
 

 

 

 

 

 

 

Improve the Security of Android* Applications using 

Hooking Techniques: Part 2 
 

Contents 

Study of the PIC Code in libtest_PIC.so ........................................................................... 2 

Hook Solution ................................................................................................................... 4 

Case Study – a Hook-Based Protection Scheme in Android ............................................................. 8 

Conclusion ...................................................................................................................................... 10 

References ....................................................................................................................................... 11 

 

   



Study of the PIC Code in libtest_PIC.so 

If the object is compiled in PIC mode, relocation is implemented differently. By observing the 

sections information of the libtest_PIC.so which is shown in Figure 17, the printf() relocation 

information is located in two relocation sections: .rel.dyn and .rel.plt. Two new relocation types 

R_386_GLOB_DAT and R_386_JMP_SLOT are used, and the absolute 32-bit address of the 

substituted function should be filled in with these offset addresses. 

 

Relocation section '.rel.dyn' at offset 0x318 contains 7 entries:
 Offset     Info    Type            Sym.Value  Sym. Name
0000200c  00000008 R_386_RELATIVE   
00001fe0  00000106 R_386_GLOB_DAT    00000000   printf
00002010  00000101 R_386_32          00000000   printf
00001fe4  00000206 R_386_GLOB_DAT    00000000   __cxa_finalize
00001fe8  00000306 R_386_GLOB_DAT    00000000   __gmon_start__
00001fec  00000706 R_386_GLOB_DAT    00002010   global_printf2
00001ff0  00000406 R_386_GLOB_DAT    00000000   _Jv_RegisterClasses

Relocation section '.rel.plt' at offset 0x350 contains 3 entries:
 Offset     Info    Type            Sym.Value  Sym. Name
00002000  00000107 R_386_JUMP_SLOT   00000000   printf
00002004  00000207 R_386_JUMP_SLOT   00000000   __cxa_finalize
00002008  00000307 R_386_JUMP_SLOT   00000000   __gmon_start__

 

Figure 1: Relocation section of libtest_PIC.so 

 

The Figure 18 shows the assembly code of function libtest2() which is compiled in non-PIC mode. 

The entry addresses of printf() marked with red color are specified in the relocation 

sections .rel.dyn and .rel.plt in Figure 17. 

 



...
000003b0 <printf@plt>:
 3b0: ff a3 0c 00 00 00    jmp    *0xc(%ebx)
 
0000049c <libtest2>:
 
 4a3: e8 ef ff ff ff       call   497 <__i686.get_pc_thunk.bx>
 4a8: 81 c3 4c 1b 00 00    add    $0x1b4c,%ebx
 4ae: 8b 83 ec ff ff ff    mov    -0x14(%ebx),%eax
 4b4: 89 45 f4             mov    %eax,-0xc(%ebp)

;printf("libtest2: 1st call to the original printf()\n");
 4b7: 8d 83 60 e5 ff ff    lea    -0x1aa0(%ebx),%eax
 4bd: 89 04 24             mov    %eax,(%esp)
 4c0: e8 eb fe ff ff       call   3b0 <printf@plt>

;printf("libtest2: 1st call to the original printf()\n");
 4c5: 8d 83 90 e5 ff ff    lea    -0x1a70(%ebx),%eax
 4cb: 89 04 24             mov    %eax,(%esp)
 4ce: e8 dd fe ff ff       call   3b0 <printf@plt>

;global_printf2("libtest2: global_printf2()\n");
 4d3: 8b 83 f8 ff ff ff    mov    -0x8(%ebx),%eax
 4d9: 8b 10                mov    (%eax),%edx
 4db: 8d 83 bd e5 ff ff    lea    -0x1a43(%ebx),%eax
 4e1: 89 04 24             mov    %eax,(%esp)
 4e4: ff d2                call   *%edx

;local_printf("libtest2: local_printf()\n");
 4e6: 8d 83 d9 e5 ff ff    lea    -0x1a27(%ebx),%eax
 4ec: 89 04 24             mov    %eax,(%esp)
 4ef: 8b 45 f4             mov    -0xc(%ebp),%eax
 4f2: ff d0                call   *%eax
...    
Disassembly of section .got:
00001fe0 <.got>:

...
Disassembly of section .got.plt:
00001ff4 <.got.plt>:
    1ff4: 20 1f                and    %bl,(%edi)

...
    1ffe: 00 00                add    %al,(%eax)
    2000: b6 03                mov    $0x3,%dh
    2002: 00 00                add    %al,(%eax)
    ...
Disassembly of section .data:

...
00002010 <global_printf2>:
    2010: 00 00                add    %al,(%eax)

...

 
Figure 2: Disassemble code of libtest2(), compiled with -PIC parameter 

 

Dlopen()/Linker:
*(DWORD *)(base+0x2000) = absolute address of printf()

0x4a3:

EBX=base+0x4a8

0x4a8:

EBX=EBX+0x1b4c=base+0x1ff4

0x4c0:

call function at 0x3b0<printf@plt>

0x3b0:

Indirect jump to address stored in (base+0x2000)

printf()

libtest2()

 

Figure 3: Working flow of 'printf("libtest2: 1st call to the original printf()\n");' 

  



0x4a8:

EBX=base+0x4a8+0x1b4c=base+0x1ff4

0x4d3: 

EAX=*(DWORD *)(EBX-0x8)=base+0x2010

0x4d9:

EDX=*(DWORD *)(base+0x2010)

0x4e4:

Indirect call to the address given in EDX

printf()

Dlopen()/Linker:
*(DWORD *)(base+0x2010)=absolute address of printf()
*(DWORD *)(base+0x1fec)=base+0x2010

libtest2()

 

Figure 4: Working flow of 'global_printf2("libtest2: global_printf2()\n");' 

 

0x4a8:

EBX=EBX+0x1b4c=base+0x1ff4

0x4ae:

EAX = -0x14(EBX)=*(DWORD *)(base+0x1fe0)

0x4b4:

*(DWORD *)(EBP-0xc)=EAX

0x4ef:

EAX= *(DWORD *)(EBP-0xc)

0x4f2:

Indirect call to the address given in EAX

Dlopen()/Linker:

*(DWORD *)(base+0x1fe0)= absolute address of printf()

printf()

libtest2()

 

Figure 5: Working flow of 'local_printf("libtest2: local_printf()\n");' 

  

From Figures 19-21, it can be seen that when working with the dynamic library generated with the 

-PIC parameter, the code in libtest2() will jump to the address placed in offset addresses 0x1fe0, 

0x2010, and 0x2000, which are the entrances to printf().  

Hook Solution 

If the hook module wants to intercept the calls to printf() and redirect to another function, it should 

write the redirected function address to the offset addresses of the symbol ‘printf’ defined in the 

relocation sections, after the linker loaded the dynamic library into memory.  

 

To replace the call of the printf() function with the call of the redirected hooked_printf() function, 

as shown in the software flow diagram in Figure 22, a hook function should be implemented 

between the dlopen() and libtest() calls. The hook function will first get the offset address of symbol 



printf, which is 0x1fe0 from the relocation section named .rel.dyn. The hook function then writes 

the absolute address of hooked_printf() function to the offset address. After that, when the code 

in libtest2() calls into the printf(), it will enter the hooked_printf() instead. 

0x4a8:

EBX=EBX+0x1b4c=base+0x1ff4

0x4ae:

EAX = -0x14(EBX)=*(DWORD *)(base+0x1fe0)

0x4b4:

*(DWORD *)(EBP-0xc)=EAX

0x4ef:

EAX= *(DWORD *)(EBP-0xc)

0x4f2:

Indirect call to the address given in EAX

Dlopen()/Linker:

*(DWORD *)(base+0x1fe0)= absolute address of printf()

hooked_printf()

libtest2()

Hook_func():

Parsed the offset value 0x1fe0 from symbol table

*(DWORD *)(base+0x1fe0)=absolute address of hooked_printf()

 

Figure 6: Example of how the hook function intercepts the call to printf() and reroutes the call to 

hooked_printf(). The original function calling process is described in Figure 21. 

 

 

To consider all the possible cases previously listed, the entire flow chart of the hook function is 

shown in Figure 23. And the part of the change in main() function is depicted in Figure 24. 



Get symbol table information 
in .rel.plt & .rel.dyn of the 
module

Calculate the module address
in memory

Open next symbol 
in .rel.plt

Symbol name == 
target function

Symbol type == 
R_386_JMP_SLOT

Set Corresponding Memory
write permission

*(Module_address + symbol.offset) = 
hooked_function address

Open next symbol 
in .rel.dyn

Symbol name == 
target function

Symbol type == 
R_386_PC32

Set Corresponding Memory
write permission

*(Module_address + symbol.offset) = 
relative address of hooked_function 

Symbol type == 
R_386_32

Set Corresponding Memory
write permission

*(Module_address + symbol.offset) = 
hooked_function address

Symbol type == 
R_386_GLOB_DAT

Set Corresponding Memory
write permission

*(Module_address + symbol.offset) = 
hooked_function address

Start

End

Y Y Y

Failed, the end of table

N

N

Y Y Y

Y

Y

Failed, the end of table
N

N

N

 

Figure 7: The flow chart of ELF hook module 

 

 

 



int hooked_printf(char const *format,...)
{
//printf the original string then attach "is HOOKED" at the end
   va_list arg;
   va_start (arg, format);
   done = vfprintf (stdout, format, arg);
   va_end (arg);

   puts("is HOOKED");
}

int main()
{
...
    void *handle1 = dlopen("libtest_nonPIC.so", RTLD_LAZY);
    void *handle2 = dlopen("libtest_PIC.so", RTLD_LAZY);
...
    libtest1();  
    libtest2();  
    printf("-----------------------------\n");

//hook printf()
    original1 = elf_hook("libtest_nonPIC.so", handle1, "printf", hooked_printf);
    original2 = elf_hook("libtest_PIC.so", handle2, "printf", hooked_printf);
...
    libtest1();  
    libtest2();
...
} 

 

Figure 8: Code in main() after hooking 

 

The output of the program is shown in Figure 25, you can see that when the first call to 

libtest1()/libtest2() executes, the printf() is called inside the functions. When calling the two 

functions again, after the hook functions are executed, the calls to the printf() are redirected to the 

hooked_printf() function. The hooked_printf() function will attach the string “is HOOKED” at the 

end of the normal printed string. Figure 26 shows the program running flow after hooking, 

compare with the original flow shown in Figure 8, the hooked_printf() has been injected into 

libtest1() and libtest2(). 



 

Figure 9: Output of the test program, printf() has been hooked 

hooked_printf()
{

 
printf();
...
}

Main()
{

 

dlopen( libtest_nonPIC.so );

dlopen( libtest_PIC.so );

 
Libtest1();
Libtest2();
}

libtest1()
{
    printf();
}

libtest2()
{
    printf();
}

printf()
{
    ...
}

main.c
libtest_nonPIC.so

libtest_PIC.so

glibc.so

Redirect original call printf() to hooked_printf()
Then call printf() from hooked_printf()

 

Figure 10: The running flow of the test project after hooking 

Case Study – a Hook-Based Protection Scheme 

in Android  

Based on the studies of the hooking technique in the previous sections, we developed a plug-in to 

help Android application developers improve the security of their applications. Developers need 

to add only one Android native library to their projects and add one line of Java code to load this 



native library at start-up time. Then this library injects some protection code to other third-party 

libraries in the application. The protection code will aid encrypting the local file's input/output 

stream, as well as bypass the function __android_log_print() to avoid some user privacy leakage 

by printing debugging information through Logcat. 

 

To verify the effectiveness of the protection plug-in, we wrote an Android application to simulate 

a scene of an application that contains a third-party library. In the test application, the third party 

library does two things: 

1. When an external Java instruction calls the functions in the library, it will print some 

information by calling __android_log_print(). 

2. In the library, the code creates a file (/sdcard/data.dat) to save data in local storage without 

encryption, then reads it back and prints it on the screen. This action is to simulate the 

application trying to save some sensitive information in the local file system. 

 

Figures 27-30 compare the screenshots of the test program, output of Logcat, and the content of 

the saving file in the device’s local file system before and after hooking. 

 

 

Figure 11: The Android* platform is Teclast X89HD, Android 4.2.2 

  



 

Figure 12: App output - no change after hooking 

 

 

Figure 13: Logcat output - empty after hooking 

 

 

Figure 14: Local file ‘data.dat’ at /sdcard has been encrypted after hooking 

 

As the figures show, the running flow of the program after hooking is the same as the one without 

hooking. However, the Logcat cannot catch any output from the native library after hooking. 

Further, the content of the local file is no longer stored in a plain text format. 

 

The plug-in helps the test application improve security against malicious attacks on collecting 

information via Logcat, as well as offline attacks to the local file system. 

Conclusion 

The hooking technique can be used in many development scenarios, providing seamless security 

protection to Android applications. Hook-based protection schemes can not only be used on 

Android, but also can be expanded to other operating systems such as Windows*, Embedded Linux, 

or other operating systems designed for Internet of Things (IoT) devices. It can significantly reduce 

the development cycle as well as maintenance costs. Developers can develop their own hook-

based security scheme or use the professional third-party security solutions available on the 



market. 

References 

Redirecting functions in shared ELF libraries 

Apriorit Inc, Anthony Shoumikhin, 25 Jul 2013 

http://www.codeproject.com/Articles/70302/Redirecting-functions-in-shared-ELF-libraries  

 

x86 API Hooking Demystified 

Jurriaan Bremer 

http://jbremer.org/x86-api-hooking-demystified/ 

 

Android developer guide 

http://developer.android.com/index.html 

 

Android Open Source Project 

https://source.android.com/ 

 

 

About the Author 

 

Jianjun Gu is a senior application engineer in the Intel Software and Solutions Group (SSG), 

Developer Relations Division, Mobile Enterprise Enabling team. He focuses on the security and 

manageability of enterprise application. 

 

 

Notices 

 

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is 

granted by this document. 

 

Intel disclaims all express and implied warranties, including without limitation, the implied 

warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as 

any warranty arising from course of performance, course of dealing, or usage in trade. 

 

This document contains information on products, services and/or processes in development. All 

information provided here is subject to change without notice. Contact your Intel representative 

to obtain the latest forecast, schedule, specifications and roadmaps. 

 

The products and services described may contain defects or errors known as errata which may 

cause deviations from published specifications. Current characterized errata are available on 

request. 

 

http://www.codeproject.com/script/Membership/View.aspx?mid=5873031
http://www.codeproject.com/script/Membership/View.aspx?mid=6151961
http://www.codeproject.com/Articles/70302/Redirecting-functions-in-shared-ELF-libraries
http://jbremer.org/x86-api-hooking-demystified/
http://developer.android.com/index.html
https://source.android.com/


Copies of documents which have an order number and are referenced in this document may be 

obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm. 

 

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.  

 

*Other names and brands may be claimed as the property of others. 

 

© 2016 Intel Corporation. 

 

http://www.intel.com/design/literature.htm

