
White Paper
Intel® Software Guard Extensions (Intel® SGX)

1

Input Types and Boundary Checking in

Enclave-Definition Language (EDL) Files

Scope

This paper explains the input types used in Intel® Software Guard Extensions (Intel® SGX)

Enclave-Definition Language (EDL) files and describes the boundary conditions for each type.

The paper also covers common build errors related to the definitions in an EDL file. The

information in this paper applies to Intel SGX applications for both Microsoft* Windows* and

for the Linux* OS. The paper assumes a basic knowledge of Intel SGX. Information on Intel

SGX can be found on the Intel SGX portal at: https://software.intel.com/en-us/sgx.

Introduction

Intel SGX applications are divided into two logical components:

 Trusted component — The portion of the application code that accesses the secret or

sensitive data. This component of the application code is also referred to as an “enclave.”

An application can have more one enclave.

 Untrusted component — The remainder of the application, including all of its modules,

which does not access the secret information.

An enclave is a protected area in an application’s address space, which provides

confidentiality and integrity. Attempts to access an enclave memory area from software not

resident in the enclave are prevented, even from privileged software such as virtual-machine

monitors, BIOS, or OSs.

An enclave provides a protected area for applications to process sensitive data. Intel provides

special hardware instructions to create and support enclaves. Intel SGX enclaves use the same

OS and hardware as other applications; thus, applications that make use of Intel SGX enclaves

can harness the capabilities and features provided by the OS.

From an application perspective, making an enclave call (ECALL) appears as a function call

when using the untrusted-proxy function. In exceptional cases, the code within the enclave

needs to call external functions that reside in untrusted (unprotected) memory. This type of

function call is called an OCALL.

Enclave-Definition Language

Enclave-Definition Language (EDL) files define the ECALL and OCALL functions as well as how

data is to be moved into and out of enclaves. The sgx_edger8r tool that ships as part of the

Intel SGX SDK takes an EDL file as input and creates C wrapper functions (edge routines) for

https://software.intel.com/en-us/sgx

White Paper
Intel® Software Guard Extensions (Intel® SGX)

2

both enclave ECALLs and OCALLs. Normally, the sgx_edger8r tool runs automatically as part

of the enclave build.

EDL files contain both trusted and untrusted blocks. ECALL functions are declared in the

trusted section, and OCALL functions are declared in the untrusted section. Figure 1 shows the

structure of the EDL file template.

enclave {

 // Include files

 // Import other EDL files

 // Data structure declarations to be used as

 // parameters of the function prototypes in EDL

 trusted {

 /* Define ECALLs here */

 // Include file if any

 // It will be inserted in the trusted header file (enclave_t.h)

 // Trusted function prototypes

 };

 untrusted {

 /* Define OCALLs here */

 // Include file if any

 // It will be inserted in the untrusted header file (enclave_u.h)

 // Untrusted function prototypes

 };

}

Figure 1. Enclave Definition Language file template

EDL Input and Bound Check

Developers define the input/output parameters to be handled and checked at the enclave

boundary in the EDL file. sgx_edger8r reads the EDL file and generates the edge routines. The

boundary check is accomplished at runtime by the trusted bridge and trusted proxy, which are

the edge routines inside the enclave and are shown Figure 2.

White Paper
Intel® Software Guard Extensions (Intel® SGX)

3

Figure 2. Enclave interface showing trusted edge routines

Input parameters passed between the application and enclave are verified by the trusted edge

routines for security. The trusted bridge verifies the input parameters of ECALLs to ensure

enclave memory is not unintentionally overwritten and to marshal necessary data, while

preventing Time of Check to Time of Use (TOCTOU) attacks. The trusted proxy mainly copies

the input parameters from an enclave to untrusted memory at the beginning of an OCALL.

Depending on the marshalling attributes specified by the user in the EDL file, if certain

conditions are not satisfied, the trusted bridge or trusted proxy report an error.

Pointer Handling in EDL

When an application makes an ECALL with the in attribute and with a pointer or array

argument the trusted edge routine copies the memory content into a trusted memory area

and pass the copy to the trusted environment. This is shown in the first part of Figure 3.

When an application makes an ECALL with the out attribute and with an array or pointer

argument, the trusted edge routine allocates a buffer in trusted memory area, zeroes it and

passes it to the trusted environment. This is shown in the second part of Figure 3.

When the trusted function returns, the trusted bridge copies the buffer contents from trusted

memory to untrusted memory, as shown in the third part of Figure 3.

Note: An enclave should not store sensitive data in a buffer marshalled with the out

attribute. If the ECALL fails prematurely, the trusted bridge, which cannot know if the

ECALL completes successfully or with an error, will copy the sensitive data to untrusted

memory.

White Paper
Intel® Software Guard Extensions (Intel® SGX)

4

Arguments are handled by OCALL functions in a similar fashion, copying relevant memory

content from the trusted to the untrusted memory areas for the in attribute, or in the reverse

direction for the out attribute.

Figure 3. ECALL functions with pointers arguments and “in” and “out” attributes

White Paper
Intel® Software Guard Extensions (Intel® SGX)

5

A pointer argument can also be used with the user_check attribute. If the pointer argument

is passed with the user_check attribute, then the trusted edge routine will not verify the

pointer. The developer must write code to verify the pointer before using it. The buffer

pointed to by the pointer is not copied; rather the address is passed. If a pointer argument is

used with user_check attributes, the in and out attributes and attribute modifiers like

count and size cannot be used (sgx_edger8r generates an error.)

An appropriate use of the user_check attribute in an ECALL would be to load and store an

encrypted collection of data, such as an encrypted password vault. While design constraints

put a practical limit on the size of the data, generally speaking these sorts of bulk reads and

writes benefit from allowing the enclave to process larger data collections in smaller chunks.

The following example shows the usage of the user_check attribute.

enclave {

 trusted {

 public void test_ecall_user_check([user_check] int * ptr);

 };

 untrusted {

 void test_ocall_user_check([user_check] int * ptr);

 };

The developer may use a user-defined pointer type in the EDL file as long as it has been

previously defined in a header file. In this case, the developer must also provide the attribute

isptr. Otherwise, the sgx_edger8r tool will report an error.

Intel SGX provides attribute modifiers for in and out to help pass pointers between trusted

and untrusted memory through an ECALL/OCALL. The following sections summarize these

attribute modifiers.

count

The count modifier indicates the number of elements pointed by the pointer used for copy

depending on the direction attribute ([in]/[out]). (The default number of elements is 1; the

count modifier overrides that default.) The number of bytes copied by the trusted bridge or

trusted proxy is the product of the count and the size of the data type to which the pointer

parameter points. The count may be either an integer constant or one of the parameters to

the function. The following example shows valid uses of count.

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-2-app-design

White Paper
Intel® Software Guard Extensions (Intel® SGX)

6

enclave{

 trusted {

 // Copies '100 * sizeof(int)' bytes

 public void test_count_fix([in, count=100] int* ptr);

 // Copies 'cnt * sizeof(int)' bytes

 public void test_count_var([in, count=cnt] int* ptr, unsigned cnt);

 };

};

size

The size modifier indicates the buffer size in bytes used for copy depending on the direction

attribute ([in]/[out]) (when there is no count modifier specified). (The default size is the

size of the type pointed to; the size modifier overrides that default.) The size may be either

an integer constant or one of the parameters to the function. The size attribute alone is

generally used for void pointers. The following examples show valid uses of size.

enclave{

 trusted {

 // Copies '100' bytes

 public void test_size_fix([in, size=100] void* ptr);

 // Copies 'sz' bytes

 public void test_size_var([in, size=sz] void* ptr, size_t sz);

 // Copies 'cnt * sz' bytes

 public void test_count_size([in, count=cnt, size=sz] int* ptr, unsigned cnt, size_t sz);

 };

};

The size and count attribute modifiers may also be combined. In this case, the trusted edge-

routine will copy a number of bytes that is the product of the count and size parameters

(size*count) specified in the function declaration in the EDL file.

sizefunc

The sizefunc attribute modifier depends on a user-defined trusted function that is called by

the edge-routines to determine the number of bytes to be copied. An example of where

sizefunc can be used is for marshaling in variable-length structures, which are buffers

whose total size is specified by a combination of values stored at well-defined locations inside

the buffer (although typically it is at a single location). To prevent “check first, use later” type

of attacks, the function specified by sizefunc is called twice. In the first call, the function

operates in untrusted memory. The second time, it operates in the data copied into trusted

memory. If the sizes returned by the two calls do not match, the trusted bridge cancels the

White Paper
Intel® Software Guard Extensions (Intel® SGX)

7

ECALL and reports an error to the untrusted application. The developer must provide a

function definition with the following signature:

size_t sizefunc_function_name(const parameter_type * p);

where parameter_type is the data type of the parameter annotated with the

sizefunc attribute. In the example below, parameter_type would be void.

enclave{

 trusted {

 // Copies get_packet_size bytes

 public void test_sizefunc([in, sizefunc=get_packet_size] void* ptr);

 };

};

Note: Do not use sizefunc with strlen and wstrlen; use string and wstring instead.

See the discussion of string handling in a later subsection for details.

Handling Arrays in EDL

The sgx_edger8r tool imposes a limitation on attempted marshaling of arrays. The array must

have a defined size. Otherwise, the sgx_edger8r tool does not know how much data it needs

to copy across the enclave boundary. This means that arrays without a given dimension

cannot be used in the declaration of ECALL/OCALL functions in the EDL file.

The example below shows an array of 500 integers passed as an ECALL parameter. To marshal

this array, the trusted proxy allocates 500*sizeof(int) bytes in trusted memory. Then it

copies the array content from untrusted to trusted memory. The ECALL function only operates

on the copy of the array that was allocated in trusted memory.

The developer may use a user-defined array type in the EDL file as long as it has been

previously defined in a header file. In this case, the developer must also provide the attribute

isary. Otherwise, the sgx_edger8r tool will report an error.

enclave{

 trusted {

 public void test_array([in] int arr[500]);

 };

};

Handling Strings in EDL

The attributes string and wstring indicate that the parameter is a NULL terminated C string

or a NULL terminated wchar_t string, respectively. To prevent “check first, use later” type

of attacks, the trusted edge-routine first operates in untrusted memory to determine the

length of the string. Once the string has been copied into the enclave, the trusted bridge

White Paper
Intel® Software Guard Extensions (Intel® SGX)

8

explicitly NULL terminates the string. The size of the buffer allocated in memory accounts for

the length determined in the first step as well as the size of the string termination character.

The string and wstring attributes must not be combined with any other modifier such as

size, count, or sizefunc. string and wstring cannot be used with out alone. In all these

cases, sgx_edger8r will report an error. However, string and wstring with both in and out

are accepted. The following example shows valid uses of string and wstring.

enclave{

 trusted {

 public void test_string([in, out, string] char* str);

 public void test_wstring([in, out, wstring] wchar_t* wstr);

};

 };

Notes

 Be aware that in/out arguments with large buffer sizes result in large enclaves, which can

restrict the usage of trusted memory for other enclave code (your enclave or additional

enclaves). To achieve efficient memory usage, make sure that only data that must be

protected is passed to the enclave. Another way to help ensure efficient memory usage is

to adjust the heap/stack size of your enclave based on actual usage; information on how to

achieve this is provided in this white paper:

https://software.intel.com/sites/default/files/managed/09/37/Enclave-Measurement-

Tool-Intel-SGX.pdf.)

 Large enclave/buffer sizes can also affect the performance of enclave-code execution. For

more information on enclave performance see this white paper:

https://software.intel.com/sites/default/files/managed/09/37/Intel-SGX-Performance-

Considerations.pdf.

Common build errors

This section lists the most common EDL errors seen during builds. Examples of correct syntax

are provided for each potential issue.

 string or char pointer: While passing a string to the enclave, the string must be passed as

input in the following format:

public void test_string([in, out, string] char* str);

public void test_wstring([in, out, wstring] char_t* wstr);

public void test_const_string([in, string] const char* str);

https://software.intel.com/sites/default/files/managed/09/37/Intel-SGX-Performance-Considerations.pdf
https://software.intel.com/sites/default/files/managed/09/37/Intel-SGX-Performance-Considerations.pdf

White Paper
Intel® Software Guard Extensions (Intel® SGX)

9

[in]: Must be present when sending input from the application to the enclave in string

format during ECALL; during an OCALL the parameter is passed from the enclave to

the application.

[out]: Must be present when we need to return a value from the enclave to the

application, but it cannot be used alone.

[string]: The value passed is a string.

[wstring]: The value passed is a wstring.

Make sure you include the pointer direction to avoid the following errors:

1. string /wstring attributes must NOT be used without pointer direction([in/out])
public void test_string_cant([string] char* str);

Error:
size/string attributes must be used with pointer direction

2. string/wstring attributes cannot be used with [out] attribute alone
public void test_string_out([out, string] char* str);

Error:
string/wstring/sizefunc should be used with an `in' attribute

3. sizefunc can’t be used for strings, use [string/wstring]
public void test_string_sizefunc_cant([in, string, sizefunc=strlen] char* str);

Error:
size attributes are mutual exclusive with (w)string attribute

 Arrays: While passing arrays to an Enclave, input must be passed in the following format:

public void test_array([in] int arr[400]);

public void test_array_multi([in] int arr[4][400]);

public void test_isary([in, isary] array_t arr);

Note the following limitations/restrictions to avoid the related errors:

1. Flexible array is not supported
public void test_flexible(int arr[][400]);

Error:
Flexible array is not supported

2. Zero-length array is not supported.
public void test_zero(int arr[0]);

White Paper
Intel® Software Guard Extensions (Intel® SGX)

10

Error:
Zero-length array is not supported

3. User-defined array types need "isary"
public void test_miss_isary([in] array_t arr);

Error:
`array_t' is considered plain type but decorated with pointer attributes

4. “size” or “count” cannot be used with “isary”
public void test_array_with_size([in, isary, size=sz] array_t arr, size_t sz);

Error:
Pointer size attributes cannot be used with foreign array

5. “size” or “count” cannot be used with array
public void test_array_with_size([in, size=sz] int arr[400], size_t sz);

Behavior:

size or count is not used, but no warning is provided.

 Pointers: While passing pointers, the direction attribute instructs trusted edge-routines to

copy the buffer pointed by the pointer. However, the trusted-edge routines need to know

how much data must be copied. Therefore, when passing pointers, the required memory

should be assigned to the pointer prior to passing the data from application to enclave or

vice-versa.

Pointers syntax form is as follows:

public void test_size1([in, size=100] void* ptr);

public void test_size2([in, size=sz] void* ptr, size_t sz);

Note the following limitations/restrictions to avoid the related errors:

1. Pointers without a direction attribute or ‘user_check’ attribute are not allowed
public void test_ecall_not(int * ptr);

Error:
pointer/array should have direction attribute or `user_check'

2. User-defined pointer types must use ‘isptr’
public void test_ecall_func([in]ptr_t ptr);

Error:
`ptr_t' is considered plain type but decorated with pointer attributes

White Paper
Intel® Software Guard Extensions (Intel® SGX)

11

3. Function pointers are not allowed
public void test_ecall_func([in]int (*func_ptr)());

Error:
parse error

Summary

Proper data handling/marshalling at the edge between the trusted/untrusted code parts plays

a vital role in contributing to enclave’s security. The security of an application’s enclave with

weak input/output boundary checks can be easily compromised.

With Intel SGX, boundary checking of input/output parameters is specified by the EDL file and

translated into edge routines by the sgx_edger8r tool. Actual parameter checking is

performed at runtime.

Developers should be aware of the crucial role in defining the input/output parameters and

arguments to properly implement data handling/marshalling. They should especially

understand that the responsibility of pointer validation is on them if they choose to use the

user_check parameter.

References

1. Intel Software Guard Extensions SDK — 2017 Intel Corporation.

https://software.intel.com/sgx-sdk/download.

2. Intel Software Guard Extensions SDK Users Guide for Windows OS Developer Guide —

2017 Intel Corporation. https://software.intel.com/sgx-sdk/documentation.

3. Intel Software Guard Extensions SDK for Windows OS Developer Reference — 2017 Intel

Corporation. https://software.intel.com/sgx-sdk/documentation.

4. Intel Software Guard Extensions SDK Users Guide for Linux OS Developer Guide — 2017

Intel Corporation. https://software.intel.com/sgx-sdk/documentation.

5. Intel Software Guard Extensions SDK for Linux OS Developer Reference — 2017 Intel

Corporation. https://software.intel.com/sgx-sdk/documentation.

https://software.intel.com/sgx-sdk/download
https://software.intel.com/sgx-sdk/documentation
https://software.intel.com/sgx-sdk/documentation
https://software.intel.com/sgx-sdk/documentation
https://software.intel.com/sgx-sdk/documentation

White Paper
Intel® Software Guard Extensions (Intel® SGX)

12

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY

THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,

INTEL® ASSUMES NO LIABILITY WHATSOEVER AND INTEL® DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or

indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH

MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL® AND ITS SUBSIDIARIES,

SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS

AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,

DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY

WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL® OR ITS SUBCONTRACTOR WAS

NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL® PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not

rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities

arising from future changes to them. The information here is subject to change without notice. Do not finalize a

design with this information.

No computer system can provide absolute security under all conditions. Built-in security features available on

select Intel® processors may require additional software, hardware, services and/or an Internet connection. Results

may vary depending upon configuration. Consult your system manufacturer for more details.

Intel®, the Intel® Logo, Intel® Inside, Intel® Core™, Intel® Atom™, and Intel® Xeon® are trademarks of Intel Corporation

in the U.S. and/or other countries. Other names and brands may be claimed as the property of others.

* Other names and brands may be claimed as properties of others.

Copyright © 2017 Intel® Corporation

