

D3D9 Media Surface Sharing Between
Intel® Quick Sync Video and
OpenCL* on Intel® HD Graphics

Abstract
Intel has defined an extension to OpenCL* version 1.0 and newer, allowing applications to

directly access images embedded in Microsoft DirectX* 9 (DX9) media surfaces, without

first copying them. For OpenCL v1.2, the Khronos standards organization has defined a

standardized extension for the same purpose. Intel® Quick Sync Video is able to decode

video images into DX9 surfaces. The Intel and Khronos extensions can significantly improve

performance of applications that use OpenCL to process Intel Quick Sync Video frames.

These benefits can apply to a range of applications, including video enhancement during

playback, video editing with effects, and video generation and encoding

OpenCL and Intel Quick Sync Video Media Surface Sharing
Intel Quick Sync Video supports video decode and encode acceleration by Intel® processor

graphics and can be accessed by applications using the Intel® Media SDK. The Intel Media

SDK and Intel® SDK for OpenCL are distributed as part of both the Intel® Media Server

Studio 1 and the Intel® Integrated Native Development Experience (Intel® INDE) 2.

OpenCL 3 is a framework for developing applications to take advantage of heterogeneous

platforms. In the case considered in this article, these platforms consist of a CPU and a

programmable graphics unit, with parts of the application executing on both to achieve

improved processing efficiency and performance. The Intel defined extension to OpenCL

v1.0 (and usable on subsequent versions) enables direct access to DX9 media surfaces

created by Intel Quick Sync Video.

Intel Quick Sync Video media surface sharing with OpenCL can avoid many surface copies

between Intel Quick Sync Video and OpenCL kernels. If an application tries to apply an

OpenCL filter to Intel Quick Sync Video without surface sharing, it will need to copy Intel

Quick Sync Video output surfaces to OpenCL image objects so that the OpenCL filter can

consume the data. This copy will get more time-consuming as the resolution of input video

increases, as there is more data to copy.

https://software.intel.com/en-us/intel-media-server-studio
https://software.intel.com/en-us/intel-media-server-studio
https://software.intel.com/en-us/intel-inde

Figure 1 shows an example of this, in which OpenCL is used to modify a video stream. Video

frames decoded by Intel Quick Sync Video into DX9 surfaces are copied from the GPU to the

CPU, then copied to an OpenCL memory object, copied from CPU to GPU, processed in

OpenCL with the output copied back to the CPU, then copied into a DX9 surface and finally

copied back to the GPU for video encode by Intel Quick Sync Video. With shared DX9

surfaces, none of these copies will be needed.

Figure 1: Video transcode and processing pipeline without surface sharing

Because Intel processor graphics shares memory with the CPU, image surfaces might only

need to be copied during conversion to a system memory buffer. Once a system memory

pointer is available, it can be used to create an OpenCL buffer using that same system

memory buffer. The inverse is also true. After OpenCL processing completes into an OpenCL

buffer that shares a system memory buffer, that buffer could be copied and converted to a

DX9 buffer. So the total memory copies could be reduced to two for Intel processor

graphics. Still, it will be better to eliminate all the extra copies.

Using the Intel DirectX 9 media surface sharing extension of OpenCL , a DX9 image surface

in the NV12 format (used internally by Intel Quick Sync Video) can be converted directly

into an NV12 OpenCL image2D memory object without copying, and vice-versa, as shown in

Figure 2. This can avoid the extra data copies to convert video frames going between Intel

Quick Sync Video and an OpenCL filter. So for a transcode application, the shared media

surface extension can save at least two extra memory copies.

Figure 2: Video transcode and processing pipeline using MSDK/OCL surface sharing extensions

OpenCL DirectX 9 Media Sharing APIs

Intel has defined vendor-specific extension for OpenCL version 1.0 (and beyond), called

cl_intel_DX9_media_sharing3. That OpenCL extension API includes four functions that

allow applications to share DirectX 9 media surfaces with OpenCL:

 clGetDeviceIDsFromDX9INTEL

 clCreateFromDX9MediaSurfaceINTEL

 clEnqueueAcquireDX9ObjectsINTEL

 clEnqueueReleaseDX9ObjectsINTEL

Using the above API extension, the OpenCL API can be enabled to execute kernels that read

and/or write memory objects that are also DirectX 9 resources. An OpenCL 2D image object

can be created from a DirectX 9 media surface resource. OpenCL memory objects may be

created from DirectX 9 objects if and only if the OpenCL context has been created from a

DirectX 9 device. That is, the OpenCL clCreateContext or clCreateContextFromType

functions must be called with a properties list that includes the property

CL_CONTEXT_D3D9EX_DEVICE_INTEL paired with a pointer to the IDirect3DDevice9

created for Intel Quick Sync Video. (More information on this can be found in “Intel

Extension for DirectX 9 Media Sharing”. 4)

clGetDeviceIDsFromDX9INTEL: This function is used to query OpenCL devices

corresponding to DirectX 9 device on a particular platform. The application should create

the OpenCL context from DirectX 9 device.

clCreateFromDX9MediaSurfaceINTEL: This function is used to create an OpenCL 2D

image object from a DirectX 9 media surface or a plane of a DirectX 9 media surface.

Applications can query the properties of the media surface object created from the DirectX

9 resource by using clGetMemObjectInfo and clGetImageInfo functions.

clEnqueueAcquireDX9ObjectsINTEL: This function is used to acquire OpenCL memory

objects that have been created from the DirectX9 resources. The OpenCL memory objects

created from DirectX 9 resources must be acquired before they can be used by any OpenCL

commands queued to a command-queue. This function provides synchronization

guaranteeing that any DirectX calls made before clEnqueueAcquireDX9ObjectsINTEL is

called will complete execution before the execution of any subsequent OpenCL APIs

submitted to the command-queue.

clEnqueueReleaseDX9ObjectsINTEL: This function is used to release OpenCL memory

objects that have been created from the DirectX9 resources. This function provides the

synchronization guaranteeing that any calls to DirectX9 resource made after the call to

clEnqueueReleaseDX9ObjectsINTEL will not start executing until after all events in event

list of this API are complete and all work already submitted to the command-queue

completes execution.

To use this extension API, the application must first obtain a pointer to each of the

corresponding functions. For OpenCL v1.0 and v1.1, use the standard OpenCL function

clGetExtensionFunctionAddress, passing it the extension function name as a string. The

file cl_ext.h in the Intel® SDK for OpenCL™ distribution contains function prototypes (with

“_fn” appended to the API name) that can be used to correctly cast the function pointers.

In OpenCL version 1.2 and newer, Khronos has added an equivalent standard Khronos

extension.5 Using that extension, the equivalents of the above API names become:

 clGetDeviceIDsFromDX9MediaAdapterKHR

 clCreateFromDX9MediaSurfaceKHR

 clEnqueueAcquireDX9MediaSurfacesKHR

 clEnqueueReleaseDX9MediaSurfacesKHR

Function prototypes for these APIs can be found in the cl_DX9_media_sharing.h file

available from Khronos.org. 6 However, OpenCL v 1.2 has deprecated

clGetExtensionFunctionAddress in favor of a new API function

clGetExtensionFunctionAddressForPlatform, as described in the Khronos.org document

“OpenCL 1.2 Extensions Specification. 5” clGetExtensionFunctionAddressForPlatform

requires both a platform ID and the Khronos extension API name as a string.

For the KHR DX9 media surface sharing extension, as with the Intel DX9 media surface

sharing extension, Intel Quick Sync Video media surfaces can only be shared into an OpenCL

context created using the property CL_CONTEXT_ADAPTER_D3D9EX_KHR paired with a

pointer to the IDirect3DDevice9 created for Intel Quick Sync Video.

For both Intel and KHR extensions, the OpenCL functions clGetPlatformInfo and

clGetDeviceInfo can be used to get a list of named extensions supported by an OpenCL

implementation, to verify that the desired extension is supported—either

cl_intel_dx9_media_sharing for the Intel vendor-specific extension to OpenCL v1.0 or v1.1,

or cl_khr_dx9_media_sharing for the OpenCL v1.2 Khronos standard extension. It is also

worth noting that other DirectX surface sharing extensions have been created, and are also

documented on the Khronos.org site.

Intel® Media SDK User Functions

Intel Media SDK provides a USER class of functions to allow user-defined functions to

participate in Intel Quick Sync Video pipeline. This allows the application to integrate

OpenCL based kernels into the Intel Quick Sync Video pipeline as a “plug-in.” In this

particular case, the USER class of functions is implemented to use OpenCL kernels.

The application needs to do the following to use an OpenCL plug-in inside Intel Media SDK:

 Initialize an OpenCL plug-in, registering a set of callback functions (see later)

through the MFXVideoUSER_Register function. The Intel Media SDK invokes these

callback functions at appropriate times in the Intel Quick Sync Video pipeline.

 Once initialized, the application can use the OpenCL plug-ins through the Intel Media

SDK function MFXVideoUSER_ProcessFrameAsync to process data. The function

returns a sync point for result synchronization, which is similar to other Intel Media

SDK async functions.

 Close the OpenCL plug-in by unregistering it via the MFXVideoUSER_Unregister

function.

The application needs to include “mfxplugin.h” in addition to other Intel Media SDK files.

The application needs to implement the following callback functions, which are registered

through MFXVideoUSER_Register:

QSV Encode USER class of functions QSV Decode

 PluginInit: Intel Media SDK calls this function to initialize the plug-in components

and allocate internal resources

 PluginClose: Intel Media SDK calls this function to close the plug-in components and

free the internal resources.

 GetPluginParam: Intel Media SDK calls this function to obtain plug-in configuration

parameters.

 Submit: Intel Media SDK calls this function to check the validity of I/O parameters

and submit a task to SDK for execution.

 Execute: Intel Media SDK calls this function to execute the submitted task after

resolving all input data dependencies.

 FreeResources: Intel Media SDK calls this when task execution finishes or to cancel

the queued task.

The Intel Media SDK kit includes a document, “Intel Media Software Development Kit –

Extensions for User-Defined Functions API version 1.3 7” that provides the details about all

these APIs.

Intel Quick Sync Video and OpenCL Media sharing Extension flow

There are multiple use cases in which Intel Quick Sync Video and OpenCL can interoperate.

MFXVideoUSer_ProcessFrameAsync

Frame Renderer

Frame Decoding

Initial Setup App initialization, DX9 surface creation, OpenCL* setup

Intel® Quick Sync Video Decoder

Video Renderer

clEnqueueAcquireDX9ObjectsINTEL

clEnqueueReleaseDX9ObjectsINTEL

ClSetKernelArg

………….

clEnqueueNDRangeKernel

Figure 3: Intel® QSV Decoder and OpenCL* interoperability

For example, Figure 3 shows the flow of a decoder application, where an OpenCL filter is

applied before displaying the frames. Figure 4 shows the flow of a video transcoding

application that uses Intel Quick Sync Video to decode and encode the video. It applies some

OpenCL filters to decoded video frames before encoding them.

In each of these cases, the four distinct steps are: initial setup, frame decoding, OpenCL

filters, and final video frame processing.

 Initial Setup: In this step the application must initialize Intel Quick Sync Video

components using Intel Media SDK. It must also perform DX9 surface allocation. The

application will use the Intel Media SDK API function MFXVideoUSER_Register to

register the OpenCL plug-in. After that, the application can initialize other

components and create the OpenCL surface using the

clCreateFromDX9MediaSurfaceINTEL function and map to DX9 surfaces created

by Intel Media SDK.

Frame Encoding

Frame Decoding

Initial Setup

OpenCL Kernel

Execution

App initialization, DX9 surface creation, OpenCL*

setup

Intel® Quick Sync Video Decoder

QSV Encoder

clEnqueueAcquireDX9ObjectsINTEL

clEnqueueReleaseDX9ObjectsINTEL

clSetKernelArg

clSetKernelArg

………..

……….

clEnqueueNDRangeKernel

Figure 4: QSV and OpenCL* Interoperability

 Frame Decoding: After initializing, the application can start decoding frames. When

a decoded frame is available, the applications calls the

MFXVideoUSER_ProcessFrameAsync function. This stage could be left off if the

application is only generating video frames for Intel Quick Sync Video encode.

 At this point Intel Media SDK calls the “Submit” and then “Execute” plugin callback

functions to execute the OpenCL kernel. The “Execute” plug-in callback will

implement the OpenCL host side part of the kernel. It will call

clEnqueueAcquireDX9ObjectsINTEL to lock the frame, then standard OpenCL API

functions like clSetKernelArgs and clEnqueueNDRangeKernel to run OpenCL kernels

to process the frame, followed by clEnqueueReleaseDX9ObjectsINTEL.

 Frame Encoding / Frame Rendering: After frame processing, the DX9 surfaces are

ready for the next stage, which could be encoding or display depending on the

application.

Use Cases
OpenCL can be used to accelerate a range of video processing applications, and using the

Intel or Khronos DX9 media sharing extensions will help insure the best possible

performance by minimizing surface copy overhead.

Examples of applications using a combination of OpenCL and Intel Quick Sync Video include

video editing, in which OpenCL is used to apply special effects or video transitions (such as

blending two decoded video frames, and encoding the result); video playback with image

enhancement prior to rendering for display; and algorithmic video synthesis, for example

creating motion video by manipulating and animating still images and subsequently

encoding the resulting sequence of frames.

Again, it is important to note that the minimum amount of image surface copies can be

obtained only by having OpenCL accept and process frames in NV12 format from Intel Quick

Sync Video, and/or deliver to Intel Quick Sync Video in the same format. If color conversion

is required, for example NV12 to (or from) an RGB format, a developer may be able to

merge that into the OpenCL processing pipeline as part of the first (or last) kernel to

process the image2D object, thereby avoiding an added pass through memory. If Intel Quick

Sync Video is asked to do the color conversion as part of its post processing, it will be a

separate processing stage and additional pass through memory.

Example Code
The best example code for understanding how to integrate OpenCL-based plugins into a

Intel Quick Sync Video pipeline is provided as sample code, available on the Intel®

Developers Zone.8 The Intel Media SDK code samples also include an OpenCL sample, but

that sample does not use the DX9 media surface sharing extension.

About the Author
Tom Craver is an Intel application engineer in Chandler, Arizona. He is currently focused on

performance of applications using OpenCL on Intel processor graphics, but has extensive

background in SIMD, OpenCL and threaded parallel coding for performance, primarily for

media applications such as audio and video codecs and video effect processing.

References:
1. Intel® Media Server Studio is available for download at

https://software.intel.com/en-us/intel-media-server-studio/try-buy

2. Intel® Integrated Native Development Experience is available for download at

https://software.intel.com/en-us/intel-inde

3. OpenCL Specifications, versions 1.0 and later, are available at www.Khronos.org

under sub-sections “OpenCL” and “Specs & Headers”

4. Intel extension for DirectX 9 Media Sharing is at www.Khronos.org for OpenCL

version 1.0 and newer, under the “OpenCL” and “Specs & Headers” subsections in

the Extension Specifications section, listed as cl_intel_dx9_media_sharing

5. OpenCL 1.2 Extensions Specification, with the DirectX 9 Media Sharing extension

for OpenCL version 1.2 and newer at www.Khronos.org under subsections

“OpenCL” and “Specs & Headers”, in the list of specification files for OpenCL v1.2 and

newer

6. The file cl_DX9_media_sharing.h with the Khronos DirectX 9 Media Sharing

extension for OpenCL version 1.2 and newer, is available at www.Khronos.org

under subsections “OpenCL” and “Specs & Headers”

7. Intel Media Software Development Kit – Extensions for User-Defined

Functions is distributed with the Intel Media SDK version 1.3 or newer, located in

<install-folder>\doc\mediasdkuser-man.pdf

8. Various Sample code for integrating OpenCL into an Intel Media SDK pipeline is

available at http://software.intel.com/en-us/vcsource/samples/opencl-and-intel-

media-sdk and in the Media SDK samples linked to from the Intel Media SDK file

download.htm located in <install-folder>\samples

9. Intel Media Software Development Kit – Reference Manual Version 1.3 or newer

distributed with the Intel Media SDK and located in <install-folder>\doc\

mediasdk-man.pdf

https://software.intel.com/en-us/intel-media-server-studio
https://software.intel.com/en-us/intel-media-server-studio/try-buy
https://software.intel.com/en-us/intel-inde
https://software.intel.com/en-us/intel-inde
http://www.khronos.org/
http://www.khronos.org/
http://www.khronos.org/
http://www.khronos.org/
http://software.intel.com/en-us/vcsource/samples/opencl-and-intel-media-sdk
http://software.intel.com/en-us/vcsource/samples/opencl-and-intel-media-sdk

Notices

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by
this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising
from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to obtain
the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause
deviations from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained
by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel technologies’ features and benefits depend on system configuration and may require enabled
hardware, software or service activation. Performance varies depending on system configuration. No
computer system can be absolutely secure. Check with your system manufacturer or retailer or learn
more at [intel.com].

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in
fully evaluating your contemplated purchases, including the performance of that product when combined
with other products.

Intel and the Intel logo are trademarks of Intel Corporation in the US and/or other countries.

OpenCL and the OpenCL logo are trademarks of Apple Inc. and are used by permission by Khronos.

*Other names and brands may be claimed as the property of others.

© 2012-2015 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

