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Offensive Computing LLCOffensive Computing, LLC

• Malware CommunityMalware Community

Free access to malware samples– Free access to malware samples
– Largest open malware site on the Internet

1million hits per month– ~1million hits per month

• Business Services• Business Services
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Temporal Reverse EngineeringTemporal Reverse Engineering

• Observe program change over timeObserve program change over time
• Analysis is very time dependant

l d l d k h i l i• Tools developed to make the time analysis 
easier

• Lower complexity for analysis
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Overview of TalkOverview of Talk

• Current Reverse Engineering TechniquesCurrent Reverse Engineering Techniques
– Where they work

Where they fail– Where they fail
• What is Temporal Reverse Engineering?
• Techniques and Strategies
• Checkpointing as an analysis toolp g y
• Visualization Methods
• Applications and Demos
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Reverse EngineeringReverse Engineering

• Reversing is hardReversing is hard

• Goal: Figure out how program works in• Goal: Figure out how program works in 
minimal amount of time

• Expensive (We don’t work cheap)

• Time consuming
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Dominant StrategiesDominant Strategies

• Static AnalysisStatic Analysis

IDA Pro– IDA Pro
– Figure out program flow

String Searching– String Searching
– API Call tracing
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Dominant StrategiesDominant Strategies

• Dynamic AnalysisDynamic Analysis

W t h f h th t– Watch for changes on the system
• Registry, files, network

M it S t ll t OS/Lib l l– Monitor System calls at OS/Library level
– Tools more accessible to unskilled people

S i l– Sysinternals…
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ProsPros

Static Analysis Dynamic AnalysisStatic Analysis
• Details
• Precision, full code reversal

Dynamic Analysis
• Fast
• Lower barrier to entryPrecision, full code reversal 

possible
• Good tools available

Lower barrier to entry
• High level overview
• Good tools

• Antivirus
– It’s profitable

– Sysinternals
– Winalysis
– CWSandboxCWSandbox
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ConsCons

Static Analysis Dynamic AnalysisStatic Analysis
• Too much detail
• Full code reversing not

Dynamic Analysis
• Misses details

Full code reversing not 
necessary

• Tools cumbersome, takes 
i d i i l

• Encourages 
“next->next->next” analysis

time and training to learn
• Source level analysis full of 

false positives
• Tools easily subverted

false positives
• Antivirus

– Doesn’t scale
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Which is Better?Which is Better?

• Each perform a task wellEach perform a task well
• Tools need to be developed on both sides

G d b b id d b i• Gaps need to be bridged to better integrate 
the two methods

• This talk is about a partial solution to 
bridging that gap
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Bridging the GapBridging the Gap

• Fundamental problems:Fundamental problems:

Knowing when to analyze– Knowing when to analyze

– Data and state changeData and state change
• What causes these?
• Are they important?y p
• Automation
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Steps Toward SolutionsSteps Toward Solutions

• TechniquesTechniques

Debuggers– Debuggers

– Dynamic TranslationDynamic Translation 

– Page-fault assisted debugging (Saffron)Page fault assisted debugging (Saffron)

– Sandboxing
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DebuggersDebuggers

• The GoodThe Good
– Excellent tools available:

• OllyDbg WinDBG Visual Studio Debugger gdb• OllyDbg, WinDBG, Visual Studio Debugger, gdb
• APIs

– PyDbg (thanks Pedram!)
– Windows Debug API

• Most have scripting support

All i l i ll i– Allow single-stepping as well as tracing
– Scripting support allows automation
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Debuggers (cont )Debuggers (cont.)

• The BadThe Bad
– Detectable!

• IsDebuggerPresent / MSFT DRM trickery• IsDebuggerPresent / MSFT DRM trickery
• Timing attacks
• Exception triggeringp gg g

– Still too fine-grained
• Focus is on assembly levely
• Need to integrate with static analysis tools

– Trivial packer changes confuse debuggers
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What about program flow tracing?What about program flow tracing?

• Visualization should be able to answerVisualization should be able to answer 
questions quickly

• How can we apply this to reverse 
engineering?engineering?

Aid l i d di fl• Aid analyst in understanding program flow
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Visualization StrategiesVisualization Strategies

• Program Flow ExecutionProgram Flow Execution
– Process Explorer

FileMon– FileMon
• Runtime Instruction Tracing

– Intel’s PIN Framework
– Allows Analysis of Program Flow

• Call-Graph Tracing
• Basic-Block Visualization
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Monitoring Program ExecutionMonitoring Program Execution

• Intel PINIntel PIN

Dynamic instrumentation library– Dynamic instrumentation library
– Extensible

Excellent API– Excellent API
– Process attach and detach
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PIN BasicsPIN Basics
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PIN BasicsPIN Basics
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PIN Instruction MonitoringPIN Instruction Monitoring
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Determine Changed DataDetermine Changed Data

• Look for droppersLook for droppers
• Modified files

i h• Registry changes
• Unusual withdrawals from bank account
• The Usual Suspects
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ImplementationImplementation

• Setup basic instruction traceSetup basic instruction trace

• Monitor via instruction and basic block• Monitor via instruction and basic block

D L d• Data Logged:
– Execution
– Memory read
– Memory write
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Graph LayoutGraph Layout

• Each node (vertex) represents an address ofEach node (vertex) represents an address of 
a basic block

• Each line (edge) observed transition• Each line (edge) observed transition
• Collected with custom PIN DLLs
• Processed with Oreas Govisual Diagram 

Editor (GDE)
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Oreas GDEOreas GDE

• Automatic Graph Layout ToolAutomatic Graph Layout Tool
• Renders large graphs (> 40,000 nodes)

A i l• Automatic layout
– Tree
– Circular
– Symmetric
– Hierarchical
– Orthogonal

26• http://www.oreas.com



Why not Graphviz?Why not Graphviz?

• Fails on extraordinarily large graphsFails on extraordinarily large graphs
(Memory leaks? Bad algorithm?)

• “Good” for trivial graphs

• Graphs lack visual appeal
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Demo: Find the Unpacking LoopsDemo: Find the Unpacking Loops

• Simple hello world programSimple hello world program

int main(int argc, char **argv)( g g )
{

printf(“Hello, world\n”);
return 0;;

}

Fi t t t T h i t ti• First test: Trace each instruction
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Complexity in RepresentationComplexity in Representation

• Previous graph is pretty but too complexPrevious graph is pretty, but too complex

• Tracing instructions is too complicated• Tracing instructions is too complicated
– This is a small program

M d l l f il– Moderately complex programs fail

D d i i• Data reduction important
– Compression of instruction graph

30
– Tracing at basic block



Basic BlocksBasic Blocks

• Set of instructions with• Set of instructions with 
branch at the end
All f i f• Allows for compaction of 
tracing data

• More useful analysis 
information

• Visualization results 
better
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Adding PackersAdding Packers

• Should be able to find the following:Should be able to find the following:

Packing loop– Packing loop
– Main program

• Minimize extraneous information
• Reducing analyst time is the key
• Packers: ASPack, PE Compact, UPX, FSG
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34Hello World
ASPack 2.12
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ASPack 2.12



Hello World
PECompact 1.68
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Hello World
PECompact 1.68
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Hello World
UPX 1.20
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39Hello World
UPX 1.20



40Hello World
FSG 1.0
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Visualization ResultsVisualization Results

• Unpacking loops easy to identifyUnpacking loops easy to identify
• Useful for saving analysis time

i l l• Visual appeal
• Narrowing in on relevant data is useful
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Memory CheckpointingMemory Checkpointing

• Analyze changes between two executionAnalyze changes between two execution 
points of a program

• Useful for comparing differences at certain• Useful for comparing differences at certain 
points
E l i f d• Entropy analysis of data

• Decryption analysis
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CheckpointingCheckpointing

• Determine when to checkpointDetermine when to checkpoint

Relevant Events– Relevant Events

Instruction– Instruction

Basic block– Basic block

– Page access
44
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Determine Relevant EventsDetermine Relevant Events

• MalwareMalware
– File write

Network communication– Network communication
– Any system call

C i l S f• Commercial Software
– Most probably decryption point
– Software load
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Relevant EventRelevant Event

• Use system monitoring tools:Use system monitoring tools:

Filemon regmon sysinternals tools– Filemon, regmon, sysinternals tools
– Winalysis

Wireshark– Wireshark
– WinDBG, SoftICE, Ollydbg, etc.
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CheckpointingCheckpointing

• Preservation of statePreservation of state

Register contents– Register contents
– Stack contents

CPU State– CPU State
– Memory
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What We Care AboutWhat We Care About

• State of memory at a certain eventState of memory at a certain event
• Typical checkpoint systems wish to restore

l i h• We want to analyze prior to these events
• Be able to develop a temporal view of 

program as it changes
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Existing Checkpointing ToolsExisting Checkpointing Tools

• OS SuspendOS Suspend

• Cryopid• Cryopid

M P i• Memory Paging

• OS Scheduler
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Isolating Important DataIsolating Important Data

• Memory mapsMemory maps

• Memory hotspots• Memory hotspots

E A l i• Entropy Analysis

• Manual exploration
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Enabling AnalysisEnabling Analysis

• Prepare for analysisPrepare for analysis
– Pausing and suspending execution

• Debugger• Debugger
• Pagefault Debugger (Saffron)
• System cally

– Copy running process space to disk
– Reproduce Memory PE view and file PE formatReproduce Memory PE view and file PE format

• Repair Imports
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Rebuilding PE files for IDARebuilding PE files for IDA
How IDA creates its import section .idata and 

populates subviews Imports Namespopulates subviews Imports, Names

IMAGE DIRECTORY ENTRY IMPORT– IMAGE_DIRECTORY_ENTRY_IMPORT
• RVA (Relative Virtual Address) to Import Directory

– IMAGE IMPORT DESCRIPTOR’sIMAGE_IMPORT_DESCRIPTOR s
• OriginalFirstThunk 

– RVA to INT (Import Names Table)
Fi Th k• FirstThunk

– RVA to IAT (Import Address Table)

– Scan’s Code for call’s in INT
52
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• Prepends internal functions to .idata section



Rebuilding PE files for IDARebuilding PE files for IDA
Steps to Recovering 

INT from packed or encrypted PE

Unpack using Saffron– Unpack using Saffron
• Discover OEP

– Enumerate Loaded ModulesEnumerate Loaded Modules
• CreateToolhelp32Snapshot, Module32First 

– Scan Process heaps for Module Address p
• Translate Virtual Address into RVA

– Rebuild INT and IAT
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Malware ExampleMalware Example

• Start with Storm/Nuwar/Peed SampleStart with Storm/Nuwar/Peed Sample
• Found in spam folder e-card.exe

A l i i /d i h d• Analyze using static/dynamic methods
• 591258adc48b422c86730214aef81989
• Download on Offensive Computing
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What does IDA Say?What does IDA Say?

Signs say: Packed with something weird
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WinalysisWinalysis
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OC ResultsOC Results
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Virus Total ResultsVirus Total Results
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Dynamic AnalysisDynamic Analysis

Debugging Tarpit?

No basic blocks in storm 
unpacker == viz fail
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Initial AnalysisInitial Analysis

• Wireshark shows network trafficWireshark shows network traffic
• Debugging reveals that originating source is 

services exeservices.exe
• System call tracing Showed a new file 

dcreated:
diperto-4417-e33.sys
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Diperto-XXXX-xxx sysDiperto XXXX xxx.sys

• Device driver loaded by dropper executableDevice driver loaded by dropper executable
• File is not packed!

G d di bl• Good disassembly
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Diperto FeaturesDiperto Features

• Attaches to running process spaceAttaches to running process space
• Rootkit finds services.exe

j i h• Injects into the process space
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Diperto FeaturesDiperto Features

• Copies into services exe address spaceCopies into services.exe address space
• Program runtime actually xor obfuscated
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PayloadPayload
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DecodingDecoding

• Could manually run through decryptionCould manually run through decryption
• Could make IDA script

O i i i h 86• Better Option: Let it run with x86emu
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Decoded DataDecoded Data
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Injected FileInjected File

• Does the real work of the storm wormDoes the real work of the storm worm
• Has full working unpacked code

S d i d d A C h d• Started via undocumented APC methods
• Starts code running in remote process
• Good obfuscation
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Resulting Unpack is GoodResulting Unpack is Good
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ConclusionConclusion

• Dynamic Runtime Visualization showsDynamic Runtime Visualization shows 
process change over time

• Multiple checkpoints allow for analysis 
l i lover multiple program states

• Leverage existing tools with time dependant 
data
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