, and
see if the bug is apparent. If that still doesn't work, try setting the entire program to run in serial by setting
the compiler-specific environment variable KMP_LIBRARY=serial.

If the code is still not working, and you are not using any OpenMP API function calls, compile it without
the /Qopenmp (Windows) or -qopenmp (Linux) option to make sure the serial version works. If you are using
OpenMP API function calls, use the /Qopenmp-stubs (Windows) or -qopenmp-stubs (Linux) option.

Performance
OpenMP threaded application performance is largely dependent upon the following things:

• The underlying performance of the single-threaded code.
• CPU utilization, idle threads, and load balancing.
• The percentage of the application that is executed in parallel by multiple threads.
• The amount of synchronization and communication among the threads.
• The overhead needed to create, manage, destroy, and synchronize the threads, made worse by the

number of single-to-parallel or parallel-to-single transitions called fork-join transitions.
• Performance limitations of shared resources such as memory, bus bandwidth, and CPU execution units.
• Memory conflicts caused by shared memory or falsely shared memory.

Performance always begins with a properly constructed parallel algorithm or application. For example,
parallelizing a bubble-sort, even one written in hand-optimized assembly language, is not a good place to
start. Keep scalability in mind; creating a program that runs well on two CPUs is not as efficient as creating
one that runs well on n CPUs. With OpenMP, the number of threads is chosen by the compiler, so programs
that work well regardless of the number of threads are highly desirable. Producer/consumer architectures are
rarely efficient, because they are made specifically for two threads.

Optimization and Programming   

679



Once the algorithm is in place, make sure that the code runs efficiently on the targeted Intel® architecture; a
single-threaded version can be a big help. Turn off the /Qopenmp (Windows) or -qopenmp (Linux) option to
generate a single-threaded version, or build with the /Qopenmp-stubs (Windows) or -qopenmp-stubs
(Linux) option, and run the single-threaded version through the usual set of optimizations.

Once you have gotten the single-threaded performance, it is time to generate the multi-threaded version and
start doing some analysis.

Optimizations are really a combination of patience, experimentation, and practice. Make little test programs
that mimic the way your application uses the computer resources to get a feel for what things are faster than
others. Be sure to try the different scheduling clauses for the parallel sections of code. If the overhead of a
parallel region is large compared to the compute time, you may want to use an if clause to execute the
section serially.

See Also
OpenMP* Run-time Library Routines
Worksharing Using OpenMP* 
qopenmp, Qopenmp 
qopenmp-stubs, Qopenmp-stubs 

OpenMP* Implementation-Defined Behaviors
This topic summarizes the behaviors that are described as implementation defined in the OpenMP* API
specification.

NOTE
Internal Control Variables (ICVs) mentioned below are discussed in the OpenMP API specification.

Name Description

single construct The first thread that encounters the single
construct executes the structured block.

teams construct The number of teams that are created is equal to 1
if you don't specify the num_teams clause.

dist_schedule clause, distribute construct If you don't specify the dist_schedule clause,
then the schedule for the distribute construct is
static.

omp_set_num_threads routine If the argument is not a positive integer, then
Intel's OpenMP implementation sets the value of
the first element of the nthreads-var ICV of the
current task to 1.

omp_set_max_active_levels routine If the argument is a negative integer this call is
ignored and the last valid setting is used.

omp_get_max_active_levels routine When called from within any explicit parallel region
the binding thread set, and binding region, if
required, for the omp_get_max_active_levels
region is the current task region.

OMP_SCHEDULE environment variable If the value of the variable does not conform to the
specified format then the value of the run-sched-
var ICV is set to static.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

680



Name Description

OMP_NUM_THREADS environment variable If any value of the list specified in the environment
variable is negative then the whole list is ignored. If
any value of the list is zero then this value is set to
1.

OMP_PROC_BIND environment variable If the value is not true, false, or a comma
separated list of master (deprecated), primary,
close, or spread, then Intel's OpenMP
implementation sets the value of bind-var ICV to
false.

OMP_DYNAMIC environment variable If the value is neither true nor false, then the
implementation sets the value of dyn-var ICV to
false.

OMP_NESTED environment variable If the value is neither true nor false, then the
implementation sets the value of nest-var ICV to
false.

OMP_STACKSIZE environment variable If the value does not conform to the specified
format or the implementation cannot provide a
stack of the specified size, then Intel's OpenMP
implementation sets the value of stacksize-var
ICV to the default size, which is specified as being
from 1MB to 4MB depending on the architecture.
On Linux* or macOS*, the implementation can set
the value of stacksize-var ICV up to 256MB,
respecting the operating system's stack size limit.

OMP_MAX_ACTIVE_LEVELS environment variable If the value is a negative integer or is greater than
the number of parallel levels an implementation can
support, then Intel's OpenMP implementation sets
the value of the max-active-levels-var ICV to
1.

OMP_THREAD_LIMIT environment variable If the requested value is greater than the number
of threads an implementation can support, or if the
value is a negative integer, then Intel's OpenMP
implementation sets the value of the thread-
limit-var ICV to the maximum number of threads
supported on a particular platform. If the requested
value is zero then the implementation sets the
value of the thread-limit-var ICV to 1.

Runtime library definitions Intel's OpenMP implementation provides both the
include file omp.h and omp-tools.h .

OpenMP* Examples
The following examples show how to use several OpenMP* features.

A Simple Difference Operator
This example shows a simple parallel loop where the amount of work in each iteration is different. Dynamic
scheduling is used to improve load balancing.

Optimization and Programming   

681



The for pragma has a nowait clause because there is an implicit barrier at the end of the parallel region.
Therefore it is not necessary to also have a barrier at the end of the for region.

void for1(float a[], float b[], int n) {
  int i, j;
  #pragma omp parallel shared(a,b,n) {
   #pragma omp for schedule(dynamic,1) private (i,j) nowait
    for (i = 1; i < n; i++)
       for (j = 0; j < i; j++)
         b[j + n*i] = (a[j + n*i] + a[j + n*(i-1)]) / 2.0;
  } 
}

Two Difference Operators: for Loop Version
This example uses two parallel loops fused to reduce fork/join overhead. The first for pragma has a nowait
clause because all the data used in the second loop is different than all the data used in the first loop.

void for2(float a[], float b[], float c[], float d[], int n, int m) {
  int i, j;
  #pragma omp parallel shared(a,b,c,d,n,m) private(i,j) {
    #pragma omp for schedule(dynamic,1) nowait
    for (i = 1; i < n; i++)
      for (j = 0; j < i; j++)
        b[j + n*i] = ( a[j + n*i] + a[j + n*(i-1)] )/2.0;
    #pragma omp for schedule(dynamic,1) nowait
    for (i = 1; i < m; i++)
      for (j = 0; j < i; j++)
        d[j + m*i] = ( c[j + m*i] + c[j + m*(i-1)] )/2.0;
  } 
}

Two Difference Operators: sections Version
This example demonstrates the use of the sections pragma . The logic is identical to the preceding for
pragma example, but uses a sections pragma instead of a for pragma . Here the speedup is limited to two
because there are only two units of work whereas in the example above there are (n-1) + (m-1) units of
work.

void sections1(float a[], float b[], float c[], float d[], int n, int m) {
  int i, j;
  #pragma omp parallel shared(a,b,c,d,n,m) private(i,j) {
    #pragma omp sections nowait {
      #pragma omp section
       for (i = 1; i < n; i++)
         for (j = 0; j < i; j++)
           b[j + n*i] = ( a[j + n*i] + a[j + n*(i-1)] )/2.0;
      #pragma omp section
       for (i = 1; i < m; i++)
         for (j = 0; j < i; j++)
           d[j + m*i] = ( c[j + m*i] + c[j + m*(i-1)] )/2.0;
     }
   } 
}

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

682



Update a Shared Scalar
This example demonstrates how to use a single construct to update an element of the shared array a. The
optional nowait clause after the first loop is omitted because it is necessary to wait at the end of the loop
before proceeding into the single construct to avoid a race condition.

void sp_1a(float a[], float b[], int n) {
  int i;
  #pragma omp parallel shared(a,b,n) private(i) {
    #pragma omp for
      for (i = 0; i < n; i++)
        a[i] = 1.0 / a[i];
      #pragma omp single
        a[0] = MIN( a[0], 1.0 );
      #pragma omp for nowait
      for (i = 0; i < n; i++)
      b[i] = b[i] / a[i];
   } 
}

Intel® oneAPI Level Zero
The objective of the Intel® oneAPI Level Zero (Level Zero) Application Programming Interface (API) is to
provide direct-to-metal interfaces to offload accelerator devices. Its programming interface can be tailored to
any device needs and can be adapted to support broader set of languages features such as function pointers,
virtual functions, unified memory, and I/O capabilities.

Most applications should not require the additional control provided by the Level Zero API. The Level Zero API
is intended for providing explicit controls needed by higher-level runtime APIs and libraries.

While initially influenced by other low-level APIs, such as OpenCL™ API and Vulkan*, the Level Zero APIs are
designed to evolve independently. While initially influenced by graphics processing unit architecture, the
Level Zero APIs are designed to be supportable across different compute device architectures, such as Field
Programmable Gate Arrays (FPGAs) and other types of accelerator architectures.

Intel® oneAPI Level Zero Switch
Data Parallel C++ (DPC++) is just one of the many components of the oneAPI project. The Intel® oneAPI
Level Zero (Level Zero) API provides low-level direct-to-metal interfaces that are tailored to the devices on a
oneAPI project. While heavily influenced by other low-level APIs, such as OpenCL™ API, Level Zero is
designed to evolve independently.

More information on Level Zero is available in the oneAPI Specification.

Packages to Install
The packages you must install are intel-level-zero-gpu and level-zero.

Level Zero Loader
Level Zero is supportable across different oneAPI compute device architectures. The Level Zero loader
discovers all Level Zero drivers in the system. In addition, the Level Zero loader is also the Level Zero
software development kit: It carries the Level Zero headers and libraries where you build Level Zero
programs.

Intel® oneAPI Level Zero   

683

https://spec.oneapi.com/versions/latest/elements/l0/source/index.html


Level Zero GPU Driver
The driver is open-source and regular public releases are maintained. It does not come with DPC++ and
must be installed independently. The Level Zero driver and OpenCL™ driver come in the same package. More
info about the Level Zero driver is available at GitHub.

DPC++ Plugins
SYCL targets a variety of devices: CPU, GPU, and Field Programmable Gate Array (FPGA). Different devices
can be operated through different low-level drivers, such as OpenCL for FPGA. The Plugin Interface (PI) is a
unified DPC++ API for working with different devices in a unified way. DPC++ plugins implement specific
translations of the PI API into low-level runtime. The Level Zero PI Plugin was created in DPC++ to enable
devices supported through the Level Zero system.

Scenario Information

SYCL Device Selection The PI for DPC++ performs device discovery of all
available devices through all available PI plugins.
The same physical hardware device can be seen as
multiple different SYCL devices if multiple plugins
support it (for example, OpenCL Gen90 and Level
Zero Gen90). The SYCL runtime performs device
selection from the available devices based on
device selectors. The device selectors can be user-
defined or built in (for example, gpu_selector).

Discovery of Multiple PI Plugins The implication of support for the discovery of
multiple plugins is that the same GPU card can be
seen as multiple different GPU devices available
under different PI plugins.

NOTE Corresponding runtimes (OpenCL and/or Level
Zero) must be installed correctly and independently
for PI to see their devices. The SYCL specification does
not define which device will be used if there are
multiple devices that match criteria (for example,
is_gpu()).

Default Preference is Given to a Level Zero GPU on
Linux

By default, if no special action is taken and the
Level Zero runtime reports support for the installed
GPU, then the SYCL runtime uses the installed GPU.
This is true for standard built-in device selectors
and custom device selectors, where no action is
taken to change the default behavior.

Currently, on Windows, the preference is given to
an OpenCL GPU.

Devices that are not supported with the Level Zero
runtime (CPU/FPGA) continue to run with OpenCL.

How to Change the Default Preference Use the SYCL_BE environment variable to change
the default preference. The valid values are
PI_OPENCL and PI_LEVEL0.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

684

https://github.com/intel/compute-runtime/blob/master/README.md


Scenario Information

For example, if you specify SYCL_BE=PI_OPENCL
and the PI OpenCL plugin reports the availability of
the device of the required type, then that device is
used. It overrides the default preference that is
given to the Level Zero GPU, if the GPU is
supported by the installed version of OpenCL.

NOTE The SYCL_BE setting only works when there
are multiple choices.

Recommendation If your code does not work, try
running it with SYCL_BE=PI_OPENCL to see if the
problem is related to Level Zero.

How to See Where the Code is Running Use the SYCL_PI_TRACE=1 environment variable to
see where your code is running. It reports the
choice made by the built-in device selectors, if they
are used.

Use SYCL_PI_TRACE=-1 to enable verbose tracing
of the PI and show all the devices detected by the
PI discovery process.

How to Find all DPC++ Plugins and Supported
Devices Discovered in the System

Use the sycl-ls utility to find all the DPC++
plugins on your system. sycl-ls queries all the
platforms and devices available through the
plugins, and prints useful information about SYCL
devices and their ID numbers. This information is
useful when you want to designate a specific device
to run a SYCL program. The SYCL_DEVICE_FILTER
string is printed at each line to show three
information pieces:

• The backend that the plugin supports
• The device_type
• The device_id
Verbose output is available with $ sycl-ls --
verbose, which gives you the same choices that
are made by standard built-in device selectors and
other custom device selectors.

SYCL_DEVICE_FILTER
The SYCL_DEVICE_FILTER environment variable limits the SYCL runtime to use a subset of the system's
devices. Setting this environment variable affects all of the device query functions
(platform::get_devices() and platform::get_platforms()) and all of the device selectors.

The value of this environment variable is a comma separated list of filters, where each filter is a triple of the
form backend:device_type:device_num. Each element of the triple is optional, but each filter must have
at least one value. The possible values of the backend are:

Optimization and Programming   

685



• host
• level_zero
• opencl
• cuda
• hip
• *
The possible values of the device_type are:

• host
• cpu
• gpu
• acc
• *
The device_num is an integer that indexes the enumeration of devices from the sycl-ls utility tool, where
the first device in that enumeration has index zero in each backend. For example, SYCL_DEVICE_FILTER=2
returns all devices with index '2' from all different backends. If multiple devices satisfy this device number
(GPU and CPU devices can be assigned device number '2'), then the default_selector chooses the device
with the highest heuristic point. When SYCL_DEVICE_ALLOWLIST is set, it is applied before counting devices
and affects device_num values.

If a filter has all three elements of the triple, it selects only those devices that come from the given backend,
have the specified device type, and have the given device index. If more than one filter is specified, the
runtime is restricted to the union of devices selected by all filters. The runtime does not include the host
backend and the host device automatically, unless one of the filters explicitly specifies the host device type.
SYCL_DEVICE_FILTER=host should be set your program uses the host device only.

NOTE
All device selectors throw an exception if the filtered list of devices does not include a device that
satisfies the selector. For instance, SYCL_DEVICE_FILTER=cpu,level_zero causes
host_selector() to throw an exception. SYCL_DEVICE_FILTER also limits loading only specified
plugins into the SYCL runtime.

SYCL_DEVICE_FILTER=level_zero causes the cpu_selector to throw an exception since the SYCL
runtime only loads the level_zero backend, which does not support any CPU devices at this time.
When multiple devices satisfy the filter (example: SYCL_DEVICE_FILTER=gpu), only one of them is
selected.

Intel® oneAPI Level Zero Backend Specification
The Intel® oneAPI Level Zero (Level Zero) extension introduces a Level Zero backend for SYCL. It is built on
top of Level Zero runtime enabled with the oneAPI Level Zero Specification. The Level Zero backend aims to
provide the best possible performance of SYCL application on a variety of targets supported. The currently
supported targets are all Intel GPUs starting with Gen9.

This extension provides a feature-test macro as described in the SYCL spec's section, Feature Test Macros.
Any implementation supporting this extension must predefine the macro
SYCL_EXT_ONEAPI_BACKEND_LEVEL_ZERO to one of the values defined in the table below. Applications can
test for the existence of this macro to see if the implementation supports this feature, or they can test the
macro's value to see the extension APIs the implementation supports:

Value Description

1 Initial extension version.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

686

https://spec.oneapi.com/level-zero/latest/index.html
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf


Value Description

2 Added support for the make_buffer() API.

3 Added device member to
backend_input_t<backend::ext_oneapi_level
_zero, queue>.

NOTE This extension is following SYCL 2020 backend specification. Prior APIs for interoperability with
Level Zero are marked as deprecated and will be removed in the next release.

Prerequisites
The Level Zero loader and drivers must be installed on your system for the SYCL runtime to recognize and
enable the Level Zero backend. Visit Intel® oneAPI DPC++/C++ Compiler System Requirements for specific
instructions.

User-visible Level Zero Backend Selection and Default Backend
The Level Zero backend is added to the sycl::backend enumeration with:

enum class backend {
  // ...
  ext_oneapi_level_zero,
  // ...
};

The sections below explain the different ways the Level Zero backend can be selected.

Through an Environment Variable

The SYCL_DEVICE_FILTER environment variable limits the SYCL runtime to use only a subset of the system's
devices. By using level_zero for the backend in SYCL_DEVICE_FILTER, you can select the use of Level
Zero as a SYCL backend. For more information, see the Environment Variables.

Through a Programming API

The Filter Selector extension is described in SYCL Proposals: Filter Selector. Similar to how the
SYCL_DEVICE_FILTER applies filtering to the entire process, this device selector can be used to select the
Level Zero backend.

When neither the environment variable nor the filtering device selector is used, the implementation chooses
the Level Zero backend for GPU devices supported by the installed Level Zero runtime. The serving backend
for a SYCL platform can be queried with the get_backend() member function sycl::platform.

Interoperability with the Level Zero API
The sections below describe the various interoperabilities that are possible between SYCL and Level Zero. The
application must include the following headers to use any of the inter-operation APIs described in this
section. These headers must be included in the order shown:

#include "level_zero/ze_api.h"
#include "sycl/ext/oneapi/backend/level_zero.hpp"

Mapping of SYCL Objects to Level Zero Handles

These SYCL objects encapsulate the corresponding Level Zero handles:

Optimization and Programming   

687

https://software.intel.com/content/www/us/en/develop/articles/intel-oneapi-dpcpp-system-requirements.html
https://github.com/intel/llvm/blob/sycl/sycl/doc/EnvironmentVariables.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_oneapi_filter_selector.asciidoc


SYCL Type backend_return_t
<backend::ext_oneapi_le
vel_zero, SyclType>

backend_input_t<backend::ext_oneapi
_level_zero, SyclType>

platform ze_driver_handle_t ze_driver_handle_t
device ze_device_handle_t ze_device_handle_t
context ze_context_handle_t struct {

  ze_context_handle_t NativeHandle;
  std::vector<device> DeviceList;
  ext::oneapi::level_zero::ownership 
Ownership{
      
ext::oneapi::level_zero::ownership::tra
nsfer};
}

queue ze_command_queue_handl
e_t

struct {
  ze_command_queue_handle_t 
NativeHandle;
  ext::oneapi::level_zero::ownership 
Ownership{
      
ext::oneapi::level_zero::ownership::tra
nsfer};
}
Deprecated in Version 3 of the Level Zero
Backend Specification.

struct {
  ze_command_queue_handle_t 
NativeHandle;
  device Device;
  ext::oneapi::level_zero::ownership 
Ownership{
      
ext::oneapi::level_zero::ownership::tra
nsfer};
}
Supported since Version 3 of the Level Zero
Backend Specification.

event ze_event_handle_t struct {
  ze_event_handle_t NativeHandle;
  ext::oneapi::level_zero::ownership 
Ownership{
      
ext::oneapi::level_zero::ownership::tra
nsfer};
}

kernel_bundle std::vector<ze_module_
handle_t>

struct {
  ze_module_handle_t NativeHandle;
  ext::oneapi::level_zero::ownership 
Ownership{
      

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

688

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_oneapi_backend_level_zero.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_oneapi_backend_level_zero.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_oneapi_backend_level_zero.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_oneapi_backend_level_zero.md


SYCL Type backend_return_t
<backend::ext_oneapi_le
vel_zero, SyclType>

backend_input_t<backend::ext_oneapi
_level_zero, SyclType>

ext::oneapi::level_zero::ownership::tra
nsfer};
}

kernel ze_kernel_handle_t struct {
  
kernel_bundle<bundle_state::executable>
 KernelBundle;
  ze_kernel_handle_t NativeHandle;
  ext::oneapi::level_zero::ownership 
Ownership{
      
ext::oneapi::level_zero::ownership::tra
nsfer};
}

buffer void * struct {
  void *NativeHandle;
  ext::oneapi::level_zero::ownership 
Ownership{
      
ext::oneapi::level_zero::ownership::tra
nsfer};
}

Obtaining Built-in Level Zero Handles from SYCL Objects

The sycl::get_native<backend::ext_oneapi_level_zero> free-function is how you can use a raw
built-in Level Zero handle to obtain a specific SYCL object. The function is supported for the SYCL platform,
device, context, queue, event and program classes. You can use a free-function defined in the cl::sycl
namespace instead of the member function with:

template <backend BackendName, class SyclObjectT>
auto get_native(const SyclObjectT &Obj)
    -> backend_return_t<BackendName, SyclObjectT>

This function is supported for SYCL platform, device, context, queue, event, kernel_bundle, and
kernel classes.

The sycl::get_native<backend::ext_oneapi_level_zero> free-function is not supported for the SYCL
buffer class. The built-in backend object associated with the buffer can be obtained using the
interop_hande class as described in the SYCL spec's section, Class interop_handle. The pointer is returned
by get_native_mem<backend::ext_oneapi_level_zero> method of the interop_handle class, which is
the value returned from a call to zeMemAllocShared(), zeMemAllocDevice(), or zeMemAllocHost() and
not directly accessible from the host. You may need to copy your data to the host to access the data. You can
get information on the type of the allocation using the type data member of the
ze_memory_allocation_properties_t struct that is returned by zeMemGetAllocProperties.

Queue.submit([&](handler &CGH) {
    auto BufferAcc = Buffer.get_access<access::mode::write>(CGH);
    CGH.host_task([=](const interop_handle &IH) {
        void *DevicePtr =
            IH.get_native_mem<backend::ext_oneapi_level_zero>(BufferAcc);
        ze_memory_allocation_properties_t MemAllocProperties{};

Optimization and Programming   

689

https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf


        ze_result_t Res = zeMemGetAllocProperties(
            ZeContext, DevicePtr, &MemAllocProperties, nullptr);
        ze_memory_type_t ZeMemType = MemAllocProperties.type;
    });
 }).wait();

Construct a SYCL Object from a Level Zero Handle

The following free functions, defined in the sycl namespace are specialized for the Level Zero backend to
allow an application to create a SYCL object that encapsulates a corresponding Level Zero object, see the
table below for specific functions.

Level Zero Interoperability Function Description

make_platform<backend::ext_oneapi_level_zero>(
    const backend_input_t<
        backend::ext_oneapi_level_zero, 
platform> &)

Constructs a SYCL platform instance from a Level
Zero ze_driver_handle_t. The SYCL execution
environment contains a fixed number of platforms
that are counted with
sycl::platform::get_platforms(). Calling this
function does not create a platform, it creates a
sycl::platform object that is a copy of one of the
platforms from that enumeration.

make_device<backend::ext_oneapi_level_zero>(
    const backend_input_t<
        backend::ext_oneapi_level_zero, 
device> &)

Constructs a SYCL device instance from a Level
Zero ze_device_handle_t. The SYCL execution
environment for the Level Zero backend contains a
fixed number of devices that are counted with
sycl::device::get_devices() and a fixed
number of sub-devices that are counted with
sycl::device::create_sub_devices(...).
Calling this function does not create a device, it
creates a sycl::device object that is a copy of
one of the devices from those enumerations.

make_context<backend::ext_oneapi_level_zero>(
    const backend_input_t<
        backend::ext_oneapi_level_zero, 
context> &)

Constructs a SYCL context instance from a Level
Zero ze_context_handle_t. The context is
created against the devices passed in a
DeviceList structure member. There must be at
least one device given and all the devices must be
from the same SYCL platform and from the same
Level Zero driver. The Ownership input structure
member specifies if the SYCL runtime should take
ownership of the passed built-in handle. The default
behavior is to transfer the ownership to the SYCL
runtime. See section Level Zero Handle Ownership
and Thread-safety for details.

make_queue<backend::ext_oneapi_level_zero>(
    const backend_input_t<
        backend::ext_oneapi_level_zero, 
queue> &,
    const context &Context)

Constructs a SYCL queue instance from a Level
Zero ze_command_queue_handle_t. The Context
argument must be a valid SYCL context
encapsulating a Level Zero context. The Device
input structure member specifies the device to
create the queue against and must be in Context.
The Ownership input structure member specifies if
the SYCL runtime should take ownership of the
passed built-in handle. The default behavior is to

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

690



Level Zero Interoperability Function Description

transfer the ownership to the SYCL runtime. See
Level Zero Handle Ownership and Thread-safety for
details.

If the deprecated variant of
backend_input_t<backend::ext_oneapi_level
_zero, queue> is passed to make_queue, the
queue is attached to the first device in Context.

make_event<backend::ext_oneapi_level_zero>(
    const backend_input_t<
        backend::ext_oneapi_level_zero, 
event> &,
    const context &Context)

Constructs a SYCL event instance from a Level Zero
ze_event_handle_t. The Context argument must
be a valid SYCL context encapsulating a Level Zero
context. The Level Zero event should be allocated
from an event pool created in the same context.
The Ownership input structure member specifies if
the SYCL runtime should take ownership of the
passed built-in handle. The default behavior is to
transfer the ownership to the SYCL runtime. See
Level Zero Handle Ownership and Thread-safety for
details.

make_kernel_bundle<backend::ext_oneapi_level_z
ero,
                   bundle_state::executable>(
    const backend_input_t<
        backend::ext_oneapi_level_zero,
        
kernel_bundle<bundle_state::executable>> &,
    const context &Context)

Constructs a SYCL kernel_bundle instance from a
Level Zero ze_module_handle_t. The Context
argument must be a valid SYCL context
encapsulating a Level Zero context, and the Level
Zero module must be created on the same context.
The Level Zero module must be fully linked (it
cannot require further linking through 
zeModuleDynamicLink). The SYCL
kernel_bundle is created in the executable state.
The Ownership input structure member specifies if
the SYCL runtime should take ownership of the
passed built-in handle. The default behavior is to
transfer the ownership to the SYCL runtime. See
Level Zero Handle Ownership and Thread-safety for
details. If the behavior is transfer, then the
runtime is going to destroy the input Level Zero
module, and the application must not have any
outstanding ze_kernel_handle_t handles to the
underlying ze_module_handle_t by the time this
interoperability kernel_bundle destructor is
called.

make_kernel<backend::ext_oneapi_level_zero>(
    const backend_input_t<
        backend::ext_oneapi_level_zero, 
kernel> &,
    const context &Context)

Constructs a SYCL kernel instance from a Level
Zero ze_kernel_handle_t. The KernelBundle
input structure specifies the kernel_bundle
corresponding to the Level Zero module from which
the kernel is created. There must be exactly one
Level Zero module in the KernelBundle. The
Context argument must be a valid SYCL context
encapsulating a Level Zero context, and the Level
Zero module must be created on the same context.
The Ownership input structure member specifies if

Optimization and Programming   

691

https://spec.oneapi.io/level-zero/latest/core/api.html?highlight=zemoduledynamiclink#_CPPv419zeModuleDynamicLink8uint32_tP18ze_module_handle_tP28ze_module_build_log_handle_t


Level Zero Interoperability Function Description

the SYCL runtime should take ownership of the
passed built-in handle. The default behavior is to
transfer the ownership to the SYCL runtime. See
Level Zero Handle Ownership and Thread-safety for
details. If the behavior is transfer, then the
runtime is going to destroy the input Level Zero
kernel.

make_buffer(
    const 
backend_input_t<backend::ext_oneapi_level_zero
,
                          buffer<T, 
Dimensions, AllocatorT>> &,
    const context &Context)

This API is available starting with revision 2 of the 
Level Zero Backend Specification.

Construct a SYCL buffer instance from a pointer to
a Level Zero memory allocation. The pointer must
be the value returned from a previous call to
zeMemAllocShared(), zeMemAllocDevice(), or
zeMemAllocHost(). The input SYCL context
Context must be associated with a single device,
matching the device used at the prior allocation.
The Context argument must be a valid SYCL
context encapsulating a Level Zero context, and the
Level Zero memory must be allocated on the same
context. Created SYCL buffer can be accessed in
another contexts, not only in the provided input
context. The Ownership input structure member
specifies if the SYCL runtime should take ownership
of the passed built-in handle. The default behavior
is to transfer the ownership to the SYCL runtime.
See Level Zero Handle Ownership and Thread-
safety for details. If the behavior is transfer, then
the runtime is going to free the input Level Zero
memory allocation. Synchronization rules for a
buffer that is created with this API are described in
Interoperability Buffer Synchronization Rules.

make_buffer(
    const 
backend_input_t<backend::ext_oneapi_level_zero
,
                          buffer<T, 
Dimensions, AllocatorT>> &,
    const context &Context, event 
AvailableEvent)

This API is available starting with revision 2 of the 
Level Zero Backend Specification.

Construct a SYCL buffer instance from a pointer to
a Level Zero memory allocation. Refer to
make_buffer description above for semantics and
restrictions. The additional AvailableEvent
argument must be a valid SYCL event. The instance
of the SYCL buffer class template being constructed
must wait for the SYCL event parameter to signal
that the memory built-in handle is ready to be
used.

Level Zero Handle Ownership and Thread-safety

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

692

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_oneapi_backend_level_zero.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_oneapi_backend_level_zero.md


The Level Zero runtime does not do reference-counting of its objects, so it is crucial to adhere to these
practices of how Level Zero handles are managed. By default, the ownership is transferred to the SYCL
runtime, but some interoperability API supports overriding this behavior and keeps the ownership in the
application. Use this enumeration for explicit specification of the ownership:

namespace sycl {
namespace ext {
namespace oneapi {
namespace level_zero {

enum class ownership { transfer, keep };

} // namespace level_zero
} // namespace oneapi
} // namespace ext
} // namespace sycl

• SYCL Runtime Takes Ownership (default): Whenever the application creates a SYCL object from the
corresponding Level Zero handle, with one of the make_* functions, the SYCL runtime takes ownership of
the Level Zero handle if no explicit ownership::keep was specified. The application must not use the
Level Zero handle after the last host copy of the SYCL object is destroyed. The application must not
destroy the Level Zero handle. For more information, see the SYCL Common Reference Semantics section.

• Application Keeps Ownership (explicit): If a SYCL object is created with an interoperability API
explicitly asking to keep the built-in handle ownership in the application with ownership::keep, then the
SYCL runtime does not take the ownership and will not destroy the Level Zero handle at the destruction of
the SYCL object. The application is responsible for destroying the built-in handle when it no longer needs
it, but it must not destroy the handle before the last host copy of the SYCL object is destroyed (as
described in the core SYCL specification under SYCL Common Reference Semantics.

• Obtaining Built-in Handle Does Not Change Ownership: The application may call the
get_native<backend::ext_oneapi_level_zero> free function on a SYCL object to retrieve the
underlying Level Zero handle. Doing so does not change the ownership of the Level Zero handle. The
application may not use this handle after the last host copy of the SYCL object is destroyed (as described
in the core SYCL specification under SYCL Common Reference Semantics unless the SYCL object was
created by the application with ownership::keep.

• Considerations for Multi-threaded Environment: The Level Zero API is not thread-safe, refer to 
Multithreading and Concurrency for more information. Applications must make sure that the Level Zero
handles are not used simultaneously from different threads. The SYCL runtime takes ownership of the
Level Zero handles and should not attempt further direct use of those handles.

Interoperability Buffer Synchronization Rules

A SYCL buffer that is constructed with this interop API uses the Level Zero memory allocation for its full
lifetime. The contents of the Level Zero memory allocation are unspecified for the lifetime of the SYCL buffer.
If the application modifies the contents of that Level Zero memory allocation during the lifetime of the SYCL
buffer, the behavior is undefined. The initial contents of the SYCL buffer will be the initial contents of the
Level Zero memory allocation at the time of the SYCL buffer's construction.

The behavior of the SYCL buffer destructor depends on the Ownership flag. As with other SYCL buffers, this
behavior is triggered only when the last reference count to the buffer is dropped, as described in the SYCL
spec's section, Buffer Synchronization Rules.

• If the ownership is keep (the application retains ownership of the Level Zero memory allocation), then the
SYCL buffer destructor blocks until all work in queues on the buffer have completed. The contents of the
buffer is not copied back to the Level Zero memory allocation.

• If the ownership is transfer (the SYCL runtime has ownership of the Level Zero memory allocation), then
the SYCL buffer destructor does not need to block, even if work on the buffer has not completed. The
SYCL runtime frees the Level Zero memory allocation asynchronously when it is no longer in use in
queues.

Optimization and Programming   

693

https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://spec.oneapi.com/level-zero/latest/core/INTRO.html#multithreading-and-concurrency
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf


Level Zero Additional Functionality
Device Information Descriptors

The Level Zero backend provides the following device information descriptors that an application can use to
query information about a Level Zero device. Applications use these queries with the
device::get_backend_info<>() member function as shown in the example below, which illustrates the
free_memory query:

sycl::queue Queue;
auto Device = Queue.get_device();

size_t freeMemory =
  Device.get_backend_info<sycl::ext::oneapi::level_zero::info::device::free_memory>();

New descriptors have been added as part of this specification, and are described in the table and example
below.

Descriptor Description

sycl::ext::oneapi::level_zero::info::devi
ce::free_memory

Returns the number of bytes of free memory for
the device.

namespace sycl{
namespace ext {
namespace oneapi {
namespace level_zero {
namespace info {
namespace device {

struct free_memory {
    using return_type = size_t;
};

} // namespace device;
} // namespace info
} // namespace level_zero
} // namespace oneapi
} // namespace ext
} // namespace sycl

Programming with the Intel® oneAPI Level Zero Backend
This page shows the supported scenarios for multi-
card and multi-tile programming with the Intel®
oneAPI Level Zero (Level Zero) Backend.

Device Discovery
Root-devices

In this programming model, Intel GPUs are represented as SYCL GPU devices, or root-devices. You can find
your root-device with the sycl-ls tool. For example:

sycl-ls
Example output:

[opencl:gpu:0] Intel(R) OpenCL HD Graphics, Intel(R) UHD Graphics 630 [0x3e92] 3.0 [21.49.21786]
[opencl:cpu:1] Intel(R) OpenCL, Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz 2.1 
[2020.11.11.0.03_160000]

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

694



[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) UHD Graphics 630 [0x3e92] 1.2 
[1.2.21786]
[host:host:0] SYCL host platform, SYCL host device 1.2 [1.2]

sycl-ls shows the devices and platforms of all the SYCL backends, which are seen by the SYCL runtime.
The example above shows the CPU (managed by an OpenCL™ backend) and two GPUs that correspond to the
single physical GPU (managed by an OpenCL™ or Level Zero backend). There are two options to filter the
observable root-devices:

Option One

Use the environment variable SYCL_DEVICE_FILTER, which is described in the Environment Variables. For
example:

SYCL_DEVICE_FILTER=ext_oneapi_level_zero sycl-ls
Example output:

[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) UHD Graphics 630 [0x3e92] 1.2 
[1.2.21786]

Option Two

Use a similar API, as described in the Filter Selector, for example, the
filter_selector("ext_oneapi_level_zero") only sees Level Zero operated devices.

If there are multiple GPUs in a system, they are seen as multiple root-devices. On Linux, you will see
multiple SYCL root-devices of the same SYCL platform. On Windows, you will see root-devices of multiple
different SYCL platforms.

You can use CreateMultipleRootDevices=N NEOReadDebugKeys=1 environment variables to emulate
multiple GPU cards. For example:

CreateMultipleRootDevices=2 NEOReadDebugKeys=1 SYCL_DEVICE_FILTER=ext_oneapi_level_zero sycl-ls
Example output:

[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) UHD Graphics 630 [0x3e92] 1.2 
[1.2.21786]
[ext_oneapi_level_zero:gpu:1] Intel(R) Level-Zero, Intel(R) UHD Graphics 630 [0x3e92] 1.2 
[1.2.21786]

NOTECreateMultipleRootDevices is experimental, not validated, and is used for debug/
experimental purposes only.

Sub-devices

Some Intel GPU hardware is composed of multiple tiles, where the root-devices can be partitioned into sub-
devices that correspond to the physical tiles. For example:

try {
  vector<device> SubDevices = RootDevice.create_sub_devices<
  cl::sycl::info::partition_property::partition_by_affinity_domain>(
  cl::sycl::info::partition_affinity_domain::next_partitionable);
}

Each call to create_sub_devices returns the same sub-devices in their persistent order. Use the
ZE_AFFINITY_MASK environment variable to control what sub-devices are exposed by the Level Zero driver.
The partition_by_affinity_domain is the only type of partitioning supported for Intel GPUs. The
next_partitionable and numa properties are the only partitioning properties supported.

Optimization and Programming   

695

https://github.com/intel/llvm/blob/sycl/sycl/doc/EnvironmentVariables.md#sycl_device_filter
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_oneapi_filter_selector.asciidoc


The CreateMultipleSubDevices=N NEOReadDebugKeys=1 environment variables can be used to emulate
multiple tiles of a GPU.

NOTECreateMultipleSubDevices is experimental, not validated, and is used for debug/
experimental purposes only.

Contexts
Contexts are used for resource isolation and sharing. A SYCL context may consist of one or multiple devices.
Both root-devices and sub-devices can be found within a single context, but they need to be from the same
SYCL platform. A SYCL kernel_bundle created against a context with multiple devices is built to each of the
root-devices in the context. For a context that consists of multiple sub-devices of the same root-device, only
a single build (to that root-device) is needed.

Memory
Unified Shared Memory (USM)

There are multiple ways to allocate memory:

• malloc_device:

• Allocation can only be accessed by the specified device, but not by other devices in the context or by
the host.

• The data always stays on the device and is the fastest available for kernel execution.
• Explicit copy is needed for transferring data to the host or other devices in the context.

• malloc_host:

• Allocation can be accessed by the host and any other device in the context.
• The data always stays on the host and is accessed via Peripheral Component Interconnect (PCI) from

the devices.
• No explicit copy is needed for synchronizing of the data with the host or devices.

• malloc_shared:

• Allocation can only be accessed by the host and the specified device.
• The data can migrate (operated by the Level Zero driver) between the host and the device for faster

access.
• No explicit copy is necessary for synchronizing between the host and the device, but it is needed for

other devices in the context.

Memory allocated against a root-device is accessible by all of its sub-devices (tiles). If you are operating on a
context with multiple sub-devices of the same root-device, then you can use malloc_device on that root-
device instead of using the slower malloc_host. If you are using malloc_device you need an explicit copy
out to the host to see the data located there.

Buffers

SYCL buffers that are created against a context and under the hood are mapped to the Level Zero USM
allocation. The mapping details are:

• Allocation on an integrated device is made on the host and is accessible by the host and the device
without copying.

• Memory buffers for context with sub-devices of the same root-device (possibly including the root-device
itself) are allocated on that root-device. They are accessible by all the devices in the context. The
synchronization with the host is performed by a SYCL runtime with map/unmap performing implicit copies
when necessary.

• Memory buffers for context with devices from different root-devices in it are allocated on host (and are
accessible to all devices).

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

696



Queues
A SYCL queue is always attached to a single device in a potential multi-device context. The following example
scenarios are listed from most to least performant:

Scenario One

Context with a single sub-device in it, where the queue is attached to that sub-device (tile):

• The execution/visibility is limited to the single sub-device only.
• This offers the best performance per tile.

For example:

try {
  vector<device> SubDevices = ...;
  for (auto &D : SubDevices) {
    // Each queue is in its own context, no data sharing across them.
    auto Q = queue(D);
    Q.submit([&](handler& cgh) {...});
  }
}

Scenario Two

Context with multiple sub-devices of the same root-device (multi-tile):

• The queues are attached to the sub-devices, which implement explicit scaling.
• The root-device should not be passed to this context for better performance.

For example:

try {
  vector<device> SubDevices = ...;
  auto C = context(SubDevices);
  for (auto &D : SubDevices) {
    // All queues share the same context, data can be shared across queues.
    auto Q = queue(C, D);
    Q.submit([&](handler& cgh) {...});
  }
}

Scenario Three

Context with a single root-device in it, where the queue is attached to that root-device:

• The work is automatically distributed across all sub-devices/tiles via implicit scaling by the driver.
• The simplest way to enable multi-tile hardware, but this does not offer possibility to target specific tiles.

For example:

try {
  // The queue is attached to the root-device, driver distributes to sub-devices, if any.
  auto D = device(gpu_selector{});
  auto Q = queue(D);
  Q.submit([&](handler& cgh) {...});
}

Scenario Four

Contexts with multiple root-devices (multi-card):

• The most unrestrictive context with queues attached to different root-devices.
• Offers most sharing possibilities at the cost of slow access through host memory or explicit copies needed.

Optimization and Programming   

697



For example:

try {
  auto P = platform(gpu_selector{});
  auto RootDevices = P.get_devices();
  auto C = context(RootDevices);
  for (auto &D : RootDevices) {
    // Context has multiple root-devices, data can be shared across multi-card (requires 
explicit copying)
    auto Q = queue(C, D);
    Q.submit([&](handler& cgh) {...});
  }
}

NOTE Do not forget to allocate/synchronize your memory for your programming model and algorithm.

Multi-tile/card Examples
For your next steps, you can explore two examples of multi-tile and multi-card programming:

• dgemm
• gpu2gpu

Vectorization
Vectorization is the process of converting an algorithm from a scalar implementation, which does an
operation one pair of operands at a time, to a vector process where a single instruction can refer to a vector
(a series of adjacent values).

Automatic Vectorization
The automatic vectorizer (also called the auto-vectorizer) is a component of the compiler that automatically
uses SIMD instructions in the Intel® Streaming SIMD Extensions (Intel® SSE, Intel® SSE2, Intel® SSE3 and
Intel® SSE4), Supplemental Streaming SIMD Extensions (SSSE3) instruction sets, Intel® Advanced Vector
Extensions (Intel® AVX, Intel® AVX2) instruction sets, and Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) instruction set. The vectorizer detects operations in the program that can be done in parallel and
converts the sequential operations to parallel; for example, the vectorizer converts the sequential SIMD
instruction that processes up to 16 elements into a parallel operation, depending on the data type.

Automatic vectorization occurs when the compiler generates packed SIMD instructions to unroll a loop.
Because the packed instructions operate on more than one data element at a time, the loop executes more
efficiently. This process is referred to as auto-vectorization only to emphasize that the compiler identifies and
optimizes suitable loops on its own, without external input. However, it is useful to note that in some cases,
certain keywords or directives may be applied in the code for auto-vectorization to occur.

The compiler supports a variety of auto-vectorizing hints that can help the compiler to generate effective
vector instructions. Automatic vectorization is supported on IA-32 (for C++ only) and Intel® 64 architectures.
Intel® Advisor, a separate tool included in the Intel® oneAPI Base Toolkit, provides a Vectorization Advisor
feature that can analyze the compiler's optimization reports and make recommendations for enhancing
vectorization.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

698

https://github.com/jeffhammond/PRK/blob/dpct/Cxx11/dgemm-multigpu-onemkl.cc
https://github.com/pvelesko/PPP/tree/master/languages/c%2B%2B/sycl/gpu2gpu


NOTE
This option enables vectorization at default optimization levels for both Intel® microprocessors and
non-Intel microprocessors. Vectorization may call library routines that can result in additional
performance gain on Intel® microprocessors than on non-Intel microprocessors.

Vectorization Programming Guidelines
The goal of including the vectorizer component in the Intel® oneAPI DPC++/C++ Compiler is to exploit
single-instruction multiple data (SIMD) processing automatically. Users can help by supplying the compiler
with additional information; for example, by using auto-vectorizer hints or pragmas.

NOTE
This option enables vectorization at default optimization levels for both Intel® microprocessors and
non-Intel microprocessors. Vectorization may call library routines that can result in additional
performance gain on Intel® microprocessors than on non-Intel microprocessors.

Guidelines to Vectorize Innermost Loops
Follow these guidelines to vectorize innermost loop bodies.

Use:

• Straight-line code (a single basic block).
• Vector data only (arrays and invariant expressions on the right hand side of assignments). Array

references can appear on the left hand side of assignments.
• Only assignment statements.

Avoid:

• Function calls (other than math library calls).
• Non-vectorizable operations (either because the loop cannot be vectorized, or because an operation is

emulated through a number of instructions).
• Mixing vectorizable types in the same loop (leads to lower resource utilization).
• Data-dependent loop exit conditions (leads to loss of vectorization).

To make your code vectorizable, you need to edit your loops. You should only make changes that enable
vectorization, and avoid these common changes:

• Loop unrolling, which the compiler performs automatically.
• Decomposing one loop with several statements in the body into several single-statement loops.

Restrictions
There are a number of restrictions that you should consider. Vectorization depends on two major factors:
hardware and style of source code.

Factor Description

Hardware The compiler is limited by restrictions imposed by the underlying hardware. Intel®
Streaming SIMD Extensions (Intel® SSE) has vector memory operations that are
limited to stride-1 accesses with a preference to 16-byte-aligned memory
references. This means that if the compiler abstractly recognizes a loop as
vectorizable, it still might not vectorize it for a distinct target architecture.

Optimization and Programming   

699



Factor Description

Style of source
code

The style in which you write source code can inhibit vectorization. For example, a
common problem with global pointers is that they often prevent the compiler from
being able to prove that two memory references refer to distinct locations.
Consequently, this prevents certain reordering transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop structures. The
ambiguity arises from the complexity of the keywords, operators, data references, pointer arithmetic, and
memory operations within the loop bodies.

By understanding these limitations and by knowing how to interpret diagnostic messages, you can modify
your program to overcome the known limitations and enable effective vectorization.

Guidelines for Writing Vectorizable Code
Follow these guidelines to write vectorizable code:

• Use simple for loops. Avoid complex loop termination conditions – the upper iteration limit must be
invariant within the loop. For the innermost loop in a nest of loops, you could set the upper limit iteration
to be a function of the outer loop indices.

• Write straight-line code. Avoid branches such as switch, goto, or return statements; most function
calls; or if constructs that cannot be treated as masked assignments.

• Avoid dependencies between loop iterations or at the least, avoid read-after-write dependencies.
• Try to use array notations instead of the use of pointers. C programs in particular impose very few

restrictions on the use of pointers; aliased pointers may lead to unexpected dependencies. Without help,
the compiler often cannot tell whether it is safe to vectorize code containing pointers.

• Wherever possible, use the loop index directly in array subscripts instead of incrementing a separate
counter for use as an array address.

• Access memory efficiently:

• Favor inner loops with unit stride.
• Minimize indirect addressing.
• Align your data to 16-byte boundaries (for Intel® SSE instructions).

• Choose a suitable data layout with care. Most multimedia extension instruction sets are rather sensitive to
alignment. The data movement instructions of Intel® SSE, for example, operate much more efficiently on
data that is aligned at a 16-byte boundary in memory. Therefore, the success of a vectorizing compiler
also depends on its ability to select an appropriate data layout which, in combination with code
restructuring (like loop peeling), results in aligned memory accesses throughout the program.

• Use aligned data structures: Data structure alignment is the adjustment of any data object in relation with
other objects.

You can use the declaration __declspec(align).

Caution Use this hint with care. Incorrect usage of aligned data movements result in an exception
when using Intel® SSE.

• Use structure of arrays (SoA) instead of array of structures (AoS): An array is the most common type of
data structure that contains a contiguous collection of data items that can be accessed by an ordinal
index. You can organize this data as an array of structures (AoS) or as a structure of arrays (SoA). While
AoS organization is excellent for encapsulation, it can be a hindrance for use of vector processing. To
make vectorization of the resulting code more effective, you can also select appropriate data structures.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

700



Dynamic Alignment Optimizations
Dynamic alignment optimizations can improve the performance of vectorized code, especially for long trip
count loops. Disabling such optimizations can decrease performance, but it may improve bitwise
reproducibility of results, factoring out data location from possible sources of discrepancy.

To enable or disable dynamic data alignment optimizations, specify the option Qopt-dynamic-align[-]
(Windows) or [no-]qopt-dynamic-align[-] (Linux).

Use Aligned Data Structures
Data structure alignment is the adjustment of any data object with relation to other objects. The Intel®
oneAPI DPC++/C++ Compiler may align individual variables to start at certain addresses to speed up
memory access. Misaligned memory accesses can incur large performance losses on certain target
processors that do not support them in hardware.

Alignment is a property of a memory address, expressed as the numeric address modulo of powers of two. In
addition to its address, a single datum also has a size. A datum is called 'naturally aligned' if its address is
aligned to its size, otherwise it is called 'misaligned'. For example, an 8-byte floating-point datum is naturally
aligned if the address used to identify it is aligned to eight (8).

A data structure is a way of storing data in a computer so that it can be used efficiently. Often, a carefully
chosen data structure allows a more efficient algorithm to be used. A well-designed data structure allows a
variety of critical operations to be performed, using as little resources (execution time and memory space) as
possible.

struct MyData{ 
   short   Data1; 
   short   Data2; 
   short   Data3; 
};

In the example data structure above, if the type short is stored in two bytes of memory then each member
of the data structure is aligned to a boundary of two bytes. Data1 would be at offset 0, Data2 at offset 2 and
Data3 at offset 4. The size of this structure is six bytes. The type of each member of the structure usually
has a required alignment, meaning that it is aligned on a pre-determined boundary, unless you request
otherwise. In cases where the compiler has taken sub-optimal alignment decisions, you can use the
declaration declspec(align(base,offset)), where 0 <= offset < base and base is a power of two, to
allocate a data structure at offset from a certain base.

Consider as an example, that most of the execution time of an application is spent in a loop of the following
form:

double a[N], b[N]; 
  ... 
for (i = 0; i < N; i++){ a[i+1] = b[i] * 3; }

If the first element of both arrays is aligned at a 16-byte boundary, then either an unaligned load of elements
from b or an unaligned store of elements into a must be used after vectorization.

In this instance, peeling off an iteration does not help but you can enforce the alignment shown below. This
alignment results in two aligned access patterns after vectorization (assuming an 8-byte size for doubles):

__declspec(align(16, 8))  double a[N]; 
__declspec(align(16, 0))  double b[N]; 
/* or simply "align(16)"  */

Optimization and Programming   

701



If pointer variables are used, the compiler is usually not able to determine the alignment of access patterns
at compile time. Consider the following simple fill() function:

void fill(char *x) { 
  int i; 
  for (i = 0; i < 1024; i++){ x[i] = 1; } 
}

Without more information, the compiler cannot make any assumption on the alignment of the memory region
accessed by the above loop. At this point, the compiler may decide to vectorize this loop using unaligned
data movement instructions or, generate the runtime alignment optimization shown here:

peel = x & 0x0f; 
if (peel != 0) {
  peel = 16 - peel; 
  /* runtime peeling loop */
  for (i = 0; i < peel; i++) { x[i] = 1; } 
} 

/* aligned access */ 
for (i = peel; i < 1024; i++) { x[i] = 1; }

Runtime optimization provides a generally effective way to obtain aligned access patterns at the expense of a
slight increase in code size and testing. If incoming access patterns are aligned at a 16-byte boundary, you
can avoid this overhead with the hint __assume_aligned(x, 16); in the function to convey this
information to the compiler.

For example, suppose you can introduce an optimization in the case where a block of memory with address
n2 is aligned on a 16-byte boundary. You could use _assume(n2%16==0).

Caution Incorrect use of aligned data movements result in an exception for Intel® SSE.

Use Structure of Arrays Versus Array of Structures
The most common and well-known data structure is the array that contains a contiguous collection of data
items, which can be accessed by an ordinal index. This data can be organized as an array of structures (AoS)
or as a structure of arrays (SoA). While AoS organization works excellently for encapsulation, for vector
processing it works poorly.

You can select appropriate data structures to make vectorization of the resulting code more effective. To
illustrate this point, compare the traditional array of structures (AoS) arrangement for storing the r, g, b
components of a set of three-dimensional points with the alternative structure of arrays (SoA) arrangement
for storing this set.

For example, a point structure with data in an AoS arrangement:

struct Point{ 
   float r; 
   float g; 
   float b; 
}

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

702



For example, a points structure with data in a SoA arrangement:

struct Points{ 
   float* x; 
   float* y; 
   float* z; 
}

With the AoS arrangement, a loop that visits all components of an RGB point before moving to the next point
exhibits a good locality of reference. This is because all elements in the fetched cache lines are used. The
disadvantage of the AoS arrangement is that each individual memory reference in such a loop exhibits a non-
unit stride, which, in general, adversely affects vector performance. Furthermore, a loop that visits only one
component of all points exhibits less satisfactory locality of reference because many of the elements in the
fetched cache lines remain unused.

With the SoA arrangement, the unit-stride memory references are more amenable to effective vectorization
and still exhibit good locality of reference within each of the three data streams. Consequently, an application
that uses the SoA arrangement may outperform an application based on the AoS arrangement when
compiled with a vectorizing compiler. This performance difference may not be obviously apparent during the
early implementation phase.

Before you start vectorization, try out some simple rules:

• Make your data structures vector-friendly.
• Make sure that inner loop indices correspond to the outermost (last) array index in your data (row-major

order).
• Use structure of arrays over array of structures.

For instance when dealing with three-dimensional coordinates, use three separate arrays for each component
(SoA), instead of using one array of three-component structures (AoS). To avoid dependencies between loops
that will eventually prevent vectorization, use three separate arrays for each component (SoA), instead of
one array of three-component structures (AoS). When you use the AoS arrangement, each iteration produces
one result by computing XYZ, but it can at best use only 75% of the SSE unit because the fourth component
is not used. Sometimes, the compiler may use only one component (25%). When you use the SoA
arrangement, each iteration produces four results by computing XXXX, YYYY and ZZZZ, using 100% of the
SSE unit. A drawback for the SoA arrangement is that your code will likely be three times as long.

If your original data layout is in AoS format, you may want to consider a conversion to SoA before the critical
loop:

• Use the smallest data types that give the needed precision to maximize potential SIMD width. (If only 16-
bits are needed, using a short rather than an int can make the difference between 8-way or four-way
SIMD parallelism.)

• Avoid mixing data types to minimize type conversions.
• Avoid operations not supported in SIMD hardware.
• Use all the instruction sets available for your processor. Use the appropriate command line option for your

processor type, or select the appropriate IDE option (Windows only):

• Project > Properties  > C/C++ > Code Generation  > Intel Processor-Specific Optimization, if
your application runs only on Intel® processors.

• Project > Properties  > C/C++ > Code Generation  > Enable Enhanced Instruction Set, if your
application runs on compatible, non-Intel processors.

• Vectorizing compilers usually have some built-in efficiency heuristics to decide whether vectorization is
likely to improve performance. The Intel® oneAPI DPC++/C++ Compiler disables vectorization of loops
with many unaligned or non-unit stride data access patterns. If experimentation reveals that vectorization

Optimization and Programming   

703



improves performance, you can override this behavior using the #pragma vector always hint before the
loop. The compiler vectorizes any loop regardless of the outcome of the efficiency analysis (provided that
vectorization is safe).

See Also
__declspec(align)

Vectorization and Loops

Loop Constructs

Use Automatic Vectorization
Automatic vectorization is supported on Intel® 64 architectures. The information below will guide you in
setting up the auto-vectorizer.

Vectorization Speedup
Where does the vectorization speedup come from? Consider the following sample code, where a, b, and c are
integer arrays:

for (i=0;i<=MAX;i++)
   c[i]=a[i]+b[i];

If vectorization is not enabled, and you compile using the O1, -no-vec- (Linux), or /Qvec- (Windows)
option, the compiler processes the code with unused space in the SIMD registers, even though each register
can hold three additional integers. If vectorization is enabled (compiled using O2 or higher options), the
compiler may use the additional registers to perform four additions in a single instruction. The compiler looks
for vectorization opportunities whenever you compile at default optimization (O2) or higher.

NOTE
This option enables vectorization at default optimization levels for both Intel® microprocessors and
non-Intel microprocessors. Vectorization may call library routines that can result in additional
performance gain on Intel® microprocessors than on non-Intel microprocessors.

To get details about the type of loop transformations and optimizations that took place, use the
[Q]opt-report-phase option by itself or along with the [Q]opt-report option.

Linux

To evaluate performance enhancement, run vec_samples:

1. Source an environment script such as vars.sh in the <installdir> directory and use the attribute
appropriate for the architecture.

2. Navigate to the <installdir>\Samples\<locale>\C++\ directory. This application multiplies a vector
by a matrix using the following loop:

for (j = 0;j < size2; j++) { b[i] += a[i][j] * x[j]; }
3. Build and run the application, first without enabling auto-vectorization. The default O2 optimization

enables vectorization, so you need to disable it with a separate option.

icx -O2 -no-vec  Multiply.c -o NoVectMult 
./NoVectMult

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

704



4. Build and run the application, this time with auto-vectorization.

icx -O2 -qopt-report=3 -vec Multiply.c -o VectMult 
./VectMult

Windows

To evaluate performance enhancement, run vec_samples:

1. Under the Start menu item for your product, select an icon under Intel oneAPI <version> > Intel
oneAPI Command Prompt for oneAPI Compilers.

2. Navigate to the <installdir>\Samples\<locale>\C++\directory. On Windows, unzip the sample
project vec_samples.zip to a writable directory. This small application multiplies a vector by a matrix
using the following loop:

for (j = 0;j < size2; j++) { b[i] += a[i][j] * x[j]; }
3. Build and run the application, first without enabling auto-vectorization. The default O2 optimization

enables vectorization, so you need to disable it with a separate option.

icx /O2 /Qvec- Multiply.c /FeNoVectMult 
NoVectMult

4. Build and run the application, this time with auto-vectorization.

icx /O2 /Qopt-report:3 /Qvec Multiply.c /FeVectMult 
VectMult

When you compare the timing of the two runs, you may see that the vectorized version runs faster. The time
for the non-vectorized version is only slightly faster than would be obtained by compiling with the O1 option.

Obstacles to Vectorization
The following issues do not always prevent vectorization, but frequently cause the compiler to decide that
vectorization would not be worthwhile.

• Non-contiguous memory access: Four consecutive integers or floating-point values, or two consecutive
doubles, may be loaded directly from memory in a single SSE instruction. But if the four integers are not
adjacent, they must be loaded separately using multiple instructions, which is considerably less efficient.
The most common examples of non-contiguous memory access are loops with non-unit stride or with
indirect addressing, shown in the examples below. The compiler rarely vectorizes these loops, unless the
amount of computational work is larger compared to the overhead from non-contiguous memory access.

// arrays accessed with stride 2 
for (int i=0; i<SIZE; i+=2)  b[i] += a[i] * x[i]; 

// inner loop accesses a with stride SIZE 
for (int j=0; j<SIZE; j++)  {
  for (int i=0; i<SIZE; I++)   b[i] += a[i][j] * x[j]; 
} 

// indirect addressing of x using index array
  for (int i=0; i<SIZE; i+=2)  b[i] += a[i] * x[index[i]];

The typical message from the vectorization report is: vectorization possible but seems
inefficient, although indirect addressing may also result in the following report: existence of
vector dependence.

• Data dependencies: Vectorization entails changes in the order of operations within a loop, since each
SIMD instruction operates on several data elements at once. Vectorization is only possible if this change of
order does not change the results of the calculation.

Optimization and Programming   

705



• The simplest case is when data elements that are written (stored to) do not appear in any other
iteration of the individual loop. In this case, all the iterations of the original loop are independent of
each other, and can be executed in any order, without changing the result. The loop may be safely
executed using any parallel method, including vectorization.

• When a variable is written in one iteration and read in a subsequent iteration, there is a read-after-
write dependency, also known as a flow dependency, for example:

A[0]=0; 
for (j=1; j<MAX; j++)  A[j]=A[j-1]+1; 
          // this is equivalent to: 
   A[1]=A[0]+1;   
   A[2]=A[1]+1;   
   A[3]=A[2]+1; 
   A[4]=A[3]+1;

The value of j is propagated to all A[j]. This cannot safely be vectorized: if the first two iterations are
executed simultaneously by a SIMD instruction, the value of A[1] is used by the second iteration
before it has been calculated by the first iteration.

• When a variable is read in one iteration and written in a subsequent iteration, this is a write-after-read
dependency, also known as an anti-dependency, for example:

for (j=1; j<MAX; j++)  A[j-1]=A[j]+1; 
          // this is equivalent to: 
   A[0]=A[1]+1;
   A[1]=A[2]+1;
   A[2]=A[3]+1;
   A[3]=A[4]+1;

This write-after-read dependency is not safe for general parallel execution, since the iteration with the
write may execute before the iteration with the read. No iteration with a higher value of j can
complete before an iteration with a lower value of j, and so vectorization is safe (it gives the same
result as non-vectorized code).

The following example may not be safe, since vectorization might cause some elements of A to be
overwritten by the first SIMD instruction before being used for the second SIMD instruction.

for (j=1; j<MAX; j++)  {
  A[j-1]=A[j]+1;
} 

   // this is equivalent to: 
   A[0]=A[1]+1;   
   A[1]=A[2]+1;   
   A[2]=A[3]+1;
   A[3]=A[4]+1;

• Read-after-read situations are not really dependencies, and do not prevent vectorization or parallel
execution. If a variable is unwritten, it does not matter how often it is read.

• Write-after-write, or output dependencies, where the same variable is written to in more than one
iteration, are generally unsafe for parallel execution, including vectorization.

• One important exception that contains all of the above types of dependency is:

sum=0; 
for (j=1; j<MAX; j++)  sum = sum + A[j]*B[j]

Although sum is both read and written in every iteration, the compiler recognizes such reduction
idioms, and is able to vectorize them safely. The loop in the first example was another example of a
reduction, with a loop-invariant array element in place of a scalar.

These types of dependencies between loop iterations are sometimes known as loop-carried
dependencies.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

706



The above examples are of proven dependencies. The compiler cannot safely vectorize a loop if there is
even a potential dependency. For example:

for (i = 0; i < size; i++) { c[i] = a[i] * b[i]; }
In the above example, the compiler needs to determine whether, for some iteration i, c[i] might
refer to the same memory location as a[i] or b[i] for a different iteration. Such memory locations
are sometimes said to be aliased. For example, if a[i] pointed to the same memory location as
c[i-1], there would be a read-after-write dependency. If the compiler cannot exclude this possibility,
it will not vectorize the loop unless you provide the compiler with hints.

Help the Compiler Vectorize
Sometimes the compiler has insufficient information to decide to vectorize a loop. There are several ways to
provide additional information to the compiler:

• Pragmas:

• #pragma ivdep: may be used to tell the compiler that it may safely ignore any potential data
dependencies. (The compiler will not ignore proven dependencies). Use of this pragma when there are
dependencies may lead to incorrect results.

There are cases where the compiler cannot tell by a static dependency analysis that it is safe to
vectorize. Consider the following loop:

void copy(char *cp_a, char *cp_b, int n) {
  for (int i = 0; i < n; i++) { cp_a[i] = cp_b[i]; } 
}

Without more information, a vectorizing compiler must conservatively assume that the memory
regions accessed by the pointer variables cp_a and cp_b may (partially) overlap, which can cause
potential data dependencies that prohibit straightforward conversion of this loop into SIMD
instructions. At this point, the compiler may decide to keep the loop serial or generate a runtime test
for overlap, where the loop in the true-branch can be converted into SIMD instructions:

if (cp_a + n < cp_b || cp_b + n < cp_a) 
          /* vector loop */ 
  for (int i = 0; i < n; i++) cp_a[i] = cp_b [I]; 
  else 
          /* serial loop */ 
  for (int i = 0; i < n; i++) cp_a[i] = cp_b[i];

Runtime data-dependency testing provides a way to exploit implicit parallelism in C or C++ code at the
expense of a slight increase in code size and testing overhead. If the function copy is only used in
specific ways, you can help the compiler:

• If the function is mainly used for small values of n or for overlapping memory regions, you can
prevent vectorization and the corresponding runtime overhead by inserting a #pragma novector
hint before the loop.

• Conversely, if the loop is guaranteed to operate on non-overlapping memory regions, you can
provide this information to the compiler by means of a #pragma ivdep hint before the loop. This
tells the compiler that conservatively assumed data dependencies that prevent vectorization can be
ignored and results in vectorization of the loop without runtime data-dependency testing.

#pragma ivdep 
void copy(char *cp_a, char *cp_b, int n) {
  for (int i = 0; i < n; i++) { cp_a[i] = cp_b[i]; } 
}

Optimization and Programming   

707



NOTE You can also use the restrict keyword.

• #pragma loop count (n): gives the typical trip count of the loop. This helps the compiler decide if
vectorization is worthwhile, or if it should generate alternative code paths for the loop.

• #pragma vector always: asks the compiler to vectorize the loop.
• #pragma vector align: asserts that data within the following loop is aligned (to a 16-byte

boundary, for Intel® SSE instruction sets).
• #pragma novector: asks the compiler not to vectorize a particular loop.
• #pragma vector nontemporal: gives a hint to the compiler that data will not be reused, and to use

streaming stores that bypass cache.
• Keywords: The restrict keyword is used to assert that the memory referenced by a pointer is not

aliased. The keyword requires the use of the [Q]std=c99 compiler option. The example under #pragma
ivdep above can also be handled using the restrict keyword.

You may use the restrict keyword in the declarations of cp_a and cp_b, as shown below, to inform the
compiler that each pointer variable provides exclusive access to a certain memory region. The restrict
qualifier in the argument list lets the compiler know that there are no other aliases to the memory where
the pointers point. The pointer where it is used provides the only means of accessing the memory in the
scope where the pointers live. Even if the code gets vectorized without the restrict keyword, the
compiler checks for aliasing at runtime, if the restrict keyword was used.

void copy(char * __restrict cp_a, char * __restrict cp_b, int n) { 
  for (int i = 0; i < n; i++) cp_a[i] = cp_b[i]; 
}

This method is best used when the exclusive access property holds for the pointer variables in your code
with many loops, because it avoids annotating each of the vectorizable loops individually. Both the loop-
specific #pragma ivdep hint, and the pointer variable-specific restrict hint must be used with care
because incorrect usage may change the semantics intended in the original program.

Another example is the following loop that may also not get vectorized because of a potential aliasing
problem between pointers a, b, and c:

void add(float *a, float *b, float *c) {
  for (int i=0; i<SIZE; i++) { c[i] += a[i] + b[i]; } 
}

If the restrict keyword is added to the parameters, the compiler assumes that you will not access the
memory in question with any other pointer and vectorize the code properly:

// let the compiler know, the pointers are safe with restrict 
void add(float * __restrict a, float * __restrict b, float * __restrict c) {
  for (int i=0; i<SIZE; i++) { c[i] += a[i] + b[i]; } 
}

The down-side of using restrict is that not all compilers support this keyword, so your source code may
lose portability.

• Options/switches: You can use options to enable different levels of optimizations to achieve automatic
vectorization:

• Interprocedural optimization (IPO): Enable IPO using the [Q]ipo option across source files. You
provide the compiler with additional information (trip counts, alignment, or data dependencies) about a
loop. Enabling IPO may also allow inlining of function calls.

• High-level optimizations (HLO): Enable HLO with option O3. This enables additional loop
optimizations that make it easier for the compiler to vectorize the transformed loops.

See Also
qopt-report, Qopt-report compiler option

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

708



Vectorization and Loops
This topic provides more information on the interaction between the auto-vectorizer and loops.

See Programming Guidelines for Vectorization.

In some rare cases, a successful loop parallelization (either automatically or by means of OpenMP directives)
may affect the messages reported by the compiler for a non-vectorizable loop in a non-intuitive way.

Types of Vectorized Loops
For integer loops, the 128-bit Intel® Streaming SIMD Extensions (Intel® SSE) and the Intel® Advanced Vector
Extensions (Intel® AVX) provide SIMD instructions for most arithmetic and logical operators on 32-bit, 16-bit,
and 8-bit integer data types, with limited support for the 64-bit integer data type.

Vectorization may proceed if the final precision of integer wrap-around arithmetic is preserved. A 32-bit shift-
right operator, for instance, is not vectorized in 16-bit mode if the final stored value is a 16-bit integer. Also,
note that because the Intel® SSE and the Intel® AVX instruction sets are not fully orthogonal (shifts on byte
operands, for instance, are not supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point numbers, Intel®
SSE provides SIMD instructions for the following arithmetic operators:

• Addition (+)
• Subtraction (-)
• Multiplication (*)
• Division (/)

Additionally, Intel® SSE provide SIMD instructions for the binary MIN and MAX and unary SQRT operators.
SIMD versions of several other mathematical operators (like the trigonometric functions SIN, COS, and TAN)
are supported in software in a vector mathematical run-time library that is provided with the compiler.

To be vectorizable, loops must be:

• Countable: The loop trip count must be known at entry to the loop at runtime, though it need not be
known at compile time (that is, the trip count can be a variable but the variable must remain constant for
the duration of the loop). This implies that exit from the loop must not be data-dependent.

• Single entry and single exit: as is implied by stating that the loop must be countable.
• Contain straight-line code: SIMD instruction perform the same operation on data elements from

multiple iterations of the original loop, therefore, it is not possible for different iterations to have different
control flow; that is, they must not branch. It follows that switch statements are not allowed. However,
if statements are allowed if they can be implemented as masked assignments, which is usually the case.
The calculation is performed for all data elements but the result is stored only for those elements for
which the mask evaluates to true.

• Innermost loop of a nest: The only exception is if an original outer loop is transformed into an inner
loop as a result of some other prior optimization phase, such as unrolling, loop collapsing or interchange,
or an original outermost loop is transformed to an innermost loop due to loop materialization.

• Without function calls: Even a print statement is sufficient to prevent a loop from getting vectorized.
The vectorization report message is typically: non-standard loop is not a vectorization candidate. The two
major exceptions are for intrinsic math functions and for functions that may be inlined.

Intrinsic math functions are allowed, because the compiler runtime library contains vectorized versions of
these functions. See below for a list of these functions; most exist in both float and double versions:

• acos
• acosh
• asin
• asinh
• atan

Optimization and Programming   

709



• atan2
• atanh
• cbrt
• ceil
• cos
• cosh
• erf
• erfc
• erfinv
• exp
• exp2
• fabs
• floor
• fmax
• fmin
• log
• log2
• log10
• pow
• round
• sin
• sinh
• sqrt
• tan
• tanh
• trunc

Statements in the Loop Body
The vectorizable operations are different for floating-point and integer data.

Integer Array Operations

The statements within the loop body may contain char, unsigned char, short, unsigned short, int, and
unsigned int. Calls to functions such as sqrt and fabs are also supported. Arithmetic operations are limited
to addition, subtraction, bitwise AND, OR, and XOR operators, division (via run-time library call),
multiplication, min, and max. You can mix data types but this may potentially cost you in terms of lowering
efficiency. Some example operators where you can mix data types are multiplication, shift, or unary
operators.

Other Operations
No statements other than the preceding floating-point and integer operations are allowed. In particular, note
that the special __m64__m128, and __m256 data types are not vectorizable. The loop body cannot contain
any function calls. Use of Intel® SSE intrinsics ( for example, _mm_add_ps) or Intel® AVX intrinsics (for
example, _mm256_add_ps) are not allowed.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

710

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


See Also
Programming Guidelines for Vectorization 

Loop Constructs
Loops can be formed with the usual for and while constructs. Loops must have a single entry and a single
exit to be vectorized. The following examples illustrate loop constructs that can and cannot be vectorized.
The non-vectorizable structure example shows a loop that cannot be vectorized because of the inherent
potential for an early exit from the loop.

Vectorizable structure:

void vec(float a[], float b[], float c[]) {
  int i = 0;
  while (i < 100) { 
// The if branch is inside body of loop.
    a[i] = b[i] * c[i];
    if (a[i] < 0.0)
        a[i] = 0.0;
        i++;
  } 
}

Non-vectorizable structure:

void no_vec(float a[], float b[], float c[]) {
  int i = 0;
  while (i < 100) {
    if (a[i] < 50) 
// The next statement is a second exit 
// that allows an early exit from the loop.
      break;
    ++i;
  } 
}

Loop Exit Conditions
Loop exit conditions determine the number of iterations a loop executes. For example, fixed indexes for loops
determine the iterations. The loop iterations must be countable and the number of iterations must be
expressed as one of the following:

• A constant.
• A loop invariant term.
• A linear function of outermost loop indices.

In the case where a loops exit depends on computation, the loops are not countable. The examples below
show loop constructs that are countable and non-countable. The non-countable loop example demonstrates a
loop construct that is non-countable due to dependency loop variant count value.

Countable loop, example one:

void cnt1(float a[], float b[], float c[],
          int n, int lb) { 
// Exit condition specified by "N-1b+1"
  int cnt=n, i=0;
  while (cnt >= lb) { 
// lb is not affected within loop.
    a[i] = b[i] * c[i];
    cnt--;

Optimization and Programming   

711



    i++;
  } 
}

Countable loop, example two:

void vec(float a[], float b[], float c[]) {
  int i = 0;
  while (i < 100) { 
// The if branch is inside body of loop.
    a[i] = b[i] * c[i];
    if (a[i] < 0.0)
        a[i] = 0.0;
        i++;
  } 
}

Non-countable loop:

void no_cnt(float a[], float b[], float c[]) {
  int i=0; 
// Iterations dependent on a[i].
  while (a[i]>0.0) {
    a[i] = b[i] * c[i];
    i++;
  } 
}

Strip-mining and Cleanup
Strip-mining, also known as loop sectioning, is a loop transformation technique for enabling SIMD-encoding
of loops, as well as a means of improving memory performance. By fragmenting a large loop into smaller
segments or strips, this technique transforms the loop structure in two ways:

• By increasing the temporal and spatial locality in the data cache if the data is reusable in different passes
of an algorithm.

• By reducing the number of iterations of the loop by a factor of the length of each vector, or number of
operations being performed per SIMD operation. With the Intel® Streaming SIMD Extensions (Intel® SSE),
the vector or strip-length is reduced by four times: four floating-point data items per single Intel® SSE
single-precision floating-point SIMD operation are processed.

First introduced for vectorizers, this technique consists of the generation of code when each vector operation
is done for a size less than or equal to the maximum vector length on a given vector machine.

The compiler automatically strip-mines your loop and generates a cleanup loop. For example, assume the
compiler attempts to strip-mine the loop before vectorization. After vectorization, the compiler might handle
the strip mining and loop cleaning by restructuring the loop.

Before vectorization:

i=0; 
while(i<n) {
  // Original loop code 
  a[i]=b[i]+c[i];
  ++i; 
}

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

712



After vectorization:

// The vectorizer generates the following two loops 
i=0; 
while(i<(n-n%4)) {
  // Vector strip-mined loop
  // Subscript [i:i+3] denotes SIMD execution
  a[i:i+3]=b[i:i+3]+c[i:i+3];
  i=i+4; 
} 
while(i<n) {
  // Scalar clean-up loop
  a[i]=b[i]+c[i];
  ++i; 
}

Loop Blocking

It is possible to treat loop blocking as strip-mining in two or more dimensions. Loop blocking is a useful
technique for memory performance optimization. The main purpose of loop blocking is to eliminate as many
cache misses as possible. This technique transforms the memory domain into smaller chunks rather than
sequentially traversing through the entire memory domain. Each chunk should be small enough to fit all the
data for a given computation into the cache, maximizing data reuse.

Consider the following example, loop blocking allows arrays A and B to be blocked into smaller rectangular
chunks so that the total combined size of two blocked (A and B) chunks is smaller than cache size, which can
improve data reuse.

The transformed loop after blocking example illustrates loop blocking the add function (from the original loop
example). In order to benefit from this optimization, you might have to increase the cache size.

Original loop:

#include <time.h> 
#include <stdio.h> 
#define MAX 7000 

void add(int a[][MAX], int b[][MAX]); 
int main() { 
int i, j; 
int A[MAX][MAX]; 
int B[MAX][MAX]; 
time_t start, elaspe; 
int sec; 

//Initialize array 
for(i=0;i<MAX;i++) {
  for(j=0;j<MAX; j++) {
    A[i][j]=j;
    B[i][j]=j;
  }
}

 start= time(NULL);
 add(A, B);
 elaspe=time(NULL);
 sec = elaspe - start;
 printf("Time %d",sec); //List time taken to complete add function 
} 

Optimization and Programming   

713



void add(int a[][MAX], int b[][MAX]) {
 int i, j;
 for(i=0;i<MAX;i++) {
  for(j=0; j<MAX;j++ {
     a[i][j] = a[i][j] + b[j][i]; //Adds two matrices
    }
  } 
}

Transformed loop after blocking:

#include <stdio.h> 
#include <time.h> 
#define MAX 7000 
void add(int a[][MAX], int b[][MAX]); 

int main() { 
  #define BS 8  //Block size is selected as the loop-blocking factor. 
  int i, j; 
  int A[MAX][MAX]; 
  int B[MAX][MAX]; 
  time_t start, elaspe; 
  int sec; 

//initialize array 
for(i=0;i<MAX;i++) {
  for(j=0;j<MAX;j++) {
    A[i][j]=j;
    B[i][j]=j;
  }
} 
start= time(NULL);

add(A, B); 
elapse=time(NULL); 
sec = elapse - start; 
printf("Time %d",sec); //Display time taken to complete loopBlocking function 
} 

void add(int a[][MAX], int b[][MAX]) { 
  int i, j, ii, jj; 
  for(i=0;i<MAX;i+=BS) {
   for(j=0; j<MAX;j+=BS) {
     for(ii=i; ii<i+BS; ii++) {   //outer loop
       for(jj=j;jj<j+BS; jj++) {  //Array B experiences one cache miss
                                  //for every iteration of outer loop
         a[ii][jj] = a[ii][jj] + b[jj][ii]; //Add the two arrays
        }
      }
    }
  } 
}

Loop Interchange and Subscripts with Matrix Multiply
Loop interchange is often used for improving memory access patterns. Matrix multiplication is commonly
written as shown in the typical matrix multiplication example.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

714



The use of B(K,J) is not a stride-1 reference and therefore will not be vectorized efficiently.

If the loops are interchanged, all the references become stride-1 as shown in the matrix multiplication with
stride-1 example.

Typical matrix multiplication:

void matmul_slow(float *a[], float *b[], float *c[]) {
  int N = 100;
  for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++)
      for (int k = 0; k < N; k++)
        c[i][j] = c[i][j] + a[i][k] * b[k][j]; 
}

Matrix multiplication with stride-1:

void matmul_fast(float *a[], float *b[], float *c[]) {
  int N = 100;
  for (int i = 0; i < N; i++)
    for (int k = 0; k < N; k++)
      for (int j = 0; j < N; j++)
        c[i][j] = c[i][j] + a[i][k] * b[k][j]; 
}

Interchanging is not always possible because of dependencies, which can lead to different results.

Explicit Vector Programming
This section contains information about explicit vector programming.

User-mandated or SIMD Vectorization
User-mandated or SIMD vectorization supplements automatic vectorization just like OpenMP parallelization
supplements automatic parallelization. The following figure illustrates this relationship. User-mandated
vectorization is implemented as a single-instruction-multiple-data (SIMD) feature and is referred to as SIMD
vectorization.

NOTE
The SIMD vectorization feature is available for both Intel® microprocessors and non-Intel
microprocessors. Vectorization may call library routines that can result in additional performance gain
on Intel® microprocessors than on non-Intel microprocessors.

The following figure illustrates how SIMD vectorization is positioned among various approaches that you can
take to generate vector code that exploits vector hardware capabilities. The programs written with SIMD
vectorization are very similar to those written using auto-vectorization hints. You can use SIMD vectorization
to minimize the number of code changes that you may have to go through in order to obtain vectorized code.

Optimization and Programming   

715



SIMD vectorization uses the #pragma omp simd pragma to effect loop vectorization.

Consider an example in C++ where the function add_floats() uses too many unknown pointers for the
compiler’s automatic runtime independence check optimization to kick in. You can give a data dependence
assertion using the auto-vectorization hint via #pragma ivdep and let the compiler decide whether the auto-
vectorization optimization should be applied to the loop. Or you can now enforce vectorization of this loop by
using #pragma omp simd .

The difference between using #pragma omp simd and auto-vectorization hints is that with
#pragma omp simd, the compiler generates a warning when it is unable to vectorize the loop. With auto-
vectorization hints, actual vectorization is still under the discretion of the compiler, even when you use the
#pragma vector always hint.

#pragma omp simd has optional clauses to guide the compiler on how vectorization must proceed. Use these
clauses appropriately so that the compiler obtains enough information to generate correct vector code. For
more information on the clauses, see the #pragma omp simd description.

Additional Semantics
Note the following points when using the omp simd pragma.

• A variable may belong to zero or one of the following: private, linear, or reduction.
• Within the vector loop, an expression is evaluated as a vector value if it is private, linear, reduction, or it

has a sub-expression that is evaluated to a vector value. Otherwise, it is evaluated as a scalar value (that
is, broadcast the same value to all iterations). Scalar value does not necessarily mean loop invariant,
although that is the most frequently seen usage pattern of scalar value.

• A vector value may not be assigned to a scalar L-value. It is an error.
• A scalar L-value may not be assigned under a vector condition. It is an error.
• The switch statement is not supported.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

716



NOTE
You may find it difficult to describe vector semantics using the SIMD pragma for some auto-
vectorizable loops. One example is MIN/MAX reduction in C since the language does not have MIN/MAX
operators.

Restrictions on Using a #pragma omp declare simd Declaration
Vectorization depends on two major factors: hardware and the style of source code. When using the vector
declaration, the following features are not allowed:

• Thread creation and joining through , OpenMP parallel/for/sections/task/target/teams, and
explicit threading API calls.

• Locks, barriers, atomic construct, critical sections (These are allowed inside #pragma omp ordered simd
blocks).

• Inline ASM code, VM, and Vector Intrinsics (for example, SVML intrinsics).
• Using setjmp, longjmp, SHE and computed GOTO.
• EH is not allowed and all vector functions are considered noexcept.
• The switch statement (in some cases this may be supported and converted to if statements, but this is

not reliable).
• The exit()/abort() calls.

Non-vector function calls are generally allowed within vector functions but calls to such functions are
serialized lane-by-lane and so might perform poorly. Also for SIMD-enabled functions it is not allowed to have
side effects except writes by their arguments. This rule can be violated by non-vector function calls, so be
careful executing such calls in SIMD-enabled functions.

Formal parameters must be of the following data types:

• (un)signed 8, 16, 32, or 64-bit integer
• 32- or 64-bit floating point
• 64- or 128-bit complex
• A pointer (C++ reference is considered a pointer data type)

See Also
Function Annotations and the SIMD Directive for Vectorization

SIMD-enabled Functions
SIMD-enabled functions (formerly called elemental functions) are a general language construct to express a
data parallel algorithm. A SIMD-enabled function is written as a regular C/C++ function, and the algorithm
describes the operation on one element, using scalar syntax. The function can then be called as a regular C/C
++ function to operate on a single element or it can be called in a data parallel context to operate on many
elements.

How SIMD-enabled Functions Work
When you write a SIMD-enabled function, the compiler generates short vector variants of the function that
you requested, which can perform your function's operation on multiple arguments in a single invocation. The
short vector variant may be able to perform multiple operations as fast as the regular implementation
performs a single one by using the vector instruction set architecture (ISA) in the CPU. When a call to a
SIMD-enabled function occurs in a SIMD loop or another SIMD-enabled function, the compiler replaces the
scalar call with the best fit from the available short-vector variants of the function.

In addition, when invoked from a pragma omp construct, the compiler may assign different copies of the
SIMD-enabled functions to different threads (or workers), executing them concurrently. The result is that
your data parallel operation executes on the CPU using both the parallelism available in the multiple cores

Optimization and Programming   

717



and the parallelism available in the vector ISA. In other words, if the short vector function is called inside a
parallel loop, (a vectorized auto-parallelized loop) you can achieve both vector-level and thread-level
parallelism.

Declare a SIMD-enabled Function
You need to use the appropriate syntax from below in your code for the compiler to generate the short vector
function:

Linux

Use the __attribute__((vector (clauses))) declaration:

__attribute__((vector (clauses))) return_typesimd_enabled_function_name(parameters)
Alternately, you can use the following OpenMP pragma, which requires the [q or Q]openmp or
[q or Q]openmp-simd compiler option:

#pragma omp declare simd clauses
Windows

Use the __declspec(vector (clauses)) declaration:

__declspec(vector (clauses)) return_type simd_enabled_function_name(parameters)
The clauses in the vector declaration may be used for achieving better performance by overriding defaults.
These clauses at SIMD-enabled function definition declare one or several short vector variants for a SIMD-
enabled function. Multiple vector declarations with different set of clauses may be attached to one function in
order to declare multiple different short vector variants available for a SIMD-enabled function.

The clauses are defined as follows:

Clause Definition

processor(cpuid) Tells the compiler to generate a vector variant using
the instructions, the caller/callee interface, and the
default vector length selection scheme suitable to
the specified processor. Use of this clause is highly
recommended, especially for processors with wider
vector register support (example:
core_2nd_gen_avx and newer).

cpuid takes one of the following values:

• core_4th_gen_avx_tsx
• core_4th_gen_avx
• core_3rd_gen_avx
• core_2nd_gen_avx
• core_aes_pclmulqdq
• core_i7_sse4_2
• atom
• core_2_duo_sse4_1
• core_2_duo_ssse3
• pentium_4_sse3
• pentium_m
• pentium_4
• haswell
• broadwell
• skylake

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

718



Clause Definition

• skylake_avx512
• knl
• knm

vectorlength(n) / simdlen(n) (for omp declare
simd)

Where n is a vector length that is a power of 2, no
greater than 32.

The simdlen clause tells the compiler that each
routine invocation at the call site should execute
the computation equivalent to n times the scalar
function execution. When omitted the compiler
selects the vector length automatically depending
on the routine return value, parameters, and/or the
processor clause. When multiple vector variants are
called from one vectorization context (for example,
two different functions called from the same vector
loop), explicit use of identical simdlen values are
advised to achieve good performance.

linear(list_item[, list_item...]), where
list_item is one of:

• param[:step]
• val(param[:step])
• ref(param[:step])
• uval(param[:step])

The linear clause tells the compiler that for each
consecutive invocation of the routine in a serial
execution, the value of param is incremented by
step, where param is a formal parameter of the
specified function or the C++ keyword this. The
linear clause can be used on parameters that are
either scalar (non-arrays and of non-structured
types), pointers, or C++ references. step is a
compile-time integer constant expression, which
defaults to 1 if omitted.

If more than one step is specified for a particular
parameter, a compile-time error occurs.

Multiple linear clauses will be merged as a union.

The meaning of each variant of the clause is as
follows:

• linear(param[:step]): For parameters that
are not C++ references: the clause tells the
compiler that on each iteration of the loop from
which the routine is called the value of the
parameter will be incremented by step. The
clause can also be used for C++ references for
backward compatibility, but it is not
recommended.

• linear(val(param[:step])): For parameters
that are C++ references: the clause tells the
compiler that on each iteration of the loop from
which the routine is called the referenced value
of the parameter will be incremented by step.

• linear(uval(param[:step])): For C++
references: means the same as linear(val()). It
differs from linear(val()) so if linear(val()) a

Optimization and Programming   

719



Clause Definition

vector of references is passed to vector variant
of the routine but in case of linear(uval()) only
one reference is passed (and thus linear(uval())
is better to use in terms of performance).

• linear(ref(param[:step])) :For C++
references: means that the reference itself is
linear, i.e. the referenced values (that form a
vector for calculations) are located sequentially,
like in array with the distance between elements
equal to step.

uniform(param [, param,]…) Where param is a formal parameter of the specified
function or the C++ keyword this.

The uniform clause tells the compiler that the
values of the specified arguments can be broadcast
to all iterations as a performance optimization. It is
often useful in generating more favorable vector
memory references. An acknowledgment of a
uniform clause may allow broadcast operations to
be hoisted out of the caller loop. Evaluate carefully
the performance implications. Multiple uniform
clauses are merged as a union.

mask / nomask The mask and nomask clauses tell the compiler to
generate only masked or unmasked (respectively)
vector variants of the routine. When omitted, both
masked and unmasked variants are generated. The
masked variant is used when the routine is called
conditionally.

inbranch / notinbranch The inbranch and notinbranch clauses are used
with #pragma omp declare simd. The inbranch
clause works the same as the mask clause above
and the notinbranch clause works the same as
the nomask clause above.

Write the code inside your function using existing C/C++ syntax and relevant built-in functions (see the
section on __intel_simd_lane() below).

Usage of Vector Function Specifications
You may define several vector variants for one routine with each variant reflecting a possible usage of the
routine. Encountering a call, the compiler matches vector variants with actual parameter kinds and chooses
the best match. Matching is done by priorities. In other words, if an actual parameter is the loop invariant
and the uniform clause was specified for the corresponding formal parameter, then the variant with the
uniform clause has a higher priority. Linear specifications have the following order, from high priority to low:
linear(uval()), linear(), linear(val()), linear(ref()). Consider the following example loops with
the calls to the same routine.

// routine prototype
#pragma omp declare simd                           // universal but slowest definition matches 
the use in all three loops
#pragma omp declare simd linear(in1) linear(ref(in2)) uniform(mul) // matches the use in the 

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

720



first loop
#pragma omp declare simd linear(ref(in2))                            // matches the use in the 
second and the third loops
#pragma omp declare simd linear(ref(in2)) linear(mul)              // matches the use in the 
second loop
#pragma omp declare simd linear(val(in2:2))                          // matches the use in the 
third loop
extern int func(int* in1, int& in2, int mul);

int *a, *b, mul, *c;
int *ndx, nn;
...
// loop examples
   for (int i = 0; i < nn; i++) {
       c[i] = func(a + i, *(b + i), mul); // in the loop, the first parameter is changed 
linearly, 
                                          // the second reference is changed linearly too
                                          // the third parameter is not changed
   }

   for (int i = 0; i < nn; i++) {
       c[i] = func(&a[ndx[i]], b[i], i + 1); // the value of the first parameter is 
unpredictable,
                                             // the second reference is changed linearly
                                             // the third parameter is changed linearly
   }

   #pragma omp simd
   for (int i = 0; i < nn; i++) {
       int k = i * 2;  // during vectorization, private variables are transformed into arrays: k-
>k_vec[vector_length]
       c[i] = func(&a[ndx[i]], k, b[i]); // the value of the first parameter is unpredictable,
                                         // the second reference and value can be considered 
linear
                                         // the third parameter has unpredictable value
                                         // (the #pragma simd linear(val(in2:2))) will be chosen 
from the two matching variants)
  }

SIMD-enabled Functions and C++
You should use SIMD-enabled functions in modern C++ with caution: C++ imposes strict requirements on
compilation and execution environments that may not compose well with semantically-rich language
extensions such as SIMD-enabled functions. There are three key aspects of C++ that interrelate with SIMD-
enabled functions concept: exception handling, dynamic polymorphism, and the C++ type system.

SIMD-enabled Functions and Exception Handling
Exceptions are currently not supported in SIMD contexts: exceptions cannot be thrown and/or caught in
SIMD loops and SIMD-enabled functions. Therefore, all SIMD-enabled functions are considered noexcept in
C++11 terms. This affects not only short vector variants of a function, but its original scalar routine as well.
This is enforced when the function is compiled: it is checked against throw construct and against function
calls throwing exceptions. It is also enforced when the SIMD-enabled function call is compiled.

Optimization and Programming   

721



SIMD-enabled Functions and Dynamic Polymorphism
Vector attributes can be applied to virtual functions of classes with some limitations during polymorphic
virtual function calls. The syntax of vector declarations is the same as for regular SIMD-enabled class
methods: attach vector declarations as described above to the method declarations inside the class
declaration.

Vector function attributes for virtual methods are inherited. If a vector attribute is specified for an overriding
virtual function, it must match that of the overridden function. Even if the virtual method implementation is
overridden in a derived class the vector declarations are inherited and applied. A set of vector variants is
produced for the override according to vector variants set on parent. This rule also applies when the parent
does not have any vector variants. If a virtual method is introduced as non-SIMD-enabled (no vector
declarations supplied), it cannot become SIMD-enabled in the derived class even if the derived class contains
its own implementation of the virtual method.

Matching vector variants for a virtual method is done by the declared (static) type of an object for which the
method is called. The actual (dynamic) type of an object may either coincide with the static type or be
inherited from it.

Unlike regular function calls which transfer control to one target function, the call target of a virtual function
depends on the dynamic type of the object for which the method is called and accomplished indirectly via the
virtual function table of a class. In a single SIMD chunk, the virtual method may be invoked for objects of
multiple classes, for example, elements of a polymorphic collection. This requires multiple calls to different
targets within a single SIMD chunk. This works as follows:

1. If a SIMD-enabled virtual function call is matched to a variant with a uniform this parameter, multiple
calls are not needed. The compiler makes an indirect call to the matched vector variant of a virtual
method of the object's dynamic class.

2. If a SIMD-enabled virtual function call is matched to a variant with a non-uniform this parameter, all
objects in a SIMD chunk may still share virtual method implementation. This is checked and a single,
indirect call to the matched vector variant of the target virtual method implementation is invoked.

3. Otherwise, lanes sharing virtual call targets are masked-in and a masked vector variant corresponding
to the match is invoked in a loop for each unique virtual call target. If a masked variant is not provided
for matching a vector variant and a this parameter is not declared uniform, the match will be rejected.

The following example illustrates SIMD-enabled virtual functions:

struct Base {
#pragma omp declare simd
#pragma omp declare simd uniform(this)
   virtual int process(int);
};

struct Child1 : Base {
   // int process(int); is inherited
};

struct Child11 : Child1 {
  int process(int); // Overrides implementation, inherits vector declarations
};

struct Child2 : Base {
  int process(int); // Overrides implementation, inherits vector declarations
};

int main() {
    int arr[100];
    Base* c2 = new Child2();
    Base* objs[100];
    int res = 0;

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

722



// SIMD-enabled virtual function call for uniform object
#pragma omp simd reduction(+:res)
    for (int i = 0; i < 100; i++) {
      res += c2->process(arr[i]);  // Variant with uniform this is matched 
                                   // call to vector variant of 
                                   // Child2::process() is invoked
   }

// Initialize polymorphic array of objects
    for (int i = 0; i < 100; i++) {
       if (i % 16 < 4) objs[i] = new Base();
       else if (i % 16 < 8) objs[i] = new Child1();
       else if (i % 12 < 12) objs[i] = new Child11();
       else objs[i] = new Child2();
   }

// SIMD-enabled virtual function call for non-uniform objects
#pragma omp simd reduction(+:res) simdlen(8)
    for (int i = 0; i < 100; i++) {
       res += objs[i]->process(arr[i]);  // Variant with non-uniform this is
                                         // matched 
       // Base and Child1 share the same 'process' implementation, so call
       // targets for each even chunk [i*16:i*16+7] are the same even though
       // this pointers are different for all elements of objs[] array.
         
       // Odd chunks [i*16+8:i*16+15] consist of objects of classes Child11
       // and Child2 and so require calls to their respective implementations 
       // of process() virtual functions. Masked vector variant for 
       // Child11::process() is called with mask 0b00001111 (lower lanes of a 
       // chunk) and masked vector variant for Child2::process() is called
       // with mask 0b11110000 (upper lanes of a chunk).
   }

   return res;
}

The following are limitations to SIMD-enabled virtual function support:

• Multiple inheritance, including virtual inheritance, is not supported for classes having SIMD-enabled virtual
methods. This is because calls to virtual functions in multiple inheritance cases may be done through
special functions called thunks, which adjust the 'this' pointer and/or virtual function table pointer. The
current implementation doesn't support thunks for SIMD-enabled virtual calls because in this case thunks
should themselves become SIMD-enabled functions that are not implemented.

• It is not possible to get the address of a SIMD-enabled virtual method. Support of SIMD-enabled virtual
functions would require additional information, so their binary representation is different. Such cases will
not be handled properly by code expecting a regular pointer to the virtual member.

SIMD-enabled Functions and the C++ Type System
Vector attributes are attributes in the C++11 sense and so are not part of a functional type of SIMD-enabled
functions. Vector attributes are bound to the function itself, an instance of a functional type. This has the
following implications:

• Template instantiations having SIMD-enabled functions as template parameters won't catch vector
attributes, so it is impossible to preserve vector attributes in function wrapper templates like std::bind
which add indirection. This indirection may sometimes be optimized away by compiler and the resulting
direct call will have all vector attributes associated.

Optimization and Programming   

723



• There is no way to overload or specialize templates by vector attributes.
• There is no way to write functional traits to capture vector attributes for the sake of template

metaprogramming.

The example below depicts various situations where this situation may be observed:

template <int f(int)>   // Function value template – captures exact function
                        // not a function type
int caller1(int x[100]) {
   int res = 0;
#pragma omp simd reduction(+:res)
   for (int i = 0; i < 100; i++) {
      res += f(x[i]);   // Exact function put here upon instantiation
   }
   return res;
}

template <typename F>  // Generic functional type template – captures 
                       // object type for functors or entire functional type 
                       // for functions. If vector attributes were part of 
                       // a functional type they might be captured and applied
                       // but currently they are not.
int caller2(F f, int x[100]) {
   int res = 0;
#pragma omp simd reduction(+:res)
   for (int i = 0; i < 100; i++) {
      res += f(x[i]);  // Will call matching function 'f' indirectly
                       // Will call matching f.operator() directly
   }
   return res;
}

template <typename RET, typename ARG>  // Type-decomposing template
                                       // captures argument and return types.
                                       // Vector attributes would be lost 
                                       // even if they were part of a 
                                       // functional type.
int caller3(RET (*f)(ARG), int x[100]) {
   int res = 0;
#pragma omp simd reduction(+:res)
   for (int i = 0; i < 100; i++) {
      res += f(x[i]);  // Will call matching function 'f' indirectly
   }
   return res;
}

#pragma omp declare simd 
int function(int x); // SIMD-enabled function
int nv_function(int x);                 // Regular scalar function

struct functor {                        // Functor class with
#pragma omp declare simd                      // SIMD-enabled operator()
   int operator()(int x);
};

int arr[100];

int main() {

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

724



   int res;
#pragma noinline
   res = caller1<function>(arr); // This will be instantiated for 
                                 // function() and call short vector variant
#pragma noinline
   res += caller1<nv_function>(arr); // This will be separately instantiated 
                                     // for nv_function()
#pragma noinline
   res += caller2(function, arr); // This will be instantiated for
                                  // int(*)(int) type and will call scalar
                                  // function() indirectly
#pragma noinline
   res += caller2(nv_function, arr); // This will call the same
                                     // instantiation as above on nv_function

#pragma noinline
   res += caller2(functor(), arr); // This will be instantiated for
                                   // functor type and will call short vector
                                   // variant of functor::operator()
#pragma noinline
   res += caller3(function, arr); // This will be instantiated for
                                  // <int, int> types and will call scalar
                                  // function() indirectly
#pragma noinline
   res += caller3(nv_function, arr); // This will call the same
                                     // instantiation as above on nv_function
   return res;
}

NOTE If calls to caller1, caller2 and caller3 are inlined, the compiler is able to replace indirect
calls by direct calls in all cases. In this case caller2(function, arr) and caller3(function,
arr) both call short vector variants of a function as result of the usual replacement of direct calls to
function() by matching short vector variants in the SIMD loop.

Invoke a SIMD-enabled Function with Parallel Context
Typically, the invocation of a SIMD-enabled function provides arrays wherever scalar arguments are specified
as formal parameters.

The following two invocations will give instruction-level parallelism by having the compiler issue special
vector instructions.

a[:] = ef_add(b[:],c[:]);    //operates on the whole extent of the arrays a, b, c
a[0:n:s] = ef_add(b[0:n:s],c[0:n:s]); //use the full array notation construct to also specify n 
as an extend and s as a stride

NOTE The array notation syntax, as well as calling the SIMD-enabled function from the regular for
loop, results in invoking the short vector function in each iteration and using the vector parallelism but
the invocation is done in a serial loop, without using multiple cores.
Use of array notation syntax and SIMD-enabled functions in a regular for loop results in invoking the
short vector function in each iteration and using the vector parallelism, but the invocation is done in a
serial loop without using multiple cores.

Optimization and Programming   

725



Use the __intel_simd_lane() Built-in Function
When called from within a vectorized loop, the __intel_simd_lane() built-in function will return a number
between 0 and vectorlength - 1 that reflects the current "lane id" within the SIMD vector.
__intel_simd_lane() will return zero if the loop is not vectorized. Calling __intel_simd_lane() outside
of an explicit vector programming construct is discouraged. It may prevent auto-vectorization and such a call
often results in the function returning zero instead of a value between 0 and vectorlength-1.

To see how __intel_simd_lane() can be used, consider the following example:

void accumulate(float *a, float *b, float *c, d){
  *a+=sin(d);
  *b+=cos(d);
  *c+=log(d);
}

for (i=low; i<high; i++){
    accumulate(&suma, &sumb, &sumc, d[i]);
}

The gather-scatter type memory addressing caused by the references to arrays A, B, and C in the SIMD-
enabled function accumulate() will significantly hurt performance making the whole conversion useless. To
avoid this penalty, you may use the __intel_simd_lane() built-in function as follows:

#pragma omp declare simd uniform(a,b,c) aligned(a,b,c)
void accumulate(float *a, float *b, float *c, float d){
// No need to take “loop index”. No need to know VL.
  a[__intel_simd_lane()]+=sin(d);
  b[__intel_simd_lane()]+=cos(d);
  c[__intel_simd_lane()]+=log(d);
}

#define VL 16 // actual SIMD code may use vectorlength of 4 but it's okay.
float a[VL] = {0.0f};
float b[VL] = {0.0f};
float c[VL] = {0.0f};
#pragma omp simd for simdlen(VL)
for (i=low; i<high; i++){
    // If low is known to be zero at compile time, “i & (VL-1)”
    // would accomplish what __intel_simd_lane() is intended for,
    // but only on the caller side.
    accumulate(a, b, c, d[i]);
}
for(i=0;i<VL;i++){
    suma += a[i];
    sumb += b[i];
    sumc += c[i];
}

With the use of __intel_simd_lane(), the references to the arrays in accumulate() will have unit-stride.

Limitations

The following language constructs are not allowed within SIMD-enabled functions:

• The GOTO statement.
• The switch statement with 16 or more case statements.
• Operations on classes and structs (other than member selection).
• Any OpenMP construct.

See Also
User-Mandated or SIMD Vectorization

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

726



Function Annotations and the SIMD Directive for Vectorization
SIMD-Enabled Function Pointers

SIMD-enabled Function Pointers
SIMD-enabled functions (formerly called elemental functions) are a general language construct to express a
data parallel algorithm. A SIMD-enabled function is written as a regular C/C++ function, and the algorithm
within describes the operation on one element, using scalar syntax. The function can then be called as a
regular C/C++ function to operate on a single element or it can be called in a data parallel context to operate
on many elements.

In some cases it is desirable to have a pointer for SIMD-enabled functions, but without special effort, the
vector nature of a function will be lost: function pointers will point to the scalar function and there will be no
way to call the short vector variants existing for this scalar function.

In order to support indirect calls to vector variants of SIMD-enabled functions, SIMD-enabled function
pointers were introduced. A SIMD-enabled function pointer is a special kind of pointer incompatible with a
regular function pointer. They refer to an entire set of short vector variants as well as the scalar function.
This incompatibility incurs the risk of inappropriate misuse, especially in C++ code. Therefore vector function
pointer support is disabled by default.

How SIMD-enabled Function Pointers Work
When you write a SIMD-enabled function, the compiler generates short vector variants of the function that
you requested, which can perform your function's operation on multiple arguments in a single invocation. The
short vector variants may be able to perform multiple operations as fast as the regular implementation
performs just one such operation by utilizing the vector instruction set architecture (ISA) in the CPU. When a
call to SIMD-enabled function occurs in a SIMD loop or another SIMD-enabled function, the compiler replaces
the scalar call with the best fit short vector variant of the function among those available.

Indirect SIMD-enabled function calls are handled similarly, but the set of available variants should be
associated with the function pointer variable, not the target function, because actual call targets are
unknown at the indirect call. That means all SIMD-enabled functions to be referenced by a SIMD-enabled
function pointer should have a set of variants that match the set of variants declared for the pointer.

Declare a SIMD-enabled Function Pointer Variable
In order for the compiler to generate a pointer to a SIMD-enabled function, you need to provide an indication
in your code.

Linux

Use the __attribute__((vector (clauses))) attribute, as follows:

__attribute__((vector (clauses))) return_type (*function_pointer_name) (parameters)
Alternately, you can use OpenMP #pragma omp declare simd, which requires the [q or Q]openmp or
[q or Q]openmp-simd compiler option.

Windows

Use the __declspec(vector (clauses)) attribute, as follows:

__declspec(vector (clauses)) return_type (*function_pointer_name) (parameters)
The clauses are described in the previous topic on SIMD-enabled functions.

Usage of Vector Function Attributes on Pointers
You may associate several vector attributes with one SIMD-enabled function pointer which reflects all the
variants available for the target functions to be called through the pointer. The attributes usually reflect a
possible use of the function pointer in the loops. Encountering an indirect call, the compiler matches the

Optimization and Programming   

727



vector variants declared on the function pointer with the actual parameter kinds and chooses the best match.
Matching is done exactly the same way as with direct calls (see the previous topic on SIMD-enabled
functions). Consider the following example of the declaration of vector function pointers and loops with
indirect calls.

// pointer declaration
#pragma omp declare simd                           // universal but slowest definition matches 
the use in all three loops
#pragma omp declare simd linear(in1) linear(ref(in2)) uniform(mul)   // matches the use in the 
first loop
#pragma omp declare simd linear(ref(in2))                            // matches the use in the 
second and the third loops
#pragma omp declare simd linear(ref(in2)) linear(mul)                // matches the use in the 
second loop
#pragma omp declare simd linear(val(in2:2))                          // matches the use in the 
third loop
int (*func)(int* in1, int& in2, int mul);

int *a, *b, mul, *c;
int *ndx, nn;
...
// loop examples
   for (int i = 0; i < nn; i++) {
       c[i] = func(a + i, *(b + i), mul); // in the loop, the first parameter is changed 
linearly, 
                                          // the second reference is changed linearly too
                                          // the third parameter is not changed
   }

   for (int i = 0; i < nn; i++) {
       c[i] = func(&a[ndx[i]], b[i], i + 1); // the value of the first parameter is 
unpredictable,
                                             // the second reference is changed linearly
                                             // the third parameter is changed linearly
   }

   #pragma omp simd
   for (int i = 0; i < nn; i++) {
       int k = i * 2;  // during vectorization, private variables are transformed into arrays: k-
>k_vec[vector_length]
       c[i] = func(&a[ndx[i]], k, b[i]); // the value of the first parameter is unpredictable,
                                         // the second reference and value can be considered 
linear
                                         // the third parameter has unpredictable value
                                         // (the __declspec(vector(linear(val(in2:2)))) will be 
chosen from the two matching variants)
   }

Before any use in a call, the function pointer should be assigned either the address of a function or another
function pointer. Just as with function pointers, vector function pointers should be compatible at assignment
and initialization. The compatibility rules are described below.

Vector Function Pointer Compatibility
Pointer assignment compatibility is defined as following:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

728



1. If a SIMD-enabled function pointer is assigned the address of a function, the function should be
compatible with the pointer in the usual C/C++ sense, it should be SIMD-enabled, and the set of vector
variants declared for the function should be a superset of those declared for the pointer. This includes
initializations and passing addresses of SIMD-enabled functions as parameters.

2. If a SIMD-enabled function pointer is assigned another function pointer, the source pointer should be
compatible with the destination function pointer in the general C/C++ sense, it should be SIMD-
enabled, and the set of vector variants declared for the source pointer should be exactly the same as
those declared for destination pointer. This includes initializations and passing SIMD-enabled function
pointers as parameters.

3. If a regular (non-SIMD-enabled) function pointer is assigned the address of a SIMD-enabled function,
the address of a scalar function is assigned. Vector variants cannot be called through the pointer and it
cannot be reinterpreted as or converted into a SIMD-enabled function pointer as discussed in rule 2.

4. If a regular (non-SIMD-enabled) function pointer is assigned a SIMD-enabled function pointer matching
in the C/C++ sense, the implicit dynamic casting of the right-hand side of the assignment (RHS) is
performed by extracting the address of a scalar function and this address is assigned. Vector variants
cannot be called through these pointers and it cannot be reinterpreted as or converted into a SIMD-
enabled function pointer as discussed in rule 2.

NOTE
SIMD-enabled function pointers and regular function pointers are binary-incompatible and handled
differently. Mixing them may lead to severe unpredictable results. The compiler does its best to check
compatibility where it is allowed by C/C++ language standards, but in certain cases it cannot check,
such as passing function pointers to undeclared functions or as variable arguments. It is best to refrain
from using SIMD-enabled function pointers in these contexts. Additional complexities with respect to
the C++ type system are described in the SIMD-enabled Function Pointers and the C++ Type System
section below.

A SIMD-enabled function pointer may be assigned to a scalar function pointer with a cast as described
in rule 4 above, but a SIMD-enabled function pointer cannot refer to a scalar function pointer.

// pointer declarations
#pragma omp declare simd
int (*ptr1)(int*, int);
#pragma omp declare simd
int (*ptr1a)(int*, int);

#pragma omp declare simd
#pragma omp declare simd linear(a)
typedef int (*fptr_t2)(int* a, int b);

typedef int (*fptr_t3)(int*, int);

fptr_t2 ptr2, ptr2a;
fptr_t3 ptr3;

// function declarations
#pragma omp declare simd
int func1(int* x, int b);

#pragma omp declare simd
#pragma omp declare simd linear(x)
int func2(int* x, int b);

#pragma omp declare simd
#pragma omp declare simd linear(x)

Optimization and Programming   

729



int func3(float* x, int b);

//--------------------------------------
  // allowed assignments
  ptr1 = func1;  // same prototype and vector spec
  ptr2 = func2;  // same prototype and vector spec
  ptr1a = ptr1;  // same prototype and vector spec
  ptr1a = func2; // same prototype vector spec on function includes all vector spec on pointer

  ptr3 = func1; // scalar pointer with same prototype - use scalar func1
  ptr3 = func2; // scalar pointer with same prototype - use scalar func2
  ptr3 = ptr1;  // scalar pointer with same prototype - implicit conversion from vector to 
scalar pointer
  ptr3 = ptr2;  // scalar pointer with same prototype - implicit conversion from vector to 
scalar pointer

  // disallowed assignments
  ptr2 = func1; // vector spec on function does not have all specs on pointer
  ptr2 = func3; // prototype mismatch although vector spec matched
  ptr1 = func3; // prototype mismatch although vector spec matched
  ptr3 = func3; // prototype mismatch
  ptr1 = ptr2;  // pointers should have the same vector spec
  ptr2 = ptr3;  // pointers should have the same vector spec

Call Sequence
Unlike regular function calls, which transfer control to a target function, the call target of an indirect call
depends on the dynamic content of the function pointer. In a loop, call targets may be different on different
iterations of a vectorized loop or on different lanes of a SIMD-enabled function executing the call. When
vectorized, such an indirect call may involve multiple calls to different targets within a single SIMD chunk.
This works as follows:

1. If the vector function pointer is uniform (refer to the OpenMP specification) or if it can be determined to
be uniform by the compiler, then multiple calls are not needed. The compiler makes a single indirect call
to a matched vector variant accessible by the pointer.

2. If the vector function pointer is not known to be uniform at compile time, all values of the pointer in a
SIMD chunk may still be the same. This is checked at run time and a single indirect call to a matched
vector variant is invoked.

3. Otherwise, lanes sharing the same function pointer value (call target) are masked-in and a masked
vector variant corresponding to the matched one is invoked in the loop for each unique call target. If
the masked variant is not provided for the matching vector variant and the function pointer is not
proven to be uniform by compiler the match will be rejected and the compiler may serialize the call, or
in other words, generate several scalar calls.

// pointer typedefs
#pragma omp declare simd
typedef int (*fptr_t1)(int*, int);

// function declarations
#pragma omp declare simd
int func1(int* x, int b);

// uses of vector function pointers
fptr_t1 *fptr_array;   // array of vector function pointers
void foo(int N, int *x, int y){
  fptr_t1 ptr1 = func1;
#pragma omp simd
  for (int i = 0; i < N; i++) {

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

730



    ptr1(x+i, y);  // ptr1 is uniform by OpenMP rule.
    fptr_t1 ptr1a = ptr1;
    ptr1a(x+i, y); // compiler can prove ptr1a is uniform.
    fptr_t1 ptr1b = fptr_array[i];
    ptr1b(x+i,y);  // ptr1b may or may not be uniform.
  }
}

SIMD-enabled Function Pointers and the C++ Type System
Use caution when using SIMD-enabled function pointers in modern C++: C++ imposes strict requirements
on compilation and execution environments which may not compose well with semantically-rich language
extensions such as SIMD-enabled function pointers. Vector specifications on SIMD-enabled function pointers
are attributes in C++11 sense and so are not part of a pointer type even though they make that pointer
binary incompatible with another pointer of the same type but without the attribute. Vector specifications are
not bound to a pointer type, but instead are bound to the variable or function argument (which is an instance
of a pointer type) itself. For a given function pointer, the type of the pointer is the same with or without
SIMD-enabled function pointer decoration. This has the following important implications:

• Vector attributes put on a function argument are not reflected in C++ name mangling, so the functions
differ only in the vector attributes of a functional pointer argument (or lack thereof) will have the same
name and will be treated the same by the C++ linker. This may result in a parameter of incorrect
vectorness (having the vector attribute or not) being passed into the function. In some cases there is no
way for the compiler to detect this situation, so you're strongly encouraged to distinctly name functions
having SIMD-enabled function pointers as parameters.

• The incorrect interpretation of function pointers is extremely dangerous because it may lead to the
execution of unwanted code or non-code. To identify these situations the compiler issues the following
warning if a vector function pointer is used as a C++ function parameter: Warning #3757: this use of a
vector function type is not fully supported. If you are sure that no ambiguity is possible—for example, the
function accepting the vector function pointer has a distinct name and is fully declared before all uses—
you may ignore this warning. Otherwise, ensure that no ambiguity is possible.

• Template instantiations having SIMD-enabled pointer types as template parameters won't catch vector
attributes. The template will be instantiated a parameter matching the non-SIMD-enabled pointer type. All
variables, class members, and function arguments bound to the template argument type will be regular
function pointers. The use of such templates with a SIMD-enabled function pointer as a template function
parameter, template class method parameter, or RHS of template class member assignment will lead to a
dynamic cast to the non-SIMD-enabled function pointer and loss of vectorness.

• There is no way to overload or achieve template specialization by the vector attributes of a functional
pointer

• There is no way to write functional traits to capture vector attributes for the sake of template
metaprogramming.

// pointer typedefs and pointer declarations
typedef int
(*fptr_t)(int*, int);

#pragma omp declare simd
typedef int (*fptr_t1)(int*, int);

#pragma omp declare simd
#pragma omp declare simd linear(x)
typedef int (*fptr_t2)(int* a, int b);

fptr_t ptr
fptr_t1 ptr1
fptr_t2 ptr2

Optimization and Programming   

731



// function prototype that only differs in SIMD-enabled function decoration
// All these will have identical mangled names.
void foo(fptr_t);
void foo(fptr_t1);
void foo(fptr_t2);

// template instantiation
template <typename T>
void bar(T);
…
  bar(fptr);          // bar<fptr_t>
  bar(fptr1);         // bar<fptr_t>
  bar(fptr2);         // bar<fptr_t>

Indirect Invocation of a SIMD-enabled Function with Parallel Context
Typically, the invocation of a SIMD-enabled function directly or indirectly provides arrays wherever scalar
arguments are specified as formal parameters.

The following invocations will give instruction-level parallelism by having the compiler issue special vector
instructions.

#pragma omp declare simd
float (**vf_ptr)(float, float);

//operates on the whole extent of the arrays a, b, c
a[:] = vf_ptr[:] (b[:],c[:]);    

// use the full array notation construct to also specify n 
// as an extend and s as a stride
a[0:n:s] = vf_ptr[0:n:s] (b[0:n:s],c[0:n:s]); 

NOTE The array notation syntax, as well as calling the SIMD-enabled function from the regular for
loop, results in invoking the short vector variant in each iteration and utilizing the vector parallelism
but the invocation is done in a serial loop, without utilizing multiple cores.

See Also
User-mandated or SIMD Vectorization
Function Annotations and the SIMD Directive for Vectorization
SIMD-enabled functions

Vectorize a Loop Using the _Simd Keyword
In this section we introduce the _Simd keyword, which provides an alternative to the simd pragma. Just like
the simd pragma, the _Simd keyword modifies a serial for loop for vectorization. The syntax is as follows:

_Simd [_Safelen(constant-expression)][_Reduction (reduction-identifier : list)] 
The _Simd keyword and any clauses should come after the for keyword as in this example:

for _Simd (int i=0; i<10; i++){
  // loop body
}

Differences between the simd pragma and _Simd keyword:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

732



• Omission of the private and lastprivate clauses of the simd pragma construct because C and C++
already have variable-scoping rules that allow a programmer to cleanly declare a private variable within
the scope of a loop iteration

• The linear clause is omitted because the ability to increment multiple variables makes it unnecessary.
See the following example:

float add_floats(float *a, float *b, int n){
  int i=0;
  int j=0;
  float sum=0;

  for _Simd _Reduction(+:sum) (i=0; i<n; i++, j+=2){
    a[i] = a[i] + b[j];
    sum += a[i];
  } 
  return sum;
}

To ensure that your loop is vectorized keep the following in mind:

• The countable loop for the _Simd keyword has to conform to the for-loop style of an OpenMP* canonical
loop form except that multiple variables may be incremented in the incr-expr (See the OpenMP*
specification at www.openmp.org).

• The loop control variable must be a signed integer type.
• The vector values should be signed 8-, 16-, 32-, or 64-bit integers, single or double-precision floating

point numbers, or single or double-precision complex numbers.
• You cannot use any control constructs to jump into or out of a SIMD loop. That includes the break,

return, goto, and throw constructs.
• A SIMD loop may contain another loop (for, while, do-while) in it, but goto out of such inner loops is

not supported. You may use break and continue with the inner loop.
• A SIMD loop performs memory references unconditionally. Therefore, all address computations must

result in valid memory addresses, even though such locations may not be accessed if the loop is executed
sequentially

See Also
User-mandated or SIMD Vectorization

Function Annotations and the SIMD Directive for Vectorization
This topic presents specific C++ language features that better help to vectorize code.

NOTE
The SIMD vectorization feature is available for both Intel® microprocessors and non-Intel
microprocessors. Vectorization may call library routines that can result in additional performance gain
on Intel® microprocessors than on non-Intel microprocessors.

The __declspec(align(n)) declaration enables you to overcome hardware alignment constraints. The
auto-vectorization hints address the stylistic issues due to lexical scope, data dependency, and ambiguity
resolution. The SIMD feature's pragma allows you to enforce vectorization of loops.

You can use the __declspec(vector)__attribute__(vector) and the
__declspec(vector[clauses])__attribute__(vector(clauses))declarations to vectorize user-defined
functions and loops. For SIMD usage, the vector function is called from a loop that is being vectorized.

The C/C++ extensions for Array Notations map operations can be defined to provide general data parallel
semantics, where you do not express the implementation strategy. You can write the same operation
regardless of the size of the problem. The implementation uses the construct by combining SIMD, loops and
tasking to implement the operation. With these semantics, you can choose more elaborate programming and
express a single dimensional operation at two levels. You can use both task constructs and array operations
to force a preferred parallel and vector execution.

Optimization and Programming   

733



The usage model of the vector declaration takes a small section of code generated for the function
( vectorlength ) of the array and exploits SIMD parallelism. The implementation of task parallelism is
done at the call site.

The following table summarizes the language features that help vectorize your code:

Language Feature Description

__declspec(align(n)) Directs the compiler to align the variable to an n-
byte boundary. Address of the variable is address
mod n=0.

__declspec(align(n,off)) Directs the compiler to align the variable to an n-
byte boundary with offset off within each n-byte
boundary. Address of the variable is address mod
n=off.

__declspec(vector) (Windows)

__attribute__(vector) (Linux)

Combines with the map operation at the call site to
provide the data parallel semantics. When multiple
instances of the vector declaration are invoked in a
parallel context, the execution order among them is
not sequenced.

__declspec(vector[clauses]) (Windows)

__attribute__(vector(clauses)) (Linux

Combines with the map operation at the call site to
provide the data parallel semantics with the
following values for clauses:

• processor clause: processor(cpuid)
• vector length clause: vectorlength(n)
• linear clause: linear(param1:step1 [,

param2:step2]…)
• uniform clause: uniform(param [, param,]…)
• mask clause: [no]mask

When multiple instances of the vector declaration
are invoked in a parallel context, the execution
order among them is not sequenced.

restrict Permits the disambiguator flexibility in alias
assumptions, which enables more vectorization.

__declspec(vector_variant(clauses))
(Windows)

__attribute__(vector_variant(clauses))
(Linux)

Provides the ability to vectorize user-defined
functions and loops. The clauses are as follows:

• implements clause (required): implements
(function declarator) [, simd-clauses])

•

simd-clauses (optional): one or more of the
clauses allowed for the vector attribute

__assume_aligned(a,n) Instructs the compiler to assume that array a is
aligned on an n-byte boundary; used in cases
where the compiler has failed to obtain alignment
information.

__assume(cond) Instructs the compiler to assume that the
represented condition is true where the keyword
appears. Typically used for conveying properties
that the compiler can take advantage of for
generating more efficient code, such as alignment
information.

The following table summarizes the auto-vectorization hints that help vectorize your code:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

734



Hint Description

#pragma ivdep Instructs the compiler to ignore assumed vector
dependencies.

#pragma vector
{aligned|unaligned|always|temporal|
nontemporal}

Specifies how to vectorize the loop and indicates
that efficiency heuristics should be ignored. Using
the assert keyword with the vector {always}
pragma generates an error-level assertion message
if the compiler efficiency heuristics indicate that the
loop cannot be vectorized. Use #pragma ivdep! to
ignore the assumed dependencies.

#pragma novector Specifies that the loop should never be vectorized.

NOTE
Some pragmas are available for both Intel® microprocessors and non-Intel microprocessors, but may
perform additional optimizations for Intel® microprocessors than for non-Intel microprocessors.

The following table summarizes the user-mandated pragmas that help vectorize your code:

User-Mandated Pragma Description

#pragma simd Enforces vectorization of loops.

omp simd Transforms the loop into a loop that will be executed
concurrently using SIMD instructions.

See Also
__declspec(align) declaration

ivdep pragma
vector pragma
SIMD-enabled functions
User-mandated or SIMD Vectorization

Explicit SIMD SYCL Extension
oneAPI provides an Explicit SIMD SYCL extension
(ESIMD) for lower-level Intel GPU programming.

ESIMD provides APIs that are similar to Intel's GPU Instruction Set Architecture (ISA), but it enables you to
write explicitly vectorized device code. This explicit enabling gives you more control over the generated code
and allows you to depend less on compiler optimizations.

The specification, API reference, and working code examples are available on GitHub.

NOTE Some parts of this extension are under active development and the APIs in the
sycl::ext::intel::experimental::esimd package are subject to change. The restrictions are
specified below.

Optimization and Programming   

735

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_intel_esimd/sycl_ext_intel_esimd.md
https://intel.github.io/llvm-docs/doxygen/group__sycl__esimd.html
https://github.com/intel/llvm-test-suite/tree/intel/SYCL/ESIMD


ESIMD kernels and functions always require a subgroup size of one, which means that the compiler does not
provide vectorization across work items in a subgroup. Instead, you must explicitly express the vectorization
in your code. Below is an example that adds the elements of two arrays and writes the results to the third:

float *A = malloc_shared<float>(Size, q);
float *B = malloc_shared<float>(Size, q);
float *C = malloc_shared<float>(Size, q);

for (unsigned i = 0; i != Size; i++) {
  A[i] = B[i] = i;
}

q.submit([&](handler &cgh) {
  cgh.parallel_for<class Test>(
    Size / VL, [=](id<1> i)[[intel::sycl_explicit_simd]] {
    auto offset = i * VL;
    // pointer arithmetic, so offset is in elements:
    simd<float, VL> va(A + offset);
    simd<float, VL> vb(B + offset);
    simd<float, VL> vc = va + vb;
    vc.copy_to(C + offset);
  });
}).wait_and_throw();

In the example above, the lambda function passed to the parallel_for is marked with a special attribute:
[[intel::sycl_explicit_simd]]. This attribute tells the compiler that the kernel is ESIMD-based and
ESIMD APIs can be used inside it. Here the simd objects and copy_to intrinsics are used. They are available
only in the ESIMD extension.

Fully runnable code samples can be found on GitHub.

Compile and Run ESIMD Code
Code that uses the ESIMD extension can be compiled and run using the same commands as you would with
standard SYCL:

To compile using the open-source oneAPI DPC++ Compiler:

clang++ -fsycl vadd_usm.cpp
To compile using an Intel® oneAPI Toolkit:

dpcpp vadd_usm.cpp
To run on an Intel specific GPU device, through the oneAPI Level Zero (Level Zero) backend:

SYCL_DEVICE_FILTER=level_zero:gpu ./a.out
The resulting executable ($./a.out) can be run only on Intel GPU hardware, such as Intel® UHD Graphics
600 or later. The SYCL runtime automatically recognizes ESIMD kernels and dispatches their execution, so no
additional setup is needed. Both Linux and Windows platforms are supported, including OpenCL™ and Level
Zero backends.

ESIMD Emulator
The ESIMD emulator (ESIMD_EMULATOR) provides a feature to execute ESIMD kernels on the host CPU
without having an Intel GPU device in the system. It provides you with a way to debug ESIMD code in any
debugger. Since the emulator tries to model massively parallel GPU kernel execution on CPU hardware, some
differences in your execution profile may happen. Take this into account when debugging. You can redirect
execution to the ESIMD emulator by setting an environment variable, no program recompilation is needed.
When running a kernel via the emulator, the SYCL runtime sees the emulator as a normal GPU device
(example, an is_gpu() test will return true for it).

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

736

https://github.com/intel/llvm-test-suite/blob/intel/SYCL/ESIMD/vadd_usm.cpp


Due to the specifics of ESIMD programming model, a standard SYCL host device cannot execute ESIMD
kernels and needs supporting libraries to emulate barriers and GPU execution threads. It is impractical for
the host part of a SYCL ESIMD app to include or link to all the necessary infrastructure components when
there is no ESIMD code, or if debugging is not wanted. It is inconvenient or not possible for you to recompile
the app with a switch to execute the ESIMD part on a CPU. The environment variable plus a separate back-
end solves both problems.

The ESIMD emulator includes these components:

• The ESIMD emulator plugin, which is a SYCL runtime back-end similar to OpenCL™ or Level Zero.
• Host implementations of low-level ESIMD intrinsics, for example __esimd_scatter_scaled.
• The supporting infrastructure linked dynamically to the plugin, for example the libCM library.

ESIMD Emulator Requirements

The ESIMD emulator backend uses a CM_EMU library for emulating GPUs using software multi-threading. The
library is provided as separate pre-installed library in host machine, or built as part of the open-source
oneAPI DPC++ Compiler. The required version for CM_EMU is 1.0.20 or later. To add the CM_EMU library as
part of oneAPI DPC++ Compiler for ESIMD emulator backend, build the library during ESIMD emulator plug-
in software module generation. Details on building CM_EMU library for ESIMD emulator, including required
packages are described in ESIMD CPU Emulation.

Command Line/Environment Variable Options

There are no special command line options or environment variables required for building and running ESIMD
kernels with the ESIMD emulator backend.

Running ESIMD Code in Emulation Mode

The compilation step for ESIMD kernels that are prepared for an ESIMD emulator backend is same as for
OpenCL and Level Zero backends. The fully runnable code sample, and other samples, used below can be
found on Github.

To compile using the open-source oneAPI DPC++ Compiler, use:

clang++ -fsycl vadd_usm.cpp
To compile using the Intel® oneAPI Toolkits, use:

 dpcpp vadd_usm.cpp
To run under emulation through the ESIMD emulator backend, use:

SYCL_DEVICE_FILTER=ext_intel_esimd_emulator:gpu ./a.out
Code Sample

# Get sources
git clone https://github.com/intel/llvm-test-suite
cd llvm-test-suite
mkdir build && cd build

# Configure for make utility with compiler tools available in $PATH
cmake \
 -DCMAKE_CXX_COMPILER=clang++ \
 -DTEST_SUITE_SUBDIRS=SYCL \
 -DSYCL_BE="ext_intel_esimd_emulator" \
 -DSYCL_TARGET_DEVICES="gpu" \
 ..

# Build and Run
make check

# Or, for Ninja utility

Optimization and Programming   

737

https://github.com/intel/cm-cpu-emulation#cm-emulation-project
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-esimd-cpu-emulation
https://github.com/intel/llvm-test-suite/tree/intel/SYCL/ESIMD


cmake -G Ninja \
 -DCMAKE_CXX_COMPILER=clang++ \
 -DTEST_SUITE_SUBDIRS=SYCL \
 -DSYCL_BE="ext_intel_esimd_emulator" \
 -DSYCL_TARGET_DEVICES="gpu" \
 ..

# Build and Run
ninja check

NOTE Only ESIMD kernels are tested with the code sample, due to the following limitations:

• The emulator is only available on Linux.
• The emulator has limitation on the number of threads used under Linux. As software multi-

threading is used for emulating hardware threads, the number of threads being launched for kernel
execution is limited by the max number of threads supported by a Linux host machine.

• The emulator supports only ESIMD kernels. Kernels written for SYCL cannot run with the
ESIMD_EMULATOR backend. Kernels containing both SYCL and ESIMD code cannot run with the
ESIMD_EMULATOR, unlike GPU backends like OpenCL™ or Level Zero.

• The emulator cannot run in parallel with a Host Device.

Restrictions
This section contains lists of the main restrictions that apply when using the ESIMD extension.

NOTE Some extensions are not enforced by the compiler, which may lead to undefined program
behavior.

• Features not supported with ESIMD:

• C and C++ standard libraries support.
• Device library extensions.
• A host device.

• Unsupported standard SYCL APIs:

• Local accessors. Local memory is allocated and accessed via explicit device-side APIs.
• 2D and 3D accessors.
• Constant accessors.
• sycl::accessor::get_pointer(). All memory accesses through an accessor are done via explicit

APIs. Example: sycl::ext::intel::esimd::block_store(acc, offset)
• Accessors with offsets and/or access range specified.
• sycl::sampler and sycl::stream classes.

• Other restrictions:

• Only Intel GPU devices are supported.
• Interoperability between regular SYCL and ESIMD kernels is not yet supported. It is not possible to

invoke an ESIMD kernel from SYCL kernel and vice versa.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

738

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/C-CXX-StandardLibrary.rst
https://github.com/intel/llvm/blob/sycl/sycl/doc/design/DeviceLibExtensions.rst


High-Level Optimization
High-level Optimizations (HLO) exploit the properties of source code constructs (for example, loops and
arrays) in applications developed in high-level programming languages. While the default optimization level,
option O2 , performs some high-level optimizations, specifying the O3 option provides the best chance for
performing loop transformations to optimize memory accesses.

NOTE
Loop optimizations may result in calls to library routines that can result in additional performance gain
on Intel® microprocessors than on non-Intel microprocessors. Additional HLO transformations may be
performed for Intel® microprocessors than for non-Intel microprocessors.

Within HLO, loop transformation techniques include:

• Loop Permutation or Interchange
• Loop Distribution
• Loop Fusion
• Loop Unrolling
• Data Prefetching
• Scalar Replacement
• Unroll and Jam
• Loop Blocking or Tiling
• Partial-Sum Optimization
• Predicate Optimization
• Loop Reversal
• Profile-Guided Loop Unrolling
• Loop Peeling
• Data Transformation: Malloc Combining and Memset Combining, Memory Layout Change
• Loop Rerolling
• Memset and Memcpy Recognition
• Statement Sinking for Creating Perfect Loopnests
• Multiversioning: Checks include Dependency of Memory References, and Trip Counts
• Loop Collapsing

Interprocedural Optimization
Interprocedural Optimization (IPO) is an automatic, multi-step process that allows the compiler to analyze
your code to determine where you can benefit from specific optimizations.

The compiler may apply the following optimizations:

• Address-taken analysis
• Array dimension padding
• Alias analysis
• Automatic array transposition
• Automatic memory pool formation
• C++ class hierarchy analysis
• Common block variable coalescing
• Common block splitting
• Constant propagation
• Dead call deletion
• Dead formal argument elimination
• Dead function elimination

High-Level Optimization   

739



• Formal parameter alignment analysis
• Forward substitution
• Indirect call conversion
• Inlining
• Mod/ref analysis
• Partial dead call elimination
• Passing arguments in registers to optimize calls and register usage
• Points-to analysis
• Routine key-attribute propagation
• Specialization
• Stack frame alignment
• Structure splitting and field reordering
• Symbol table data promotion
• Un-referenced variable removal
• Whole program analysis

IPO Compilation Models
IPO supports two compilation models - single-file compilation and multi-file compilation.

The compiler performs some single-file interprocedural optimization at the O2 default optimization level;
additionally the compiler may perform some inlining for the O1 optimization level, such as inlining functions
marked with inlining pragmas or attributes (GNU C and C++) and C++ class member functions with bodies
included in the class declaration.

Multi-file compilation uses the [Q]ipo option, and results in one or more mock object files rather than
normal object files. (See the Compilation section below for information about mock object files.) Additionally,
the compiler collects information from the individual source files that make up the program. Using this
information, the compiler performs optimizations across functions and procedures in different source files.

Compiling with IPO
As each source file is compiled with IPO, the compiler stores an intermediate representation (IR) of the
source code in a mock object file. The mock object files contain the IR instead of the normal object code.
Mock object files can be ten times or more larger than the size of normal object files.

During the IPO compilation phase only the mock object files are visible.

Linking with IPO
When you link with the [Q]ipo compiler option the compiler is invoked a final time. The compiler performs
IPO across all mock object files. The mock objects must be linked with the compiler or by using the Intel®
linking tools. While linking with IPO, the compiler and other linking tools compile mock object files as well as
invoke the real/true object files linkers provided on the user's platform.

Whole Program Analysis
The compiler supports a large number of IPO optimizations that can be applied or have its effectiveness
greatly increased when the whole program condition is satisfied.

During the analysis process, the compiler reads all Intermediate Representation (IR) in the mock file, object
files, and library files to determine if all references are resolved and whether or not a given symbol is defined
in a mock object file. Symbols that are included in the IR in a mock object file for both data and functions are
candidates for manipulation based on the results of whole program analysis.

There are two types of whole program analysis - object reader method and table method. Most optimizations
can be applied if either type of whole program analysis determines that the whole program conditions exists;
however, some optimizations require the results of the object reader method, and some optimizations require
the results of table method.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

740



Object reader method

In the object reader method, the object reader emulates the behavior of the native linker and attempts to
resolve the symbols in the application. If all symbols are resolved, the whole program condition is satisfied.
This type of whole program analysis is more likely to detect the whole program condition.

Table method

In the table method the compiler analyzes the mock object files and generates a call-graph.

The compiler contains detailed tables about all of the functions for all important language-specific libraries,
like libc. In this second method, the compiler constructs a call-graph for the application. The compiler then
compares the function table and application call-graph. For each unresolved function in the call-graph, the
compiler attempts to resolve the calls by finding an entry for each unresolved function in the compiler tables.
If the compiler can resolve the functions call, the whole program condition exists.

See Also
Inline Expansion of Functions

Interprocedural Optimization Options

ipo, Qipo

O

Use Interprocedural Optimization

Use Interprocedural Optimization
This topic discusses how to use IPO from the command line.

Compiling and Linking Using IPO
To enable IPO, you first compile each source file, then link the resulting source files.

Linux

1. Compile your source files with the ipo compiler option:

icpx -ipo -c a.cpp b.cpp c.cpp
The command produces a.o, b.o, and c.o object files.

Use the c compiler option to stop compilation after generating .o object files. The output files contain
compiler intermediate representation (IR) corresponding to the compiled source files.

2. Link the resulting files. The following example command will produce an executable named app:

icpx -ipo -o app a.o b.o c.o
The command invokes the compiler on the objects containing IR and creates a new list of objects to be
linked. Alternately, you can use the xild tool, with the appropriate linking options.

The separate compile and link commands from the previous steps can be combined into a single command,
for example:

icpx -ipo -o app a.cpp b.cpp c.cpp
The icpx command, shown in the examples, calls GCC ld to link the specified object files and produce the
executable application, which is specified by the -o option.

Windows

Optimization and Programming   

741



1. Compile your source files with the /Qipo compiler option:

icx /Qipo /c a.cpp b.cpp c.cpp
The command produces a.obj, b.obj, and c.obj object files.

Use the c compiler option to stop compilation after generating .obj files. The output files contain
compiler intermediate representation (IR) corresponding to the compiled source files.

2. Link the resulting files. The following example command will produce an executable named app:

icx /Qipo /Feapp a.obj b.obj c.obj
The command invokes the compiler on the objects containing IR and creates a new list of objects to be
linked. Alternately, you can use the xilink tool, with the appropriate linking options.

The separate compile and link commands from the previous steps can be combined into a single command,
for example:

icx /Qipo /Feapp a.cpp b.cpp c.cpp
The icx command, shown in the examples, calls link.exe to link the specified object files and produce the
executable application, which is specified by the /Fe option.

NOTE
Linux: Using icpx allows the compiler to use standard C++ libraries automatically; icx will not use the
standard C++ libraries automatically.

The Intel linking tools emulate the behavior of compiling at -O0 (Linux) and /Od (Windows) option.

If multiple file IPO is applied to a series of object files, no one which are mock object files, no multi-file
IPO is performed. The object files are simply linked with the linker.

See Also
c compiler option
o compiler option
Fe compiler option
ipo, Qipo compiler option
O compiler option

Performance and Large Program Considerations

IPO-related Performance Issues
There are some general optimization guidelines for using IPO that you should keep in mind:

• Using IPO on very large programs might trigger internal limits of other compiler optimization phases.
• Applications where the compiler does not have sufficient intermediate representation (IR) coverage to do

whole program analysis might not perform as well as those where IR information is complete.

In addition to these general guidelines, there are some practices to avoid while using IPO. The following list
summarizes the activities to avoid:

• Do not use the link phase of an IPO compilation using mock object files produced for your application by a
different compiler. Intel® compilers cannot inspect mock object files generated by other compilers for
optimization opportunities.

• Update make files to call the appropriate Intel linkers when using IPO from scripts. For Linux, replace all
instances of ld with xild; for Windows, replace all instances of link with xilink.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

742



IPO for Large Programs
In most cases, IPO generates a single true object file for the link-time compilation. This behavior is not
optimal for very large programs, perhaps even making it impossible to use [Q]ipo compiler option on the
application.

The compiler provides two methods to avoid this problem. The first method is an automatic size-based
heuristic, which causes the compiler to generate multiple true object files for large link-time compilations.
The second method is to manually instruct the compiler to perform multi-object IPO.

• Use the [Q]ipoN compiler option and pass an integer value in the place of N.

Regardless of the method used, it is best to use the compiler defaults first and examine the results. If the
defaults do not provide the desired results then experiment with generating a different number of object
files.

Using [Q]ipoN to Create Multiple Object Files
If you specify [Q]ipo0, which is the same as not specifying a value, the compiler uses heuristics to
determine whether to create one or more object files based on the expected size of the application. The
compiler generates one object file for small applications, and two or more object files for large applications. If
you specify any value greater than 0, the compiler generates that number of object files, unless the value
you pass a value that exceeds the number of source files. In that case, the compiler creates one object file
for each source file then stops generating object files. The generated object files follow OS-specific naming
conventions.

The following example commands demonstrate how to use [Q]ipo2 option to compile large programs.

Linux

dpcpp -ipo2 -c a.cpp b.cpp
The resulting object files are ipo_out.o, ipo_out1.o, and ipo_out2.o.

Windows

dpcpp-cl /Qipo2 /c a.cpp b.cpp
The resulting object files are ipo_out.obj, ipo_out1.obj, and ipo_out2.obj.

Link the resulting object files as shown in Use Interprocedural Optimization.

Understanding Code Layout and Multi-Object IPO
One of the optimizations performed during an IPO compilation is code layout. The analysis performed by the
compiler during multi-file IPO determines a layout order for all of the routines for which it has intermediate
representation (IR) information. For a multi-object IPO compilation, the compiler must tell the linker about
the desired order.

The compiler first puts each routine in a named text section that varies depending on the operating system:

Linux

The first routine is placed in .text00001, the second is placed in .text00002, and so on.

Windows

The first routine is placed in .text$00001, the second is placed in .text$00002, and so on.

See Also
O compiler option
ipo, Qipo compiler option

Optimization and Programming   

743



Create a Library from IPO Objects
Libraries are often created using a library manager such as xiar for Linux or xilib for Windows. Given a list
of objects, the library manager will insert the objects into a named library to be used in subsequent link
steps.

Linux
Use xiar to create a library from a list of objects. For example the following command creates a library
named user.a containing the a.o and b.o objects:

xiar cru user.a a.o b.o
Using xiar is the same as specifying xild -lib.

Windows
Use xilib or xilink -lib to create libraries of IPO mock object files and link them on the command line.

For example:

1. Assume that you create three mock object files using a command similar to:

icx /c /Qipo a.cpp b.cpp c.cpp
2. Further assume a.obj contains the main subprogram. Create a library with a command similar to:

xilib -out:main.lib b.obj c.obj
or

xilink -lib -out:main.lib b.obj c.obj
3. Link the library and the main program object file with a command similar to:

xilink -out:result.exe a.obj main.lib

See Also
static compiler option

Inline Expansion of Functions
Inline function expansion does not require that the applications meet the criteria for whole program analysis
normally required by IPO; so this optimization is one of the most important optimizations done in
Interprocedural Optimization (IPO). For function calls that the compiler believes are frequently executed, the
compiler often decides to replace the instructions of the call with code for the function itself.

In the compiler, inline function expansion is performed on relatively small user functions more often than on
functions that are relatively large. This optimization improves application performance by performing the
following:

• Removing the need to set up parameters for a function call
• Eliminating the function call branch
• Propagating constants

Function inlining can improve execution time by removing the runtime overhead of function calls; however,
function inlining can increase code size, code complexity, and compile times. In general, when you instruct
the compiler to perform function inlining, the compiler can examine the source code in a much larger
context, and the compiler can find more opportunities to apply optimizations.

Specifying the [Q]ipo compiler option, multi-file IPO, causes the compiler to perform inline function
expansion for calls to procedures defined in other files.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

744



Caution
Using the [Q]ipo (Windows*) options can, in some cases, significantly increase compile time and
code size.

The compiler does a certain amount of inlining at the default level.

Selecting Routines for Inlining
The compiler attempts to select the routines whose inline expansions provide the greatest benefit to program
performance. The selection is done using default heuristics.

When you use PGO with [Q]ipo, the compiler uses the following guidelines for applying heuristics:

• The default heuristic focuses on the most frequently executed call sites, based on the profile information
gathered for the program.

• The default heuristic always inlines very small functions that meet the minimum inline criteria.

Using IPO with PGO

Combining IPO and PGO typically produces better results than using IPO alone. PGO produces dynamic
profiling information that can usually provide better optimization opportunities than the static profiling
information used in IPO.

The compiler uses characteristics of the source code to estimate which function calls are executed most
frequently. It applies these estimates to the PGO-based guidelines described above. The estimation of
frequency, based on static characteristics of the source, is not always accurate.

Inline Expansion of Library Functions
By default, the compiler automatically inlines (expands) a number of standard and math library functions at
the point of the call to that function, which usually results in faster computation.

Many routines in the libirc, libm, or the svml library are more highly optimized for Intel microprocessors
than for non-Intel microprocessors.

The -fno-builtin (Linux*) or the /Qno-builtin-<name> and /Oi- (Windows*) options disable inlining for
intrinsic functions and disable the by-name recognition support of intrinsic functions and the resulting
optimizations. The /Qno-builtin-<name> option provides the ability to disable inlining for intrinsic
functions, fine-tuning the functionality of the /Oi- option, which disables almost all intrinsic functions when
used. Use these options if you redefine standard library routines with your own version and your version of
the routine has the same name as the standard library routine.

Inlining and Function Preemption (Linux)
You must specify fpic to use function preemption. By default the compiler does not generate the position-
independent code needed for preemption.

Compiler Directed Inline Expansion of Functions
Without directions from the user, the compiler attempts to estimate what functions should be inlined to
optimize application performance.

The following options are useful in situations where an application can benefit from user function inlining but
does not need specific direction about inlining limits.

Option Effect

fno-builtin (Linux*) or Oi- (Windows) Disables inlining for intrinsic functions. Disables the
by-name recognition support of intrinsic functions
and the resulting optimizations. Use this option if

Optimization and Programming   

745



Option Effect

you redefine standard library routines with your
own version and your version of the routine has the
same name as the standard library routine.

By default, the compiler automatically inlines
(expands) a number of standard and math library
functions at the point of the call to that function,
which usually results in faster computation.

Many routines in the libirc, libm, or svml library
are more highly optimized for Intel microprocessors
than for non-Intel microprocessors.

setting inline-debug-info for the debug option Indicates that the source position information for an
inlined function should be retained, rather than replaced,
by that of the call which is being inlined.

Developer Directed Inline Expansion of User Functions
In addition to the options that support compiler directed inline expansion of user functions, the compiler also
provides compiler options and pragmas that allow you to more precisely direct when and if inline function
expansion should occur.

The compiler measures the relative size of a routine in an abstract value of intermediate language units,
which is approximately equivalent to the number of instructions that will be generated. The compiler uses the
intermediate language unit estimates to classify routines and functions as relatively small, medium, or large
functions. The compiler then uses the estimates to determine when to inline a function; if the minimum
criteria for inlining is met and all other things are equal, the compiler has an affinity for inlining relatively
small functions and not inlining relative large functions.

Typically, the compiler targets functions that have been marked for inlining based on the following:

• Inlining keywords: Tells the compiler to inline the specified function. For example, __inline,
__forceinline.

• Procedure-specific inlining pragmas: Tells the compiler to inline calls within the targeted procedure if
it is legal to do so. For example,#pragma inline or #pragma forceinline .

• GCC function attributes for inlining: Tells the compiler to inline the function even when no
optimization level is specified. For example, __attribute__((always_inline)).

If your code hits an inlining limit, the compiler issues a warning at the highest warning level. The warning
specifies which of the inlining limits have been hit, and the compiler option and/or pragmas needed to get a
full report.

Messages in the report refer directly to the command line options or pragmas that can be used to overcome
the limits.

See Also
fbuiltin, Oi compiler option
fpic compiler option
ipo, Qipo compiler option
debug (Linux* OS) compiler option
debug (Windows* OS) compiler option
Zi, Z7, Zl compiler option

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

746



Methods to Optimize Code Size
This section provides some guidance on how to achieve smaller object and smaller executable size when
using the optimizing features of Intel compilers.

There are two compiler options that are designed to prioritize code size over performance:

Option Result Notes

Os Favors size over speed This option enables optimizations
that do not increase code size; it
produces smaller code size than
option O2.

Option Os disables some
optimizations that may increase
code size for a small speed
benefit.

O1 Minimizes code size Compared to option Os, option
O1 disables even more
optimizations that are generally
known to increase code size.
Specifying option O1 implies
option Os.

As an intermediate step in
reducing code size, you can
replace option O3 with option O2
before specifying option O1.

Option O1 may improve
performance for applications with
very large code size, many
branches, and execution time not
dominated by code within loops.

For more information about compiler options mentioned in this topic, see their full descriptions in the 
Compiler Reference.

The rest of this topic briefly discusses other methods that may help you further improve code size even when
compared to the default behaviors of options Os and O1.

Things to remember:

• Some of these methods may already be applied by default when options Os and O1 are specified. All the
methods mentioned in this topic can be applied at higher optimization levels.

• Some of the options referred to in this topic will not necessarily cause code size reduction, and they may
provide varying results (good, bad, or neutral) based on the characteristics of the target code. Still, these
are the recommended things to try to see if they cause your binaries to become smaller while maintaining
acceptable performance.

Disable or Decrease the Amount of Inlining
Inlining replaces a call to a function with the body of the function. This lets the compiler optimize the code
for the inlined function in the context of its caller, usually yielding more specialized and better performing
code. This also removes the overhead of calling the function at runtime.

However, replacing a call to a function by the code for that function usually increases code size. The code size
increase can be substantial. To eliminate this code size increase, at the cost of the potential performance
improvement, inlining can be disabled.

Methods to Optimize Code Size   

747



• Advantage: Disabling or reducing this optimization can reduce code size.
• Disadvantage: Performance is likely to be sacrificed by disabling or reducing inlining especially for

applications with many small functions.

Use options:

Linux

fno-inline
Windows

Ob0

Strip Symbols from Your Binaries
You can specify a compiler option to omit debugging and symbol information from the executable without
sacrificing its operability.

• Advantage: This method noticeably reduces the size of the binary.
• Disadvantage: It may be very difficult to debug a stripped application.

Use options:

Linux

Wl, --strip-all
Windows

None

Dynamically Link Intel-provided Libraries
By default, some of the Intel support and performance libraries are linked statically into an executable. As a
result, the library codes are linked into every executable being built. This means that codes are duplicated.

It may be more profitable to link them dynamically.

• Advantage: Performance of the resulting executable is normally not significantly affected. Library codes
that are otherwise linked in statically into every executable will not contribute to the code size of each
executable with this option. These codes will be shared between all executables using them, and they will
be available independent of those executables.

• Disadvantage: The libraries on which the resulting executable depends must be re-distributed with the
executable for it to work properly. When libraries are linked statically, only library content that is actually
used is linked into the executable. Dynamic libraries contain all the library content. Therefore, it may not
be beneficial to use this option if you only need to build and/or distribute a single executable. The
executable itself may be much smaller when linked dynamically, compared to a statically linked
executable. However, the total size of the executable plus shared libraries or DLLs may be much larger
than the size of the statically linked executable.

Use Options:

Linux

shared-intel
Windows

MD

NOTE Option MD affects all libraries, not only the Intel-provided ones.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

748



Exclude Unused Code and Data from the Executable
Programs often contain dead code or data that is not used during their execution. Even if no expensive
whole-program inter-procedural analysis is made at compile time to identify dead code, there are compiler
options you can specify to eliminate unused functions and data at link time.

This method is often referred to as function-level or data-level linking.

• Advantage: Only the code that is referenced remains in an executable. Dead functions and data are
stripped from the executable. For the options passed to the linker, they also enable the linker to reorder
the sections for other possible optimization.

• Disadvantage: The object codes may become slightly larger because each function or datum is put into a
separate section. The overhead is eliminated at the linking stage. This method requires linker support to
strip unused sections and may increase linking time.

Use Options:

Linux

-fdata-sections -ffunction-sections -Wl,--gc-sections
Windows

/Gw /Gy /link /OPT:REF

NOTE Option MD affects all libraries, not only the Intel-provided ones.

These options (from the use options example above) are passed to the linker:

Linux

Wl, --gc-sections
Windows

link /OPT:REF

Disable Recognition and Expansion of Intrinsic Functions
When recognized, intrinsic functions can get expanded inline or their faster implementation in a library may
be assumed and linked in. By default, Inline expansion of intrinsic functions is enabled.

In some cases, disabling this behavior may noticeably improve the size of the produced object or binary.

• Advantage: Both the size of the object files and the size of library codes brought into an executable can
be reduced.

• Disadvantage: This method can prevent various performance optimizations from happening. Slower
standard library implementation will be used. The size of the final executable can be increased in cases
when code pulled in statically from a library for an otherwise inlined intrinsic is large.

Use Options:

Linux

fno-builtin
Windows

Oi-
Additional information:

• This option is already the default if you specify option O1.
• For C++, you can specify Linux option nolib-inline to disable inline expansion of standard library or

intrinsic functions.

Optimization and Programming   

749



• Depending on code characteristics, this option can sometimes increase binary size.

Optimize Exception Handling Data
For SYCL, enabling and disabling of exception handling is supported for host compilation.

If a program requires support for exception handling, the compiler creates a special section containing
DWARF directives that are used by the Linux runtime to unwind and catch an exception.

This information is found in the .eh_frame section and may be shrunk using the compiler options listed
below.

• Advantage:

These options may shrink the size of the object or binary file by up to 15%, though the amount of the
reduction depends on the target platform. These options control whether unwind information is precise at
an instruction boundary or at a call boundary. For example, option fno-asynchronous-unwind-tables
can be used for programs that may only throw or catch exceptions.

• Disadvantage: Both options may change the program's behavior. Do not use option fno-exceptions for
programs that require standard C++ handling for objects of classes with destructors. Do not use option
fno-asynchronous-unwind-tables for functions compiled with option -fexceptions that contain calls
to other functions that might throw exceptions or for C++ functions that declare objects with destructors.

Use Options:

Linux

fno-exceptions or fno-asynchronous-unwind-tables
Windows

None

Read the compiler option descriptions, which explain what the defaults and behavior are for each target
platform.

Disable Loop Unrolling
Unrolling a loop increases the size of the loop proportionally to the unroll factor.

Disabling (or limiting) this optimization may help reduce code size at the expense of performance.

• Advantage: Code size is reduced.
• Disadvantage: Performance of otherwise unrolled loops may noticeably degrade because this limits other

possible loop optimizations.

Use Options:

Linux

unroll=0
Windows

Qunroll:0

NOTE This Windows option is not available for SYCL.

Additional information:

This option is already the default if you specify option Os or option O1.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

750



Disable Automatic Vectorization
The compiler finds possibilities to use SIMD (Intel® Streaming SIMD Extensions (Intel® SSE)/Intel® Advanced
Vector Extensions (Intel® AVX)) instructions to improve performance of applications. This optimization is
called automatic vectorization.

In most cases, this optimization involves transformation of loops and increases code size, in some cases
significantly.

Disabling this optimization may help reduce code size at the expense of performance.

• Advantage: Compile-time is also improved significantly.
• Disadvantage: Performance of otherwise vectorized loops may suffer significantly. If you care about the

performance of your application, you should use this option selectively to suppress vectorization on
everything except performance-critical parts.

Use Options:

Linux

no-vec
Windows

Qvec-
Additional information:

Depending on code characteristics, this option can sometimes increase binary size.

Avoid References to Compiler-specific Libraries
While compiler-specific libraries are intended to improve the performance of your application, they increase
the size of your binaries.

Certain compiler options may improve the code size.

• Advantage: The compiler will not assume the presence of compiler-specific libraries. It will generate only
calls that appear in the source code.

• Disadvantage: This method may sacrifice performance if the library codes were in hotspots. Also, because
we cannot assume any libraries, some compiler optimizations will be suppressed.

Use Options:

Linux

ffreestanding
Windows

Qfreestanding-

NOTE This Windows option is not available for SYCL.

Additional information:

• This option implies option fno-builtin. You can override that default by explicitly specifying option
fbuiltin.

• Depending on code characteristics, this option can sometimes increase binary size.

Optimization and Programming   

751



Use Interprocedural Optimization
Using interprocedural optimization (IPO) may reduce code size. It enables dead code elimination and
suppresses generation of code for functions that are always inlined or proven that they are never to be called
during execution.

• Advantage: Depending on the code characteristics, this optimization can reduce executable size and
improve performance.

• Disadvantage: Binary size can increase depending on code/application..

Use Options:

Linux

ipo
Windows

Qipo

NOTE This method is not recommended if you plan to ship object files as part of a final product.

Intel® oneAPI DPC++/C++ Compiler
Math Library
The Intel® oneAPI DPC++/C++ Compiler includes a mathematical software library containing highly
optimized and very accurate mathematical functions. These functions are commonly used in scientific or
graphic applications, as well as other programs that rely heavily on floating-point computations. To include
support for C99 _Complex data types, use the [Q]std=c99 compiler option.

Many routines in the Intel® oneAPI DPC++/C++ Compiler Math Library are more optimized for Intel®
microprocessors than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® oneAPI DPC++/C++ Compiler Math Library
functions.

NOTE
Intel's math.h header file is compatible with the GCC Math Library libm, but it does not cause the
GCC Math Library to be linked. The source can be built with gcc or icx. The header file for the math
library, mathimf.h, contains additional functions that are found only in the math library. The source
can only be built using the compiler and libraries.

The long double functions, such as expl or logl, in the math library are ABI incompatible with the
Microsoft libraries. The Intel compiler and libraries support the 80-bit long double data type (see the
description of the Qlong-double option). For maximum compatibility, use math.h or mathimf.h header
files along with the math library.

Compiler Math Libraries for Linux
The math library linked to an application depends on the compilation or linkage options specified.

Library Description

libimf.a Default static math library.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

752



Library Description

libimf.so Default shared math library.

NOTE The math libraries contain performance-optimized implementations for various Intel platforms.
By default, the best implementation for the underlying hardware is selected at runtime. The library
dispatch of multi-threaded code may lead to apparent data races, which may be detected by certain
software analysis tools. However, as long as the threads are running on cores with the same CPUID,
these data races are harmless and not a cause for concern.

Compiler Math Libraries for Windows
The math library linked to an application depends on the compilation or linkage options specified.

Library Option Description

libm.lib  Default static math library.

libmmt.lib /MT Multi-threaded static math library.

libmmd.lib /MD Dynamically linked math library.

libmmdd.lib /MDd Dynamically linked debug math library.

libmmds.lib  Static version compiled with /MD option.

oneAPI and OpenCL™ Considerations
Currently, oneAPI uses the OpenCL Specification to determine the ULP accuracy for OpenCL mathematical
functions. Details about their precision and accuracy, including tables for single and double precision
functions, are available from the Khronos OpenCL Specification's section, Relative Error as ULPs.

Mathematical functions have different accuracy levels on different devices. The OpenCL specification sets a
limit on the maximum ULP error (where applicable), but individual devices may provide a more accurate
implementation. If the OpenCL implementation is optimized for CPU usage, using the same code may not
work on a GPU device.

See Also
Math Function List 
Qlong-double compiler option
MD compiler option
MT compiler option
std, Qstd compiler option

Use the Intel® oneAPI DPC++/C++ Compiler Math Library
Many routines in the Intel® oneAPI DPC++/C++ Compiler Math Library are more optimized for Intel®
microprocessors than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® oneAPI DPC++/C++ Compiler Math Library
functions.

To use the Intel® oneAPI DPC++/C++ Compiler math library, include the header file, mathimf.h, in your
program. If the compiler is used for linking, then the math library is used by default.

Optimization and Programming   

753

https://www.khronos.org/registry/OpenCL/specs/2.2/html/OpenCL_C.html#relative-error-as-ulps


Use Real Functions
The following examples demonstrate how to use the math library with the compiler. After you compile this
example and run the program, the program will display the sine value of x.

Linux

// real_math.c
#include <stdio.h> 
#include <mathimf.h>

int main() {
 float fp32bits;
 double fp64bits;
 long double fp80bits;
 long double pi_by_four = 3.141592653589793238/4.0;

// pi/4 radians is about 45 degrees
 fp32bits = (float) pi_by_four; // float approximation to pi/4
 fp64bits = (double) pi_by_four; // double approximation to pi/4
 fp80bits = pi_by_four; // long double (extended) approximation to pi/4

// The sin(pi/4) is known to be 1/sqrt(2) or approximately .7071067 
 printf("When x = %8.8f, sinf(x) = %8.8f \n", fp32bits, sinf(fp32bits));
 printf("When x = %16.16f, sin(x) = %16.16f \n", fp64bits, sin(fp64bits));
 printf("When x = %20.20Lf, sinl(x) = %20.20Lf \n", fp80bits, sinl(fp80bits));

 return 0; 
}

Use the following command to compile the example code on Linux platforms:

icx real_math.c
Windows

// real_math.c 
#include <stdio.h> 
#include <mathimf.h>

int main() {
  float fp32bits;
  double fp64bits;

// /Qlong-double compiler option required because, without it, 
// long double types are mapped to doubles. 
  long double fp80bits;
  long double pi_by_four = 3.141592653589793238/4.0;

// pi/4 radians is about 45 degrees
  fp32bits = (float) pi_by_four;

// float approximation to pi/4
  fp64bits = (double) pi_by_four; 

// double approximation to pi/4
  fp80bits = pi_by_four;

// long double (extended) approximation to pi/4 
// The sin(pi/4) is known to be 1/sqrt(2) or approximately .7071067
  printf("When x = %8.8f, sinf(x) = %8.8f \n",

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

754



  fp32bits, sinf(fp32bits));

  printf("When x = %16.16f, sin(x) = %16.16f \n", 
  fp64bits, sin(fp64bits));

  printf("When x = %20.20f, sinl(x) = %20.20f \n", 
  (double) fp80bits, (double) sinl(fp80bits));

// printf() does not support the printing of long doubles 
// on Microsoft Windows, so fp80bits is cast to double in this example. 
  return 0; 
}

Since the real_math.c program includes the long double data type, use the /Qlong-double and /Qpc80
compiler options in the command line:

Use the following command to compile the example code on Windows platforms:

icx /Qlong-double /Qpc80 real_math.c 

Use Complex Functions
After you compile this example and run the program, you should get the following results:

When z = 1.0000000 + 0.7853982 i, cexpf(z) = 1.9221154 + 1.9221156 i
When z = 1.000000000000 + 0.785398163397 i, cexp(z) = 1.922115514080 + 1.922115514080 i
Linux and Windows

// complex_math.c
#include <stdio.h> 
#include <complex.h>

int main() {
  float _Complex c32in,c32out;
  double _Complex c64in,c64out;
  double pi_by_four= 3.141592653589793238/4.0;
  c64in = 1.0 + I pi_by_four;

// Create the double precision complex number 1 + (pi/4)  i 
// where I is the imaginary unit.
  c32in = (float _Complex) c64in;

// Create the float complex value from the double complex value.
  c64out = cexp(c64in);
  c32out = cexpf(c32in);

// Call the complex exponential, 
// cexp(z) = cexp(x+iy) = e^ (x + i y) = e^x  (cos(y) + i sin(y))
 printf("When z = %7.7f + %7.7f i, cexpf(z) = %7.7f + %7.7f i \n"
 ,crealf(c32in),cimagf(c32in),crealf(c32out),cimagf(c32out));
 printf("When z = %12.12f + %12.12f i, cexp(z) = %12.12f + %12.12f i \n"
 ,creal(c64in),cimag(c64in),creal(c64out),cimagf(c64out));

  return 0; 
}

Since this example program includes the _Complex data type, be sure to include the [Q]std=c99 compiler
option in the command line. For example:

Optimization and Programming   

755



Linux

icx -std=c99 complex_math.c
Windows

icx Qstd=c99 complex_math.c

NOTE_Complex data types are supported in C but not in C++ programs.

Exception Conditions
If you call a math function using argument(s) that may produce undefined results, an error number is
assigned to the system variable errno. Math function errors are usually domain errors or range errors.

Domain errors result from arguments that are outside the domain of the function. For example, acos is
defined only for arguments between -1 and +1 inclusive. Attempting to evaluate acos(-2) or acos(3)
results in a domain error, where the return value is QNaN.

Range errors occur when a mathematically valid argument results in a function value that exceeds the
range of representable values for the floating-point data type. Attempting to evaluate exp(1000) results in a
range error, where the return value is INF.

When domain or range error occurs, the following values are assigned to errno:

• domain error (EDOM): errno = 33
• range error (ERANGE): errno = 34
The following example shows how to read the errno value for an EDOM and ERANGE error.

// errno.c
#include <errno.h> 
#include <mathimf.h> 
#include <stdio.h> 

int main(void) { 
  double neg_one=-1.0;
  double zero=0.0; 

// The natural log of a negative number is considered a domain error - EDOM
  printf("log(%e) = %e and errno(EDOM) = %d \n",neg_one,log(neg_one),errno); 

// The natural log of zero is considered a range error - ERANGE
  printf("log(%e) = %e and errno(ERANGE) = %d \n",zero,log(zero),errno); 
}

The output of errno.c will look like this:

log(-1.000000e+00) = nan and errno(EDOM) = 33
log(0.000000e+00) = -inf and errno(ERANGE) = 34
For the math functions in this section, a corresponding value for errno is listed when applicable.

Other Considerations

Some math functions are inlined automatically by the compiler. The functions actually inlined may vary and
may depend on any vectorization or processor-specific compilation options used. You can disable automatic
inline expansion of all functions by compiling your program with the -fno-builtin option (Linux) or
the /Oi- option (Windows).

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

756



It is strongly recommended to use the default rounding mode (round-to-nearest-even) when calling math
library transcendental functions and compiling with default optimization or higher. Faster implementations—
in terms of latency and/or throughput— of these functions are validated under the default round-to-nearest-
even mode. Using other rounding modes may make results generated by these faster implementations less
accurate, or set unexpected floating-point status flags. This behavior may be avoided by using the
-fp-model strict option (Linux) or /fp: strict option (Windows). This option warns the compiler not to
assume default settings for the floating-point environment.

NOTE 64-bit decimal transcendental functions rely on binary double extended precision arithmetic.
To obtain accurate results, user applications that call 64-bit decimal transcendentals should ensure
that the x87 unit is operating in 80-bit precision (64-bit binary significands). In an environment where
the default x87 precision is not 80 bits, such as Windows, it can be set to 80 bits by compiling the
application source files with the /Qpc80 option.

A change of the default precision control or rounding mode may affect the results returned by some of the
mathematical functions.

The following are important compiler options when using certain data types in IA-32 and Intel® 64
architectures running Windows operating systems:

• /Qlong-double: Use this option when compiling programs that require support for the long double
data type (80-bit floating-point). Without this option, compilation will be successful, but long double
data types will be mapped to double data types.

• /Qstd=c99: Use this option when compiling programs that require support for _Complex data types.

See Also
fbuiltin, Oi compiler option
Overview: Tuning Performance 
Qlong-double compiler option
std, Qstd compiler option

Math Function List
Many routines in the Intel® oneAPI DPC++/C++ Compiler Math Library are more optimized for Intel®
microprocessors than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® oneAPI DPC++/C++ Compiler Math Library
functions.

The math functions are listed here by function type.

NOTE
FP16 Math Functions have the following requirements:

• Version 2021.4 or higher of the Intel® oneAPI DPC++/C++ Compiler.
• A next-generation Intel® Xeon® Scalable processor, code name Sapphire Rapids.

Function Type Name

Trigonometric Functions acos

acosd

acospi

Optimization and Programming   

757



Function Type Name

asin

asind

asinpi

atan

atan2

atan2pi

atand

atan2d

atand2

atanpi

cos

cosd

cospi

cot

cotd

sin

sincos

sincosd

sind

sinpi

tan

tand

tanpi

Hyperbolic Functions acosh

asinh

atanh

cosh

sinh

sinhcosh

tanh

Exponential Functions cbrt

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

758



Function Type Name

exp

exp10

exp2

expm1

frexp

hypot

invsqrt

ilogb

ldexp

log

log10

log1p

log2

logb

pow

pow2o3

pow3o2

powr

scalb

scalbln

scalbn

sqrt

Special Functions annuity

cdfnorm

cdfnorminv

compound

erf

erfcx

erfc

erfcinv

erfinv

Optimization and Programming   

759



Function Type Name

gamma

gamma_r

j0

j1

jn

lgamma

lgamma_r

tgamma

y0

y1

yn

Nearest Integer Functions ceil

floor

llrint

llround

lrint

lround

modf

nearbyint

rint

round

trunc

Remainder Functions fmod

remainder

remquo

Miscellaneous Functions copysign

fabs

fdim

finite

fma

fmax

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

760



Function Type Name

fmin

fpclassify

isfinite

isgreater

isgreaterequal

isinf

isless

islessequal

islessgreater

isnan

isnormal

isunordered

maxmag

minmag

nan

nextafter

nexttoward

signbit

significand

Complex Functions cabs

cacos

cacosh

carg

casin

casinh

catan

catanh

ccos

cexp

cexp2

cimag

Optimization and Programming   

761



Function Type Name

cis

clog

clog10

conj

ccosh

cpow

cproj

creal

csin

csinh

csqrt

ctan

ctanh

Trigonometric Functions
Many routines in the Intel® oneAPI DPC++/C++ Compiler Math Library are more optimized for Intel®
microprocessors than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® oneAPI DPC++/C++ Compiler Math Library
functions.

The math library supports the following trigonometric functions:

NOTE
FP16 Math Functions have the following requirements:

• Version 2021.4 or higher of the Intel® oneAPI DPC++/C++ Compiler.
• A next-generation Intel® Xeon® Scalable processor, code name Sapphire Rapids.

acos
Description: The acos function returns the principal value of the inverse cosine of x in the range [0, pi]
radians for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double acos(double x);
long double acosl(long double x);
float acosf(float x);
_Float16 acosf16(_Float16 x);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

762



acosd
Description: The acosd function returns the principal value of the inverse cosine of x in the range [0,180]
degrees for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double acosd(double x);
long double acosdl(long double x);
float acosdf(float x);
_Float16 acosdf16(_Float16 x);

acospi
Description: The acospi function returns the principal value of the inverse cosine of x, divided by pi, in the
range [0,1] for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double acospi(double x);
float acospif(float x);
_Float16 acospif16(_Float16 x);

asin
Description: The asin function returns the principal value of the inverse sine of x in the range [-pi/2,
+pi/2] radians for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double asin(double x);
long double asinl(long double x);
float asinf(float x);
_Float16 asinf16(_Float16 x);

asind
Description: The asind function returns the principal value of the inverse sine of x in the range [-90,90]
degrees for x in the interval [-1,1].

errno: EDOM, for |x| > 1

Calling interface:
double asind(double x);
long double asindl(long double x);
float asindf(float x);
_Float16 asindf16(_Float16 x);

asinpi
Description: The asinpi function returns the principal value of the inverse sine of x, divided by pi, in the
range [-1/2,1/2] degrees for x in the interval [-1,1].

errno: EDOM, for |x| > 1 divided by pi

Calling interface:
double asinpi(double x);

Optimization and Programming   

763



float asinpif(float x);
_Float16 asinpif16(_Float16 x);

atan
Description: The atan function returns the principal value of the inverse tangent of x in the range [-pi/2,
+pi/2] radians.

Calling interface:
double atan(double x);
long double atanl(long double x);
float atanf(float x);
_Float16 atanf16(_Float16 x);

atan2
Description: The atan2 function returns the principal value of the inverse tangent of y/x in the range [-pi,
+pi] radians.

errno: EDOM, for x = 0 and y = 0

Calling interface:
double atan2(double y, double x);
long double atan2l(long double y, long double x);
float atan2f(float y, float x);
_Float16 atan2f16(_Float16 y, _Float16 x);

atan2pi
Description: The atan2pi function returns the principal value of the inverse tangent of y/x, divided by pi,
in the range [-1, +1].

errno: EDOM, for x = 0 and y = 0

Calling interface:
double atan2pi(double y, double x);
float atan2pif(float y, float x);
_Float16 atan2pif16(_Float16 y, _Float16 x);

atand
Description: The atand function returns the principal value of the inverse tangent of x in the range [-90,90]
degrees.

Calling interface:
double atand(double x);
long double atandl(long double x);
float atandf(float x);
_Float16 atandf16(_Float16 x);

atan2d
Description: The atan2d function returns the principal value of the inverse tangent of y/x in the range
[-180, +180] degrees.

errno: EDOM, for x = 0 and y = 0.

Calling interface:
double atan2d(double x, double y);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

764



long double atan2dl(long double x, long double y);
float atan2df(float x, float y);
_Float16 atan2df16(_Float16 x, _Float16 y);

atand2
Description: The atand2 function returns the principal value of the inverse tangent of y/x in the range
[-180, +180] degrees.

errno: EDOM, for x = 0 and y = 0.

Calling interface:
double atand2(double x, double y);
long double atand2l(long double x, long double y);
float atand2f(float x, float y);
_Float16 atand2f16(_Float16 x, _Float16 y);

atanpi
Description: The atanpi function returns the principal value of the inverse tangent of x, divided by pi, in
the range [-1/2, +1/2].

Calling interface:
double atanpi(double x);
float atanpif(float x);
_Float16 atanpif16(_Float16 x);

cos
Description: The cos function returns the cosine of x measured in radians.

Calling interface:
double cos(double x);
long double cosl(long double x);
float cosf(float x);
_Float16 float cosf16(_Float16 x);

cosd
Description: The cosd function returns the cosine of x measured in degrees.

Calling interface:
double cosd(double x);
long double cosdl(long double x);
float cosdf(float x);
_Float16 cosdf16(_Float16 x);

cospi
Description: The cospi function returns the cosine of x multiplied by pi, cos(x*pi).

Calling interface:
double cospi(double x);
float cospif(float x);
_Float16 cospif16(_Float16);

Optimization and Programming   

765



cot
Description: The cot function returns the cotangent of x measured in radians.

errno: ERANGE, for overflow conditions at x = 0.

Calling interface:
double cot(double x);
long double cotl(long double x);
float cotf(float x);
_Float16 cotf16(_Float16 x);

cotd
Description: The cotd function returns the cotangent of x measured in degrees.

errno: ERANGE, for overflow conditions at x = 0.

Calling interface:
double cotd(double x);
long double cotdl(long double x);
float cotdf(float x);
_Float16 cotdf16(_Float16 x);

sin
Description: The sin function returns the sine of x measured in radians.

Calling interface:
double sin(double x);
long double sinl(long double x);
float sinf(float x);
_Float16 sinf16(_Float16 x);

sincos
Description: The sincos function returns both the sine and cosine of x measured in radians.

Calling interface:
void sincos(double x, double *sinval, double *cosval);
void sincosl(long double x, long double *sinval, long double *cosval);
void sincosf(float x, float *sinval, float *cosval);
void sincosf16(_Float16 x, _Float16 *sinval, _Float16 *cosval);

sincosd
Description: The sincosd function returns both the sine and cosine of x measured in degrees.

Calling interface:
void sincosd(double x, double *sinval, double *cosval);
void sincosdl(long double x, long double *sinval, long double *cosval);
void sincosdf(float x, float *sinval, float *cosval);
void sincosdf16(_Float16 x, _Float16 *sinval, _Float16 *cosval);

sind
Description: The sind function computes the sine of x measured in degrees.

Calling interface:
double sind(double x);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

766



long double sindl(long double x);
float sindf(float x);
_Float16 sindf16((_Float16 x);

sinpi
Description: The sinpi function returns the sine of x multiplied by pi, sin(x*pi).

Calling interface:
double sinpi(double x);
float sinpif(float x);
_Float16 sinpif16(_Float16 x);

tan
Description: The tan function returns the tangent of x measured in radians.

Calling interface:
double tan(double x);
long double tanl(long double x);
float tanf(float x);
_Float16 tanf16(_Float16 x);

tand
Description: The tand function returns the tangent of x measured in degrees.

errno: ERANGE, for overflow conditions

Calling interface:
double tand(double x);
long double tandl(long double x);
float tandf(float x);
_Float16 tandf16(_Float16 x);

tanpi
Description: The tanpi function returns the tangent of x multiplied by pi, tan(x*pi).

Calling interface:
double tanpi(double x);
float tanpif(float x);
_Float16 tanpif16(_Float16 x);

Hyperbolic Functions
Many routines in the Intel® oneAPI DPC++/C++ Compiler Math Library are more optimized for Intel®
microprocessors than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® oneAPI DPC++/C++ Compiler Math Library
functions.

The math library supports the following hyperbolic functions:

Optimization and Programming   

767



NOTE
FP16 Math Functions have the following requirements:

• Version 2021.4 or higher of the Intel® oneAPI DPC++/C++ Compiler.
• A next-generation Intel® Xeon® Scalable processor, code name Sapphire Rapids.

acosh
Description: The acosh function returns the inverse hyperbolic cosine of x.

errno: EDOM, for x < 1

Calling interface:
double acosh(double x);
long double acoshl(long double x);
float acoshf(float x);
_Float16 acoshf16(_Float16 x);

asinh
Description: The asinh function returns the inverse hyperbolic sine of x.

Calling interface:
double asinh(double x);
long double asinhl(long double x);
float asinhf(float x);
_Float16 asinhf16(_Float16 x);

atanh
Description: The atanh function returns the inverse hyperbolic tangent of x.

errno:

EDOM, for |x| > 1

ERANGE, for x = 1

Calling interface:
double atanh(double x);
long double atanhl(long double x);
float atanhf(float x);
_Float16 atanhf16(_Float16 x);

cosh
Description: The cosh function returns the hyperbolic cosine of x, (ex + e-x)/2.

errno: ERANGE, for overflow conditions

Calling interface:
double cosh(double x);
long double coshl(long double x);
float coshf(float x);
_Float16 coshf16(_Float16 x);

sinh
Description: The sinh function returns the hyperbolic sine of x, (ex - e-x)/2.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

768



errno: ERANGE, for overflow conditions

Calling interface:
double sinh(double x);
long double sinhl(long double x);
float sinhf(float x);
_Float16 sinhf16(_Float16 x);

sinhcosh
Description: The sinhcosh function returns both the hyperbolic sine and hyperbolic cosine of x.

errno: ERANGE, for overflow conditions

Calling interface:
void sinhcosh(double x, double *sinval, double *cosval);
void sinhcoshl(long double x, long double *sinval, long double *cosval);
void sinhcoshf(float x, float *sinval, float *cosval);
void sinhcoshf16(_Float16 x, _Float16 *sinval, _Float16 *cosval);

tanh
Description: The tanh function returns the hyperbolic tangent of x, (ex - e-x) / (ex + e-x).

Calling interface:
double tanh(double x);
long double tanhl(long double x);
float tanhf(float x);
_Float16 tanhf16(_Float16 x);

Exponential Functions
Many routines in the Intel® oneAPI DPC++/C++ Compiler Math Library are more optimized for Intel®
microprocessors than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® oneAPI DPC++/C++ Compiler Math Library
functions.

The math library supports the following exponential functions:

NOTE
FP16 Math Functions have the following requirements:

• Version 2021.4 or higher of the Intel® oneAPI DPC++/C++ Compiler.
• A next-generation Intel® Xeon® Scalable processor, code name Sapphire Rapids.

cbrt
Description: The cbrt function returns the cube root of x.

Calling interface:
double cbrt(double x);
long double cbrtl(long double x);
float cbrtf(float x);
_Float16 cbrtf16(_Float16 x);

Optimization and Programming   

769



exp
Description: The exp function returns e raised to the x power, ex.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double exp(double x);
long double expl(long double x);
float expf(float x);
_Float16 expf16(_Float16 x);

exp10
Description: The exp10 function returns 10 raised to the x power, 10x.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double exp10(double x);
long double exp10l(long double x);
float exp10f(float x);
_Float16 exp10f16(_Float16 x);

exp2
Description: The exp2 function returns 2 raised to the x power, 2x.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double exp2(double x);
long double exp2l(long double x);
float exp2f(float x);
_Float16 exp2f16(_Float16 x);

expm1
Description: The expm1 function returns e raised to the x power, minus 1, ex -1.

errno: ERANGE, for overflow conditions

Calling interface:
double expm1(double x);
long double expm1l(long double x);
float expm1f(float x);
_Float16 expm1f16(_Float16 x);

frexp
Description: The frexp function converts a floating-point number x into signed normalized fraction in [1/2,
1) multiplied by an integral power of two. The signed normalized fraction is returned, and the integer
exponent stored at location exp.

Calling interface:
double frexp(double x, int *exp);
long double frexpl(long double x, int *exp);
float frexpf(float x, int *exp);
_Float16 frexpf16(_Float16 x, int *exp);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

770



hypot
Description: The hypot function returns the square root of (x2 + y2).

errno: ERANGE, for overflow conditions

Calling interface:
double hypot(double x, double y);
long double hypotl(long double x, long double y);
float hypotf(float x, float y);
_Float16 hypotf16(_Float16 x, _Float16 y);

ilogb
Description: The ilogb function returns the exponent of x base two as a signed int value.

errno: ERANGE, for x = 0

Calling interface:
int ilogb(double x);
int ilogbl(long double x);
int ilogbf(float x);
int ilogbf16(_Float16 x);

invsqrt
Description: The invsqrt function returns the inverse square root.

Calling interface:
double invsqrt(double x);
long double invsqrtl(long double x);
float invsqrtf(float x);
_Float16 invsqrtf16(_Float16 x);

ldexp
Description: The ldexp function returns x*2exp, where exp is an integer value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double ldexp(double x, int exp);
long double ldexpl(long double x, int exp);
float ldexpf(float x, int exp);
_Float16 ldexpf16(_Float16 x, int exp);

log
Description: The log function returns the natural log of x, ln(x).

errno: EDOM, for x < 0
errno: ERANGE, for x = 0

Calling interface:
double log(double x);
long double logl(long double x);
float logf(float x);
_Float16 logf16(_Float16 x);

Optimization and Programming   

771



log10
Description: The log10 function returns the base-10 log of x, log10(x).

errno: EDOM, for x < 0
errno: ERANGE, for x = 0

Calling interface:
double log10(double x);
long double log10l(long double x);
float log10f(float x);
_Float16 log10f16(_Float16 x);

log1p
Description: The log1p function returns the natural log of (x+1), ln(x + 1).

errno: EDOM, for x < -1
errno: ERANGE, for x = -1

Calling interface:
double log1p(double x);
long double log1pl(long double x);
float log1pf(float x);
_Float16 log1pf16(_Float16 x);

log2
Description: The log2 function returns the base-2 log of x, log2(x).

errno: EDOM, for x < 0
errno: ERANGE, for x = 0

Calling interface:
double log2(double x);
long double log2l(long double x);
float log2f(float x);
_Float16 log2f16(_Float16 x);

logb
Description: The logb function returns the signed exponent of x.

errno: EDOM, for x = 0

Calling interface:
double logb(double x);
long double logbl(long double x);
float logbf(float x);
_Float16 logbf16(_Float16 x);

pow
Description: The pow function returns x raised to the power of y, xy.
errno: EDOM, for x = 0 and y < 0
errno: EDOM, for x < 0 and y is a non-integer
errno: ERANGE, for overflow and underflow conditions

Calling interface:
double pow(double x, double y);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

772



long double powl(double x, double y);
float powf(float x, float y);
_Float16 powf16(_Float16 x, _Float16 y);

pow2o3
Description: The pow2o3 function returns the cube root of x squared, cbrt(x2).

Calling interface:
double pow2o3(double x);
float pow2o3f(float x);
_Float16 pow2o3f16(_Float16 x);

pow3o2
Description: The pow3o2 function returns the square root of the cube of x, sqrt(x3).

errno: EDOM, for x < 0
errno: ERANGE, for overflow and underflow conditions

Calling interface:
double pow3o2(double x);
float pow3o2f(float x);
_Float16 pow3o2f16(_Float16 x);

powr
Description: The powr function returns x raised to the power of y, xy, where x ≥ 0.

errno: EDOM, for x < 0
errno: ERANGE, for overflow and underflow conditions

Calling interface:
double powr(double x, double y);
float powrf(float x, float y);
_Float16 powrf16(_Float16 x, _Float16 y);

scalb
Description: The scalb function returns x*2y, where y is a floating-point value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double scalb(double x, double y);
long double scalbl(long double x, long double y);
float scalbf(float x, float y);
_Float16 scalbf16(_Float16 x, _Float16 y);

scalbn
Description: The scalbn function returns x*2n, where n is an integer value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double scalbn(double x, int n);
long double scalbnl (long double x, int n);
float scalbnf(float x, int n);
_Float16 scalbnf16(_Float16 x, int n);

Optimization and Programming   

773



scalbln
Description: The scalbln function returns x*2n, where n is a long integer value.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double scalbln(double x, long int n);
long double scalblnl (long double x, long int n);
float scalblnf(float x, long int n);
_Float16 scalblnf16(_Float16 x, long int n);

sqrt
Description: The sqrt function returns the correctly rounded square root.

errno: EDOM, for x < 0

Calling interface:
double sqrt(double x);
long double sqrtl(long double x);
float sqrtf(float x);
_Float16 sqrtf16(_Float16 x);

Special Functions
Many routines in the Intel® oneAPI DPC++/C++ Compiler Math Library are more optimized for Intel®
microprocessors than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® oneAPI DPC++/C++ Compiler Math Library
functions.

The math library supports the following special functions:

NOTE
FP16 Math Functions have the following requirements:

• Version 2021.4 or higher of the Intel® oneAPI DPC++/C++ Compiler.
• A next-generation Intel® Xeon® Scalable processor, code name Sapphire Rapids.

annuity
Description: The annuity function computes the present value factor for an annuity, (1 - (1+x)(-y) ) /
x, where x is a rate and y is a period.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double annuity(double x, double y);
long double annuityl(long double x, long double y);
float annuityf(float x, float y);
_Float16 annuityf16(_Float16 x, _Float16 y);

cdfnorm
Description: The cdfnorm function returns the cumulative normal distribution function value.

Calling interface:
double cdfnorm(double x);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

774



float cdfnormf(float x);
_Float16 cdfnormf16 (_Float16 x);

cdfnorminv
Description: The cdfnorminv function returns the inverse cumulative normal distribution function value.

errno:
EDOM, for finite or infinite (x > 1) || (x < 0)
ERANGE, for x = 0 or x = 1
Calling interface:
double cdfnorminv(double x);
float cdfnorminvf (float x);
_Float16 cdfnorminvf16 (_Float16 x);

compound
Description: The compound function computes the compound interest factor, (1+x)y, where x is a rate and
y is a period.

errno: ERANGE, for underflow and overflow conditions

Calling interface:
double compound(double x, double y);
long double compoundl(long double x, long double y);
float compoundf(float x, float y);
_Float16 compoundf16(_Float16 x, _Float16 y);

erf
Description: The erf function returns the error function value.

Calling interface:
double erf(double x);
long double erfl(long double x);
float erff(float x);
_Float16 erff16(_Float16 x);

erfc
Description: The erfc function returns the complementary error function value.

errno: ERANGE, for underflow conditions

Calling interface:
double erfc(double x);
long double erfcl(long double x);
float erfcf(float x);
_Float16 erfcf16(_Float16 x);

erfcx
Description: The erfcx function returns the scaled complementary error function value.

errno: ERANGE, for overflow conditions

Calling interface:
double erfcx(double x);
float erfcxf(float x);

Optimization and Programming   

775



erfcinv
Description: The erfcinv function returns the value of the inverse complementary error function of x.

errno: EDOM, for finite or infinite (x > 2) || (x < 0)

Calling interface:
double erfcinv(double x);
float erfcinvf(float x);
_Float16 erfcinvf16(_Float16 x);

erfinv
Description: The erfinv function returns the value of the inverse error function of x.

errno: EDOM, for finite or infinite |x| > 1

Calling interface:
double erfinv(double x);
long double erfinvl(long double x);
float erfinvf(float x);
_Float16 erfinvf16(_Float16 x);

gamma
Description: The gamma function returns the value of the logarithm of the absolute value of gamma.

errno: ERANGE, for overflow conditions when x is a negative integer.

Calling interface:
double gamma(double x);
long double gammal(long double x);
float gammaf(float x);
_Float16 gammaf16(_Float16 x);

gamma_r
Description: The gamma_r function returns the value of the logarithm of the absolute value of gamma. The
sign of the gamma function is returned in the integer signgam.

Calling interface:
double gamma_r(double x, int *signgam);
long double gammal_r(long double x, int *signgam);
float gammaf_r(float x, int *signgam);
_Float16 gammaf16_r(_Float16 x, int *signgam);

j0
Description: Computes the Bessel function (of the first kind) of x with order 0.

Calling interface:
double j0(double x);
long double j0l(long double x);
float j0f(float x);
_Float16 j0f16(_Float16 x);

j1
Description: Computes the Bessel function (of the first kind) of x with order 1.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

776



Calling interface:
double j1(double x);
long double j1l(long double x);
float j1f(float x);
_Float16 j1f16(_Float16 x);

jn
Description: Computes the Bessel function (of the first kind) of x with order n.

Calling interface:
double jn(int n, double x);
long double jnl(int n, long double x);
float jnf(int n, float x);
_Float16 jnf16(int n, _Float16 x);

lgamma
Description: The lgamma function returns the value of the logarithm of the absolute value of gamma.

errno: ERANGE, for overflow conditions, x=0 or negative integers.

Calling interface:
double lgamma(double x);
long double lgammal(long double x);
float lgammaf(float x);
_Float16 lgammaf16(_Float16 x);

lgamma_r
Description: The lgamma_r function returns the value of the logarithm of the absolute value of gamma. The
sign of the gamma function is returned in the integer signgam.

errno: ERANGE, for overflow conditions, x=0 or negative integers.

Calling interface:
double lgamma_r(double x, int *signgam);
long double lgammal_r(long double x, int *signgam);
float lgammaf_r(float x, int *signgam);
_Float16 lgammaf16_r(_Float16 x, int *signgam);

tgamma
Description: The tgamma function computes the gamma function of x.

errno:

EDOM, for x=0 or negative integers.

ERANGE, for overflow conditions.

Calling interface:
double tgamma(double x);
long double tgammal(long double x);
float tgammaf(float x);
_Float16 tgammaf16(_Float16 x);

y0
Description: Computes the Bessel function (of the second kind) of x with order 0.

Optimization and Programming   

777



errno: EDOM, for x <= 0

Calling interface:
double y0(double x);
long double y0l(long double x);
float y0f(float x);
_Float16 y0f16(_Float16 x);

y1
Description: Computes the Bessel function (of the second kind) of x with order 1.

errno: EDOM, for x <= 0

Calling interface:
double y1(double x);
long double y1l(long double x);
float y1f(float x);
_Float16 y1f16(_Float16 x);

yn
Description: Computes the Bessel function (of the second kind) of x with order n.

errno: EDOM, for x <= 0

Calling interface:
double yn(int n, double x);
long double ynl(int n, long double x);
float ynf(int n, float x);
_Float16 ynf16(int n, _Float16 x);

Nearest Integer Functions
Many routines in the Intel® oneAPI DPC++/C++ Compiler Math Library are more optimized for Intel®
microprocessors than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® oneAPI DPC++/C++ Compiler Math Library
functions.

The math library supports the following nearest integer functions:

NOTE
FP16 Math Functions have the following requirements:

• Version 2021.4 or higher of the Intel® oneAPI DPC++/C++ Compiler.
• A next-generation Intel® Xeon® Scalable processor, code name Sapphire Rapids.

ceil
Description: The ceil function returns the smallest integral value not less than x as a floating-point
number.

Calling interface:
double ceil(double x);
long double ceill(long double x);
float ceilf(float x);
_Float16 ceilf16(_Float16 x);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

778



floor
Description: The floor function returns the largest integral value not greater than x as a floating-point
value.

Calling interface:
double floor(double x);
long double floorl(long double x);
float floorf(float x);
_Float16 floorf16(_Float16 x);

llrint
Description: The llrint function returns the rounded integer value (according to the current rounding
direction) as a long long int.

errno: ERANGE, for values too large

Calling interface:
long long int llrint(double x);
long long int llrintl(long double x);
long long int llrintf(float x);
long long int llrintf16(_Float16 x);

llround
Description: The llround function returns the rounded integer value as a long long int.

errno: ERANGE, for values too large

Calling interface:
long long int llround(double x);
long long int llroundl(long double x);
long long int llroundf(float x);
long long int llroundf16(_Float16 x);

lrint
Description: The lrint function returns the rounded integer value (according to the current rounding
direction) as a long int.

errno: ERANGE, for values too large

Calling interface:
long int lrint(double x);
long int lrintl(long double x);
long int lrintf(float x);
long int lrintf16(_Float16 x);

lround
Description: The lround function returns the rounded integer value as a long int. Halfway cases are
rounded away from zero.

errno: ERANGE, for values too large

Calling interface:
long int lround(double x);
long int lroundl(long double x);
long int lroundf(float x);

Optimization and Programming   

779



long int lroundf16(_Float16 x);

modf
Description: The modf function returns the value of the signed fractional part of x and stores the integral
part at *iptr as a floating-point number.

Calling interface:
double modf(double x, double *iptr);
long double modfl(long double x, long double *iptr);
float modff(float x, float *iptr);
_Float16 modff16(_Float16 x, _Float16 *iptr);

nearbyint
Description: The nearbyint function returns the rounded integral value as a floating-point number, using
the current rounding direction.

Calling interface:
double nearbyint(double x);
long double nearbyintl(long double x);
float nearbyintf(float x);
_Float16 nearbyintf16(_Float16 x);

rint
Description: The rint function returns the rounded integral value as a floating-point number, using the
current rounding direction.

Calling interface:
double rint(double x);
long double rintl(long double x);
float rintf(float x);
_Float16 rintf16(_Float16 x);

round
Description: The round function returns the nearest integral value as a floating-point number. Halfway
cases are rounded away from zero.

Calling interface:
double round(double x);
long double roundl(long double x);
float roundf(float x);
_Float16 roundf16(_Float16 x);

trunc
Description: The trunc function returns the truncated integral value as a floating-point number.

Calling interface:
double trunc(double x);
long double truncl(long double x);
float truncf(float x);
_Float16 truncf16(_Float16 x);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

780



Remainder Functions
Many routines in the Intel® oneAPI DPC++/C++ Compiler Math Library are more optimized for Intel®
microprocessors than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® oneAPI DPC++/C++ Compiler Math Library
functions.

The math library supports the following remainder functions:

NOTE
FP16 Math Functions have the following requirements:

• Version 2021.4 or higher of the Intel® oneAPI DPC++/C++ Compiler.
• A next-generation Intel® Xeon® Scalable processor, code name Sapphire Rapids.

fmod
Description: The fmod function returns the value x-n*y for integer n such that if y is nonzero, the result
has the same sign as x and magnitude less than the magnitude of y.

errno: EDOM, for y = 0

Calling interface:
double fmod(double x, double y);
long double fmodl(long double x, long double y);
float fmodf(float x, float y);
_Float16 fmodf16(_Float16 x, _Float16 y);

remainder
Description: The remainder function returns the value of x REM y as required by the IEEE standard.

errno: EDOM, for y = 0

Calling interface:
double remainder(double x, double y);
long double remainderl(long double x, long double y);
float remainderf(float x, float y);
_Float16 remainderf16(_Float16 x, _Float16 y);

remquo
Description: The remquo function returns the value of x REM y. In the object pointed to by quo the
function stores a value whose sign is the sign of x/y and whose magnitude is congruent modulo 2n of the
integral quotient of x/y. N is an implementation-defined integer. For all systems, N is equal to 31.

errno: EDOM, for y = 0

Calling interface:
double remquo(double x, double y, int *quo);
long double remquol(long double x, long double y, int *quo);
float remquof(float x, float y, int *quo);
_Float16 remquof16(_Float16 x, _Float16 y, int *quo);

Optimization and Programming   

781



Miscellaneous Functions
Many routines in the Intel® oneAPI DPC++/C++ Compiler Math Library are more optimized for Intel®
microprocessors than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® oneAPI DPC++/C++ Compiler Math Library
functions.

The math library supports the following miscellaneous functions:

NOTE
FP16 Math Functions have the following requirements:

• Version 2021.4 or higher of the Intel® oneAPI DPC++/C++ Compiler.
• A next-generation Intel® Xeon® Scalable processor, code name Sapphire Rapids.

copysign
Description: The copysign function returns the value with the magnitude of x and the sign of y.

Calling interface:
double copysign(double x, double y);
long double copysignl(long double x, long double y);
float copysignf(float x, float y);
_Float16 copysignf16(_Float16 x, _Float16 y);

fabs
Description: The fabs function returns the absolute value of x.

Calling interface:
double fabs(double x);
long double fabsl(long double x);
float fabsf(float x);
_Float16 fabsf16(_Float16 x);

fdim
Description: The fdim function returns the positive difference value, x-y (for x > y) or +0 (for x <= to
y).

errno: ERANGE, for overflow conditions

Calling interface:
double fdim(double x, double y);
long double fdiml(long double x, long double y);
float fdimf(float x, float y);
_Float16 fdimf16(_Float16 x, _Float16 y);

finite
Description: The finite function returns 1 if x is not a NaN or +/- infinity. Otherwise 0 is returned.

Calling interface:
int finite(double x);
int finitel(long double x);
int finitef(float x);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

782



int finitef16(_Float16 x);

fma
Description: The fma functions return (x*y)+z.

Calling interface:
double fma(double x, double y, double z);
long double fmal(long double x, long double y, long double z);
float fmaf(float x, float y, float z);
_Float16 fmaf16(_Float16 x, _Float16 y, _Float16 z);

fmax
Description: The fmax function returns the maximum numeric value of its arguments.

Calling interface:
double fmax(double x, double y);
long double fmaxl(long double x, long double y);
float fmaxf(float x, float y);
_Float16 fmaxf16(_Float16 x, _Float16 y);

fmin
Description: The fmin function returns the minimum numeric value of its arguments.

Calling interface:
double fmin(double x, double y);
long double fminl(long double x, long double y);
float fminf(float x, float y);
_Float16 fminf16(_Float16 x, _Float16 y);

fpclassify
Description: The fpclassify function returns the value of the number classification macro appropriate to
the value of its argument.

Return Value

0 (NaN)

1 (Infinity)

2 (Zero)

3 (Subnormal)

4 (Finite)

Calling interface:
int fpclassify(double x);
int fpclassifyl(long double x);
int fpclassifyf(float x);
int fpclassifyf16(_Float16 x);

isfinite
Description: The isfinite function returns 1 if x is not a NaN or +/- infinity. Otherwise 0 is returned.

Optimization and Programming   

783



Calling interface:
int isfinite(double x);
int isfinitel(long double x);
int isfinitef(float x);
int isfinitef16(_Float16 x);

isgreater
Description: The isgreater function returns 1 if x is greater than y. This function does not raise the invalid
floating-point exception.

Calling interface:
int isgreater(double x, double y);
int isgreaterl(long double x, long double y);
int isgreaterf(float x, float y);
int isgreaterf16(_Float16 x, _Float16 y);

isgreaterequal
Description: The isgreaterequal function returns 1 if x is greater than or equal to y. This function does
not raise the invalid floating-point exception.

Calling interface:
int isgreaterequal(double x, double y);
int isgreaterequall(long double x, long double y);
int isgreaterequalf(float x, float y);
int isgreaterequalf16(_Float16 x, _Float16 y);

isinf
Description: The isinf function returns a non-zero value if and only if its argument has an infinite value.

Calling interface:
int isinf(double x);
int isinfl(long double x);
int isinff(float x);
int isinff16(_Float16 x);

isless
Description: The isless function returns 1 if x is less than y. This function does not raise the invalid
floating-point exception.

Calling interface:
int isless(double x, double y);
int islessl(long double x, long double y);
int islessf(float x, float y);
int islessf16(_Float16 x, _Float16 y);

islessequal
Description: The islessequal function returns 1 if x is less than or equal to y. This function does not raise
the invalid floating-point exception.

Calling interface:
int islessequal(double x, double y);
int islessequall(long double x, long double y);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

784



int islessequalf(float x, float y);
int islessequalf16(_Float16 x, _Float16 y);

islessgreater
Description: The islessgreater function returns 1 if x is less than or greater than y. This function does
not raise the invalid floating-point exception.

Calling interface:
int islessgreater(double x, double y);
int islessgreaterl(long double x, long double y);
int islessgreaterf(float x, float y);
int islessgreaterf16(_Float16 x, _Float16 y);

isnan
Description: The isnan function returns a non-zero value, if and only if x has a NaN value.

Calling interface:
int isnan(double x);
int isnanl(long double x);
int isnanf(float x);
int isnanf16(_Float16 x);

isnormal
Description: The isnormal function returns a non-zero value, if and only if x is normal.

Calling interface:
int isnormal(double x);
int isnormall(long double x);
int isnormalf(float x);
int isnormalf16(_Float16 x);

isunordered
Description: The isunordered function returns 1 if either x or y is a NaN. This function does not raise the
invalid floating-point exception.

Calling interface:
int isunordered(double x, double y);
int isunorderedl(long double x, long double y);
int isunorderedf(float x, float y);
int isunorderedf16(_Float16 x, _Float16 y);

maxmag
Description: The maxmag function returns the value of larger magnitude from among its two arguments, x
and y. If |x| > |y| it returns x; if |y| > |x| it returns y; otherwise it behaves like fmax(x,y).

Calling interface:
double maxmag(double x, double y);
float maxmagf(float x, float y);
_Float16 maxmagf16(_Float16 x, _Float16 y);

Optimization and Programming   

785



minmag
Description: The minmag function returns the value of smaller magnitude from among its two arguments, x
and y. If |x| < |y| it returns x; if |y| < |x| it returns y; otherwise it behaves like fmin(x,y).

Calling interface:
double minmag(double x, double y);
float minmagf(float x, float y);
_Float16 maxmagf16(_Float16 x, _Float16 y);

nan
Description: The nan function returns a quiet NaN, with content indicated through tagp.

Calling interface:
double nan(const char *tagp);
long double nanl(const char *tagp);
float nanf(const char *tagp);
_Float16 nanf16(const char *tagp);

nextafter
Description: The nextafter function returns the next representable value in the specified format after x in
the direction of y.

errno: ERANGE, for overflow and underflow conditions

Calling interface:
double nextafter(double x, double y);
long double nextafterl(long double x, long double y);
float nextafterf(float x, float y);
_Float16 nextafterf16(_Float16 x, _Float16 y);

nexttoward
Description: The nexttoward function returns the next representable value in the specified format after x
in the direction of y. If x equals y, then the function returns y converted to the type of the function. Use the
Qlong-double option on Windows operating systems for accurate results.

errno: ERANGE, for overflow and underflow conditions

Calling interface:
double nexttoward(double x, long double y);
long double nexttowardl(long double x, long double y);
float nexttowardf(float x, long double y);
_Float16 nexttowardf16(_Float16 x, long double y);

signbit
Description: The signbit function returns a non-zero value, if and only if the sign of x is negative.

Calling interface:
int signbit(double x);
int signbitl(long double x);
int signbitf(float x);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

786



significand
Description: The significand function returns the significand of x in the interval [1,2). For x equal to
zero, NaN, or +/- infinity, the original x is returned.

Calling interface:
double significand(double x);
long double significandl(long double x);
float significandf(float x);
_Float16 significandf16(_Float16 x);

Complex Functions
Many routines in the Intel® oneAPI DPC++/C++ Compiler Math Library are more optimized for Intel®
microprocessors than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® oneAPI DPC++/C++ Compiler Math Library
functions.

The math library supports the following complex functions:

cabs
Description: The cabs function returns the complex absolute value of z.

Calling interface:
double cabs(double _Complex z);
long double cabsl(long double _Complex z);
float cabsf(float _Complex z);

cacos
Description: The cacos function returns the complex inverse cosine of z.

Calling interface:
double _Complex cacos(double _Complex z);
long double _Complex cacosl(long double _Complex z);
float _Complex cacosf(float _Complex z);

cacosh
Description: The cacosh function returns the complex inverse hyperbolic cosine of z.

Calling interface:
double _Complex cacosh(double _Complex z);
long double _Complex cacoshl(long double _Complex z);
float _Complex cacoshf(float _Complex z);

carg
Description: The carg function returns the value of the argument in the interval [-pi, +pi].

Calling interface:
double carg(double _Complex z);
long double cargl(long double _Complex z);
float cargf(float _Complex z);

casin
Description: The casin function returns the complex inverse sine of z.

Optimization and Programming   

787



Calling interface:
double _Complex casin(double _Complex z);
long double _Complex casinl(long double _Complex z);
float _Complex casinf(float _Complex z);

casinh
Description: The casinh function returns the complex inverse hyperbolic sine of z.

Calling interface:
double _Complex casinh(double _Complex z);
long double _Complex casinhl(long double _Complex z);
float _Complex casinhf(float _Complex z);

catan
Description: The catan function returns the complex inverse tangent of z.

Calling interface:
double _Complex catan(double _Complex z);
long double _Complex catanl(long double _Complex z);
float _Complex catanf(float _Complex z);

catanh
Description: The catanh function returns the complex inverse hyperbolic tangent of z.

Calling interface:
double _Complex catanh(double _Complex z);
long double _Complex catanhl(long double _Complex z);
float _Complex catanhf(float _Complex z);

ccos
Description: The ccos function returns the complex cosine of z.

Calling interface:
double _Complex ccos(double _Complex z);
long double _Complex ccosl(long double _Complex z);
float _Complex ccosf(float _Complex z);

ccosh
Description: The ccosh function returns the complex hyperbolic cosine of z.

Calling interface:
double _Complex ccosh(double _Complex z);
long double _Complex ccoshl(long double _Complex z);
float _Complex ccoshf(float _Complex z);

cexp
Description: The cexp function returns ez (e raised to the power z).

Calling interface:
double _Complex cexp(double _Complex z);
long double _Complex cexpl(long double _Complex z);
float _Complex cexpf(float _Complex z);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

788



cexp2
Description: The cexp function returns 2z (2 raised to the power z).

Calling interface:
double _Complex cexp2(double _Complex z);
long double _Complex cexp2l(long double _Complex z);
float _Complex cexp2f(float _Complex z);

cexp10
Description: The cexp10 function returns 10z (10 raised to the power z).

Calling interface:
double _Complex cexp10(double _Complex z);
long double _Complex cexp10l(long double _Complex z);
float _Complex cexp10f(float _Complex z);

cimag
Description: The cimag function returns the imaginary part value of z.

Calling interface:
double cimag(double _Complex z);
long double cimagl(long double _Complex z);
float cimagf(float _Complex z);

cis
Description: The cis function returns the cosine and sine (as a complex value) of z measured in radians.

Calling interface:
double _Complex cis(double x);
long double _Complex cisl(long double z);
float _Complex cisf(float z);

cisd
Description: The cisd function returns the cosine and sine (as a complex value) of z measured in degrees.

Calling interface:
double _Complex cisd(double x);
long double _Complex cisdl(long double z);
float _Complex cisdf(float z);

clog
Description: The clog function returns the complex natural logarithm of z.

Calling interface:
double _Complex clog(double _Complex z);
long double _Complex clogl(long double _Complex z);
float _Complex clogf(float _Complex z);

clog2
Description: The clog2 function returns the complex logarithm base 2 of z.

Calling interface:
double _Complex clog2(double _Complex z);

Optimization and Programming   

789



long double _Complex clog2l(long double _Complex z);
float _Complex clog2f(float _Complex z);

clog10
Description: The clog10 function returns the complex logarithm base 10 of z.

Calling interface:
double _Complex clog10(double _Complex z);
long double _Complex clog10l(long double _Complex z);
float _Complex clog10f(float _Complex z);

conj
Description: The conj function returns the complex conjugate of z by reversing the sign of its imaginary
part.

Calling interface:
double _Complex conj(double _Complex z);
long double _Complex conjl(long double _Complex z);
float _Complex conjf(float _Complex z);

cpow
Description: The cpow function returns the complex power function, xy.
Calling interface:
double _Complex cpow(double _Complex x, double _Complex y);
long double _Complex cpowl(long double _Complex x, long double _Complex y);
float _Complex cpowf(float _Complex x, float _Complex y);

cproj
Description: The cproj function returns a projection of z onto the Riemann sphere.

Calling interface:
double _Complex cproj(double _Complex z);
long double _Complex cprojl(long double _Complex z);
float _Complex cprojf(float _Complex z);

creal
Description: The creal function returns the real part of z.

Calling interface:
double creal(double _Complex z);
long double creall(long double _Complex z);
float crealf(float _Complex z);

csin
Description: The csin function returns the complex sine of z.

Calling interface:
double _Complex csin(double _Complex z);
long double _Complex csinl(long double _Complex z);
float _Complex csinf(float _Complex z);

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

790



csinh
Description: The csinh function returns the complex hyperbolic sine of z.

Calling interface:
double _Complex csinh(double _Complex z);
long double _Complex csinhl(long double _Complex z);
float _Complex csinhf(float _Complex z);

csqrt
Description: The csqrt function returns the complex square root of z.

Calling interface:
double _Complex csqrt(double _Complex z);
long double _Complex csqrtl(long double _Complex z);
float _Complex csqrtf(float _Complex z);

ctan
Description: The ctan function returns the complex tangent of z.

Calling interface:
double _Complex ctan(double _Complex z);
long double _Complex ctanl(long double _Complex z);
float _Complex ctanf(float _Complex z);

ctanh
Description: The ctanh function returns the complex hyperbolic tangent of z.

Calling interface:
double _Complex ctanh(double _Complex z);
long double _Complex ctanhl(long double _Complex z);
float _Complex ctanhf(float _Complex z);

C99 Macros
Many routines in the Intel® oneAPI DPC++/C++ Compiler Math Library are more optimized for Intel®
microprocessors than for non-Intel microprocessors.

The mathimf.h header file includes prototypes for Intel® oneAPI DPC++/C++ Compiler Math Library
functions.

The math library and mathimf.h header file support the following C99 macros:

• int fpclassify(x)
• int isfinite(x)
• int isgreater(x, y)
• int isgreaterequal(x, y)
• int isinf(x)
• int isless(x, y)
• int islessequal(x, y)
• int islessgreater(x, y)
• int isnan(x)
• int isnormal(x)
• int isunordered(x, y)
• int signbit(x)

Optimization and Programming   

791



See Also
Miscellaneous Functions

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

792



Compatibility and Portability

Part

V
I

This section contains information about conformance to language standards, language compatibility, and
portability.

Standards Conformance
Conformance to C/C++ Standards
The Intel® oneAPI DPC++/C++ Compiler conforms to the following C/C++ standards:

• C++17 standard (ISO/IEC 14882:2017)
• C++14 standard (ISO/IEC 14882:2014)
• C++11 standard (ISO/IEC 14882:2011)
• C++98 standard (ISO/IEC 14882:1998)
• C11 standard (ISO/IEC 9899:2011)
• C99 standard (ISO/IEC 9899:1999)

Conformance to SYCL Standards
The Intel® oneAPI DPC++ Compiler supports the SYCL 2020 Specification and work is in progress towards
SYCL 2020 conformance. The SYCL standard is based on the C++ standard and the Intel® oneAPI
DPC++/C++ Compiler headers include some of the C++ standard headers. All of the current restrictions and
limitations that apply to C/C++ standards, which relate to library headers, also apply to SYCL headers.

GCC Compatibility and
Interoperability
GCC Compatibility
The Intel® oneAPI DPC++/C++ Compiler is compatible with most versions of the GNU Compiler Collection
(GCC). The release notes contains a list of compatible versions.

C language object files created with the compiler are binary compatible with the GCC and C/C++ language
library. You can use the Intel® oneAPI DPC++/C++ Compiler or the GCC compiler to pass object files to the
linker.

Compatibility and Portability   

793

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#sec:progmodel.minimumcppversion


NOTE When using an Intel software development product that includes a compiler with a Clang front-
end, you can also use icx or icpx.

The Intel® oneAPI DPC++/C++ Compiler supports many of the language extensions provided by the GNU
compilers.

Statement expressions are supported, except that the following are prohibited inside them:

• Dynamically-initialized local static variables
• Local non-POD class definitions
• Try/catch
• Variable length arrays

Branching out of a statement expression and statement expressions in constructor initializers are not
allowed. Variable-length arrays are no longer allowed in statement expressions.

The Intel® oneAPI DPC++/C++ Compiler supports GCC-style inline ASM if the assembler code uses AT&T*
System V/386 syntax.

GCC Interoperability
C++ compilers are interoperable if they can link object files and libraries generated by one compiler with
object files and libraries generated by the second compiler, and the resulting executable runs successfully.
The Intel® oneAPI DPC++/C++ Compiler is highly compatible with the GNU compilers.

The Intel® oneAPI DPC++/C++ Compiler and GCC support the following predefined macros:

• __GNUC__
• __GNUG__
• __GNUC_MINOR__
• __GNUC_PATCHLEVEL__

Caution Not defining these macros results in different paths through system header files. These
alternate paths may be poorly tested or otherwise incompatible.

How the Compiler Uses GCC
The Intel® oneAPI DPC++/C++ Compiler uses the GNU tools on the system, such as the GNU header files,
including stdio.h, and the GNU linker and libraries. So the compiler has to be compatible with the version of
GCC or G++* you have on your system.

By default, the compiler determines which version of GCC or G++ you have installed from the PATH
environment variable.

If you want use a version of GCC or G++ other than the default version on your system, you need to use the
--gcc-toolchain compiler option to specify the location of the base toolchain. For example:

• You want to build something that cannot be compiled by the default version of the system compiler, so
you need to use a legacy version for compatibility, such as if you want to use third party libraries that are
not compatible with the default version of the system compiler.

• You want to use a later version of GCC or G++ than the default system compiler.

The Intel® oneAPI DPC++/C++ Compiler driver uses the default version of GCC/G++, or the version you
specify, to extract the location of the headers and libraries.

Compatibility with Open Source Tools
The Intel® oneAPI DPC++/C++ Compiler includes improved support for the following open source tools:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

794



• GNU Libtool: A script that allows package developers to provide generic shared library support.
• Valgrind: A flexible system for debugging and profiling executables running on x86 processors.
• GNU Automake: A tool for automatically generating Makefile.ins from files called Makefile.am.

Microsoft Compatibility
The Intel® oneAPI DPC++/C++ Compiler is fully source- and binary-compatible (native code only) with
Microsoft Visual C++ (MSVC). You can debug binaries built with the Intel® oneAPI DPC++/C++ Compiler
from within the Microsoft Visual Studio environment.

The compiler supports security checks with the /GS option. You can control this option in the Microsoft Visual
Studio IDE by using C/C++  > Code Generation  > Buffer Security Check.

Microsoft Visual Studio Integration
The compiler is compatible with Microsoft Visual Studio 2017, 2019, and 2022 projects.

NOTE Support for Microsoft Visual Studio 2017 is deprecated as of the Intel® oneAPI 2022.1 release,
and will be removed in a future release.

Unsupported Features
Unsupported project types:

• .NET-based CLR C++ project types are not supported by the Intel® oneAPI DPC++/C++ Compiler. The
specific project types will vary depending on your version of Visual Studio, for example:

• CLR Class Library
• CLR Console App
• CLR Empty Project

Unsupported major features:

• COM Attributes
• C++ Accelerated Massive Parallelism (C++ AMP)
• Managed extensions for C++ (new pragmas, keywords, and command-line options)
• Event handling (new keywords)
• Select keywords:

• __abstract
• __box
• __delegate
• __gc
• __identifier
• __nogc
• __pin
• __property
• __sealed
• __try_cast
• __w64

Unsupported preprocessor features:

• #import directive changes for attributed code
• #using directive

Microsoft Compatibility   

795



• managed, unmanaged pragmas
• _MANAGED macro
• runtime_checks pragma

Mixing Managed and Unmanaged Code
If you use the managed extensions to the C++ language in Microsoft Visual Studio .NET, you can use the
compiler for your non-managed code for better application performance. Make sure managed keywords do
not appear in your non-managed code.

For information on how to mix managed and unmanaged code, refer to the article, An Overview of Managed/
Unmanaged Code Interoperability, on the Microsoft Web site.

Precompiled Header Support
There are some differences in how precompiled header (PCH) files are supported between the Intel® oneAPI
DPC++/C++ Compiler and the Microsoft Visual C++ Compiler:

• The PCH information generated by the Intel oneAPI DPC++/C++ Compiler is not compatible with the PCH
information generated by the Microsoft Visual Studio Compiler.

• The Intel oneAPI DPC++/C++ Compiler does not support PCH generation and use in the same translation
unit.

Compilation and Execution Differences
While the Intel® oneAPI DPC++/C++ Compiler is compatible with the Microsoft Visual C++ Compiler, some
differences can prevent successful compilation. There can also be some incompatible generated-code
behavior of some source files with the Intel oneAPI DPC++/C++ Compiler. In most cases, a modification of
the user source file enables successful compilation with both the Intel oneAPI DPC++/C++ Compiler and the
Microsoft Visual C++ Compiler. The differences between the compilers are:

• Inline Assembly Target Labels (IA-32 Architecture Only)

IA-32 applications do not apply for SYCL.

For compilations targeted for IA-32 architecture, inline assembly target labels of goto statements are
case sensitive. The Microsoft Visual C++ compiler treats these labels in a case insensitive manner. For
example, the Intel oneAPI DPC++/C++ Compiler issues an error when compiling the following code:

int func(int x) {
   goto LAB2;
     // error: label "LAB2" was referenced but not defined
   __asm lab2: mov x, 1
   return x;
}

However, the Microsoft Visual C++ Compiler accepts the preceding code. As a work-around for the Intel
oneAPI DPC++/C++ Compiler, when a goto statement refers to a label defined in inline assembly, you
must match the label reference with the label definition in both name and case.

• Inlining Functions Marked for dllimport

The Intel oneAPI DPC++/C++ Compiler will attempt to inline any functions that are marked dllimport but
Microsoft will not. Therefore, any calls or variables used inside a dllimport routine need to be available at
link time or the result will be an unresolved symbol.

The following example contains two files: header.h and bug.cpp.

header.h:

#ifndef _HEADER_H
#define _HEADER_H
namespace Foo_NS { 

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

796

https://docs.microsoft.com/en-us/previous-versions/dotnet/articles/ms973872(v=msdn.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/dotnet/articles/ms973872(v=msdn.10)?redirectedfrom=MSDN


        class Foo2 { 
        public: 
                Foo2(){}; 
                ~Foo2(); 
                static int test(int m_i); 
        }; 
} 
#endif

bug.cpp:

#include “header.h”
struct Foo2 { 
  static void test(); 
}; 

struct __declspec(dllimport) Foo 
{ 
   void getI() { Foo2::test(); }; 
}; 

struct C  { 
  virtual void test(); 
}; 

void C::test() { Foo p;  p->getI(); } 

int main() { 
   return 0; 
} 

Enum Bit-Field Signedness
The Intel® oneAPI DPC++/C++ Compiler and Microsoft Visual C++ differ in how they attribute signedness to
bit fields declared with an enum type. Microsoft Visual C++ always considers enum bit fields to be signed,
even if not all values of the enum type can be represented by the bit field.

The Intel oneAPI DPC++/C++ Compiler considers an enum bit field to be unsigned, unless the enum type has
at least one enum constant with a negative value. In any case, the Intel oneAPI DPC++/C++ Compiler
produces a warning if the bit field is declared with too few bits to represent all the values of the enum type.

See Also
/GS compiler option

Port from Microsoft Visual C++* to
the Intel® oneAPI DPC++/C++
Compiler
This section describes a basic approach to porting applications from Microsoft Visual C++* for Windows* to
the Intel® oneAPI DPC++/C++ Compiler for Windows.

Port from Microsoft Visual C++* to the Intel® oneAPI DPC++/C++ Compiler   

797



If you build your applications from the Windows command line, you can port applications from Microsoft
Visual C++ to the Intel® oneAPI DPC++/C++ Compiler by modifying your makefile to invoke the Intel®
oneAPI DPC++/C++ Compiler instead of Microsoft Visual C++.

The Intel® oneAPI DPC++/C++ Compiler integration with Microsoft Visual Studio provides a conversion path
to the Intel® oneAPI DPC++/C++ Compiler that allows you to build your Visual C++ projects with the Intel®
oneAPI DPC++/C++ Compiler. This version of the Intel® oneAPI DPC++/C++ Compiler supports:

• Microsoft Visual Studio 2022
• Microsoft Visual Studio 2019
• Microsoft Visual Studio 2017

NOTE Support for Microsoft Visual Studio 2017 is deprecated as of the Intel® oneAPI 2022.1 release,
and will be removed in a future release.

See the appropriate section in this documentation for details on using the Intel® oneAPI DPC++/C++
Compiler with Microsoft Visual Studio.

The Intel® oneAPI DPC++/C++ Compiler also supports many of the same compiler options, macros, and
environment variables you already use in your Microsoft work.

One challenge in porting applications from one compiler to another is making sure there is support for the
compiler options you use to build your application. The Compiler Options reference lists compiler options that
are supported by both the Intel® oneAPI DPC++/C++ Compiler and Microsoft C++.

See Also
Other Considerations
Modify Your Makefile

Modify Your makefile
If you use makefiles to build your Microsoft* application, you need to change the value for the compiler
variable to use the Intel® oneAPI DPC++/C++ Compiler. You may also want to review the options specified
by CPPFLAGS. For example, a sample Microsoft makefile:

# name of the program 
  PROGRAM = area.exe 

# names of source files 
  CPPSOURCES = area_main.cpp area_functions.cpp 

# names of object files 
  CPPOBJECTS = area_main.obj area_functions.obj 

# Microsoft(R) compiler options 
  CPPFLAGS = /RTC1 /EHsc 

# Use Microsoft C++(R)  
  CPP = cl 

# link objects 
  $(PROGRAM): $(CPPOBJECTS)
     link.exe /out:$@ $(CPPOBJECTS) 

# build objects 
  area_main.obj: area_main.cpp area_headers.h 
  area_functions.obj: area_functions.cpp area_headers.h 

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

798



# clean 
  clean:  del  $(CPPOBJECTS) $(PROGRAM)

Modified makefile for the Intel® oneAPI DPC++/C++ Compiler
Before you can run nmake with the Intel® oneAPI DPC++/C++ Compiler, you need to set the proper
environment. In this example, only the name of the compiler changed to use icx:

# name of the program 
  PROGRAM = area.exe 

# names of source files 
  CPPSOURCES = area_main.cpp area_functions.cpp 

# names of object files 
  CPPOBJECTS = area_main.obj area_functions.obj 

# Intel(R) C/C++/DPC++ Compiler options
  CPPFLAGS = /RTC1 /EHsc 

# Use the Intel C/C++/DPC++ Compiler
  CPP = icx

# link objects 
  $(PROGRAM): $(CPPOBJECTS)
     link.exe /out:$@ $(CPPOBJECTS) 

# build objects 
  area_main.obj: area_main.cpp area_headers.h 
  area_functions.obj: area_functions.cpp area_headers.h 

# clean 
  clean:  del  $(CPPOBJECTS) $(PROGRAM)

With the modified makefile, the output of nmake is similar to the following:

Microsoft (R) Program Maintenance Utility Version 8.00.50727.42 
Copyright (C) Microsoft Corporation. All rights reserved.

        icx /RTC1 /EHsc  /c area_main.cpp area_functions.cpp 

Intel(R) Compiler for applications running on IA-32 or IA-64
Copyright (C) 1985-2006 Intel Corporation. All rights reserved. 

area_main.cpp 
area_functions.cpp
        link.exe /out:area.exe area_main.obj area_functions.obj 

Microsoft (R) Incremental Linker Version 8.00.50727.42 
Copyright (C) Microsoft Corporation. All rights reserved.

Compatibility and Portability   

799



Use IPO in makefiles
By default, IPO generates dummy object files containing interprocedural information used by the compiler. To
link or create static libraries with these object files requires specific Intel-provided tools. To use them in your
makefile, replace references to link with xilink and references to lib with xilib. For example:

 # name of the program 
  PROGRAM = area.exe 

# names of source files 
  CPPSOURCES = area_main.cpp area_functions.cpp 

# names of object files 
  CPPOBJECTS = area_main.obj area_functions.obj 

# Intel C/C++/DPC++ Compiler options
  CPPFLAGS = /RTC1 /EHsc /Qipo

# Use the Intel C/C++/DPC++ Compiler
  CPP = icx

# link objects 
  $(PROGRAM): $(CPPOBJECTS)
     xilink.exe /out:$@ $(CPPOBJECTS) 

# build objects 
  area_main.obj: area_main.cpp area_headers.h 
  area_functions.obj: area_functions.cpp area_headers.h 

# clean 
  clean:  del  $(CPPOBJECTS) $(PROGRAM)

Other Considerations
There are some notable differences between the Intel® oneAPI DPC++/C++ Compiler and the Microsoft*
Compiler. Consider the following as you begin compiling your code with the Intel® oneAPI DPC++/C++
Compiler.

Set the Environment
The compiler installation provides a batch file, setvars.bat, that sets the proper environment for the Intel®
oneAPI DPC++/C++ Compiler. For information on running setvars.bat, see Specifying the Location of
Compiler Components.

Use Optimization
The Intel® oneAPI DPC++/C++ Compiler is an optimizing compiler that begins with the assumption that you
want improved performance from your application when it is executed on Intel® architecture. Consequently,
certain optimizations, such as option O2, are part of the default invocation of the compiler. By default,
Microsoft turns off optimization, which is the equivalent of compiling with options Od or O0. Other forms of
the O[n] option compare as follows:

Option Intel® oneAPI DPC++/C++ Compiler Microsoft Compiler

/Od Turns off all optimization. Same as O0. Default. Turns off all
optimization.

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

800



Option Intel® oneAPI DPC++/C++ Compiler Microsoft Compiler

/O1 Decreases code size with some increase in speed. Optimizes code for minimum
size.

/O2 Default. Favors speed optimization with some increase in code
size. Intrinsics, loop unrolling, and inlining are performed.

Optimizes code for maximum
speed.

/O3 Enables -O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations.

Not supported.

Modify Your Configuration
The Intel® oneAPI DPC++/C++ Compiler lets you maintain configuration and response files that are part of
compilation. Options stored in the configuration file apply to every compilation, while options stored in
response files apply only where they are added on the command line. If you have several options in your
makefile that apply to every build, you may find it easier to move these options to the configuration file
(..\bin\icx.cfg).

In a multi-user, networked environment, options listed in the icx.cfg file are generally intended for
everyone who uses the compiler. If you need a separate configuration, you can use the ICXCFG environment
variable to specify the name and location of your own .cfg file, such as \my_code\my_config.cfg.
Anytime you instruct the compiler to use a different configuration file, the icx.cfg system configuration file
is ignored.

Use the Intel Libraries
The Intel® oneAPI DPC++/C++ Compiler supplies additional libraries that contain optimized implementations
of many commonly used functions. Some of these functions are implemented using CPU dispatch. This
means that different code may be executed when run on different processors.

Supplied libraries include the Intel® oneAPI DPC++/C++ Compiler (libm), the Short Vector Math Library
(svml_disp), libirc, as well as others. These libraries are linked in by default when the compiler sees that
references to them have been generated. Some library functions, such as sin or memset, may not require a
call to the library, since the compiler may inline the code for the function.

Intel® oneAPI DPC++/C++ Compiler Math Library (libm)

With the Intel® oneAPI DPC++/C++ Compiler, the math library, libm, is linked by default when calling math
functions that require the library. Some functions, such as sin, may not require a call to the library, since the
compiler already knows how to compute the sin function. The math library also includes some functions not
found in the standard math library.

NOTE
You cannot make calls to the math library with the Microsoft Compiler.

Many routines in the libimf library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

Short Vector Math Library (svml_disp)

When vectorization is in progress, the compiler may translate some calls to the libm math library functions
into calls to svml_disp functions. These functions implement the same basic operations as the math library,
but operate on short vectors of operands. This results in greater efficiency. In some cases, the svml_disp
functions are slightly less precise than the equivalent libm functions.

Compatibility and Portability   

801



Many routines in the Short Vector Math Library (SVML) are more optimized for Intel® microprocessors than
for non-Intel microprocessors.

libirc

libirc contains optimized implementations of some commonly used string and memory functions. For
example, it contains functions that are optimized versions of memcpy and memset. The compiler will
automatically generate calls to these functions when it sees calls to memcpy and memset. The compiler may
also transform loops that are equivalent to memcpy or memset into calls to these functions.

Many routines in the libirc library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
O  compiler option
Using Configuration Files
Using Response Files
Specifying the Location of Compiler Components

Port from GCC* to the Intel® oneAPI
DPC++/C++ Compiler
This section describes a basic approach to porting applications from the (GNU Compiler Collection*) GCC C/C
++ compilers to the Intel® oneAPI DPC++/C++ Compiler. These compilers correspond to each other as
follows:

Language Intel® Compiler GCC Compiler

C icx for C++ or dpcpp for
SYCL.

gcc

C++ icpx for C++ or dpcpp for
SYCL.

g++

NOTE Unless otherwise indicated, the term "gcc" refers to both GCC and G++* compilers from the
GCC.

Advantages to Using the Intel® oneAPI DPC++/C++ Compiler
In many cases, porting applications from gcc to the Intel® oneAPI DPC++/C++ Compiler can be as easy as
modifying your makefile to invoke the Intel® oneAPI DPC++/C++ Compiler (icx for C++ or dpcpp for SYCL)
instead of gcc. Using the Intel® oneAPI DPC++/C++ Compiler typically improves the performance of your
application, especially for those that run on Intel processors. In many cases, your application's performance
may also show improvement when running on non-Intel processors. When you compile your application with
the Intel® oneAPI DPC++/C++ Compiler, you have access to:

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

802

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


• Compiler options that optimize your code for the latest Intel® architecture processors.
• Advanced profiling tools (PGO) similar to the GNU profiler gprof.
• High-level optimizations (HLO).
• Interprocedural optimization (IPO).
• Intel intrinsic functions that the compiler uses to inline instructions, including various versions of Intel®

Streaming SIMD Extensions and Intel® Advanced Vector Extensions.
• Highly-optimized Intel® oneAPI DPC++/C++ Compiler Math Library for improved accuracy.

Because the Intel® oneAPI DPC++/C++ Compiler is compatible and interoperable with gcc, porting your gcc
application to the Intel® oneAPI DPC++/C++ Compiler includes the benefits of binary compatibility. As a
result, you should not have to re-build libraries from your gcc applications. The Intel® oneAPI DPC++/C++
Compiler also supports many of the same compiler options, macros, and environment variables you already
use in your gcc work.

Equivalent Macros
The Intel® oneAPI DPC++/C++ Compiler is compatible with the predefined GNU* macros.

See http://gcc.gnu.org for a list of compatible predefined macros.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Modify Your makefile 
Supported Environment Variables 
Additional Predefined Macros

Modify Your makefile
If you use makefiles to build your GCC* application, you need to change the value for the GCC compiler
variable to use the Intel® oneAPI DPC++/C++ Compiler. You may also want to review the options specified
by CFLAGS. For example, a sample GCC makefile:

# Use gcc compiler 
  CC = gcc 

# Compile-time flags 
  CFLAGS = -O2 -std=c99 
all: area_app 

area_app: area_main.o area_functions.o
    $(CC) area_main.o area_functions.o -o area 

area_main.o: area_main.c
    $(CC) -c $(CFLAGS) area_main.c 

area_functions.o: area_functions.c
    $(CC) -c -fno-asm $(CFLAGS) area_functions.c 

clean: rm -rf *o area

Compatibility and Portability   

803

http://gcc.gnu.org
https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Modified makefile for the Intel® oneAPI DPC++/C++ Compiler
In this example, the name of the compiler is changed to use icpx

# Use Intel C/C++/DPC++ Compiler
  CC = icpx

# Compile-time flags 
  CFLAGS = -std=c99 
all: area_app 

area_app: area_main.o area_functions.o
    $(CC) area_main.o area_functions.o -o area 

area_main.o: area_main.c
    $(CC) -c $(CFLAGS) area_main.c 

area_functions.o: area_functions.c
    $(CC) -c -fno-asm $(CFLAGS) area_functions.c 

clean: rm -rf *o area
If your GCC code includes features that are not supported with the Intel® oneAPI DPC++/C++ Compiler
(compiler options, language extensions, macros, pragmas, and so on), you can compile those sources
separately with GCC if necessary.

In the above makefile, area_functions.c is an example of a source file that includes features unique to
GCC. Because the Intel® oneAPI DPC++/C++ Compiler uses the O2 option by default and GCC uses option O0
as the default, we instruct GCC to compile at option O2. We also include the -fno-asm switch from the
original makefile because this switch is not supported with the Intel® oneAPI DPC++/C++ Compiler. The
following sample makefile is modified for using the Intel® oneAPI DPC++/C++ Compiler and GCC together:

# Use Intel C/C++/DPC++ Compiler
  CC = icpx
# Use gcc for files that cannot be compiled by icpx
  GCC = gcc
# Compile-time flags 
  CFLAGS = -std=c99 
all: area_app 

area_app: area_main.o area_functions.o
    $(CC) area_main.o area_functions.o -o area 

area_main.o: area_main.c
    $(CC) -c $(CFLAGS) area_main.c 

area_functions.o: area_functions.c
    $(GCC) -c -O2 -fno-asm $(CFLAGS) area_functions.c 

clean: rm -rf *o area
Output of make using a modified makefile:

icpx -c -std=c99 area_main.c
gcc -c -O2 -fno-asm -std=c99 area_functions.c
icpx area_main.o area_functions.o -o area

Use IPO in Makefiles

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

804



By default, IPO generates "dummy" object files containing Interprocedural information used by the compiler.
To link or create static libraries with these object files requires special Intel-provided tools. To use them in
your makefile, simply replace references to "ld" with "xild" and references to "ar" with "xiar", or use icx or
icpx (for C++) or dpcpp (for SYCL*) to link as shown in the example:

# Use Intel C/C++/DPC++ Compiler 
  CC = icpx
# Compile-time flags 
  CFLAGS = -std=c99 -ipo
all: area_app 

area_app: area_main.o area_functions.o
    $(CC) area_main.o area_functions.o -o area 

area_main.o: area_main.c
    $(CC) -c $(CFLAGS) area_main.c 

area_functions.o: area_functions.c
    $(CC) -c $(CFLAGS) area_functions.c 

clean: rm -rf *o area

Other Considerations
There are some notable differences between the Intel® oneAPI DPC++/C++ Compiler and GCC*. Consider
the following as you begin compiling your source code with the Intel® oneAPI DPC++/C++ Compiler.

Set the Environment
The Intel® oneAPI DPC++/C++ Compiler relies on environment variables for the location of compiler binaries,
libraries, man pages, and license files. In some cases these are different from the environment variables that
GCC uses. Another difference is that these variables are not set by default after installing the Intel® oneAPI
DPC++/C++ Compiler. The following environment variables can be set prior to running the Intel® oneAPI
DPC++/C++ Compiler:

• PATH: Adds the location of the compiler binaries to PATH.
• LD_LIBRARY_PATH: Sets the location where the generated executable picks up the runtime libraries (*.so

files).
• MANPATH : Adds the location of the compiler man pages (icx or icpx for C++ or dpcpp for SYCL) to

MANPATH.

To set these environment variables, you can source the setvars.sh script (e.g. source setvars.sh).

NOTE
Setting these environment variables with setvars.sh does not impose a conflict with GCC. You should
be able to use both compilers in the same shell.

Use Optimization
The Intel® oneAPI DPC++/C++ Compiler is an optimizing compiler that begins with the assumption that you
want improved performance from your application when it is executed on Intel® architecture. Consequently,
certain optimizations, such as option O2, are part of the default invocation of the Intel® oneAPI DPC++/C++
Compiler. Optimization is turned off in GCC by default, the equivalent of compiling with option O0. Other
forms of the O<n> option compare as follows:

Compatibility and Portability   

805



Option Intel® oneAPI DPC++/C++ Compiler GCC

-O0 Turns off optimization. Default. Turns off optimization.

-O1 Decreases code size with some increase in
speed.

Decreases code size with some increase in
speed.

-O2 Default. Favors speed optimization with
some increase in code size. Same as
option O. Intrinsics, loop unrolling, and
inlining are performed.

Optimizes for speed as long as there is not
an increase in code size. Loop unrolling
and function inlining, for example, are not
performed.

-O3 Enables option O2 optimizations plus more
aggressive optimizations, such as
prefetching, scalar replacement, and loop
and memory access transformations.

Optimizes for speed while generating
larger code size. Includes option O2
optimizations plus loop unrolling and
inlining.

Target Intel® Processors
While many of the same options that target specific processors are supported with both compilers, Intel
includes options that utilize processor-specific instruction scheduling to target the latest Intel® processors.

Modify Your Configuration
The Intel® oneAPI DPC++/C++ Compiler lets you maintain configuration and response files that are part of
compilation. Options stored in the configuration file apply to every compilation, while options stored in
response files apply only where they are added on the command line. If you have several options in your
makefile that apply to every build, you may find it easier to move these options to the configuration file
(icx.cfg or icpx.cfg for C++ or dpcpp.cfg for SYCL).

In a multi-user, networked environment, options listed in the icx.cfg or icpx.cfg for C++ or dpcpp.cfg
for SYCL files are generally intended for everyone who uses the compiler. If you need a separate
configuration, you can use the ICXCFG or ICPXCFG for C++ or DPCPPCFG for SYCLenvironment variable to
specify the name and location of your own .cfg file, such as /my_code/my_config.cfg. Anytime you
instruct the compiler to use a different configuration file, the system configuration files (icx.cfg or
icpx.cfg for C++ or dpcpp.cfg for SYCL) are ignored.

Use the Intel Libraries
The Intel® oneAPI DPC++/C++ Compiler supplies additional libraries that contain optimized implementations
of many commonly used functions. Some of these functions are implemented using CPU dispatch. This
means that different code may be executed when run on different processors.

Supplied libraries include the Intel® oneAPI DPC++/C++ Compiler Math Library (libimf), the Short Vector
Math Library (libsvml), libirc, as well as others. These libraries are linked in by default. Some library
functions, such as sin or memset, may not require a call to the library, since the compiler may inline the
code for the function.

NOTE The Intel Compiler Math Libraries contain performance-optimized implementations for various
Intel platforms. By default, the best implementation for the underlying hardware is selected at
runtime. The library dispatch of multi-threaded code may lead to apparent data races, which may be
detected by certain software analysis tools. However, as long as the threads are running on cores with
the same CPUID, these data races are harmless and are not a cause for concern.

Intel® oneAPI DPC++/C++ Compiler Math Library (libimf)

   Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

806



With the Intel® Compiler, the math library, libimf, is linked by default. Some functions, such as sin, may not
require a call to the library, since the compiler already knows how to compute the sin function. The math
library also includes some functions not found in the standard math library.

NOTE
You cannot make calls to the math library with GCC.

Many routines in the libimf library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

Short Vector Math Library (libsvml)

When vectorization is being done, the compiler may translate some calls to the libimf math library functions
into calls to libsvml functions. These functions implement the same basic operations as the math library, but
operate on short vectors of operands. This results in greater efficiency. In some cases, the libsvml functions
are slightly less precise than the equivalent libimf functions.

Many routines in the libimf library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

libirc

libirc contains optimized implementations of some commonly used string and memory functions. For
example, it contains functions that are optimized versions of memcpy and memset. The compiler will
automatically generate calls to these functions when it sees calls to memcpy and memset. The compiler may
also transform loops that are equivalent to memcpy or memset into calls to these functions.

Many routines in the libirc library are more optimized for Intel® microprocessors than for non-Intel
microprocessors.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Invoke the Compiler

march compiler option
O compiler option
Using Configuration Files
Using Response Files

Compatibility and Portability   

807

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex


Index
__assume_aligned 733
__declspec

align 367
align_value 368
concurrency_safe 370
const 371
cpu_dispatch 371
cpu_specific 371
mpx 373
target 373

__regcall 48
_Simd keyword 732
--gcc-toolchain compiler option (Linux* only) 308
--sysroot compiler option (Linux* only) 344
--version compiler option 347
-align compiler option 269
-ansi compiler option 255
-ax compiler option 79
-B compiler option 231
-Bdynamic compiler option (Linux* only) 309
-Bstatic compiler option (Linux* only) 310
-Bsymbolic compiler option (Linux* only) 310
-Bsymbolic-functions compiler option (Linux* only) 311
-c compiler option 208, 375
-C compiler option 232
-D compiler option 233
-daal compiler option 122
-dD compiler option 234
-debug compiler option 209
-device-math-lib compiler option 138
-dM compiler option 234
-dryrun compiler option 338
-dumpmachine compiler option 338
-dumpversion compiler option 339
-dynamic-linker compiler option (Linux* only) 312
-E compiler option 235
-EP compiler option 236
-Fa compiler option 213
-fasm-blocks compiler option 214
-fast compiler option 66
-fasynchronous-unwind-tables compiler option 84
-fbuiltin compiler option 68
-fcommon compiler option 271
-fdata-sections compiler option 85
-fexceptions compiler option 85
-ffp-contract compiler option 184
-ffreestanding compiler option 115
-ffunction-sections compiler option 86
-fgnu89-inline compiler option 206
-fimf-absolute-error compiler option 185
-fimf-accuracy-bits compiler option 186
-fimf-arch-consistency compiler option 188
-fimf-domain-exclusion compiler option 190
-fimf-force-dynamic-target compiler option 194
-fimf-max-error compiler option 195
-fimf-precision compiler option 197
-fimf-use-svml compiler option 199
-finline compiler option 207
-finline-functions compiler options 207
-fintelfpga compiler option 139

-fiopenmp compiler option 140
-fjump-tables compiler option 116
-fkeep-static-consts compiler option 271
-fma compiler option 201
-fmath-errno compiler option 272
-fno-asynchronous-unwind-tables compiler option 84
-fno-exceptions compiler option 85
-fno-gnu-keywords compiler option 256
-fno-operator-names compiler option 256
-fno-rtti compiler option 257
-fno-sycl-libspirv compiler option 141
-foffload-static-lib compiler option 142
-fomit-frame-pointer compiler option 87
-fopenmp

see -qopenmp 143
-fopenmp compiler option 172
-fopenmp-declare-target-scalar-defaultmap compiler
option 144
-fopenmp-device-lib compiler option 146
-fopenmp-target-buffers compiler option 147
-fopenmp-targets compiler option 149
-foptimize-sibling-calls compiler option 68
-fp compiler option 87
-fp-model compiler option

how to use 363
-fp-speculation compiler option 204
-fpack-struct compiler option 273
-fpascal-strings compiler option 274
-fpermissive compiler option 257
-fpic compiler option 274, 375
-fpie compiler option (Linux* only) 275
-freg-struct-return compiler option 276
-fshort-enums compiler option 258
-fstack-protector compiler option 277
-fstack-protector-all compiler option 277
-fstack-protector-strong compiler option 277
-fstack-security-check compiler option 278
-fsycl compiler option 150
-fsycl-add-targets compiler option 151
-fsycl-dead-args-optimization compiler option 152
-fsycl-device-code-split compiler option 152
-fsycl-device-lib compiler option 154
-fsycl-device-only compiler option 155
-fsycl-early-optimizations compiler option 156
-fsycl-enable-function-pointers compiler option 157
-fsycl-esimd-force-stateless-mem compiler option 157
-fsycl-explicit-simd compiler option 159
-fsycl-help compiler option 160
-fsycl-host-compiler compiler option 160
-fsycl-host-compiler-options compiler option 161
-fsycl-id-queries-fit-in-int compiler option 162
-fsycl-instrument-device-code compiler option 163
-fsycl-link compiler option 164
-fsycl-link-targets compiler option 166
-fsycl-max-parallel-link-jobs compiler option 167
-fsycl-targets compiler option 168
-fsycl-unnamed-lambda compiler option 170
-fsycl-use-bitcode compiler option 171
-fsyntax-only compiler option 259
-ftrapuv compiler option 218
-funroll-loops compiler option 132

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

808



-funsigned-char compiler option 259
-fuse-ld compiler option 315
-fvec-peel-loops compiler option 117
-fvec-remainder-loops compiler option 118
-fvec-with-mask compiler option 119
-fverbose-asm compiler option 219
-fvisibility compiler option 279
-fzero-initialized-in-bss compiler option 280
-g compiler option 219
-g0 compiler option 219
-g1 compiler option 219
-g2 compiler option 219
-g3 compiler option 219
-gdwarf-2 compiler option 221
-gdwarf-3 compiler option 221
-gdwarf-4 compiler option 221
-grecord-gcc-switches compiler option (Linux* only) 222
-gsplit-dwarf compiler option (Linux* only) 222
-H compiler option 237
-help compiler option 340
-I compiler option 238
-I- compiler option 238
-idirafter compiler option 239
-imacros compiler option 240
-ipo compiler option 114, 741
-ipp compiler option 123
-ipp-link compiler option 119
-iprefix compiler option 240
-iquote compiler option 241
-isystem compiler option 242
-iwithprefix compiler option 242
-iwithprefixbefore compiler option 243
-Kc++ compiler option 243
-l compiler option 316
-L compiler option 317
-m compiler option 94
-M compiler option 244
-m32 compiler option 95
-m64 compiler option 95
-m80387 compiler option 96
-malign-double compiler option 284
-march compiler option 97
-masm compiler option (Linux* only) 99
-mbranches-within-32B-boundaries compiler option 100
-mcmodel compiler option (Linux* only) 284
-mcpu compiler option 104
-MD compiler option 245
-MF compiler option 245
-MG compiler option 246
-mintrinsic-promote compiler option 101
-MM compiler option 247
-MMD compiler option 247
-momit-leaf-frame-pointer 102
-MQ compiler option 248
-mregparm compiler option (Linux* only) 103
-MT compiler option 249
-mtune compiler option 104
-no-intel-lib compiler option 322
-no-libgcc compiler option 321
-nodefaultlibs compiler option 321
-nolib-inline compiler option 70
-nolibsycl compiler option 171
-nostartfiles compiler option 323
-nostdinc++ compiler option 249
-nostdlib compiler option 324
-o compiler option 223
-O compiler option 71
-Ofast compiler option 74

-Os compiler option 75
-P compiler option 250
-pc compiler option 205
-pie compiler option 324
-pragma-optimization-level compiler option 251
-pthread compiler option 325
-qactypes compiler option 121
-qdaal compiler option 122
-qipp compiler option 123
-qmkl compiler option 124
-qopenmp compiler option

using in apps 618
-qopenmp-lib compiler option 173
-qopenmp-link compiler option 175
-qopenmp-simd compiler option 176
-qopenmp-stubs compiler option 177
-qopt-assume-no-loop-carried-dep 126
-qopt-dynamic-align compiler option 127
-qopt-for-throughput compiler option 128
-qopt-multiple-gather-scatter-by-shuffles compiler
option 129
-qopt-report compiler option 136
-qopt-report-file compiler option 137
-qopt-report-stdout compiler option 137
-qopt-streaming-stores compiler option 130
-Qoption compiler option 254
-qtbb compiler option 131
-regcall compiler option 107
-reuse-exe compiler option 178
-S compiler option 225
-save-temps compiler option 341
-shared compiler option 375, 376
-shared compiler option (Linux* only) 326
-shared-intel compiler option 327, 376
-shared-libgcc compiler option (Linux* only) 328
-sox compiler option 343
-static compiler option (Linux* only) 328
-static-intel compiler option 329
-static-libgcc compiler option (Linux* only) 330
-static-libstdc++ compiler option (Linux* only) 331
-std compiler option 261
-strict-ansi compiler option 263
-T compiler option (Linux* only) 332
-tbb compiler option 131
-u compiler option 333
-U compiler option 251
-undef compiler option 252
-unroll compiler option 132
-use-intel-optimized-headers compiler option 133
-use-msasm compiler option 226
-v compiler option 333
-vec compiler option 134
-vec-threshold compiler option 135
-w compiler option 288, 289
-Wa compiler option 334
-Wabi compiler option 290
-Wall compiler option 290
-watch compiler option 347
-Wcheck-unicode-security compiler option 291
-Wcomment compiler option 292
-Wdeprecated compiler option 293
-Weffc++ compiler option 293
-Werror compiler option 294
-Werror-all compiler option 295
-Wextra-tokens compiler option 296
-Wformat compiler option 296
-Wformat-security compiler option 297
-Wl compiler option 335

Index

809



-Wmain compiler option 298
-Wmissing-declarations compiler option 298
-Wmissing-prototypes compiler option 299
-Wno-sycl-strict compiler option 179
-Wp compiler option 335
-Wpointer-arith compiler option 299
-Wreorder compiler option 300
-Wreturn-type compiler option 301
-Wshadow compiler option 301
-Wsign-compare compiler option 302
-Wstrict-aliasing compiler option 303
-Wstrict-prototypes compiler option 303
-Wtrigraphs compiler option 304
-Wuninitialized compiler option 304
-Wunknown-pragmas compiler option 305
-Wunused-function compiler option 306
-Wunused-variable compiler option 306
-Wwrite-strings compiler option 307
-x (type) compiler option 265
-x compiler option 108
-X compiler option 253
-xHost compiler option 111
-Xlinker compiler option 336
-Xopenmp-target compiler option 180
-Xs compiler option 181
-Xsycl-target compiler option 182
-Zp compiler option 268
/arch compiler option 77
/c compiler option 208
/C compiler option 232
/D compiler option 233
/debug compiler option 211
/device-math-lib compiler option 138
/E compiler option 235
/EH compiler option 83
/EP compiler option 236
/F compiler option 313
/Fa compiler option 213
/fast compiler option 66
/FD compiler option 214
/Fe compiler option 215
/FI compiler option 236
/fixed compiler option 314
/Fm compiler option 314
/Fo compiler option 216
/fp compiler option

how to use 363
/Fp compiler option 217
/GA compiler option 281
/Gd compiler option 88
/GF compiler option 69
/Gr compiler option 89
/GR compiler option 90
/Gs compiler option 282
/GS compiler option 283
/guard compiler option 91
/guard:cf compiler option 91
/Gv compiler option 92
/Gw compiler option 85
/GX compiler option 83
/Gy compiler option 86
/Gz compiler option 93
/help compiler option 340
/I compiler option 238
/I- compiler option 238
/J compiler option 260
/LD compiler option 317, 375
/link compiler option 318

/MD compiler option 319, 375
/MT compiler option 320, 375
/nologo compiler option 341
/O compiler option 71
/Od compiler option 73
/Oi compiler option 68
/openmp

see -qopenmp 172
/Os compiler option 75
/Ot compiler option 75
/Ox compiler option 76
/Oy compiler option 87
/P compiler option 250
/Qactypes compiler option 121
/Qax compiler option 79
/Qbranches-within-32B-boundaries compiler option 100
/Qdaal compiler option 122
/QdD compiler option 234
/QdM compiler option 234
/Qeffc++ compiler option 293
/Qfma compiler option 201
/Qfp-speculation compiler option 204
/Qfreestanding compiler option 115
/QH compiler option 237
/Qimf-absolute-error compiler option 185
/Qimf-accuracy-bits compiler option 186
/Qimf-arch-consistency compiler option 188
/Qimf-domain-exclusion compiler option 190
/Qimf-force-dynamic-target compiler option 194
/Qimf-max-error compiler option 195
/Qimf-precision compiler option 197
/Qimf-use-svml compiler option 199
/Qintrinsic-promote compiler option 101
/Qiopenmp compiler option 140
/Qipo compiler option 114, 741
/Qipp compiler option 123
/Qipp-link compiler option 119
/Qkeep-static-consts compiler option 271
/Qlong-double compiler option 286
/QM compiler option 244
/Qm32 compiler option 95
/Qm64 compiler option 95
/QMD compiler option 245
/QMF compiler option 245
/QMG compiler option 246
/Qmkl compiler option 124
/QMM compiler option 247
/QMMD compiler option 247
/QMT compiler option 249
/Qno-builtin-name compiler option 68
/Qno-intel-lib compiler option 322
/Qopenmp compiler option

using in apps 618
/Qopenmp-declare-target-scalar-defaultmap compiler
option 144
/Qopenmp-lib compiler option 173
/Qopenmp-simd compiler option 176
/Qopenmp-stubs compiler option 177
/Qopenmp-target-buffers compiler option 147
/Qopenmp-targets compiler option 149
/Qopt-assume-no-loop-carried-dep 126
/Qopt-dynamic-align compiler option 127
/Qopt-for-throughput compiler option 128
/Qopt-multiple-gather-scatter-by-shuffles compiler
option 129
/Qopt-report compiler option 136
/Qopt-report-file compiler option 137
/Qopt-report-stdout compiler option 137

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

810



/Qopt-streaming-stores compiler option 130
/Qoption compiler option 254
/Qpc compiler option 205
/Qregcall compiler option 107
/Qsave-temps compiler option 341
/Qsox compiler option 343
/Qstd compiler option 261
/Qtbb compiler option 131
/Qtrapuv compiler option 218
/Qunroll compiler option 132
/Quse-intel-optimized-headers compiler option 133
/Qvec compiler option 134
/Qvec-peel-loops compiler option 117
/Qvec-remainder-loops compiler option 118
/Qvec-threshold compiler option 135
/Qvec-with-mask compiler option 119
/Qx compiler option 108
/QxHost compiler option 111
/Qzero-initialized-in-bss compiler option 280
/RTC compiler option 224
/S compiler option 225
/showIncludes compiler option 342
/std compiler option 261
/Tc compiler option 345
/TC compiler option 345
/Tp compiler option 346
/TP compiler option 243
/tune compiler option 104
/U compiler option 251
/vd compiler option 264
/vmg compiler option 264
/vmv compiler option 308
/w compiler option 288
/W compiler option 289
/Wall compiler option 290
/watch compiler option 347
/Wcheck-unicode-security compiler option 291
/Werror-all compiler option 295
/WX compiler option 294
/X compiler option 253
/Y- compiler option 226
/Yc compiler option 227
/Yu compiler option 228
/Z7 compiler option 230
/Zc compiler option 266
/Zg compiler option 267
/Zi compiler option 230
/ZI compiler option 230
/Zl compiler option 337, 375
/Zp compiler option 268
/Zs compiler option 269

A
absolute error

option defining for math library function results 185
access_by 395
adding files 40
adding the compiler

in Eclipse 33
align

attribute 367
align_value

attribute 368
aligned

attribute 367
aligned_offset 426
alternate compiler options 354

alternate tools and locations 606
ANSI/ISO standard 793
aos1d_container 384, 386, 392, 396, 399, 401–403, 427,
431–433
aos1d_container::accessor 403, 406, 407, 410, 412, 413,
415
aos1d_container::const_accessor 414
applications

deploying 378
option specifying code optimization for 71

ar tool 375
assembler

option passing options to 334
assembler output file

option specifying a dialect for 99
assembly files

naming 31
assembly listing file

option specifying generation of 213
Asynchronous I/O async_class methods

clear_queue() 514
get_error_operation_id() 513
get_last_error() 513
get_last_operation_id() 512
get_status() 512
resume_queue() 514
stop_queue() 514
wait() 512

Asynchronous I/O Extensions
introduction 496
library 496
template class 511

Asynchronous I/O library functions
aio_cancel() 506
aio_error() 503
aio_fsync() 505
aio_read() 497
aio_return() 503
aio_suspend() 501
aio_write() 498
errno macro 509
Error Handling 509

examples
aio_cancel() 506
aio_error() 504

aio_read()
aio_write() 498

aio_return 504
aio_suspend() 502
aio_write() 498
lio_listio() 508

lio_listio() 507
Asynchronous I/O template class

async_class 511
thread_control 511

attribute
align 367
align_value 368
aligned 367
concurrency_safe 370
const 371
cpu_dispatch 371
cpu_specific 371
mpx 373
target 373

auto-vectorization 364
auto-vectorization hints 733
auto-vectorization of innermost loops 364

Index

811



auto-vectorizer
AVX 698
SSE 698
SSE2 698
SSE3 698
SSSE3 698
using 704

avoid
inefficient data types 364
mixed arithmetic expressions 364

B
base platform toolset 42
bit fields and signs 795
block_loop 557

C
C++0x

option enabling support of 261
C++11

option enabling support of 261
c99

option enabling support of 261
calling conventions 48
capturing IPO output 741
changing number of threads

summary table of 631
Class Libraries

C++ classes and SIMD operations 443
capabilities of C++ SIMD classes 446
conventions 448

floating-point vector classes
arithmetic operators 472
cacheability support operators 484
compare operators 478
conditional select operators 481
constructors and initialization 470
conversions 470
data alignment 470
debug operators 485
load operators 486
logical operators 477
minimum and maximum operators 476
move mask operators 486
notation conventions 469
overview 469
store operators 486
unpack operators 486
integer vector classes

addition operators
subtraction operators 453

assignment operator 451
clear MMX(TM) state operators 467
comparison operators 457
conditional select operators 459
conversions between fvec and ivec 468

debug operators
element access operator 461
element assignment operators 461

functions for SSE 467
ivec classes 448
logical operators 452
multiplication operators 455
pack operators 466
rules for operators 449

debug operators (continued)
debug operators (continued)
shift operators 456
unpack operators 463

Quick reference 487
syntax 448
terms 448

Classes
programming example 493

code
methods to optimize size of 747
mixing managed and unmanaged 795
option generating feature-specific 79, 94
option generating feature-specific for Windows* OS 77
option generating for specified CPU 97
option generating specialized 111
option generating specialized and optimized 108

code layout 742
code size

methods to optimize 747
option affecting inlining 747
option disabling expansion of certain functions 747
option disabling expansion of functions 747
option disabling loop unrolling 747
option dynamically linking libraries 747
option excluding data 747
option for certain exception handling 747
option passing arguments in registers 747
option stripping symbols 747
option to avoid 16-byte alignment (Linux only) 747
option to avoid library references 747
using IPO 747

comdat sections
option placing data items into separate 85
option placing functions into separate 86

command line 25
command-line window

setting up 25
compatibility

with Microsoft Visual Studio 795
compilation phases 579
compilation units 744
compiler

compilation phases 579
overview 17

compiler command-line options
option recording 222

compiler differences
between Intel® C++ and Microsoft Visual C++ 795

compiler directives
for vectorization 698, 715

compiler information
saving in your executable 610

compiler operation
input files 25
invoking from the command line 23

compiler options
alphabetical list of 53
alternate 354
command-line syntax 28
deprecated and removed 349
for optimization 800, 805
for portability 355
for visibility 609
gcc-compatible warning 355
general rules for 64
how to display informational lists 354
linker-related 605

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

812



compiler options (continued)
option categories 28
overview of descriptions of 66
using 28

compiler selection
in Visual Studio* 42

compiler setup 
compilers

using multiple versions 33
compilervars environment script 23
compilervars.bat 800
compiling

compiling considerations 800
gcc* code with Intel® C++ Compiler 805

compiling considerations 800
compiling large programs 742
compiling with IPO 741
concurrency_safe

attribute 370
conditional parallel region execution

inline expansion 744
configuration files 607
console

option displaying information to 347
const

attribute 371
conventions

in the documentation 17
converting to Intel® C++ Compiler project system 795
coprocessorThread allocation on processor 630
correct usage of countable loop 711
COS

correct usage of 711
CPU

option generating code for specified 97
CPU time

for inline function expansion 744
cpu_dispatch

attribute 371
cpu_specific

attribute 371
create libraries using IPO 744
creating

projects 40

D
data alignment optimizations

option disabling dynamic 127
data format

prefetching 739
type 698, 715

data types
efficiency 364

DAZ flag 364
debug information

option generating full 230
option generating in DWARF 2 format 221
option generating in DWARF 3 format 221
option generating in DWARF 4 format 221
option generating levels of 219

debugging
option affecting information generated 209, 211
option specifying settings to enhance 209, 211

denormal exceptions 364
denormal numbers 363
denormalized numbers (IEEE)

NaN values 366

denormals 363
deploying applications 378
deprecated compiler options 349
dialog boxes

Intel® Performance Libraries 46
Options: Compilers 45
Options: Converter) 47
Options: Intel® Performance Libraries 46
Use Intel C++ 46

difference operators 681
directory

option adding to start of include path 242
option specifying for executables 231
option specifying for includes and libraries 231

disabling
inlining 744

distribute_point 559
distributing applications 378
DO constructs 711
documentation

conventions for 17
driver tool commands

option specifying to show and execute 333
option specifying to show but not execute 338

dual core thread affinity 656
DWARF debug information

option creating object file containing 222
dynamic information

threads 636, 675
dynamic linker

option specifying an alternate 312
dynamic shared object

option producing a 326
dynamic-link libraries (DLLs)

option searching for unresolved references in 319
dynamic-linking of libraries

option enabling 309

E
ebp register

option determining use in optimizations 87
Eclipse

integration
adding the compiler 33

integration overview 33
using Intel® Performance Libraries 38

Eclipse integration 33
Eclipse*

cheat sheets 34
global symbols 609

integration
cheat sheets 34
global symbols 609
multi-version compiler support 33
visibility declaration attribute 609
projects
multi-version compiler support 33

efficiency 364
efficient

inlining 744
efficient data types 364
endian data

and OpenMP* extension routines 646
loop constructs 711
routines overriding 636, 675
using OpenMP* 681

Index

813



Enter index keyword 13, 14, 27, 368, 554, 611, 615, 683,
694
enums 795
environment variables

LD_LIBRARY_PATH 377
Linux* 580
run-time 580
setting 25
setting with setvars file 21
Windows* 580

examples
aio_cancel() 506
aio_error() 504
aio_return() 504
aio_suspend() 502
lio_listio() 508

exception handling
option generating table of 85

execution environment routines 636, 675
execution mode 646
explicit vector programming

array notations 715
elemental functions 715
smid 715

extensions 617

F
feature requirements 15
feature-specific code

option generating 79
option generating and optimizing 108

fixed_offset 426
floating-point array operation 364
Floating-point array: Handling 364
floating-point calculations

option controlling semantics of 202
option enabling consistent results 202

floating-point exceptions
denormal exceptions 364

Floating-point numbers
special values 366

floating-point operations
option controlling semantics of 202

Floating-point Operations
programming tradeoffs 361

floating-point precision
option controlling for significand 205

FMA instructions
option enabling 201

forceinline 561
format function security problems

option issuing warning for 297
frame pointer

option affecting leaf functions 102
FTZ flag 364
Function annotations

__declspec(align) 733
__declspec(vector) 733

function expansion 744
function pointers

SIMD-enabled 727
function preemption 744
functions

global 795
scope of 795

fused multiply-add instructions
option enabling 201

G
g++* language extensions 793
gather and scatter type vector memory references

option enabling optimization for 129
gcc C++ run-time libraries

include file path 239
option adding a directory to second 239
option removing standard directories from 253

gcc-compatible warning options 355
gcc* compatibility 793
gcc* considerations 805
gcc* interoperability 793
gcc* language extensions 793
general compiler directives

for inlining functions 744
for vectorization 699

global function symbols
option binding references to shared library
definitions 311

global symbols
option binding references to shared library
definitions 310

GNU C++ compatibility 793

H
help

using in Microsoft Visual Studio 16
high performance programming

applications for 739
high-level optimizer 739
HLO 739

I
IA-32 architecture based applications

HLO 739
ICV 680
IEEE

Floating-point values 366
IEEE Standard for Floating-point Arithmetic, IEEE
754-2008 366
include files 31
inline 561
inlining

compiler directed 744
developer directed 744
preemption 744

input files 25
integrating Intel® C++ with Microsoft Visual Studio 795
Intel-provided libraries

option linking dynamically 327
option linking statically 329

Intel's C++ asynchronous I/O template class
Usage Example 514

Intel's Memory Allocator Library 380
Intel's Numeric String Conversion Library

libistrconv 541, 542
Intel(R) 64 architecture based applications

HLO 739
Intel(R) IPP libraries

option letting you choose the library to link to 119
option letting you link to 123

Intel(R) libraries
option disabling linking to 322

Intel(R) linking tools 739

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

814



Intel(R) MKL
option letting you link to libraries 124

Intel(R) TBB libraries
option letting you link to 131

Intel® C++
command-line environment 25

Intel® C++ Class Libraries
overview 442

Intel® C++ Compiler command prompt window 25
Intel® C++ Compiler extension routines 646
Intel® extension environment variables 580
Intel® IEEE 754-2008 Binary Floating-Point Conformance

Library
formatOf general-computational operations
add 525
binary32_to_binary64 525
binary64_to_binary32 525
div 525
fma 525
from_hexstring 525
from_int32 525
from_int64 525
from_string 525
from_uint32 525
from_uint64 525
mul 525
sqrt 525
sub 525
to_hexstring 525
to_int32_ceil 525
to_int32_floor 525
to_int32_int 525
to_int32_rnint 525
to_int32_rninta 525
to_int32_xceil 525
to_int32_xfloor 525
to_int32_xint 525
to_int32_xrnint 525
to_int32_xrninta 525
to_int64_ceil 525
to_int64_floor 525
to_int64_int 525
to_int64_rnint 525
to_int64_rninta 525
to_int64_xceil 525
to_int64_xfloor 525
to_int64_xint 525
to_int64_xrnint 525
to_int64_xrninta 525
to_string 525
to_uint32_ceil 525
to_uint32_floor 525
to_uint32_int 525
to_uint32_rnint 525
to_uint32_rninta 525
to_uint32_xceil 525
to_uint32_xfloor 525
to_uint32_xint 525
to_uint32_xrnint 525
to_uint32_xrninta 525
to_uint64_ceil 525
to_uint64_floor 525
to_uint64_int 525
to_uint64_rnint 525
to_uint64_rninta 525
to_uint64_xceil 525
to_uint64_xfloor 525
to_uint64_xint 525

signaling-computational operations (continued)
formatOf general-computational operations (continued)
to_uint64_xrnint 525
to_uint64_xrninta 525
homogeneous general-computational operations
ilogb 522
maxnum 522
maxnum_mag 522
minnum 522
minnum_mag 522
next_down 522
next_up 522
rem 522
round_integral_exact 522
round_integral_nearest_away 522
round_integral_nearest_even 522
round_integral_negative 522
round_integral_positive 522
round_integral_zero 522
scalbn 522
non-computational operations
class 536
defaultMode 536
getBinaryRoundingDirection 536
is754version1985 536
is754version2008 536
isCanonical 536
isFinite 536
isInfinite 536
isNaN 536
isNormal 536
isSignaling 536
isSignMinus 536
isSubnormal 536
isZero 536
lowerFlags 536
radix 536
raiseFlags 536
restoreFlags 536
restoreModes 536
saveFlags 536
setBinaryRoundingDirectionsaveModes 536
testFlags 536
testSavedFlags 536
totalOrder 536
totalOrderMag 536

nonhomogeneous general-computational
operations 519

quiet-computational operations
copy 530
copysign 530
negate 530
signaling-computational operations
quiet_equal 531
quiet_greater 531
quiet_greater_equal 531
quiet_greater_unordered 531
quiet_less 531
quiet_less_equal 531
quiet_less_unordered 531
quiet_not_equal 531
quiet_not_greater 531
quiet_not_less 531
quiet_ordered 531
quiet_unordered 531
signaling_equal 531
signaling_greater 531
signaling_greater_equal 531

Index

815



signaling-computational operations (continued)
signaling-computational operations (continued)
signaling_greater_unordered 531
signaling_less 531
signaling_less_ unordered 531
signaling_less_equal 531
signaling_not_equal 531
signaling_not_greater 531
signaling_not_less 531

using the library 516
Intel® Integrated Performance Primitives 43
Intel® Math Kernel Library 43
Intel® Math Library

C99 macros
fpclassify 791
isfinite 791
isgreater 791
isgreaterequal 791
isinf 791
isless 791
islessequal 791
islessgreater 791
isnan 791
isnormal 791
isunordered 791
signbit 791

Intel® Performance Libraries
Intel® Integrated Performance Primitives (Intel® IPP) 43
Intel® Math Kernel Library (Intel® MKL) 43
Intel® Threading Building Blocks (Intel® TBB) 43

Intel® Streaming SIMD Extensions (Intel® SSE) 699
Intel® Threading Building Blocks 43
intermediate files

option saving during compilation 341
intermediate representation (IR) 739, 741
interoperability

with g++* 793
with gcc* 793

interprocedural optimizations
capturing intermediate output 741
code layout 742
compilation 739
compiling 741
considerations 742
creating libraries 744
issues 742
large programs 742
linking 739, 741
option enabling between files 114
option enabling for single file compilation 207
overview 739
performance 742
using 741
whole program analysis 739
xiar 744
xild 744
xilibtool 744

intrinsics
about 374

invoking Intel® C++ Compiler 23
IR 741
ivdep 562
IVDEP

effect when tuning applications 739

K
KMP_AFFINITY

modifier 656
offset 656
permute 656
type 656

KMP_LIBRARY 650
KMP_TOPOLOGY_METHOD 656
KMP_TOPOLOGY_METHOD environment variable 656

L
language extensions

g++* 793
gcc* 793

LD_LIBRARY_PATH 377
level zero 686
Level Zero 683
LIB environment variable 377
libgcc library

option linking dynamically 328
option linking statically 330

libistrconv Library
Intel's Numeric String Conversion functions 542
Numeric String Conversion 541
Numeric String Conversion Functions 541

libm 800
libqkmalloc Library 380
libraries

-c compiler option 375
-fPIC compiler option 375
-shared compiler option 375
creating 375
creating your own 375
LD_LIBRARY_PATH 377
managing 377
OpenMP* run-time routines 636, 646, 675
option enabling dynamic linking of 309
option enabling static linking of 310
option letting you link to Intel(R) DAAL 122
option letting you link to the AC data types libraries for
FPGA 121
option preventing linking with shared 328
option preventing use of standard 321
redistributing 378
shared 375, 376
specifying 377
static 375

library
option searching in specified directory for 317
option to search for 316

Library extensions
valarray implementation 494

library functions
Intel extension 646
OpenMP* run-time routines 636, 675

library math functions
option testing errno after calls to 272

libstdc++ library
option linking statically 331

linear_index 427
linker

option passing linker option to 336
option passing options to 318

linker options
specifying 605

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

816



linking
option preventing use of startup files and libraries
when 324
option preventing use of startup files when 323
option suppressing 208

linking debug information 610
linking tools

xild 739, 742, 744
xilibtool 744
xilink 739, 742

linking tools IR 739
linking with IPO 741
Linux compiler options

c 31
I 31
o 31
S 31
X 31

Linux* compiler options
Qlocation 606
Qoption 606

lock routines 636, 675
loop unrolling

using the HLO optimizer 739
loop_count 563
loops

constructs 711
distribution 739
interchange 739
option specifying maximum times to unroll 132
parallelization 709
transformations 739
vectorization 709, 732

M
macro names

option associating with an optional value 233
macros 548, 793, 802
maintainability

allocation 646
makefiles

modifying 798, 803
makefiles, using 26
managed and unmanaged code 795
Math library

Complex Functions
cabs library function 787
cacos library function 787
cacosh library function 787
carg library function 787
casin library function 787
casinh library function 787
catan library function 787
catanh library function 787
ccos library function 787
ccosh library function 787
cexp library function 787
cexp10 library function 787
cimag library function 787
cis library function 787
clog library function 787
clog2 library function 787
conj library function 787
cpow library function 787
cproj library function 787
creal library function 787
csin library function 787

Trigonometric Functions (continued)
Complex Functions (continued)
csinh library function 787
csqrt library function 787
ctan library function 787
ctanh library function 787
Exponential Functions
cbrt library function 769
exp library function 769
exp10 library function 769
exp2 library function 769
expm1 library function 769
frexp library function 769
hypot library function 769
ilogb library function 769
ldexp library function 769
log library function 769
log10 library function 769
log1p library function 769
log2 library function 769
logb library function 769
pow library function 769
scalb library function 769
scalbn library function 769
sqrt library function 769
Hyperbolic Functions
acosh library function 767
asinh library function 767
atanh library function 767
cosh library function 767
sinh library function 767
sinhcosh library function 767
tanh library function 767
Miscellaneous Functions
copysign library function 782
fabs library function 782
fdim library function 782
finite library function 782
fma library function 782
fmax library function 782
fmin library function 782
Miscellaneous Functions 782
nextafter library function 782
Nearest Integer Functions
ceil library function 778
floor library function 778
llrint library function 778
llround library function 778
lrint library function 778
lround library function 778
modf library function 778
nearbyint library function 778
rint library function 778
round library function 778
trunc library function 778
Remainder Functions
fmod library function 781
remainder library function 781
remquo library function 781
Special Functions
annuity library function 774
compound library function 774
erf library function 774
erfc library function 774
gamma library function 774
gamma_r library function 774
j0 library function 774
j1 library function 774

Index

817



Trigonometric Functions (continued)
Special Functions (continued)
jn library function 774
lgamma library function 774
lgamma_r library function 774
tgamma library function 774
y0 library function 774
y1 library function 774
yn library function 774
Trigonometric Functions
acos library function 762
acosd library function 762
asin library function 762
asind library function 762
atan library function 762
atan2 library function 762
atand library function 762
atand2 library function 762
cos library function 762
cosd library function 762
cot library function 762
cotd library function 762
sin library function 762
sincos library function 762
sincosd library function 762
sind library function 762
tan library function 762
tand library function 762

Math Library
code examples 753
using 753

math library functions
option indicating domain for input arguments 190
option producing consistent results 188
option specifying a level of accuracy for 197

memory model
option specifying large 284
option specifying small or medium 284
option to use specific 284

Message Fabric Interface (MPI) support 45
Microsoft Visual Studio

compatibility 795
getting started with 41
integration 795

Microsoft Visual Studio*
Intel® Performance Libraries 43
property pages 43

min_val 434
mixing vectorizable types in a loop 699
mock object files 741
MPI support 45
mpx

attribute 373
multithreading 650
MXCSR register 364

N
noblock_loop 557
nofusion 565
noinline 561
noprefetch 567
normalized Floating-point number 366
Not-a-Number (NaN) 366
nounroll 568
nounroll_and_jam 570
novector 565

O
object files

specifying 31
omp target variant dispatch

pragma 566
omp target variant dispatch pragma 566
OMP_STACKSIZE environment variable 618
Open Source tools 793
OpenMP

support overview 617
OpenMP Libraries

using 652
openmp_version 636, 675
OpenMP*

advanced issues 678
C/C++ interoperability 678
combined construct 631
compatibility libraries 650
composite construct 631
debugging 678
environment variables 656
examples of 681
extensions for Intel® Compiler 646
Fortran and C/C++ interoperability 678
header files 678
Intel® Xeon Phi™ coprocessor support 630
KMP_AFFINITY 656
legacy libraries 650
library file names 650
load balancing 622
omp.h 678
parallel processing thread model 619
performance 678
run-time library routines 636, 675
SIMD-enabled functions 717
support libraries 650
using 618

OpenMP* API
option enabling 172
option enabling programs in sequential mode 177

OpenMP* clauses summary 631
OpenMP* header files 636, 675
OpenMP* pragmas

syntax 618
using 618

OpenMP* run-time library
option controlling which is linked to 175
option specifying 173

OpenMP*, loop constructs
numbers 636, 675

optimization
option specifying code 71

optimization report
option specifying name for 137

optimizations
high-level language 739
option disabling all 73
option enabling all speed 75
option enabling many speed 75

output files
option specifying name for 223

overflow
call to a runtime library routine 636, 675

overview 

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

818



P
parallel processing

thread model 619
parallel regions 631
parallelism 43, 636, 675
performance 364
performance issues with IPO 742
platform toolset 42
porting applications

from gcc* to the Intel® C++ Compiler 802
from the Microsoft* C++ Compiler 797
to the Intel® C++ Compiler 797

position-independent code
option generating 274, 275

pragma block_loop
factor 557
level 557

pragma distribute_point 559
pragma forceinline

recursive 561
pragma inline

recursive 561
pragma ivdep 562
pragma loop_count

avg 563
max 563
min 563
n 563

pragma noblock_loop 557
pragma nofusion 565
pragma noinline 561
pragma noprefetch

var 567
pragma nounroll 568
pragma nounroll_and_jam 570
pragma novector 565
pragma omp target variant dispatch 566
pragma prefetch

distance 567
hint 567
var 567

pragma simd 715
pragma unroll 568
pragma unroll_and_jam 570
pragma vector 571
Pragmas

gcc* compatible 573
HP* compatible 573
Intel-supported 573
Microsoft* compatible 573
overview 556

Pragmas: Intel-specific 557
precompiled header files 795
predefined macros 548, 793
preempting functions 744
prefetch 567
processor

option optimizing for specific 104
processor features

option telling which to target 108
program loops

parallel processing model 619
programs

option maximizing speed in 66
projects

adding files 40
creating 40

projects (continued)
in Microsoft Visual Studio 40

property pages in Microsoft Visual Studio* 43
Proxy 419, 421

R
redistributable package 378
redistributing libraries 378
references to global function symbols

option binding to shared library definitions 311
references to global symbols

option binding to shared library definitions 310
relative error

option defining for math library function results 186
option defining maximum for math library function
results 195

remarks
option changing to errors 295

removed compiler options 349
report generation

Intel® Compiler extensions 646
OpenMP* run-time routines 636, 675
timing 636, 675

response files 608
run-time environment variables 580
run-time performance

improving 364
runtime dispatch

option using in calls to math functions 194

S
SDLT

accessors 403, 413
example programs 434, 441
indexes 427
number representation 422
proxy objects 419
SDLT_DEBUG 433
SDLT_INLINE 433

SDLT Layouts
sdlt layout namespace 398

setvars.bat 21
setvars.csh 21
setvars.sh 21
shared libraries 375
shared object

option producing a dynamic 326
shared scalars 681
short vector math library

option specifying for math library functions 199
signed infinity 366
signed zero 366
SIMD-enabled functions

pointers to 727
soa1d_container 390
soa1d_container::accessor 403, 406, 407, 410, 412, 413,
415
soa1d_container::const_accessor 414
specifying file names

for assembly files 31
for object files 31

stack
option specifying reserve amount 313

stack checking routine
option controlling threshold for call of 282

Index

819



stack variables
option initializing to NaN 218

standard directories
option removing from include search path 253

standards conformance 793
static libraries 375
streaming stores

option generating for optimization 130
subnormal numbers 363
subroutines in the OpenMP* run-time library

for OpenMP* 650
supported tools 793
symbol visibility

option specifying 279
synchronization

parallel processing model for 619
thread sleep time 646

T
target

attribute 373
thread affinity 656
threads 43
threshold control for auto-parallelization

OpenMP* routines for 636, 675
reordering 699

throughput optimization
option determining 128

to Microsoft Visual Studio projects 40
tools

option passing options to 254
topology maps 656

U
unroll

n 568
unroll_and_jam

n 570
unwind information

option determining where precision occurs 84
user functions

dynamic libraries 636, 675
OpenMP* 681

using 607, 608
using Intel® Performance Libraries

in Eclipse 38
Using OpenMP* 618
using property pages in Microsoft Visual Studio* 43

V
valarray implementation

compiling code 494
using in code 494

variables
option placing explicitly zero-initialized in DATA
section 280
option saving always 271

vector
pragma 571

vector copy
non-vectorizable copy 699
programming guidelines 699

vector pragma 571

vectorization
compiler options 704
compiler pragmas 704
keywords 704
obstacles 704
option disabling 134
option setting threshold for loops 135
speed-up 704
what is 704

Vectorization
auto-parallelization
reordering threshold control 699

general compiler directives 699
Intel® Streaming SIMD Extensions 699
language support 733
loop unrolling 699
pragma 733
SIMD 715
user-mandated 715

vector copy
non-vectorizable copy 699
programming guidelines 699

vectorizing
loops 711

Visual Studio
converting projects 32

dialog boxes
Converter 47

Visual Studio*
compiler selection 42

dialog boxes
Compilers 45
Intel® Performance Libraries 46
Use Intel C++ 46

MPI support 45

W
warnings

gcc-compatible 355
option changing to errors 294, 295

whole program analysis 739
Windows compiler options

Fa 31
Fo 31
I 31
X 31

Windows* compiler options
Qlocation 606
Qoption 606

worker thread 650
worksharing 631

X
xiar 742, 744
xild 739, 742, 744
xilib 744
xilibtool 744
xilink 739, 742, 744

Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

820


	Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference
	Notices and Disclaimers
	Contents
	Intel® oneAPI DPC++/C++ Compiler Introduction
	Feature Requirements
	Get Help and Support
	Related Information
	Notational Conventions

	Compiler Setup
	Use the Command Line
	Specify the Location of Compiler Components
	Invoke the Compiler
	Use the Command Line on Windows
	File Extensions
	Use Makefiles for Compilation
	Use CMake with the Intel® oneAPI DPC++/C++ Compiler
	Use Compiler Options
	Specify Compiler Files
	Convert Projects to Use a Selected Compiler

	Use Eclipse
	Add the Compiler to Eclipse
	Multi-version Compiler Support
	Use Cheat Sheets
	Create a Simple Eclipse Project
	Makefiles
	Use Intel Libraries with Eclipse

	Use Microsoft Visual Studio
	Create a New Project
	Use the Intel® oneAPI DPC++/C++ Compiler
	Select the Compiler Version
	Specify a Base Platform Toolset
	Use Property Pages
	Use Intel® Libraries with Microsoft Visual Studio*
	Include MPI Support
	Dialog Box Help
	Options: Compilers dialog box
	Use Intel® oneAPI DPC++/C++ Compiler dialog box
	Options: Intel Libraries for oneAPI dialog box
	Options: Converter dialog box



	Compiler Reference
	C/C++/SYCL Calling Conventions
	Compiler Options
	Alphabetical Option List
	General Rules for Compiler Options
	What Appears in the Compiler Option Descriptions
	Optimization Options
	fast
	fbuiltin, Oi
	foptimize-sibling-calls
	GF
	nolib-inline
	O
	Od
	Ofast
	Os
	Ot
	Ox

	Code Generation Options
	arch
	ax, Qax
	EH
	fasynchronous-unwind-tables
	fdata-sections, Gw
	fexceptions
	ffunction-sections, Gy
	fomit-frame-pointer, Oy
	Gd
	Gr
	GR
	guard
	Gv
	Gz
	m
	m32, m64, Q32, Q64
	m80387
	march
	masm
	mbranches-within-32B-boundaries, Qbranches-within-32B-boundaries
	mintrinsic-promote, Qintrinsic-promote
	momit-leaf-frame-pointer
	mregparm
	mtune, tune
	regcall, Qregcall
	x, Qx
	xHost, QxHost

	Interprocedural Optimization Options
	ipo, Qipo

	Advanced Optimization Options
	ffreestanding, Qfreestanding
	fjump-tables
	fvec-peel-loops, Qvec-peel-loops
	fvec-remainder-loops, Qvec-remainder-loops
	fvec-with-mask, Qvec-with-mask
	ipp-link, Qipp-link
	qactypes, Qactypes
	qdaal, Qdaal
	qipp, Qipp
	qmkl, Qmkl
	qopt-assume-no-loop-carried-dep, Qopt-assume-no-loop-carried-dep
	qopt-dynamic-align, Qopt-dynamic-align
	qopt-for-throughput, Qopt-for-throughput
	qopt-multiple-gather-scatter-by-shuffles, Qopt-multiple-gather-scatter-by-shuffles
	qopt-streaming-stores, Qopt-streaming-stores
	qtbb, Qtbb
	unroll, Qunroll
	use-intel-optimized-headers, Quse-intel-optimized-headers
	vec, Qvec
	vec-threshold, Qvec-threshold

	Optimization Report Options
	qopt-report, Qopt-report
	qopt-report-file, Qopt-report-file

	Offload Compilation, OpenMP*, and Parallel Processing Options
	device-math-lib
	fintelfpga
	fiopenmp, Qiopenmp
	fno-sycl-libspirv
	foffload-static-lib
	fopenmp
	fopenmp-declare-target-scalar-defaultmap, Qopenmp-declare-target-scalar-defaultmap
	fopenmp-device-lib
	fopenmp-target-buffers, Qopenmp-target-buffers
	fopenmp-targets, Qopenmp-targets
	fsycl
	fsycl-add-targets
	fsycl-dead-args-optimization
	fsycl-device-code-split
	fsycl-device-lib
	fsycl-device-only
	fsycl-early-optimizations
	fsycl-enable-function-pointers
	fsycl-esimd-force-stateless-mem
	fsycl-explicit-simd
	fsycl-help
	fsycl-host-compiler
	fsycl-host-compiler-options
	fsycl-id-queries-fit-in-int
	fsycl-instrument-device-code
	fsycl-link
	fsycl-link-targets
	fsycl-max-parallel-link-jobs
	fsycl-targets
	fsycl-unnamed-lambda
	fsycl-use-bitcode
	nolibsycl
	qopenmp, Qopenmp
	qopenmp-lib, Qopenmp-lib
	qopenmp-link, Qopenmp-link
	qopenmp-simd, Qopenmp-simd
	qopenmp-stubs, Qopenmp-stubs
	reuse-exe
	Wno-sycl-strict
	Xopenmp-target
	Xs
	Xsycl-target

	Floating-Point Options
	ffp-contract
	fimf-absolute-error, Qimf-absolute-error
	fimf-accuracy-bits, Qimf-accuracy-bits
	fimf-arch-consistency, Qimf-arch-consistency
	fimf-domain-exclusion, Qimf-domain-exclusion
	fimf-force-dynamic-target, Qimf-force-dynamic-target
	fimf-max-error, Qimf-max-error
	fimf-precision, Qimf-precision
	fimf-use-svml, Qimf-use-svml
	fma, Qfma
	fp-model, fp
	fp-speculation, Qfp-speculation
	pc, Qpc

	Inlining Options
	fgnu89-inline
	finline
	finline-functions

	Output, Debug, and Precompiled Header Options
	c
	debug (Linux* )
	debug (Windows*)
	Fa
	fasm-blocks
	FD
	Fe
	Fo
	Fp
	ftrapuv, Qtrapuv
	fverbose-asm
	g
	gdwarf
	grecord-gcc-switches
	gsplit-dwarf
	o
	RTC
	S
	use-msasm
	Y-
	Yc
	Yu
	Zi, Z7, ZI

	Preprocessor Options
	B
	C
	D
	dD, QdD
	dM, QdM
	E
	EP
	FI
	H, QH
	I
	I-
	idirafter
	imacros
	iprefix
	iquote
	isystem
	iwithprefix
	iwithprefixbefore
	Kc++, TP
	M, QM
	MD, QMD
	MF, QMF
	MG, QMG
	MM, QMM
	MMD, QMMD
	MQ
	MT, QMT
	nostdinc++
	P
	pragma-optimization-level
	U
	undef
	X

	Component Control Options
	Qoption

	Language Options
	ansi
	fno-gnu-keywords
	fno-operator-names
	fno-rtti
	fpermissive
	fshort-enums
	fsyntax-only
	funsigned-char
	J
	std, Qstd
	strict-ansi
	vd
	vmg
	x (type option)
	Zc
	Zg
	Zp
	Zs

	Data Options
	align
	fcommon
	fkeep-static-consts, Qkeep-static-consts
	fmath-errno
	fpack-struct
	fpascal-strings
	fpic
	fpie
	freg-struct-return
	fstack-protector
	fstack-security-check
	fvisibility
	fzero-initialized-in-bss, Qzero-initialized-in-bss
	GA
	Gs
	GS
	malign-double
	mcmodel
	Qlong-double

	Compiler Diagnostic Options
	w
	w0...w5, W0...W5
	Wabi
	Wall
	Wcheck-unicode-security
	Wcomment
	Wdeprecated
	Weffc++, Qeffc++
	Werror, WX
	Werror-all
	Wextra-tokens
	Wformat
	Wformat-security
	Wmain
	Wmissing-declarations
	Wmissing-prototypes
	Wpointer-arith
	Wreorder
	Wreturn-type
	Wshadow
	Wsign-compare
	Wstrict-aliasing
	Wstrict-prototypes
	Wtrigraphs
	Wuninitialized
	Wunknown-pragmas
	Wunused-function
	Wunused-variable
	Wwrite-strings

	Compatibility Options
	gcc-toolchain
	vmv

	Linking or Linker Options
	Bdynamic
	Bstatic
	Bsymbolic
	Bsymbolic-functions
	dynamic-linker
	F (Windows*)
	fixed
	Fm
	fuse-ld
	l
	L
	LD
	link
	MD
	MT
	no-libgcc
	nodefaultlibs
	no-intel-lib
	nostartfiles
	nostdlib
	pie
	pthread
	shared
	shared-intel
	shared-libgcc
	static
	static-intel
	static-libgcc
	static-libstdc++
	T
	u (Linux* OS)
	v
	Wa
	Wl
	Wp
	Xlinker
	Zl

	Miscellaneous Options
	dryrun
	dumpmachine
	dumpversion
	help
	nologo
	save-temps, Qsave-temps
	showIncludes
	sox
	sysroot
	Tc
	TC
	Tp
	version
	watch

	Deprecated and Removed Compiler Options
	Display Option Information
	Alternate Compiler Options
	Portability and GCC*-Compatible Warning Options

	Floating-Point Operations
	Programming Tradeoffs in Floating-point Applications
	Use the -fp-model, /fp Option
	Denormal Numbers
	Set the FTZ and DAZ Flags
	Tuning Performance
	IEEE Floating-point Operations

	Attributes
	align
	align_value
	allow_cpu_features
	concurrency_safe
	const
	cpu_dispatch, cpu_specific
	mpx
	target

	Intrinsics
	Libraries
	Create Libraries
	Use Intel Shared Libraries
	Manage Libraries
	Redistribute Libraries When Deploying Applications
	Resolve References to Shared Libraries
	Intel's Memory Allocator Library
	SIMD Data Layout Templates
	Function Calls and Containers
	Construct an n_container
	Bounds

	User-Level Interface
	SDLT Primitives
	soa1d_container
	aos1d_container
	access_by

	n_container
	Layouts
	Shape
	n_extent_generator

	make_ n_container template function
	extent_d template function

	Bounds
	bounds_t
	sdlt::bounds Template Function
	n_bounds_t
	n_bounds_generator
	bounds_d Template Function

	Accessors
	soa1d_container::accessor and aos1d_container::accessor
	soa1d_container::const_accessor and aos1d_container::const_accessor
	Accessor Concept

	Proxy Objects
	Proxy
	ConstProxy

	Number Representation
	aligned_offset
	fixed_offset

	Indexes
	linear_index
	n_index_t
	n_index_generator
	index_d template function

	Convenience and Correctness
	max_val
	min_val


	Examples
	Efficiency with Structure of Arrays Example
	Complex SDLT Primitive Construction Example
	Forward Dependency Example
	Use of Offsets and Methods on a SDLT Primitive Example
	RGB to YUV Conversion Example


	Intel® C++ Class Libraries
	C++ Classes and SIMD Operations
	Capabilities of C++ SIMD Classes
	Integer Vector Classes
	Terms and Syntax
	Rules for Operators
	Assignment Operator
	Logical Operators
	Addition and Subtraction Operators
	Multiplication Operators
	Shift Operators
	Comparison Operators
	Conditional Select Operators
	Debug Operations
	Unpack Operators
	Pack Operators
	Clear MMX™ State Operator
	Integer Functions for Intel® Streaming SIMD Extensions
	Conversions between Fvec and Ivec

	Floating-point Vector Classes
	Fvec Syntax and Notation
	Data Alignment
	Conversions
	Constructors and Initialization
	Arithmetic Operators
	Minimum and Maximum Operators
	Logical Operators
	Compare Operators
	Conditional Select Operators for Fvec Classes
	Cacheability Support Operators
	Debug Operations
	Load and Store Operators
	Unpack Operators
	Move Mask Operators

	Classes Quick Reference
	Programming Example
	Intel's valarray Implementation

	Intel's C++ Asynchronous I/O Extensions for Windows
	Intel's C++ Asynchronous I/O Library for Windows
	aio_read
	aio_write
	Example for aio_read and aio_write Functions
	aio_suspend
	Example for aio_suspend Function
	aio_error
	aio_return
	Example for aio_error and aio_return Functions
	aio_fsync
	aio_cancel
	Example for aio_cancel Function
	lio_listio
	Example for lio_listio Function
	Asynchronous I/O Function Errors

	Intel's C++ Asynchronous I/O Class for Windows
	Template Class async_class
	get_last_operation_id
	wait
	get_status
	get_last_error
	get_error_operation_id
	stop_queue
	resume_queue
	clear_queue
	Example for Using async_class Template Class


	IEEE 754-2008 Binary Floating-Point Conformance Library
	Intel® IEEE 754-2008 Binary Floating-Point Conformance Library and Usage
	Function List
	Homogeneous General-Computational Operations Functions
	General-Computational Operations Functions
	Quiet-Computational Operations Functions
	Signaling-Computational Operations Functions
	Non-Computational Operations Functions

	Intel's Numeric String Conversion Library
	Use Intel's Numeric String Conversion Library
	Function List


	Macros
	ISO Standard Predefined Macros
	Additional Predefined Macros
	Use Predefined Macros to Specify Intel® Compilers

	Pragmas
	Intel-Specific Pragma Reference
	block_loop/noblock_loop
	distribute_point
	inline, noinline, forceinline
	ivdep
	loop_count
	nofusion
	novector
	omp target variant dispatch
	prefetch/noprefetch
	unroll/nounroll
	unroll_and_jam/nounroll_and_jam
	vector

	Intel-supported Pragma Reference

	Error Handling

	Compilation
	Compilation Overview
	Supported Environment Variables
	Pass Options to the Linker
	Specify Alternate Tools and Paths
	Use Configuration Files
	Use Response Files
	Global Symbols and Visibility Attributes for Linux*
	Save Compiler Information in Your Executable
	Link Debug Information
	Ahead of Time Compilation
	Device Offload Compilation Considerations
	Use a Third-Party Compiler as a Host Compiler for SYCL Code

	Optimization and Programming
	Extensions
	OpenMP* Support
	Add OpenMP* Support
	Parallel Processing Model
	Worksharing Using OpenMP*
	Control Thread Allocation
	OpenMP* Pragmas
	OpenMP* Library Support
	OpenMP* Run-time Library Routines
	Intel® Compiler Extension Routines to OpenMP*
	OpenMP* Support Libraries
	Use the OpenMP Libraries
	Thread Affinity Interface
	OpenMP* Memory Spaces and Allocators

	OpenMP* Advanced Issues
	OpenMP* Implementation-Defined Behaviors
	OpenMP* Examples

	Intel® oneAPI Level Zero
	Intel® oneAPI Level Zero Switch
	Intel® oneAPI Level Zero Backend Specification
	Programming with the Intel® oneAPI Level Zero Backend

	Vectorization
	Automatic Vectorization
	Vectorization Programming Guidelines
	Use Automatic Vectorization
	Vectorization and Loops
	Loop Constructs

	Explicit Vector Programming
	User-mandated or SIMD Vectorization
	SIMD-Enabled Functions
	SIMD-Enabled Function Pointers
	Vectorize a Loop Using the _Simd Keyword
	Function Annotations and the SIMD Directive for Vectorization
	Explicit SIMD SYCL Extension


	High-Level Optimization
	Interprocedural Optimization
	Use Interprocedural Optimization
	Performance and Large Program Considerations
	Create a Library from IPO Objects
	Inline Expansion of Functions

	Methods to Optimize Code Size
	Intel® oneAPI DPC++/C++ Compiler Math Library
	Use the Intel® oneAPI DPC++/C++ Compiler Math Library
	Math Function List
	Trigonometric Functions
	Hyperbolic Functions
	Exponential Functions
	Special Functions
	Nearest Integer Functions
	Remainder Functions
	Miscellaneous Functions
	Complex Functions
	C99 Macros


	Compatibility and Portability
	Standards Conformance
	GCC Compatibility and Interoperability
	Microsoft Compatibility
	Port from Microsoft Visual C++* to the Intel® oneAPI DPC++/C++ Compiler
	Modify Your makefile
	Other Considerations

	Port from GCC* to the Intel® oneAPI DPC++/C++ Compiler
	Modify Your makefile
	Other Considerations


	Index

