

White Paper
Intel® Software Guard Extensions (Intel® SGX)

Intel® Software Guard Extensions (Intel® SGX)

Debug and Build Configurations

Scope

This article explains the debug and build configurations used to develop Intel® Software Guard

Extensions (Intel® SGX) enclaves. The goal is to give the Intel SGX application developer the

information they need to choose the correct build configuration at each stage of the application’s

development and release process. This article covers both the Intel SGX SDKs for Windows* and

for Linux*. General information on Intel SGX is provided on the Intel SGX portal at:

https://software.intel.com/en-us/sgx.

Introduction

To correctly select debug settings/compilation profiles for building and debugging enclaves for

Intel SGX applications, developers must understand the following:

 Intel SGX architecture

 Enclave signing methods

 Intel SGX build configurations

 Intel SGX SDK compilation profiles

Intel SGX architecture

The Intel SGX architecture supports two modes of operation for enclaves: Debug mode and

Production (non-debug) mode. Production mode enclaves have the full protection provided by

the architecture. To support enclave debug, however, Debug mode enclaves differ from

Production mode enclaves in four basic ways:

 Debug mode enclaves are created with the ATTRIBUTES.DEBUG bit set. This field appears in

the output of the EREPORT instruction REPORT.ATTRIBUTES (see Chapter 38, Enclave Access

Control and Data Structures, in the Intel x86 Software Developers Manual, 3D). The debug bit

is not measured as part of the build process, so Debug and Production enclaves can have the

same measurement. This ensures that reports generated by activities like attestation will look

the same, which helps simplify the debugging process.

 Keys returned by the EGETKEY instruction leaf in debug enclaves are different for the same

enclave in Debug vs. Production modes. Therefore, data sealed by a production enclave

cannot be inspected by a debug enclave (and vice versa), which helps ensure protection of

secrets.

 Debug mode enclaves can be debugged using the Intel SGX debugger (debuggers that do not

support Intel SGX cannot debug enclaves under any circumstances).

 Performance counters are enabled inside Debug mode enclaves. These counters can be used

https://software.intel.com/en-us/sgx
https://software.intel.com/sites/default/files/managed/7c/f1/332831-sdm-vol-3d.pdf

White Paper
Intel® Software Guard Extensions (Intel® SGX)

for performance tuning enclaves using a tool like the Intel® VTune™ Amplifier XE.

Signing methods

Two different signing methods are supported to address the needs of developers during the

enclave development life cycle. Both methods use the sgx_sign signing tool included in the Intel

SGX SDK. These methods are:

 Single-step method using the developer’s temporary, private key; used with Debug and Pre-

release applications:

The signing tool supports a single-step signing process, which uses the signing key pair on

the local build system. In this scenario, the developer manages the signing key pair, which

could be generated by the developer using their own means. Single-step method is the

default signing method for non-production enclave applications, which are created with the

Intel SGX project debug, simulation, and pre-release profiles. Note, however, that the

developer’s temporary key stored in the build platform will not be white-listed and enclaves

signed with this key can only be launched in debug or pre-release mode.

 2-step method using an external signing facility; used with Production applications:

First step: At the end of the enclave build process, the signing tool generates the enclave

signing material. The developer takes the enclave signing material file to an external signing

platform/facility where the private key is stored, signs the signing material file, and takes the

resulting signature file back to the build platform. (There is a requirement that any white-

listed enclave signing key be managed in a Hardware Security Module.)

Second step: The developer then runs the signing tool, providing the necessary information

at the command line to add the hash of the public key and signature to the enclave’s

metadata section.

Intel SGX build configurations

There are typically two types of build configurations that a non-Intel SGX SW project defines:

Debug and Release. These configurations are both supported for Intel SGX enclaves.

Developers may also want to experiment with a non-production enclave built with release

compilation and linking flags, on a real hardware SGX-enabled platform. This would be an

enclave built exactly as a production enclave, except for the signing process, which would be

Single-step. To support the generation of this kind of enclave, Intel SGX supports a hardware

non-debug build configuration known as Prerelease.

In addition, Intel SGX-enabled projects must support building and testing Intel SGX-enabled

applications on non-Intel SGX platforms (or an emulator) using simulation libraries. This need is

supported by a Simulation mode. Simulation mode can be thought of as an overlay that can be

used with either Debug, Release, or Pre-Release enclaves. In actual practice, however, it is most

often used with Debug enclaves.

White Paper
Intel® Software Guard Extensions (Intel® SGX)

Intel SGX SDK compilation profiles

The compilation profiles for the Intel SGX SDKs for Visual Studio on Windows and Eclipse on

Linux, are identical as far as Debug, Release, and Prerelease. Characteristics of these profiles are

as follows:

 Debug: compiler optimizations are disabled and symbol information is saved. This mode is

suitable for source-level debugging. Enclaves built in debug mode are launched in enclave-

debug mode.

 Release: compiler optimizations are enabled and no symbol information is saved. This mode

is suitable for production build, performance testing, and final product release. Enclaves built

in this mode are launched in enclave-production (non-debug) mode.

Note: Enclaves compiled under the Release profile will not launch until the developer

completes the production licensing process. To deliver a production-quality application using

Intel SGX, contact the Intel SGX Program for information about a production license.

 Pre-release: same as Release with regard to compiler optimizations and symbol information.

However, the enclaves are launched in enclave-debug mode, suitable for performance

testing.

Simulation mode

Simulation mode links the application with libraries that simulate the Intel SGX instructions. This

allows the enclave to be run on systems that do not support the Intel SGX instructions, but the

application and enclave will not have any of the hardware protection that Intel SGX provides.

Note: The CPU must support SSE 4.1 in order to simulate Intel SGX instructions.

See the next subsections to understand how Visual Studio and Eclipse integrate Simulation

mode.

SDK profiles for Visual Studio

The SDK for Microsoft Visual Studio supports the standard three build configuration profiles

(Debug, Pre-release, and Release) and provides one Simulation Profile, which includes the

Debug Profile (even though the Visual Studio menu option only says Simulation). Table 1

summarizes these SDK profiles for Visual Studio. Figure 1 shows the options on the Visual Studio

Configuration Manager screen.

Table 1: Visual Studio SDK Compilation Profiles and Signing Options

Configuration Name Simulation? Debug Mode? Signing Scheme

 to be Used

Debug Hardware Debug Single Step

Pre-release Hardware Non-debug Single Step

Release Hardware Non-debug Two Step

Simulation Simulation Debug Single Step

mailto:sgx_program@intel.com?subject=SGX%20Production%20License%20Information%20Request

White Paper
Intel® Software Guard Extensions (Intel® SGX)

Figure 1: Intel SGX® SDK for Visual Studio Build Configurations

SDK profiles for Eclipse

The SDK for Eclipse supports the standard three build Configuration Profiles (Debug, Pre-

release, and Release) and provides two Simulation profiles. The first is Simulation, which

includes Simulation + Prerelease, and the second is SGX Simulation Debug, which includes

Simulation + Debug. Table 2 summarizes these SDK profiles for Eclipse. Figure 2 shows the menu

options in Eclipse.

Table 2: Eclipse SDK Compilation Profiles and Signing Options

Configuration Name Simulation? Debug Mode? Signing Scheme

to be Used

SGX Hardware Debug Hardware Debug Single Step

SGX Hardware Pre-release Hardware Non-debug Single Step

SGX Hardware Release Hardware Non-debug Two Step

SGX Simulation* Simulation Non-debug Single Step

SGX Simulation Debug Simulation Debug Single Step

*Prerelease + Simulation

Figure 2: SGX® Build Configurations in Eclipse

White Paper
Intel® Software Guard Extensions (Intel® SGX)

Summary

Intel SGX architectural features, SDK build configurations, and SDK tools provide a robust set of

capabilities to build Intel SGX enclaves that are appropriate for the debug, pre-release, and/or

release stages of the application development cycle. Developers must understand how these

capabilities and tools can be used together to speed the development, debug, tuning, and

release of their Intel SGX-enabled applications.

References:

1. https://software.intel.com/en-us/blogs/2016/01/07/intel-sgx-debug-production-prelease-

whats-the-difference — 2016 Intel Corporation

2. https://software.intel.com/en-us/documentation/sgx-developer-guide — 2016 Intel

Corporation

3. https://software.intel.com/en-us/sgx-sdk/documentation — 2016/2017 Intel Corporation

https://software.intel.com/en-us/blogs/2016/01/07/intel-sgx-debug-production-prelease-whats-the-difference
https://software.intel.com/en-us/blogs/2016/01/07/intel-sgx-debug-production-prelease-whats-the-difference
https://software.intel.com/en-us/documentation/sgx-developer-guide
https://software.intel.com/en-us/documentation/sgx-developer-guide
https://software.intel.com/en-us/sgx-sdk/documentation
https://software.intel.com/en-us/sgx-sdk/documentation

