
Garbage Collection Workload for Android*

A New Way to Measure Android Garbage Collection Performance

As the mobile computing market evolves, Google Android* has become one of the most popular

software stacks for smart mobile devices. Because Java* is the primary implementation

language for Android applications, the Java Virtual Machine (JVM) is key to providing the best

Android user experience.

The garbage collector (GC) component of JVM is one of its most important. It provides

automatic memory management, and ensures that Java programmers cannot accidentally (or

purposely) crash the JVM by incorrectly freeing memory, improving both programmer

productivity and system security. GC keeps track of the objects currently referenced by the Java

program, so it can reclaim the memory occupied by unreferenced objects, also known as

“garbage.” Accurate and efficient garbage collection is critical to reaching high performance and

to the user experience of Android applications.

GC may interfere with user thread execution for garbage collection by introducing overhead and

hence hurting performance and user experience. A typical example is that most GC algorithms

require pausing all Java threads in an application at some point in order to guarantee that only

garbage object memory is reclaimed. If the pause time is long, it can cause performance and

user experience issues such as jank (unresponsive user interface or momentary sluggishness)

and lack of responsiveness and smoothness. In addition, GC is usually triggered automatically

by the JVM in the background, so programmers have little or no control over GC scheduling.

Android developers must be aware of this hidden software component.

To achieve the best performance and user experience by optimizing GC, a workload that

reflects GC performance is indispensable. However, in our experience most popular Android

workloads (gaming, parsing, security, etc.) stress GC only intermittently. Intel developed

Garbage Collection Workload for Android (GCW for Android) to analyze GC performance and its

influence on Android performance and user experience.

GCW for Android stresses the memory management subsystem of the Android Runtime (ART).

It is designed to be representative of the peak memory use behavior of Android applications, so

optimizations based on GCW for Android analysis not only improve the workload score but also

improve user experience. Further, GCW for Android provides options for you to adjust its

behavior, making it flexible enough to mimic different kinds of application behavior.

GCW for Android Overview

Intel developed GCW for Android based on the analysis of real-world applications, including

typical Android applications in categories such as business, communications, and entertainment.

GCW for Android is an object allocation and GC intensive workload designed for GC

performance evaluation and analysis.

The workload has two working modes. You can run it from the command line or control it using

a GUI. GCW for Android is configurable. You can specify the workload size, number of

allocation threads, object allocation size distribution, and object lifetime distribution to fit different

situations. It provides flexibility to test GC with different allocation behaviors, so you can use

GCW for Android to analyze GC performance for most usage situations.

GCW for Android incorporates several metrics. It reports the total execution time as the primary

metric of GC and object allocation efficiency. The workload also reports memory usage

information such as the Java heap footprint and total allocated object bytes based on the

Android logging system.

How to Run GCW for Android

For the Android platform, GCW for Android is provided as a single package: GCW_Android.apk.

After installing the apk, clicking the GCW_Android icon launches the workload and displays a UI

that includes start and setting buttons.

Figure 1. GCW for Android Launch UI

Clicking the “Start” button will run the workload using the default profile settings. The “default”

settings option is used to reset the workload profile to the default. If you want to change the

configuration, click the “Settings” button.

(a)

(b)

 Figure 2. Configuration UI. (a) is the top part (b) is the bottom part

The first setting is a selectable list of profiles. For now, the “default” is the only option. A profile

consists of the parameters used by the workload, and the default profile is derived from the

characteristics of several real applications.

Total Object size: Allows you to define the total object size allocated in one iteration by all

allocation threads. The default is 100MB, which means that when running in multi-thread mode

with four threads, each thread will allocate 25MB’s worth of objects in one iteration in the stress

test phase.

Bucket size: allows you to define the size of the binary trees that are built in a single allocation

phase. The default is 1MB.

Large object size: allows you to define the large object size. The default is 12KB, which is the

minimum size object that ART allocates in the large object space.

Object size distribution: allows you to define the size distribution of allocated objects. The

total sum should be 100%.

Large object element type distribution: allows you to define the lifetime for each object. An

object’s lifetime is defined in units of the size of the objects (1MB by default) allocated from

when it is created to when it is made unreachable. The first item in the lifetime data is the long

lived object percentage (the percentage of objects that live for the entire workload run), the

second is the percentage of objects that die after the first period, the third is the percentage of

objects that die after the second period (after allocating another 1MB worth of objects), and the

K’th item is the percentage of objects that die after the K+1’st period (after allocating K MB’s

worth of objects). Items are separated by commas and each line should have the same number

of items.

By default, the workload runs in multi-thread mode. If you want to run in single-thread mode,

check "Run in single thread?"

To understand how GCW for Android reflects the JVM’s memory management characteristics

and is representative of real applications, let’s go deeper to see how GCW for Android is

designed.

GCW for Android Design

GCW for Android is designed to mimic the JVM memory management behavior that real

applications exhibit. Detailed analysis of different user scenarios on a large number of popular

Android applications indicate that Java programs create various sized objects with varying

lifetimes, so the workload does too. Also, the default relationship between object sizes and

lifetimes (small objects tend to have short lifetimes) and the multi-threaded allocation behavior

are similar to those of real applications.

Abstracted from the analysis data, the following characteristics were chosen as the primary

design points for GCW for Android.

● Object size distribution

Figure 3 shows a histogram of object size distribution based on 17 popular Google Play*

store applications. The X-axis is the percent of all objects of a given object size range and the

Y-axis is the object size range buckets.

Figure 3. Object size distribution of popular apps

When running, around 80% of the objects allocated are small objects whose size is less or

equal to 64 bytes. We observed the same behavior on ~50 more popular apps, so GCW for

Android uses objects with many different object sizes. How GCW for Android models object size

will be discussed in the next section “GCW for Android Workflow.”

● Object lifetime

 Object lifetime is measured by how many garbage collections an object survives in the

Java heap. Understanding object lifetime can help the JVM developer optimize GC performance

by optimizing how GC works and tuning GC-related options.

 In our investigations, the lines plotting object size against object lifetime show a loose

relationship between the two, but lifetime does seem to be related to the object size. Here we

choose Gallery3D (Figure 4) and Google Maps (Figure 5) as examples. The X-axis is the

percentage of objects that die; the Y-axis is the number of GCs that survive. Each line

represents an object size range.

Figure 4. Gallery3D Object Lifetimes

Figure 5. Google Maps* mapping service Object Lifetimes

 Most objects die after one to three GCs, but the lines aren’t quite congruent. For Google

Maps, ~80% of the objects between 1-16 bytes die after the first GC, but only 60% of the

objects between 33-64 bytes die after the first GC. Different-sized objects can have different

lifetimes, so how well GCW for Android reflects object lifetime is an important design goal. How

GCW for Android models object lifetime will be discussed in the next section “GCW for Android

Workflow.”

● Multi-threading

 Our investigation shows that most Android Java applications are multi-threaded, though

the threads do not typically communicate much with each other. Each Java application running

on an Android device may have more than one thread allocating objects in the Java heap

simultaneously. GCW for Android supports multi-threaded allocation in order to mimic this real

application characteristic. How GCW for Android supports multi-threading will be explained in

next section “GCW for Android Workflow.”

To summarize, the following workload characteristics are emulated in GCW for Android. Typical

Android applications:

● Allocate varied size objects.

● Have similar allocated object size distributions.

● Have allocated objects with different lifetimes, and their lifetimes seem to be related to

their size.

● Allocate objects in parallel in multiple threads.

Putting all these observations together, we designed the GCW for Android workflow to make it

not only a JVM memory management workload, but also one that reflects actual usage

scenarios.

GCW for Android Workflow

GCW for Android supports two threading modes: single- and multi-thread. While in multi-thread

mode each thread is assigned a number, which is by default the logical CPU number. You can

change it.

(a)

Allocate long

lived objects

Stress Test

Thread n

Allocate long

lived objects

Stress Test

Thread 0

… …

(b)

Figure 6. GCW for Android Workflow

Internally, GCW for Android builds several binary trees in order to manage object sizes and

lifetimes. It builds and deletes objects by inserting and deleting nodes in the trees, as shown in

Figure 6(b).

Figures 6(a) and (b) show how GCW for Android works. It first launches a certain number of

threads, and then each thread follows the same logic: allocate long lived objects and then stress

test. The stress test is the most time consuming part of the workload and is a big loop that

iterates a configurable number of times, by default 100. In each iteration, GCW for Android

allocates a configurable number of bytes (by default 100MB), which by default includes 6 kinds

of small objects (16, 24, 40, 96, 192, and 336 byte objects) plus large objects (12K bytes,

configurable). Small objects are created as nodes of binary trees; large objects are created as

byte, char, int, or long arrays. In each iteration of GCW for Android, the workload:

● Builds binary trees.

● Deletes some nodes from built trees according to the lifetimes of small objects.

● Builds large object arrays.

● Deletes some arrays according to lifetimes of large objects.

Now let’s take a closer look at the internal design of GCW for Android to understand how it

achieves the aforementioned characteristics of emulating memory system use.

Object Size Distribution

To simulate common object size distribution patterns, GCW for Android internally defines seven

object size buckets:

• 16 byte → [1-16B]

• 24 byte → [17-32B]

• 40 byte → [33-64B]

• 96 byte → [65-128B]

• 192 byte → [129-256B]

• 336 byte → [257-512B]

• Large object (default is 12KB)

To conveniently abstract object references, GCW for Android allocates small sized objects as

nodes in a binary tree, and large objects are created as arrays. There are four types of large

object arrays: byte, char, int, and long.

Now let’s see how GCW for Android manages object lifetimes to mimic real applications.

Object Lifetime Control

GCW for Android internally uses binary trees to control object lifetime. Every binary tree has a

predefined lifetime. GCW for Android controls tree lifetimes and therefore object lifetimes.

For example, suppose you want your object lifetime model to have three stages where 50% of

objects die in period K, 25% of objects die after that in period K+1, and the remaining 25% live

through period K+2.

At the beginning of period K, GCW for Android builds three trees simultaneously, one tree for

each lifetime stage. In period K, one tree holding 50% of the objects is made unreachable by

assigning null to the root object, which makes the whole tree unreachable from the GC point of

view. So 50% of the objects are collected by GC after period K. Then in period K+1, the second

tree holding 25% of objects is rendered unreachable by setting the root to null, thus causing 25%

of the objects to be reclaimed after period K+1 and leaving 25% of the objects alive through

period K+2 (see Figure 7).

Figure 7. Object lifetime control

In different use scenarios, object lifetime is not deterministic, so GCW for Android also does not

make object lifetimes deterministic. To emulate real applications, GCW for Android generates a

random number for every thread, each with a different seed, in order to decide object size and

the lifetime stage of a node. Here is an example.

In this example three 24-byte objects will die after stage one, and the other objects will die after

stage 0.

To recap, GCW for Android makes it easy to reflect the object allocation and GC behavior of

real applications. Using GCW for Android can help you identify many opportunities in the ART to

enhance performance and user experience.

Opportunities Discovered Using GCW for Android

During our performance investigation we discovered that object allocation is typically the hottest

part of an application. Further investigation showed that allocation can be made faster by

inlining the RosAlloc allocation fast path, which means the call to the allocation function is

eliminated. That resulted in ~7% improvement on GCW for Android. The implementation has

been merged into the Android Open Source Project (AOSP).

Additionally, we found that GC marking time can be reduced by eliminating unnecessary card

table processing between immune spaces. The card table is a mechanism that records cross-

space object references, which guarantee the correctness of GC when it collects only a subset

of the Java heap (the subsets are called “spaces”) instead of the whole heap. Analysis also

revealed that GC pause time can be reduced by clearing dirty cards for allocation spaces during

partial and full GCs. Minimizing pause time is critical for end user apps because reducing pause

time can reduce jank and improve smoothness.

GCW for Android also helped us find GC optimization opportunities such as parallel marking

and parallel sweeping. Intel has contributed several of these optimizations to AOSP and the rest

have been added to the Intel ART binaries. Altogether, these optimizations have resulted in ~20%

improvement on GCW for Android. All have helped improve Intel product performance and user

experience.

Open Source GCW for Android

We have submitted GCW for Android for upstreaming into AOSP to make it available to the

entire Android development community. Our goal has been to make GCW for Android the most

realistic Android Java memory system workload and use it to drive GC optimization on all

platforms to improve Android performance and user experience.

Downloads

The code can be downloaded from Google at

https://android-review.googlesource.com/#/c/167279/

Conclusion

https://android-review.googlesource.com/#/c/167279/
https://android-review.googlesource.com/#/c/167279/
https://android-review.googlesource.com/#/c/167279/

GCW for Android is a JVM memory management workload that is designed to emulate how real

applications use Java memory management. It is intended to help both JVM and application

developers optimize memory management and user experience on Android. Intel is using it to

improve product performance and user experience by identifying optimization opportunities in

ART. We hope it becomes an important indicator of performance and user experience on

Android.

References

Java Virtual Machine (JVM): https://en.wikipedia.org/wiki/Java_virtual_machine

Garbage Collection (GC): https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)

Android Runtime (ART): https://source.android.com/devices/tech/dalvik/

Inside the Java Virtual Machine: https://www.artima.com/insidejvm/ed2/index.html

Acknowledgements (alphabetical)

Jean Christophe Beyler, Dong Yuan Chen, Haitao Feng, Jean-Philippe Halimi, Paul Hohensee,

Aleksey Ignatenko, Rahul Kandu, Lei Li, Desikan Saravanan, Kumar Shiv, and Sushma

Kyasaralli Thimmappa.

About the Authors

Li Wang is a software engineer in the Intel Software and Solutions Group (SSG), Systems

Technologies & Optimizations (STO), Client Software Optimization (CSO). She focuses on

Android workload development and memory management optimization in the Android Java

runtime.

Lin Zang is a software engineer in the Intel Software and Solutions Group (SSG), Systems

Technologies & Optimizations (STO), Client Software Optimization (CSO). He focuses on

memory management optimization and functional stability in the Android Java runtime.

Notice

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is

granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied

warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as

any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All

information provided here is subject to change without notice. Contact your Intel representative

to obtain the latest forecast, schedule, specifications and roadmaps.

https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://source.android.com/devices/tech/dalvik/
https://www.artima.com/insidejvm/ed2/index.html

The products described in this document may contain design defects or errors known as errata

which may cause the product to deviate from published specifications. Current characterized

errata are available on request.

Copies of documents which have an order number and are referenced in this document, or

other Intel literature, may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm

Any software source code reprinted in this document is furnished under a software license and

may only be used or copied in accordance with the terms of that license.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

Copyright © 2016 Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

