@DPDK

DPDK Cookbook

Featuring:

Solution-Oriented Mini Sections
User-Friendly Screen shots

Links to Videos and Online Contents

Overview

The DPDK Cookbook modules teach you everything you need to know to be productive with the Data Plane Development
Kit (DPDK). Here’s an overview of the topics covered:

e Build Your Own DPDK Traffic Generator—DPDK-In-A-Box

e DPDK Transmit and Receive—DPDK-in-a-Box

e Build Your Own DPDK Packet Framework with DPDK-In-A-Box

e DPDK Data Plane—Multicores and Control Plane Synchronization
e DPDK Performance Optimization Guidelines White Paper

e Profiling DPDK Code with Intel® VTune™ Amplifier

e References

| highly recommend that you devour the Architecture Overview section of the Programmer’s Guide at dpdk.org. This
excellent document, authored by architects and designers, goes into both the how and the why of DPDK design.

http://www.dpdk.org/
http://www.dpdk.org/
http://www.dpdk.org/doc/guides/prog_guide/overview.html

Change is the only constant in this fast-moving field, with some of these components delivering new releases every three
months. Please refer to the related user guides and release notes to be sure you use the latest version when applying
these cookbook recipes. | provide links to many resources, and some of those will inevitably change as well, so please
accept my apology in advance if you encounter a broken link.

Acknowledgements

I’'m grateful to many people for their valuable input, including early access customers, architects, design engineers,
managers, platform application engineers, DPDK community, and Intel® Network Builders. In particular, this cookbook is
possible only due to the encouragement, support, and reviews from Jim St Leger, Venky Venkatesan, Tim O’Driscoll, John
DiGiglio, John Morgan, Cristian Dumitrescu, Sujata Tibrewala, Debbie Graham, Ray Kinsella, Jasvinder Singh, Deepak Jain,
Steve Cunming, Heging Zhu, Dave Hunt, Kannan Ramia Babu, Walt Gilmore, Mike Glynn, Curran Greg, Ai Bee Lim, Larry
Wang, Nancy Yadav, Chiu-Pi Shih, Deepak S, Anand Jyoti, Dirk Blevins, Andrew Duignan, Todd Langley, Joel Auernheimer,
Joel Schuetze, and Eric Heaton.

About the Author

® Muthurajan Jayakumar (M Jay) has worked with the DPDK team since 2009. He joined Intel in 1991 and
has worked in various roles and divisions with Intel, including roles as a 64-bit CPU front side bus
architect, and as a 64-bit HAL developer. M Jay holds 21 US patents, both individually and jointly, all
issued while working at Intel. M Jay was awarded the Intel Achievement Award in 2016, Intel's highest
honor based on innovation and results. Before joining Intel, M Jay architected a CPU node board for a
1000-node machine design in India. M Jay won a gold medal for graduating with the university first rank ECE batch in
1984, from TCE, Madurai.

Please send your feedback about the DPDK Cookbook to Muthurajan.Jayakumar@intel.com.

Getting Started: Documentation and Tools

Key Documentation

Dpdk.org contains a rich set of documentation. The table below highlights some of the guides and other materials that
you’ll find useful to familiarize yourself with DPDK programming. You can read the guides online or download many of
them in PDF form.

mailto:Muthurajan.Jayakumar@intel.com

Programmers Guide

The guide you must read first.

Quick Start Guide

Simple forwarding test with pcap PMD, which works with
any NIC.

API Documentation

All libraries and APIs.

Supported NICs

The list of supported NICs grows with each new release of DPDK.
Please refer to this document for the latest list.

Network Interface Controller
Drivers

Poll mode drivers for supported NICs—virtual as well as
physical.

DPDK Sample Application
User Guide

More than 40 sample applications—find the closest match
to your application.

DPDK Testpmd Application
User Guide

The key DPDK tool with port, NIC set, and show commands.

Release Notes

The latest features, issues addressed, and issues to be
addressed in the future.

Getting Started Guide for
Linux*

Build, install, and Getting Started.

How-to Guides

Covers topics such as live migration of a VM with SR-IOV VF,
live migration of a VM with Virtio on host running
vhost_user, a flow bifurcation guide, and more.

Crypto Device Drivers

Contains Crypto Device Supported Functionality Matrices
and details about support for many drivers, including:

e AESN-NI Multi Buffer Crypto Poll Mode Driver

o AES-NI GCM Crypto Poll Mode Driver

e KASUMI Crypto Poll Mode Driver

e Null Crypto Poll Mode Driver

e SNOW 3G Crypto Poll Mode Driver

e Quick Assist Crypto Poll Mode Driver

FAQ

Frequently asked questions.

Getting Started Guide for
FreeBSD

DPDK FreeBSD Linux GSG.

Contributor’s Guidelines

Do you want to contribute code and/or documentation to
the DPDK community?

Frequently Used Tools and Scripts

The scripts listed in this section can be found in the tools or scripts subdirectories of your DPDK install. Below

are some frequently used tools and scripts to study.

.Jtools/setup.h

Menu-driven setup script In tools subdirectory

.Jtools/dpdk_nic_bind.py

For binding NIC to driver In tools subdirectory

.Jtools/cpu_layout.py

For Icore number and layout In tools subdirectory

.Jtools/pmdinfo.py

For PMD info In tools subdirectory

http://dpdk.org/doc/dts/gsg

DPDK Test Suite (DTS)

Getting Started Guide—DTS

http://dpdk.org/doc/guides/prog_guide/index.html
http://dpdk.org/doc/quick-start
http://dpdk.org/doc/api/
https://core.dpdk.org/supported/
http://dpdk.org/doc/guides/nics/index.html
http://dpdk.org/doc/guides/nics/index.html
http://dpdk.org/doc/guides/sample_app_ug/index.html
http://dpdk.org/doc/guides/sample_app_ug/index.html
http://dpdk.org/doc/guides/testpmd_app_ug/index.html
http://dpdk.org/doc/guides/testpmd_app_ug/index.html
http://dpdk.org/doc/guides/rel_notes/index.html
http://dpdk.org/doc/guides/linux_gsg/index.html
http://dpdk.org/doc/guides/linux_gsg/index.html
http://dpdk.org/doc/guides/howto/index.html
http://dpdk.org/doc/guides/cryptodevs/index.html
http://dpdk.org/doc/guides/faq/index.html
http://dpdk.org/doc/guides/freebsd_gsg/index.html
http://dpdk.org/doc/guides/freebsd_gsg/index.html
http://dpdk.org/doc/guides/contributing/index.html

Tool Usage Examples
Finding Memory Information with Linux* Command /proc/meminfo

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test# cat /proc/meminfo
MemTotal: 1939152
MemFree: 155892
MemAvailable: 209044
Buffers: 12068
Cached: 309116
SwapCached: 14196
Active: 518824
Inactive: 465260
Active(anon): 407424
Inactive(anon): 404812
Active(file): 111400
Inactive(file): 60448
Unevictable: 32
Mlocked: 32
SwapTotal: 1986556
SwapFree: 1557500
Dirty: 0
Writeback: 0
AnonPages: 655444
Mapped: 147228
Shmem: 149336
Slab: 53084
SReclaimable: 25100
SUnreclaim: 27984
KernelStack: 7392
PageTables: 30136
NFS_Unstable: 0
Bounce: 0
WritebackTmp: 0
CommitLimit: 2615140
Committed AS: 4444120
VmallocTotal: 34359738367
VmallocUsed: 0
VmallocChunk: 0
HardwareCorrupted: 0
AnonHugePages: 215040
CmaTotal: 0
CmaFree: 0
HugePages_Total: 333
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 95824 kB
DirectMap2M: 1892352 kB
root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test#]

Finding Huge Page Information with ./setup.sh
./setup.sh has an option to list huge page information from /proc/meminfo (option 29 in the version of DPDK shown
here).

Unbind NICs from IGB UIO or VFIO driver
Remove IGB UIO module

Remove VFIO module

Remove KNI module

Remove hugepage mappings

[35] Exit Script
Option: 29

AnonHugePages: 198656 kB
HugePages_Total: 256
HugePages_Free: 0
HugePages Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

Press enter to continue ...I

Binding/ Unbinding NIC with ./dpdk_nic_bind.py

Examples:

To display current device status:
dpdk_nic_bind.py --status

To bind ethl from the current driver and move to use igb_uio
dpdk_nic_bind.py --bind=igb_uio ethi1

To unbind 0000:01:00.0 from using any driver
dpdk_nic_bind.py -u 0000:01:00.0

To bind 0000:02:00.0 and 0000:02:00.1 to the ixgbe kernel driver
dpdk_nic_bind.py -b ixgbe 02:00.0 02:00.1

Finding CPU layout with ./cpu_layout.py

CPU info can also be found with DPDK script ./cpu_layout.py.

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk/tools# 1s
cpu_layout.py dpdk_nic_bind.py pmdinfo.py

setup.sh

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk/tools# ./cpu_layout.py

Core and Socket Info

Core 0 [0]
Core 2 [1]

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk/tools# [}

More Scripts in Scripts Subdirectory
Fill in the description for each script:

tion (as reported by '/proc/cpuinfo')

Auto-config-h.sh

Check-git-log.sh

Check-maintainers.sh

Checkpatches.sh

Cocci.sh

Depdirs-rule.sh

Gen-build-mk.sh

Gen-config-h.sh

Load-devel-config.sh

Relpath.sh

Test-build.sh

Test-null.sh

Validate-abi.sh

Build Your Own DPDK Traffic Generator—DPDK-In-A-Box

Introduction

The purpose of this
cookbook module is to guide
you through the steps
required to build a Data
Plane Development Kit
(DPDK) based traffic
generator.

We built a DPDK-in-a-Box using the MinnowBoard Turbot* Dual Ethernet Dual-Core, which is a low cost, portable platform
based on the Intel Atom® processor E3826. For the OS, we installed Ubuntu* 16.04 client with DPDK. The instructions in
this document are tested on our DPDK-in-a-Box, an Intel® Core™ i7-5960X processor Extreme Edition brand desktop, and
an Intel® Xeon® Scalable processor. You can use any Intel® architecture platform to build your own device.

http://dpdk.org/
http://dpdk.org/
http://dpdk.org/
https://minnowboard.org/minnowboard-turbot-dual-e/technical-specs

For the traffic generator, we use the TRex* realistic traffic generator. The TRex package is self-contained and can be easily
installed.

Any Intel® processor-based platform will work—desktop, server, laptop, or embedded system.

The DPDK Traffic Generator

Block Diagram

intel® Atom™ — Intel® Xeon® processor-
based system ‘ >

DPDK

Traffic Generator

Software
e Ubuntu 16.04 Client OS with DPDK installed
e TRex Realistic Traffic Generator

Hardware
Our DPDK-in-a-Box uses a MinnowBoard Turbot Dual Ethernet Dual-Core single board computer:

e QOut of the three Ethernet ports, the two at the bottom are for the traffic generator (dual gigabit Intel® Ethernet
Controller 1350). Connect a loopback cable between them.

e Connect the third Ethernet port to the Internet (to download the TRex package).

e Connect the keyboard and mouse to the USB ports.

e Connect a display to the HDMI Interface.

https://trex-tgn.cisco.com/

To Internet

To Display

Traffic Generator Ports

MicroSD

The MinnowBoard Turbot* Dual Ethernet Dual-Core

The MinnowBoard includes a microSD card and an SD adapter.

e Insert the microSD card into the microSD Slot. The SD adapter should be ignored and not used.
e Power on the DPDK-in-a-Box system. Ubuntu will be up and running right away.

Install and Configure the TRex* Traffic Generator

Choose the username test and assign the password tester (or use the username and password specified by the Quick
Start Guide that comes with the platform).

e Logon as root and verify that you are in the /home/test directory with the following two commands:

sudo su
1s

root@test-Minnowboard-Turbot-DO-PLATFORM: fhome/test® s

examples.desktop

Note NIC Information

The configuration file for the traffic generator needs the PCl bus-related information and the MAC address. Note this
information first using Linux* commands, because once the DPDK or packet generator is run, these ports are unavailable to
Linux.

1. For PCl bus-related NIC information, type the following command:

lspci

https://minnowboard.org/minnowboard-turbot-dual-e/technical-specs

You will see the following output. Note down that for port 0 the bus, function, and device number information is
03:00.0, and for port 1 the information is 03:00.1.

2.

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk# lspcl

00:00.
:02.
: 14,
:1a.
:1b.
- (o

0
0
0
0
0
2
3
.0
.3

0

Host bridge: Intel Corporation Atom Processor Z36xxx/Z37xxx Series SoC Transaction Register (rev 11
VGA compatible controller: Intel Corporation Atom Processor Z36xxx/Z37xxx Series Graphics & Display
USB controller: Intel Corporation Atom Processor Z36xxx/Z37xxx, Celeron N2000 Series USB xHCI (rev
Encryption controller: Intel Corporation Atom Processor Z36xxx/Z37xxx Series Trusted Execution Engi
Audio device: Intel Corporation Atom Processor Z36xxx/Z37xxx Series High pefinition Audio Controlle
PCI bridge: Intel Corporation Atom Processor E3800 Serles PCI Express Root Port 1 (rev 11)

PCI bridge: Intel Corporation Atom Processor E3800 Series PCI Express Root Port 3 (rev 11)

PCI bridge: Intel Corporation Atom Processor E3800 Series PCI Express Root Port 4 (rev 11)

ISA brtdge: Intel Corporation Atom Processor Z36xxx/Z37xxx Series Power Control Unit (rev 11)
SMBus: Intel Corporation Atom Processor E3800 Series SMBus Controller (rev 11)

2. 0048 Ethosnct (oncrod{t«“=wvattck SentTontuTtor Cos s sktd s *RTLBAL/8168/8411 (] Express Glgabit Ethernet
3:00.0 Ethernet controller: Intel Corporation I350 Gilgabit Network Connection (rev 81)"**=..,
53 00.1 Ethernet (ontroller Intel Corporat\on 1356 6igab\t Network Conncct\on (rev 81)aennr*’

Find the MAC address with this command:

ifconfig

You will see the following output. Note down that for port 0 the MAC address is 00:30:18:CB:F2:70 and for port 2
the MAC address is 00:30:18:CB:F2:71.

Note that the first port in the screenshot below, enp2s0, is the port connected to the Internet. No need to make a
note of this.

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test# ifconfig

enp2s0 Link encap:Ethernet HWaddr 00:08:32:09:f2:1d
inet addr:192.168.0.11 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe80::56cd:7409:7867:9572/64 Scope:Link
inet6 addr: 2601:647:4902:79c0:6314:5825:3e6c:de@9/64 Scope:Global
inet6 addr: 2601:647:4902:79c0:ac82:14bd:f4da:e627/64 Scope:Global
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:82453 errors:0® dropped:0 overruns:0 frame:0
TX packets:56424 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:60196138 (60.1 MB) TX bytes:17006340 (17.0 MB)

Link encap:Etherne Waddr 00:30: 18 cb:f2:70

inet6 addr: fe80::ef12: : ope:Link

UP BROADCAST RUNNING MULTICAST MTU 1500 Metric:1

RX packets:103 errors:0 dropped:® overruns:® frame:0
TX packets:135 errors:0 dropped:® overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:20949 (20.9 KB) TX bytes:22055 (22.0 KB)
Memory:90500000-9057ffff

Link encap:Etherne

inet6 addr: fe80::2ad4:3%% . -

UP BROADCAST RUNNING MULTICAST MTU: 1500 Metrlc 1

RX packets:85 errors:0 dropped:0® overruns:0 frame:0

TX packets:146 errors:0 dropped:® overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:16637 (16.6 KB) TX bytes:24515 (24.5 KB)
Memory:90600000-9067ffff

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:10234 errors:0 dropped:0 overruns:0 frame:0
TX packets:10234 errors:0 dropped:® overruns:0 carrier:0
collisions:0 txqueuelen:1

RX bytes:1072552 (1.0 MB) TX bytes:1072552 (1.0 MB)

Here’s what | recorded after these two steps:

PCl Bus-related NIC info (from Ispci) | 03:00.0 03:00.1

MAC address 00:30:18:CB:F2:70 00:30:18:CB:F2:71

Fill the following table with the information you gathered from your specific platform:

PCI Bus-related NIC info (from Ispci)

MAC address

If you succeeded in using i fconfig to get the port information described above, skip the next section and move on to
the section titled Install the Traffic Generator.

Troubleshooting — Ports Not Found

What if you don’t see both ports in response to the ifconfig command? One possible reason might be that you’ve run
the DPDK based application previously and the application might have claimed those ports, making them unavailable to

the kernel. In that case, you need to unbind the ports from the DPDK so that the kernel can claim them and you can find
the MAC address with the ifconfigcommand.

Root Cause
i fconfig is not showing the two ports below. Why?

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk/tools# ifconfig
enp2so Link encap:Ethernet HWaddr 00:08:a32:09:f2:1d
inet addr:192.168.0.6 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: 2601:647:4902:79¢c0:b98c:9a9%e:55f6:8314/64 Scope:Global
inet6 addr: 2601:647:4902:79¢0:8712:fcc2:af9:3689/64 Scope:Global
inet6 addr: fe80::3603:79d2:fe9%e:8468/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:60216 errors:0 dropped:® overruns:® frame:0
TX packets:53600 errors:0 dropped:0 overruns:® carrier:0
collisions:0 txqueuelen:1000
RX bytes:33276201 (33.2 MB) TX bytes:10484345 (16.4 MB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:15976 errors:0 dropped:® overruns:® frame:0
TX packets:15976 errors:0 dropped:0 overruns:® carrier:0
collisions:0 txqueuelen:1

RX bytes:1594631 (1.5 MB) TX bytes:1594031 (1.5 MB)

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk/tools# |}

The reason that 1 fconfigis unable to find the two ports is possibly because the DPDK application was previously run
and was aborted without releasing the ports, or it might be that a DPDK script runs automatically after boot and claims the
ports. Regardless of the reason, the solution below will enable i fconfig to show both ports.

Solution
1. Run ./setup.shinthedirectory /home/test/dpdk/tools.

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk/tools# 1s
cpu_layout.py dpdk_nic_bind.py pmdinfo.py setup.sh

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk/tools# ./setup.sh]

2. Display current Ethernet device settings.

L —————
a-£23] _Display current Ethernet device settings

[24] Bind Ethernet devVice to 1GB UI0 module

[25] Bind Ethernet device to VFIO module

[26] Setup VFIO permissions

[27] Run test application (SRTE_TARGET/app/test)
[28] Run testpmd application in interactive mode (SRTE_TARGET/app/testpmd)

Unbind NICs from IGB UIO or VFIO driver
Remove IGB UIO module

Remove VFIO module

Remove KNI module

Remove hugepage mappings

Exit Script

Select Display current Ethernet device settings (option 23 in this case).

You can see that two ports are claimed by the DPDK driver.

Option: 23

Network devices using DPDK-compatible driver

0000:03:00.0 'I350 Gigabit Network Connection' drv=igb uio unused=igb,v
0000:03:00.1 'I350 Gigabit Network Connection' drv=igb uio unused=igb,v

Network devices using kernel driver

6000:02:00.0 'RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller
o pci generic *Active*

Other network devices

The NICs in use by DPDK (specifically IGB-UIO)

3. Unbind the first port from IGB UIO.

Unbind NICs from IGB UID or VFIO driver

[31] Remove IGB UID module
[32] Remove VFIOD module

[33] Remove KNI module

[34] Remove hugepage mappings

Select option 30 and then enter the PCl address of device to unbind:

Option: 30

Network devices using DPDK-compatible driver

A000:03:00.0 'I350 Gigabit Network Connection' drv=igb
0000:03:00.1 'I350 Gigabit Network Connection' drv=igh

Network devices using kernel driver

0000:02:00.0 'RTL8111/8168/8411 PCI Express Gigabit E
o_pci_generic *Active®

Dther network devices

Enter PCI address of device to unbind: [ELELEHGERGENG]

4. Bind the kernel driver igb to the device:

Enter name of kernel driver to bind the device to:

If the inputs entered are correct, the script acknowledges OK.

OK

Press enter to continue ...I

5. Verify by displaying current Ethernet device settings.

POOO:02:00.0 'RTLB111/8168/8411 PCI Express Gigabit Ethernet Controller' if=enp2s0
o pcil generic *Active®

POAO:03:00.0 'I350 Gigabit Network Connection' if=enp3s0f® drv=igb unused=igb uio,
POOO:03:00.1 'I350 Gigabit Network Connection' if=enp3s@fi1 drv=igb unused=igb uio,

Success!

Above you will see the first port 0000:30:00. 0 bound to the kernel.

Repeat steps 3—5 to unbind the second port, 0000:30:00.1, from IGB UIO and bind to IGB.

Use the i fconfig command to show that both ports are bound back to the kernel.

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk# ifconfig

enp2s6 Link encap:Ethernet HWaddr 00:08:a32:09:f2:1d
inet addr:192.168.0.6 Bcast:192.168.0.255 Mask:255.255.255.98
inet6 addr: 2601:647:4902:79c0:249:ce31:c570:85a/64 Scope:Global
inet6 addr: fe80::a572:b28f:7fd6:5336/64 Scope:Link
inet6 addr: 2601:647:4902:79c0:6cc6:fc3c:5f31:d114/64 Scope:Global
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:21515 errors:0 dropped:@ overruns:® frame:®
TX packets:18422 errors:0 dropped:® overruns:® carrier:0
collisions:0 txqueuelen:1008
RX bytes:6537879 (6.5 MB) TX bytes:5099447 (5.0 MB)

enp3s0f® Link encap:Ethernet HWaddr ©0:30:18:cb:f2:70
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:21 errors:® dropped:® overruns:® frame:0
TX packets:115 errors:0 dropped:® overruns:® carrier:0
collisions:® txqueuelen:1008
RX bytes:5995 (5.9 KB) TX bytes:21997 (21.9 KB)
Memory:90500000-9057Ffff

enp3s0f1 Link encap:Ethernet HWaddr @0:30:18:cb:f2:71
inet6 addr: fe80::f596:8de9:9963:4008/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:2 errors:0 dropped:® overruns:® frame:0
TX packets:54 errors:0 dropped:® overruns:® carrier:0
collisions:0 txqueuelen:1008
RX bytes:486 (486.0 B) TX bytes:10474 (18.4 KB)
Memory:90600000-9067Ffff

Link encap:Local Loopback

inet addr:127.0.8.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:6303 errors:® dropped:® overruns:® frame:0
TX packets:6303 errors:® dropped:® overruns:® carrier:0
collisions:® txqueuelen:1

RX bytes:582195 (582.1 KB) TX bytes:582195 (582.1 KB)

Install the Traffic Generator
In the following sections, we will assume that you successfully found the ports and have noted down the MAC addresses.

Keeping in mind my earlier note that change is the only constant thing in this fast-moving field, refer to the current TRex
user manual to make sure you have the latest script names, directory structure, and release information relevant to this
recipe. Enter the following commands:

pwd

mkdir trex

cd trex

wget —-no-cache http://trex-tgn.cisco.com/trex/release/latest

You should see that the install is complete and saved in /home/test/trex/latest:

https://trex-tgn.cisco.com/trex/doc/trex_book.pdf
https://trex-tgn.cisco.com/trex/doc/trex_book.pdf
http://trex-tgn.cisco.com/trex/release/latest

root@test-Minnowboard-Turbot-D0-PLATFORM: /home/test# pwd

/home /test

root@test-Minnowboard-Turbot-DO-PLATFORM: /home /test®# mkdir trex
root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test®# cd trex
root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/trex# wget --no-cache http://trex-tgn.cisco.com/trex/release/latest
--2016-08-26 01:47:22-- http://trex-tgn.cisco.com/trex/release/latest

Resolving trex-tgn.cisco.com (trex-tgn.cisco.com)... 173.39.246.118

Connecting to trex-tgn.cisco.com (trex-tgn.cisco.com)|173.39.246.118|:80... connected.
HTTP request sent, awaiting response... 301 Moved Permanently

Location: https://trex-tgn.cisco.com/trex/release/latest [following]

--2016-08-26 ©1:47:22-- https://trex-tgn.cisco.com/trex/release/latest

Connecting to trex-tgn.cisco.com (trex-tgn.cisco.com)|173.39.246.118|:443... connected.
HTTP request sent, awaiting response... 200 OK

Length: 146045560 (139M) [application/x-tar)

Saving to: ‘latest’

latest
2016-08-26 01:48:00 (3.76 MB/s) - ‘latest’ saved [146045560/146045560]

root@test-Minnowboard-Turbot-D8-PLATFORM: /home/test/trex# [}

The next step is to untar the package:

tar —-xzvf latest

Below you see that version 2.08 is the latest version at the time of this screen capture:

root@test-Minnowboard-Turbot-DO-PLATFORM: fhome /test/trex# tar -xzvf latest
v2.08/

v2.08/ t-rex-64-debug

v2.08/t-rex-64-debug

vZ2.08/ t-rex-64

v2.08/t-rex-64

v2.08/ t-rex-64-debug-o

v2.08/t-rex-64-debug-o

v2.08/ t-rex-64-o0

1s -al

You will see the directory with the version installed. In this exercise, the directory is v2.08, as shown below in response to
the 1s —al command. Change directory to the version installed on your system; for example, cd <dir name with
version installed>:

cd v2.08

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/trex#t 1s -al
total 142640

drwxr-xr-x 3 root root 4096 Aug 26 01:48 .

drwxr-xr-x 18 test test 4096 Aug 26 01:44 ..

-rw-r--r-- 1 root root 146045560 Aug 24 14:35 latest
drwxr-xr-x 11 33066 floppy 4096 Aug 24 14:35 v2.08
root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/trex# cd v2.08
root@test-Minnowboard-Turbot-DO-PLATFORM: fhome/test/trex/v2.08%

1s —-al

You will see the file t—rex-64, which is the traffic generator executable:

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/trex/v2.08# 1ls -al
total 176364

drwxr-xr-x 11 33066 floppy 4096 Aug 24 14:35

drwxr-xr-x root root 4096 Aug 26 01:48 ..

drwxr-xr-x 33066 floppy 4096 Aug 24 14:34 automation

3
6

drwxr-xr-x 2 33066 floppy 4096 Aug 24 14:34 avl
-rwxr-xr-x 1 33066 floppy 27200827 Aug 24 14:34 bp-sim-64
-rwxr-xr-x 1 33066 floppy 16798769 Aug 24 14:34 bp-sim-64-debug
drwxr-xr-x 2 33066 floppy 4096 Aug 24 14:34 cap2
drwxr-xr-x 2 33066 floppy 4096 Aug 24 14:34 cfg
-rwxr-xr-x 1 33066 floppy 5501 Aug 24 14:34 daemon_server
-rwxr-xr-x 1 33066 floppy 2207 Aug 24 14:34 doc_process.py
-rwxr-xr-x 1 33066 floppy 26985 Aug 24 14:34 dpdk_nic_bind.py
-rwxr-xr-x 1 33066 floppy 33325 Aug 24 14:34 dpdk_setup_ports.py
drwxr-xr-x 2 33066 floppy 16384 Aug 24 14:34 exp
drwxr-xr-x 22 33066 floppy 4096 Aug 24 14:34 external_libs
-rwxr-xr-x 1 33066 floppy 2291 Aug 24 14:34 find_python.sh
drwxr-xr-x 15 33066 floppy 4096 Aug 24 14:34 ko
~rw-r--r-- 1 33066 floppy 3150071 Aug 24 14:34 libzmq.so0.3
-rwxr-xr-x 1 33066 floppy 11148 Aug 24 14:34 master_daemon.py
drwxr-xr-x 3 33066 floppy 4096 Aug 24 14:34 python-1ib
-rwxr-xr-x 1 33066 floppy 802 Aug 24 14:34 run_functional_tests
-rwxr-xr-x 1 33066 floppy 832 Aug 24 14:34 run_regression
drwxr-xr-x 6 33066 floppy 4096 Aug 24 14:34 34
-rwxr-xr-x 1 33066 floppy 403 Aug 24 14: stl sim
-rwxr-xr-x 1 33066 floppy 34390661 Aug 24 14: -rex-64

P~ TWXT-Xr-X 1 33066 floppy 902 Aug 24 14:34 t rex-64

[rWXT - XX T 33000 tuppy 2664347 4—Aug—24—t4S9—t=Tex=o3=detuy
~FWXI=Xr-X 33066 floppy 902 Aug 24 14:34 t-rex-64-debug

= FWXI=Xr-X 33066 floppy 28812951 Aug 24 14:34 _t-rex-64-debug-o
~FWXF=Xr-X 33066 floppy 902 Aug 24 14:34 t-rex-64- debug-o
~FWXI=Xr-X 33066 floppy 35101658 Aug 24 14:34 _t-rex-64-o

- WX =Xr-X 33066 floppy 902 Aug 24 14:34 t-rex-64-o0

= FWXI=Xr-X 33066 floppy 2086 Aug 24 14:34 trex-cfg
“fW-F=-=-F~-~ 33066 floppy 6077140 Aug 24 14:35

= FWXI =X =X 33066 floppy 444 Aug 24 14:34 trex-console
“FWXI=Xr =X 33066 floppy 5501 Aug 24 14:34 trex_daemon_server
root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/trex/v2.08%# |}

Configure the Traffic Generator

The good news is that the TRex package comes with a sample config file cfg/simple cfg.yaml. Copy thatto
/etc/trex cfg.yaml and edit the file by issuing the following commands, making sure that you’re in your
/home/test/trex/<your version> directory:

pwd
cp cfg/simple cfg.yaml /etc/trex cfg.yaml
gedit /etc/trex cfg.yaml

Edit the file as shown below with the applicable NIC information you gathered in previous steps:

trex_cfg.yaml

- port_limit $ 2 # this option can limit the number of port of the platform
version 57 -
interfaces : ["@3:00.0","03:00.1"] #the interfaces using ./dpdk_setup_ports.py -s
port_info # set eh mac addr
- dest_mac : [0x00,0x30,0x18,0xch,0xf2,0x71) # router mac addr should be taken from router
src_mac : [0x00,0x36,0x18,0xcb,0xf2,0x70] # source mac-addr - taken from ifconfig
- dest_mac : [0x00,0x30,06x18,0xch,0xf2,0x70] # router mac addr taken from router
src_mac : [0x00,0x30,0x18,0xcb,0xf2,0x71] #source mac-addr taken from ifconfig
YAML ¥ Tabwidth:8 ~ Ln1,Col1 v INS

Below is a line-by-line description of the configuration information required for /etc/trex cfg.yaml:

Port limit should be 2 (since DPDK-in-a-Box has two ports)
Version should be 2

Interfaces should be the PCl bus ports you gathered using 1 spci. In this exercise they are [*03:00.0",
“03:00.1"]

Port information containsa dest mac, src mac pair, which will be in the packet header of the traffic
generated. The first pair is for port 0. Since port 0 is connected to port 1, the first dest mac is the MAC address of port
1. The second pair is for port 1. Since port 1 is connected to port 0, the second dest mac is the MAC address of port 0.

Please note that when you connect an appliance to which traffic must be injected, the dest mac addresses will be that
of the appliance.

Note Platform Icore Count
This section is for informational purposes only.

cat /proc/cpuinfo will give you the logical core (Icore) information as shown in the Exercises section.
Why is this information useful?

The command line below that runs the traffic generator uses the —c option to specify the number of Icores to be used for
the traffic generator. You want to know how many Icores exist in the platform. Hence, issuing cat
/proc/cpuinfo and eyeballing the number of Icores that are available in the system will be helpful.

Run the Traffic Generator
sudo ./t-rex-64 -f cap2/dns.yaml -c 1 -d 100

What are the parameters —f, -c, and —d?

-f for YAML traffic configuration file
—-c for number of cores. Monitor the CPU percentage of TRex—it should be ~50 percent. Use cores accordingly
—-d for duration of the test (sec). Default: O

055 root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/trex/v2.08
root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/trex/v2.08# sudo ./t-rex-64 -f cap2/dns.yanl -c 1 -d 106}

Below are three output screens: 1) During the traffic run, 2) Linux top command output, and 3) Final output after the
completion of the run.

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/trex/v2.08

-Per port stats table

opackets
obytes 1155
ipackets 15
ibytes 1395
ierrors (¢)
oerrors 0
TX Bw 584.18 bps 705.57

-Global stats enabled

Cpu Utilization : 6.0 % 0.0 Gb/core
Platform_factor : 1.0

Total-Tx - .29 Kbps
Total-Rx - .29 Kbps
Total-PPS - .90 pps
Total-CPS - .97 cps

Expected-PPS - .00 pps
Expected-CPS : .00 cps
Expected-BPS - .30 Kbps

Active-flows - @ Clients : 511 Socket-util : 0.0000 %
Open-flows : 15 Servers : 255 Socket : 15 Socket/Clients
drop-rate . 0.00 bps

current time i 27.0 sec

test duration : 73.0 sec

Screen output showing traffic during run (15 packets so far Tx and Rx).

op - 06:21:00 up 2:05, 1 user, Lload average: 1.33, 0.39, 0.18
: 418 total, 2 running, 416 sleeping, 0 stopped, 0 zombie
: 53.0 us, 2.0 sy, 0.0 ni, 42.0 id, 3.0 wa, 0.0 hi, 0.0 si, 0.0 st
1939152 total, 296884 free, 1122584 used, 519684 buff/cache
iB Swap: 1986556 total, 1639292 free, 347264 used. 454792 avail Menm

PR NI VIRT TIME+ COMMAND

20 © 893584 0:45.47 lcore-slave+
20 0 662648 0:32.98 gnome-termi+
20 0 1491584 89496, 4:06,93 compiz
20 © 893584 0:05.17 _t-rex-64-0
A"l STIS0N TTZ0T0STX0TY T
rd:) 49268 1:07.05 top

20 173360 :00.07 thermald

20 0 :00.13 kworker/u8:3
20 185372 :04.57 systend
:00.00 kthreadd
:00.43 ksoftirqd/e
:00.00 kworker/0:6H
:07.56 rcu_sched
:00.00 rcu_bh

DODDDODNDENYUVD =0

Output of top —H command during the run.

O 5 O root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/trex/v2.08

precent -nan %

histogram

m_total_bytes
m_total_pkt
m_total_open_flows
m_total_pkt

m_total _open_flows
m_total_close_flows
m_total_bytes

opackets
obytes
ipackets
ibytes

opackets
obytes
ipackets
ibytes
T 352.41 bps
Cpu Utilization

Total-Tx
Total-Rx
Total-PPS
Total-CPS

Expected-PPS
Expected-CPS
Expected-BPS

Active-flows
Open-flows
drop-rate
summary stats

Total-pkt-drop
Total-tx-bytes
Total-tx-sw-bytes
Total-rx-bytes

Total-tx-pkt
Total-rx-pkt
Total-sw-tx-pkt
Total-sw-err

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/trex/v2.08# [}

15.82 Kbytes
200.00 pkt
flows

100.00
200
100
100
16200

: 0.0 %¥ 0.0 Gb/core
Platform_factor : 1.0

644.02 bps
643.99 bps
0.95 pps
0.47 cps

2.00 pps
1.00 cps
1.30 Kbps

® Clients : 511
100 Servers : 255
0.00 bps

Socket

0 pkts
17000 bytes

: 0 bytes

17000 byte

200 pkts
200 pkts
0 pkts
0 pkts

Screen output after completing the run (100 packets Tx and RXx).

Socket-util

: 0.0000 %

® Socket/Clients

Congratulations! By completing the above hands-on exercise, you have successfully built your own DPDK based traffic

generator.

Next Steps
As a next step, you can connect back-to-back two DPDK-in-a-Box platforms, and use one as a traffic generator and the
other as a DPDK application development and test vehicle.

Exercises

1. How would you configure the traffic generator for different packet lengths?
2. To run the traffic generator forever, what should be the value of —d?
3. How would you measure latency (assuming you have more cores)?

4. Reason out the root cause and find the solution by looking up the error, “Note that the uio or vfio kernel modules
to be used should be loaded into the kernel before running the dodk-devbind.py script” in Chapter 3 of the
DPDK.org document Getting Started Guide for Linux.

DPDK Transmit & Receive Loopback—DPDK-In-A-Box

Introduction

In the previous module, Build Your Own Traffic Generator—DPDK-In-A-Box, you
learned how to build a DPDK traffic generator. Once you’ve done this, the next step is to connect two platforms back to
back, and use one as the DPDK traffic generator and the other as a DPDK application development and test vehicle. But
what if you have just one system? Read on to learn how to generate traffic and run your DPDK application on the same
machine.

Traffic and the DPDK Application on a Single System

The purpose of this article is to show how to configure a single system to run the DPDK application and provide auto-
generated traffic. To provide the traffic, we will showcase testpmd, which many DPDK developers and customers consider
to be the stethoscope of a DPDK developer.

For your system, you can use any Intel® platform. The instructions in this article have been tested with an Intel® Xeon®
processor-based desktop, server, and laptop using either the DPDK traffic generator you built from scratch, or a
commercially available DPDK in-a-Box. This is a low-cost, portable platform based on an Intel Atom E3826 processor. At the
time this article was published, it was possible to purchase a DPDK-in-a-Box. Look online if you're interested in this option.

If you are new to DPDK, spend some time reading the DPDK Programmer’s Guide at dpdk.org.

Stethoscope of DPDK Developer—Testpmd

Intel®™ ATOM™ processorf Intel® Xeon®™
processor-based system

DPDK

TX /RX Loopback

Auto-Generating Traffic with tx_first Parameter

Challenge
Data plane applications need a traffic generator. The DPDK provides both RX and TX functionality and DPDK
applications build poll mode drivers with the RX and TX libraries. With the DPDK poll mode driver, the RX

http://dpdk.org/doc/guides/linux_gsg/build_dpdk.html
http://www.dpdk.org/doc/guides/prog_guide/index.html

functionality of the driver polls ingress traffic, and after applicable processing, the TX functionality of the poll
driver transmits the processed data to the egress interface.

Because the start of the data path involves polling for packets received, data plane applications need a traffic
generator. But here we have only one platform. How do you configure the application for this traffic?

Solution

This is where the testpmd tx_first parameter comesin handy. When testpmd is started with the

tx first parameter, the TX function gets executed first—hence the name tx first—and with an
external cable connecting RX and TX, those packets are now available for the RX function to poll. Thus, you
have achieved running traffic through testpmd without an external traffic generator.

The following screenshots show how to start testpmd and run tx_first with a loopback cable in place.

Starting testpmd

./x86 64-native-linuxapp-gcc/app/testpmd -- -1 startstestpmd. —istands for interactive. Please refer
to the Testpmd Application User Guide at dpdk.org and to the article Testing DPDK Performance and Features with
TestPMD on Intel® Developer Zone for more information about how to build and run testpmd.

While you can use the above command in your specific platform, it is available as a script named run.sh in DPDK-in-a-Box.

root@test Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk# cat run.sh
./x86_64-native-linuxapp-gcc/app/testpmd -- -1

M & © root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk

test@test-Minnowboard-Turbot-DO-PLATFORM:~S$ sudo su

[sudo] password for test:
root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test# pwd

/home/test

root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test# 1s

Desktop Downloads examples.desktop Pictures Templates
Documents dpdk Music Public Videos
root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test# cd dpdk/
root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk# 1s

app doc 1ib Makefile run.sh

build drivers LICENSE.GPL mk scripts

buildtools examples LICENSE.LGPL pkg tools

config GNUmakefile MAINTAINERS README Xx86_64-native-linuxapp-gcc
root@test-Minnowboard-Turbot-DO-PLATFORM: /home/test/dpdk# ./run.sh]}

./run.sh starts testpmd, as shown below, yielding the testpmd prompt. Look at the flowchart. What does the
initial portion of testpmd do? And what does the runtime portion of testpmd do? Our next step is to initialize
testpmd.

Initialization
Initialization consists of three steps as shown below.

1. EAL (Environment Abstraction Layer)—Find the number of cores and probe PCl devices
2. Initialize memory zones and memory pools
3. Configure the ports for data path operation

https://software.intel.com/en-us/articles/testing-dpdk-performance-and-features-with-testpmd
http://www.dpdk.org/doc/guides/testpmd_app_ug/index.html
https://software.intel.com/en-us/articles/testing-dpdk-performance-and-features-with-testpmd
https://software.intel.com/en-us/articles/testing-dpdk-performance-and-features-with-testpmd

root@test Minnowboard-Turbot-DO~PLATFORM:/home/test/dpdk# sudo su
hot-DO-PLATFORM: /home /test#dpdk# ./run.sh |

=tected 2 lcore(s)
2 Problng VFIO support...
: VFIO support initialized
: bnxt_rte_pmd_init() called for (null)
: PCI device 0000:03:00.0 on NUMA socket -1
probe driver: 8086:1521 rte_igb_pmd
device 0000: 03 00.1 on NUMA socket

Port 0: 00:30:18:CB:F2:70
Configuring Port 1 (socket 0)
Port 1: 00:30:18:CB:F2:71
checking Cink statuses... =
Port ® Link Up - speed 1000 Mbps - full-duplex
Port 1 Link Up - speed 1000 Mbps - full-duplex
pone —_._ — . = = = = -
sl testpmd> start tx_first

1o packet forwarding - ports=2 - cores=1 - streams=2 - NUMA support disabled,
Logical Core 1 (socket 0) forwards packets on 2 streams:

RX P=0/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer=02:00:00:00:00:01

RX P=1/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00

io packet forwarding - CRC stripping disabled - packets/burst=32
nb forwarding cores=1 - nb forwarding ports=2

RX queues=1 - RX desc=128 - RX free threshold=32
RX threshold registers: pthresh=8 hthresh=8 wthresh=4
TX queues=1 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=8 hthresh=1 wthresh=16
TX RS bit threshold=0 - TXQ flags=0x0

testpmd> [

Operation

After initialization, data path operations start and continue in a loop. The Poll Mode Driver (PMD) section of the DPDK
Programmer’s Guide is a must-read chapter. It will help you understand and appreciate how you can get the juice out of
your system and achieve the desired throughput.

Optimization Knobs You Should Understand
You may want to read through the documentation to fully understand the optimization knobs like those shown in the last
paragraph of the output from the start tx first command.

For example, you can note that the RX descriptor counts are 128, whereas the TX desc descriptors are shown as 512. Why
are they not equal? And why is the TX descriptor four times that of the RX descriptor? Also, analyze the values indicated
for the RX threshold registers: pthresh =8, hthresh =8, and wthresh = 4; whereas for the TX registers: pthresh =
8, hthresh=1,and wthresh = 16.

Reading the data sheet, and more importantly the optimization white papers of the Intel® 82599 10-GbE Ethernet
Controller, at least the Receive and Transmit sections, will help you to understand and make the best use of your knobs.

Running testpmd Using tx_first Option
testpmd> start tx_first

As shown above, at the testpmd> prompt, enter start tx_first to auto-generate the traffic. Packets are transmitted
when the testpmd> command returns. Please note that packets continue to be generated until they are stopped.

In this case, let it run for 10 to 20 seconds, and then stop the run.

testpmd> stop

Below you can see the RX and TX total packets per port as well as accumulated totals for both ports.

http://www.dpdk.org/doc/guides/prog_guide/poll_mode_drv.html
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gigabit-ethernet-controller-family-documentation.html?wapkw=82599
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gigabit-ethernet-controller-family-documentation.html?wapkw=82599

sl testpmd> stop
Telling cores to stop...
Waiting for lcores to finish...

---------------------- Forward statistics for port @ ---------c-ceoooccoo--
RX-packets: 38915274 RX-dropped: © RX-total: 38915274
TX-packets: 38916245 TX-dropped: © TX-total: 38916245

---------------------- Forward statistics for port 1 ----------------------
RX-packets: 38916245 RX-dropped: © RX-total: 38916245

TX-packets: 38915274 TX-dropped: © TX-total: 38915274

+++++++++++++++ Accumulated forward statistics for all ports+++++++++++++++
RX-packets: 77831519 RX-dropped: © RX-total: 77831519
TX-packets: 77831519 TX-dropped: 0 TX-total: 77831519
e S o o o o o

Done.
testpmd> [}

Starting testpmd Without tx_first
What happens when you start testpmd without tx first? The flowchart below shows that RX starts polling first, so in
this case you need a traffic generator.

Initialization

Flowchart for the case of without tx first.

We saw that with tx first, TX gets executed first. This emits packets first and before polling, thus auto-generating the
traffic. This allows us to run testpmd with traffic using a single platform.

Now, draw the flowchart for using tx_first.

Learn More About testpmd
Use —h or ——help to find the available command-line options and thus the available functionality of testpmd.

| highly recommend that you learn hands-on the functionalities of interest to you and note them in the Exercise section.
Once you are done, quit by using the quit command.

quit, as shown below, does the following:

e Stops the ports
e Closes the ports

Summary
At this point, you’ve configured a single system to run the DPDK application and generated tx-first and rx_ first
traffic with testpmd. Test your knowledge with the exercises below.

Exercises

1. tx first auto-generates traffic. How are the parameters of the traffic programmed in this case?

2. You saw the flowchart for the case of without tx first. Draw the flowchart for the case with tx first.

3. Note each command-line option and functionality you tried with testpmd, and list what you learned about each one,
with any suggestions you may have.

4. What is the difference between detaching a port and closing a port? Where will you use detaching a port? Where will
you use closing a port?

5. What is the difference between dpdk_nic_bind.py and dpdk-devbind.py? Explain.

6. Search the Internet and the dpdk.org dev mailing list to analyze the root cause and find the solution for the error. Note
that the uio or vfio kernel modules to be used should be loaded into the kernel before running the dpdk-devbind.py
script.

Build Your Own DPDK Packet Framework with DPDK-In-A-Box

Introduction

The title of this module might just as well be “Build Your Own Software Defined DPDK
Application.” The DPDK packet framework uses a modular building block approach
defined by a configuration file to build complex DPDK applications. For an overview of
the value of the DPDK packet framework, watch the short video Deep Dive into the
Architecture of a Pipeline Stage before you get started with this module.

Here you will build a DPDK packet framework with just two cores—one for master core
tasks and the other to perform DPDK application functions.

For hardware, you can use any IA platform—Intel Xeon brand or Intel Atom brand
desktop, server, or laptop. We will use DPDK-in-a-Box here. This is a low-cost, portable
platform based on the Intel Atom E3826 processor.

To build your own DPDK-in-a-Box, or learn where to purchase a DPDK-in-a-Box, please
see the earlier module in this cookbook, Build Your Own DPDK Traffic Generator—DPDK-In-A-Box.

Set DPDK Traffic Generator MAC Addresses
If you remember when we built a DPDK Traffic Generator, the configuration file of the DPDK traffic generator was set with
its own port’s MAC Addresses, since we looped the ports within themselves.

Here we are connecting the ports to an external DPDK packet Generator, so we will set the MAC addresses in the DPDK
traffic generator to match those of the external system that will run the DPDK packet framework.

It is left as an exercise for the developers to find out the MAC address and set the traffic generator configuration file with
them.

http://dpdk.org/ml/listinfo/dev
https://software.intel.com/en-us/videos/deep-dive-into-the-architecture-of-a-pipeline-stage
https://software.intel.com/en-us/videos/deep-dive-into-the-architecture-of-a-pipeline-stage

Update the Configuration File for the DPDK Packet Framework

The DPDK packet framework configuration files provide a software defined modular way to implement complex DPDK
applications. If your system has multiple Icores available for packet processing, you can implement both run-to-completion
as well as pipelined applications. Here, since we have only one core for packet processing with DPDK-in-a-box, we will
showcase the run-to-completion implementation.

Building and Installing DPDK Packet Framework
We'll now go through the steps for building and installing DPDK packet framework, as described in the DPDK sample
application user’s guide.

Running the Traffic Through DPDK Packet Framework
Connect the systems together. Provide the command-line option of the traffic generator continuously (this was part of the
exercise in the traffic generator building cookbook section). This runs the traffic through DPDK packet framework.

Run Your Application that is Software Defined by Packet Framework

e Run your application that is software defined by packet framework.

e Use profilers to find out where the CPU is spending most of the cycles and if it is in line with your expectation.
e Write up your observations and share with the community in dpdk.org

Summary

Application developers will benefit by understanding DPDK assumptions on roles / responsibilities of applications. They
need to comprehend the scope of DPDK’s roles / responsibilities to begin with. This helps them to rightly architect from
the get-go obeying DPDK’s assumptions in terms of thread safety, lockless API call usage, multiprocessor synchronization,
and control plane and data plane synchronization.

Exercise
1. Draw your software-defined application block diagram.

DPDK Data Plane—Multicores and Control Plane Synchronization

Introduction

Many developers and customers are under the impression that DPDK documentation and sample applications include only
data plane applications. In a real-life scenario, it is necessary to integrate the data plane with the control and management
plane. The purpose of this cookbook module is to describe some simple multiplane scenarios.

For hardware, you can use any IA platform—Intel Xeon brand or Intel Atom brand desktop, server, or laptop. We will use
DPDK -in-a-Box here. This is a low-cost, portable platform based on the Intel Atom E3826 processor.

To build your own DPDK-in-a-Box, please see the earlier module in this cookbook, Build Your Own DPDK Traffic
Generator—DPDK-In-A-Box.

Simple Scenarios—Data Plane and Control Plane Interactions

Every product or appliance will have its own share of data plane and control plane functionality. Here we will
illustrate two simple run-time scenarios:

1. A NIC port configuration change
2. Changing the port itself

Scenario 1: Change of Hardware

In a multiple core server with as many as 72 Icores (Icore stands for logical core), with multiple NIC ports performing
packet processing in parallel, how do you synchronize the control plane operations with the data plane? What do you need
to understand in order to play by the DPDK rules of the game?

What must be synchronized in order to pull out a transceiver and insert it again—during runtime?
Likewise, to pull out a transceiver, say 10 Gig, and insert a completely different one, say 1 Gig?

If a change of hardware device requires a release of the instance of the device that was removed and creation of a device
instance for the new one, what do you do with threads that are still accessing the data structures of the original instance?

Releasing resources requires coordination with the user space applications using those resources. Applications can be
using a single core or multiple cores. If the resource being released is used by multiple cores, we need to request an
acknowledgement handshake from each core in use, indicating that they are all finished with the resource and it can be
released safely.

Scenario 2: No Change of Hardware but Change of Parameter

Assume you are not changing any hardware during runtime. But you do want to change some global parameter—say MTU.
This may be a lightweight initialization compared to the previous case of heavy weight initialization. So, when you use an
APl that does a lightweight initialization, which parameters can you expect to be persistent across the operation and which
parameters can you not assume will remain the same? This is very useful information to know in order to correctly change
parameters during runtime.

Please note that this is only part of the story. The other part is synchronizing with data plane applications that are running,
that is, waiting for a resource to be available, so that APIs to reconfigure can be called. We will look at that and refer to
pointers available in DPDK documentation and source code.

Before we get into these details, let’s step back and look at the big picture:

1. What are the core assumptions DPDK makes in terms of concurrency?
2. What are the boundaries of what DPDK controls and what the application must manage to ensure
synchronization?

Rules for Polling Queues

Can Multiple Cores Poll One RX Queue Simultaneously?

By design, the receive function of a PMD CANNOT be invoked in parallel on multiple, that is, two or more logical cores to
poll the same RX queue [of the same port]. What is the benefit of this design? It is that all the functions of the Ethernet
Device APl exported by a PMD are lock-free functions. This is possible because the receive function will not be invoked in
parallel on different logical cores to work on the same target object.

PMD RX function CANNOT
be invoked in parallel on two

or more Icores to poll the same
gueue [or the same port].

In the case of a single RX queue per port, only one core at a time can do RX processing.

When you have multiple RX queues per port, each queue can be polled by only one Icore at a time. Thus, if you have 4 RX
gueues per port, you can have four cores simultaneously polling the port if you've configured one core per queue.

Can You Have Eight Cores and Four RX Queues per Port?
No, since that assigns more than one core per RX queue.

Can You Have Four Cores with Eight RX Queues per Port?

We can only answer this question by knowing full configuration details. Even though you have more RX queues than cores,
if you have configured two cores for any single RX queue, that is not allowed. The key is not having more than one core per
RX queue, irrespective of more queues in total available, compared to the number of cores.

Can One Icore Poll Multiple RX Queues?

Yes. One Icore can poll multiple RX queues. What is the maximum number of RX queues that one Icore can poll? That
depends on performance requirements and how much headroom should be available for applications after servicing some
number of queues. Packet size and packet arrival rates also constrain the cycle budget available on the core.

Note that with the port numbering in the system, one Icore can poll multiple RX queues that need not be necessarily
consecutive. This is clear from the figure below. Lcore 0 polls RX Queue 0 and Rx Queue 2. It does not poll RX Queue 1 and
RX Queue 3.

Icore 0

Port O

Port 1

Port 3

One Icore polling multiple RX queues.

Who is Responsible for Mutual Exclusion so that Multiple Cores Don’t Work on the Same Receive Queue?
The one-line answer is—you—the application developer. All the functions of the Ethernet Device APl exported by a PMD
are lock-free functions which are not to be invoked in parallel on different logical cores to work on the same target object.

For instance, the receive function of a PMD cannot be invoked in parallel on two logical cores to poll the same RX queue
[on the same port].

Of course, this function can be invoked in parallel by different logical cores on different RX queues.
Please note and be aware that it is the responsibility of the upper-level application to enforce this rule.

If you don’t design your application to enforce this exclusion, allowing multiple cores to step on each other while accessing
the device, you will get segmentation errors and crashes for sure. DPDK goes with lockless accesses for high performance
and assumes that you, as a higher-level application developer, will ensure that multiple cores do not work on the same
receive queue.

What if Your Design Requires Multiple Cores to Share Queues?
If needed, parallel accesses to shared cores by multiple logical cores must be explicitly protected by dedicated inline lock-
aware functions built on top of their corresponding lock-free functions of the PMD API.

TX Port: Why Should Each Core be Able to Transmit on Each and Every Transmit Port?
We saw that for an RX queue, an Icore can only poll a subset of RX ports, but what about TX ports? Can an Icore connect
only to a subset of TX ports in the system? Or should each and every Icore connect to all TX ports?

The answer is that a forwarding operation running on an Icore may result in a packet destined for any TX port in the
system. Because of this, each Icore should be able to transmit to each and every TX port.

An Icore can poll only a subset of RX ports, but can transmit to any TX port in the system.

While the Data Plane can be Parallel, the Control Plane is Sequential
Control plane operations like device configuration, queue (RX and TX) setup, and device start depend on certain sequences
to be followed. Hence, they are sequential.

Device Setup Sequence
To set up a device, follow this sequence:

rte eth dev configure()
rte eth tx queue setup()
rte eth rx queue setup ()
rte eth dev start()

After that, the network application can invoke, in any order, the functions exported by the Ethernet API to get the MAC
address of a given device, the speed and the status of a device physical link, receive/transmit packet bursts, and so on.

Summary

Application developers will benefit from understanding DPDK assumptions regarding application roles and responsibilities.
To start, it’s important to comprehend the scope of DPDK'’s roles and responsibilities. This will help you to correctly
architect from the get-go in terms of thread safety, lockless API call usage, multiprocessor synchronization, and control
plane and data plane synchronization.

Next Steps
Architect a couple of your own usage models of the data plane coexisting with the control and management plane. Look
for similar approaches used by testpmd and other applications, and described by the DPDK HowTo Guides. Test them out.

Exercises

1. Canyou have eight cores per port with four RX queues per port?

2. Canyou have four cores per port with eight RX queues per port?

3. What are the implications of multiple cores transmitting on one transmit port—in terms of control plane and data
plane synchronization?

http://dpdk.org/doc/guides/howto/index.html

4. Control plane operations—should it be done in interrupt context itself or as a deferred procedure?

DPDK Performance Optimization Guidelines White Paper

Abstract

This paper illustrates best-known methods and performance optimizations used in the Data Plane Development Kit
(DPDK). DPDK application developers will benefit by implementing these optimization guidelines in their applications. A
problem well stated is a problem half solved, thus the paper starts with profiling methodology to help identify the
bottleneck in an application. Once the type of bottleneck is identified, this module will help you determine the
optimization mechanism that DPDK uses to overcome the bottleneck. Specifically, we refer to the respective sample
application and code snippet that implements the corresponding performance optimization technique. The module
concludes with a checklist flowchart that DPDK developers and users can use to ensure they follow the guidelines given
here.

For cookbook-style instructions on how to do hands-on performance profiling of your DPDK code with VTune™ tools, refer
to the module Profiling DPDK Code with Intel VTune Amplifier.

Strategy and Methodology

A chain is really only as strong as its weakest link. So, the strategy is to use profiling tools to identify hotspots in the
system. Once the hotspot is identified, the corresponding optimization technique is looked up for the sample application
and code snippet as how it is already solved and implemented in the DPDK. Developers at this stage will implement those
specific optimization techniques in their application. They can run respective micro-benchmarks and unit tests on
applications provided with the DPDK.

Once the particular hotspot has been addressed, the application is again profiled to find the next hotspot in the system.
The above methodology is repeated to the point of satisfaction in terms of achieving desired performance.

The performance optimization involves a gamut of considerations shown in the checklist below:

1. Optimize the BIOS settings.

2. Efficiently partition non-uniform memory access (NUMA) resources with improved locality in mind.

3. Optimize the Linux configuration.

4. To validate each configuration change, run I3fwd—as is with default settings—and compare with published
performance numbers.

5. Run micro-benchmarks to pick and choose optimum high-performance components (for example, bulk
enqueue/bulk dequeue as opposed to single enqueue/single dequeue).

6. Pick a sample application that is similar to the target appliance, using the already fine-tuned optimum default
settings (for example, more TX buffer resources than Rx).

7. Adapt and update the sample application (for example, # of queues). Compile with the correct optimization flag
levels.

8. Profile the chosen sample application in order to have a known good comparison base.

9. Run with optimized command-line options, keeping improved locality and concurrency in mind.

10. How to best match application and algorithm to underlying architecture? Run profiling to find memory-bound?
I/O-bound? CPU-bound?

11. Apply the corresponding solution: Software prefetch for memory, block mode for 1/0, to use Intel® Hyper-
Threading Technology (Intel® HT Technology) or not, if the application is CPU-bound.

12. Rerun profiling—Front-end pipeline stall? Back-end pipeline stall?

13. Apply corresponding solution. Write efficient code—branch prediction, loop unroll, compiler optimization, and so
on.

14. still don't have desired performance? Back to #9.

15. Record best-known methods and share in dpdk.org.

http://dpdk.org/
http://dpdk.org/
http://dpdk.org/browse/dpdk/tree/examples/
https://www.dpdk.org/

Recommended Pre-reading
It is recommended that you read, at a minimum, the DPDK Programmer’s Guide, and refer to the DPDK Sample Application
User Guides before proceeding.

Please refer to other DPDK documents as needed.

BIOS Settings
To get repeatable performance, DPDK L3fwd performance numbers are achieved with the following BIOS settings:

NUMA ENABLED
Enhanced Intel SpeedStep® technology DISABLED
Processor C3 DISABLED
Processor C6 DISABLED
Intel° Hyper-Threading Technology ENABLED
Intel” Virtualization Technology for Directed 1/0 DISABLED
Intel® Memory Latency Checker (Intel® MLC) Streamer ENABLED
Intel® MLC Spatial Prefetcher ENABLED
DCU Data Prefetcher ENABLED
DCU Instruction Prefetcher ENABLED
CPU Power and Performance Policy Performance
Memory Power Optimization Performance Optimized
Memory RAS and Performance Configuration -> NUMA Optimized ENABLED

Memory RAS and Performance Configuration -> NUMA Optimized

Please note that if the DPDK power management feature is to be used, Enhanced Intel SpeedStep® technology must be
enabled. In addition, C3 and C6 should be enabled. However, to start with, it is recommended that you use the BIOS
settings as shown in the table and run basic L3fwd to ensure that the BIOS, platform, and Linux settings are optimal for
performance.

Refer to Intel document # 557159 titled Intel Xeon processor E7-8800/4800 v3 Product Family, for detailed understanding
of BIOS setting and performance implications.

Platform Optimizations
Platform optimizations include (1) configuring memory, and (2) 1/0O (NIC Cards), to take advantage of affinity to achieve
lower latency.

Platform Optimizations—NUMA and Memory Controller

Below is an example of a multi (dual) socket system. For the threads that run on CPUQ, all the memory accesses going to
memory local to socket 0 result in lower latency. Any accesses that cross Intel® QuickPath Interconnect (Intel® QPI) to
access remote memory (that is, memory local to socket 1) incurs additional latency and should be avoided.

http://doc.dpdk.org/guides/prog_guide/index.html
https://doc.dpdk.org/guides/sample_app_ug/index.html
https://doc.dpdk.org/guides/sample_app_ug/index.html
https://doc.dpdk.org/guides/index.html
https://www.intel.com/content/www/us/en/support/articles/000007073/processors.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-v3-family-brief.html

NUMA Local & Remote Memory Example

o12]

CPU1

Problem: What happens when NUMA is set to DISABLED in the BIOS? When NUMA is disabled in the BIOS, the memory
controller interleaves the accesses across the sockets.

For example, as shown below, CPUOQ is reading 256 bytes (four cache lines). With the BIOS NUMA state set to DISABLED,
memory controller interleaves the access across the sockets. Out of 256 bytes, 128 bytes are read from local memory and
128 bytes are read from remote memory.

The remote memory accesses end up crossing the Intel QPI link. The impact of this is increased time for accessing remote

memory, resulting in lower performance.

Reading 256 bytes BIOS Setting NUMA = Disabled

Solution: As shown below, with BIOS setting NUMA = Enabled, all the accesses go to the same socket (local) memory and
there is no crossing of Intel QPI. This results in improved performance due to lower memory access latency.

Key Take Away

Be sure to set NUMA = Enabled in the BIOS.

Reading 256 bytes BIOS Setting NUMA = Enabled @

Platform optimizations—PCle* layout and IOU affinity.

10U
Gen3
Slot
Device

Intel® Virtualization Technology

Linux* Optimizations

Reducing Context Switches with isolcpus

To reduce the possibility of context switches, it is desirable to give a hint to the kernel to refrain from scheduling other
user space tasks on to the cores used by DPDK application threads. The isolcpus Linux kernel parameter serves this
purpose. For example, if DPDK applications are to run on logical cores 1, 2, and 3, the following should be added to the
kernel parameter list:

isolcpus=1,2,3

Note: Even with the isolcpus hint, the scheduler may still schedule kernel threads on the isolated cores. Please note that
isolcpus requires a reboot.

Adapt and Update the Sample Application

Now that the relevant sample application has been identified as a starting point to build the end product, the
following are the next set of questions to be answered.

Configuration Questions

How to Configure the Application for Best Performance?
For example:

* How many queues can be configured per port?
¢ Can the same number of Tx and Rx resources be allocated?
* What are the optimal settings for threshold values?

Recommendation: The good news is that each sample application comes with not only optimized code flow but also
optimized parameters settings as default values. The recommendation is to use a similar ratio between resources for Tx
and Rx. The following are the references and recommendations for the Intel® 82599 10 Gigabit Ethernet Controller. For
other NIC controllers, please refer to the corresponding data sheets.

How Many Queues can be Configured per Port?
Please refer to the white paper Evaluating the Suitability of Server Network Cards for Software Routers for detailed test
setup and configuration on this topic.

The following graph (from the above white paper) indicates that you should not use more than two to four queues per
port since the performance degrades with a higher number of queues.

For the best-case scenario, the recommendation is to use one queue per port. In case more are needed, two queues per
port can be considered, but not more than that.

s X

40

30

L 1 L

2 4 6 8
Total Number of Queues

Ratio of the forwarding rate varying the number of hardware queues per port.

Forwarding rate degradation from two ports to one port (%)

https://dl.acm.org/citation.cfm?id=1921161

Can Tx Resources be Allocated the Same Size as Rx Resources?

Please use as per the default values that are used in the application. For example, for Intel 82599 10-GbE Ethernet
Controller, the default values are not equal; whereas for XL710, both RX and TX descriptors are of equal size.

Intel 82599 10-GbE Ethernet Controller: It is a natural tendency to allocate equal-sized resources for Tx and Rx. However,
please note that http://git.dpdk.org/dpdk/tree/examples/I3fwd/main.c_shows that optimal default size for the number of
Tx ring descriptors is 512 as opposed to Rx ring descriptors being 128. Thus, the number of Tx ring descriptors is four times
that of the Rx ring descriptors.

[dpdk - Data Plane Develc x Y\

PR I, MRY ok org/browse/dpdk/tree/examples/I3fwd/main.c

I3 Apps & Redirecting

157 | * Configurable number of RX/TX ring descriptors
158 *x

159 | #define RTE_TEST_RX_DESC_DEFAULT 128

168 #define RTE_TEST_TX_DESC_DEFAULT 512

161 | static uintl16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;

162 | static uintl16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
1A

2)

The recommendation is to choose Tx ring descriptors four times the size of Rx ring descriptors and not to have them both
equal size. The reasoning for this is left as an exercise for the readers to find out.

Intel® 82599 10-GbE Ethernet Controller

4x128

128

Ring Descriptors Tx Ring Descriptors

2

However, for XL710 NIC [Equal Size RX and TX Descriptors]

http://git.dpdk.org/dpdk/tree/examples/l3fwd/main.c

RX Ring Descriptors TX Ring Descriptors

What are the Optimal Settings for Threshold Values?
For instance, http://git.dpdk.org/dpdk/tree/test/test/test pmd perf.c uses the following optimized default parameters for
the Intel 82599 10-Gigabit Ethernet Controller.

[dpdk - Data Plane Deverr: x

ee/app/test/test_pmd perf.c

RX and TX Prefetch, Host, and Write-back threshold values should be
carefully set for optimal performance. Consult the network
controller's datasheet and supporting DPDK documentation for guidance
on how these parameters should be set.
*/
#define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */

#define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */
#define RX_WTHRESH © /**< Default values of RX write-back threshold reg. */

/t
* These default values are optimized for use with the Intel(R) 82599 10 GbE
* Controller and the DPDK ixgbe PMD. Consider using other values for other
* network controllers and/or network drivers.
b 4
#define TX_PTHRESH 32 /**< Default values of TX prefetch threshold reg. */
#define TX_HTHRESH © /**< Default values of TX host threshold reg. */
#define TX_WTHRESH @ /**< Default values of TX write-back threshold reg. */

Please refer to Intel 82599 10-Gigabit Ethernet Controller: Datasheet for detailed explanations.

Rx_Free_Thresh—A Quick Summary and Key Takeaway

http://git.dpdk.org/dpdk/tree/test/test/test_pmd_perf.c
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html

The key takeaway is amortization of the cost of the PCle* operation of updating the hardware register is done by
processing batches of packets before updating the hardware register.

Rx_Free_Thresh—In Detail

As shown below, communication of packets received by the hardware is done using a circular buffer of packet descriptors.
There can be up to 64 K-8 descriptors in the circular buffer. Hardware maintains a shadow copy that includes those
descriptors completed but not yet stored in memory.

The Receive Descriptor Head register (RDH) indicates the in-progress descriptor.

The Receive Descriptor Tail register (RDT) identifies the location beyond the last descriptor that the hardware can process.
This is the location where software writes the first new descriptor.

Sotware writes a Head
B +2 descriptor to the)
naeYe memeory ring and First Descriptor added
Base +1
1 ~ u‘i 7 Head &Tal moves the tail 2
Base—_ t? y Together ,\> Tail
Base + size \ss*
o B

s &“03

Software writes another
descriptor to the memory ring

Head
Head oldest first to
oldest first to = be added
3 - ‘ be added 4 ,\\j—
AP ' Second
{ newest latest / descripter to
to be added O "f» 4 be added
v{ﬁl@ T e S—Lnewest latest
The tail moves down after the newest to be added
descriptor was inserted between the old tad Tail
location-and the new taik location Previous Head Head moves towards the tail and
Head location frees-up the buffer to the SW

Data from the packet represented by

his descriptor is stored in memory
5 \\ Data from the packet represented by
» this descriptor is stored in memory
‘6\’\)

/ JH\«
Tail
Tail
Onginal Head location Previous Head location,

5 ﬂ Q‘\ /| Head moves towards the tall and S
7 \:\’ /»é frees-up the buffertothe SW 8 £ Q
s _——> Q Head and
™) - Tail
. & 27S
QL i > Together

During runtime, the software processes the descriptors and upon completion of a descriptor, increments the Receive
Descriptor Tail (RDT) registers. However, updating the RDT after each packet has been processed by the software has a
cost, as it increases PCle operations.

Rx_free_thresh represents the maximum number of free descriptors that the DPDK software will hold before sending them
back to the hardware. Hence, by processing batches of packets before updating the RDT, we can reduce the PCle cost of
this operation.

Fine tune with the parameters in the rte_eth_rx_queue_setup () function for your configuration:

1l ret =
rte eth rx queue setup(portid,
0, rmnb rxd,

2 socketid, &rx conf, 3

mbufpool [socketid]) ;

Compile With the Correct Optimization Flags
Apply the corresponding solution: Software prefetch for memory, block mode for I/0, to use Intel HT Technology for CPU-
bound applications.

Software prefetch for memory helps to hide memory latency and thus improves memory-bound tasks in data plane
applications.

PREFETCHW

Prefetch data into cache in anticipation of write: PREFETCHW, a new instruction from Intel® Xeon® processor E5-2650 v3
onward, hides memory latency and improves the network stack. PREFETCHW prefetches data into the cache in anticipation
of a write.

PREFETCHWT1

Prefetch hint T1 (temporal L1 cache) with intent to write: PREFETCHWT1 fetches the data to a location in the cache
hierarchy specified (T1 => temporal data with respect to first-level cache) by an intent to write a hint (so that data is
brought into Exclusive state via a request for ownership) and a locality hint.

T1 (temporal data with respect to first-level cache)—prefetches data into the second-level cache.

For more information about these instructions refer to the Intel® 64 and IA-32 Architectures Developer’s Manual.

Running with Optimized Command-Line Options
Optimize the application using command-line options to improve affinity, locality, and concurrency.

coremask Parameter and (Wrong) Assumption of Neighboring Cores

The coremask parameter is used with the DPDK application to specify the cores on which to run the application. For higher
performance, reducing inter-processor communication cost is of key importance. The coremask should be selected such
that the communicating cores are physical neighbors.

Problem: One may (mistakenly), assume core 0 and core 1 are neighboring cores and may choose the coremask
accordingly in the DPDK command-line parameter. Please note that these logical core numbers, and their mapping to
specific cores on specific NUMA sockets, can vary from platform to platform. While in one platform core 0 and core 1 may
be neighbors, in another platform, core 0 and core 1 may end up being across another socket.

For instance, in a single-socket machine (screenshot shown below), Icore 0 and Icore 4 are siblings of the same physical
core (core 0). So, the communication cost between Icore 0 and Icore 4 will be less than the communication cost between
Icore 0 and Icore 1.

ttps://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html

%! root@localhost e/mja

H SR 22 WAl A 356 4 &8
] Quick Connect (] Profiles
File Edit View Window Help

| EAL: Detected lcore
| EAL: Detected lcore
| EAL: Detected lcore
| EAL: Detected lcore
| EAL: Detected lcore
| EAL: Detected lcore
| EAL: Detected lcore as core on socket

| EAL: Detected lcore as core 3 on socket 0

| EAL: Support maximum 128 logical core(s) by configuration.
| EAL: Detected & lcore(s)

as core on socket
as core on socket
as core on socket
as core on socket
as core on socket
as core on socket

Sl 0o W N O

Conne SSH2 - aes128-cbc - hmac-shal - no 60x10) 6,524 04:16:17

Solution: Because of this, it is recommended that the core layout for each platform be considered when choosing the
coremask to use in each case.

Tools—dpdk/tools/cpu_layout.py

Use ./cpu_layout.py in the tools directory to find out the socket ID, the physical core ID, and the logical core ID (processor
ID). From this information, correctly fill in the coremask parameter with locality of processors in mind.

Below is the cpu_layout of a dual-socket machine.

The list of physical coresis [0, 1, 2, 3,4, 8,9, 10, 11, 16, 17, 18, 19, 20, 24, 25, 26, 27]

Please note that physical core numbers 5, 6, 7, 12, 13, 14, 15, 21, 22, 23 are not in the list. This indicates that one cannot
assume that the physical core numbers are sequential.

How to find out which Icores are using Intel HT Technology from the cpu_layout?

In the picture below, Lcore 1 and lcore 37 are hyper threads in socket 0. Assigning intercommunicating tasks to Icore 1 and
Icore 37 will have lower cost and higher performance compared to assigning tasks to Icore 1 with any other core (other
than Icore 37).

3 MEE A TEE Y @R
[Quick Connect (] Profiles

File Edit View Window Help

—— F-!!E:!r_““rﬂ‘
Ihost/home/miay/dpdk. e

[root@localhost tools]# pwd
/home/mjav/dpdk-2.0.0/tools
[root@localhost tools]l# 1s

ceu layout.py dpdk nic bind.py setup.sh

[root@localhost tools]# ./cpu layout.py

Core and Socket Information (as reported by '/proc/cpuinfo')

cores-= [0, 2, 2,3, 4, 8,.9,10,:1%,:16,.17,.18,.19,.20,, 24,2526, .27]
sockets = [0, 1]
Socket 0O Socket 1
Core 0 [0, 361 {18, 541
Core 1 [1, 37] [19, 55]
Core 2 [2, 38] [20, 56]
Core 3 [3, 39] [21, 57]
Core 4 [4, 40] [22, 58]
Core 8 [5, 41] [23, 59]
Core 9 [6, 42] [24, 60]
Core 10 [7, 43] [25, 61]
Core 11 [8&, 44] [26, 62]
Core 16 [9, 45] [27, 63]
Core 17 [10, 48] [28, 64]
Core 18 [11, 47] [29, 65]
Core 19 [12, 48] [30, 68]
Core 20 [13, 49] [31, 67]
il Core 24 [14, 50] [32, 68]
’Core 25 [15, 51] [33, 69]
Core 26 [16, 52] [34, 70]
il Core 27 [17, 53] [35, 71]

‘[root@localhost tools]#

m

1

| Connected to 192.168.0.10 SSH2 - aesl28-chc - hmac-shal - no 78x51 @ 25,51 01:24:30

Save core 0 for Linux use and do not use core 0 for the DPDK.

Refer below for the initialization of the DPDK application. Core 0 is being used by the master core.

EAL: Master core @ is ready (tid=c9f8c880)
EAL: Core 4 is ready (tid=b4dfb700)
EAL: Core 3 is ready (tid=b55fc70@)
EAL: Core 2 is ready (tid=b5dfd7e@)
EAL: Core 1 is ready (tid=b65fe709)

Do not use core O for the DPDK applications because it is used by Linux as the master core. For example, using I3fwd —c 0x1
... should be avoided since that would be using core 0 (which is serving the functionality of the master core) for I3fwd DPDK
application as well.

Instead, the command /3fwd —c 0x2 can be used so that the |3fwd application uses core 1.

In realistic use cases like Open vSwitch* with DPDK, a control plane thread pins to the master core and is responsible for
responding to control plane commands from the user or the SDN controller. So, the DPDK application should not use the
master core (core 0), and the core bit mask in the DPDK command line should not set bit O for the coremask.

Correct use of the Channel Parameter
Be sure to make correct use of the channel parameter. For example, use CHANNEL PARAMETER N = 3 for a 3-channel
memory system.

Both Packet Headers in Channel 0
i — N

TRANSFORMING COMMUNICATIONS & STORAGE et Sthinmadios L’

https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview

15t Pkt Hdr in ChO; 2" Hdr in Ch2; 39 Hdr in Ch1

. lintel
TRANSFORMING COMMUNICATIONS & STORAGE ~ 'te! Conhontisl e

DPDK Micro-Benchmarks and Auto-Tests
DPDK micro-benchmarks and auto-tests are available as part of DPDK applications and examples. Developers use these
micro-benchmarks to do focused measurements for evaluating performance.

The auto-tests are used for functionality verification.
The following are a few sample capabilities of distributor micro-benchmarks for performance evaluation.

Time_cache_line_switch ()
How can | measure the time taken for a cache line round-trip between two cores and back again?

The time cache line switch() functionin http://git.dpdk.org/dpdk/tree/test/test/test distributor perf.c can be
used to time the number of cycles to round-trip a cache line between two cores and back again.

Perf test()
How can | measure the processing time per packet?

The perf test() function in http://git.dpdk.org/dpdk/tree/test/test/test distributor perf.c sends in 32 packets at a
time to the distributor and verifies at the end that the worker thread got all of them, and finally how long the processing
per packet took.

http://git.dpdk.org/dpdk/tree/test/test/test_distributor_perf.c
http://git.dpdk.org/dpdk/tree/test/test/test_distributor_perf.c

(%] root@locathost:/home/mjay/dpdk-2.0.
S8 ME0 M TEM % SN

H &
"’] Quick Connect [Profiles
- Fle Edit View Window Help

RTE>>distributor perf autotest

| === Cache line switch test ===

| Time for 1048576 iterations = 525138305 ticks
| Ticks per iteration = 500

=== Performance test of distributor ===
| Time per burst: 2878

| Time per packet: 89

Worker O handled 5240831 packets

Worker 1 handled 5238741 packets

Worker 2 handled 5241211 packets

| Worker 3 handled 5242516 packets

Worker 4 handled 4199659 packets

Worker 5 handled 4196002 packets

| Worker 6 handled 4195472 packets

| Total packets: 33554432 (2000000) e
=== _Perf: test done: == o

Connected to 192.168.0.8 SSH2 - aesl128-cbc - hmac-shal - no 78x18 @) 6,21 00:20:00

ring_perf_auto_test
How can I find the performance difference between single producer/single consumer (sp/sc) and multi-producer/multi-
consumer (mp/mc)?

Running ring_perf_auto_test in /app/test gives the number of CPU cycles, which enables you to study the performance
difference between single producer/single consumer and multi-producer/multi-consumer. It also shows the differences for
different bulk sizes. See the following screenshot output.

The key takeaway: Using sp/sc with higher bulk sizes gives higher performance.

Please note that even though the default ring_perf_autotest runs through the performance test with block sizes of 8 and
32, one can update the source code to include other desired sizes (modify the array bulk_sizes[] to include bulk sizes of
interest). For instance, find below the output with the block sizes 1, 2, 4, 8, 16, and 32.

Two-Socket System—Huge Page Size = 2 Meg

'y

&

TR

*] Quick Connect (] Profies

Eile

Edit

View Window Help

S22 hEE A TES B €

RTE>>ring_perf autotest

$#% Testing single element and

SP/sC
MP/MC
SP/SC
MP/MC
SP/SC
MP/MC
Sp/sC
MP/MC
SP/sSC
MP/MC
SP/SC
MP/MC
SP/SC
MP/MC

£%% Testing empty dequeue ###
SC empty degqueue:
MC empty dequeue:

single eng/dequeue: 13
single eng/dequeue: S8

burst
burst
burst
burst
burst
bursc
burst
burst
burst
burstc
bursc
burst

enq/dequeue
eng/dequeue
eng/degqueue
eng/degqueue
eng/dequeue
eng/dequeune
enqg/dequeue
eng/degqueue
eng/dequeue
eng/dequeue
enq/dequeue
enqg/dequeue

1.28
1.79

(size:
(size:
(size:
(size:
(size:
(size:
(size:
(size:
(size:
(size:
(size:
(size:

burst eng/deq ##%

1): 19
1): 36
2): 8§
2) 2 29
4): 4
4): 9
8): 2
g): &
16): 2
16): 4
32): 2
32)% 2

£##% Testing using a single lcore ###

Sp/scC
MP/MC
SP/SC
MP/MC
SP/sC
MP/MC
SP/SC
MP/MC
SP/SC
MP/MC
SP/SC
MP/MC

bulk
bulk
bulk
bulk
bulk
bulk
bulk
bulk
bulk
bulk
bulk
bulk

eng/dequeue
eng/dequeue
eng/dequeue
eng/dequeue
eng/dequeue
eng/dequeue
eng/dequeue
eng/dequeue
eng/dequeune
eng/dequeue
enqg/dequeue
eng/degueue

(size:
(size:
(size:
(size:
(size:
(size:
(size:
(size:
(size:
(size:
(size:
(size:

$#% Testing using two hyperthreads $$#

SP/SC
MP/MC
SP/SC
MP/MC
SP/SC
MP/MC
SP/SC
MP/MC
SP/SC
MP/MC
SP/sC
MP/MC

bulk
bulk
bulk
bulk
bulk
bulk
bulk
bulk
bulk
bulk
bulk
bulk

enq/dequeue
eng/dequeue
eng/dequeue
eng/dequeue
enqg/dequeue
eng/dequeus
eng/degqueue
eng/dequeue
eng/degueus
eng/dequeue
enq/dequeue
enqg/dequeue

(size:
(size:
(size:
(size:
(size:
(3ize:
(size:
(size:
(size:
(size:
(size:
(size:

#%#% Testing using two physical cores ###

SP/SC
MP/MC
SP/SC
MP/MC
SP/SC
MP/MC

SP/SC
MB /M

bulk
bulk
bulk
bulk
bulk
bulk

bulk
it

eng/dequeue
eng/dequeue
eng/dequeue
eng/dequeue
eng/dequeue
eng/dequeue
eng/dequeue

ann/Aarmana

(size:
(size:
(size:
(size:
(size:
(size:
(size:
latsa-

1): 12.18
1): 33.38
2): 6.49
2): 24.96
4): 3.87
4): 9.87
8): 2,92
8): 5.47
16): 2.40
i6): 3.82
32): 2.16
32): 2.61
1): 57.03
1): 113.39
2): 29.31
2): 58.36
4): 15.04
4): 29.9%4
8): 8.57
8): 16.51
16): 5.32
16): 9.44
32): 4.46
32): 5.08
1): 102.69
i): 503.37
2): 51.838
2): 206.98
4): 49.75
4): 109.59
8): 25.49
|1+« 5% 49

m

7! root@localho ome/mjay/dpdk-2.0. e L= |

HER 22 EAE M TEE G &8
= [Quick Connect (] Profiles
File Edit View Window Help

SP/SC bulk eng/degueue (=2ize: 16): 16.27
MP/MC bulk eng/dequeue (3ize: 16): 29.46
SP/SC bulk eng/degqueue (=size: 32): 10.30
MP/MC bulk eng/dequeue (=3ize: 32): 17.56

$### Testing using two NUMA nodes ###
SP/SC bulk eng/dequeue (size: 1): 310.15
MP/MC bulk eng/dequeue (size: 1): 1621.59
SP/SC bulk eng/dequeue (size: 2): 246.07
MP/MC bulk eng/dequeue (s3ize: 2): 743.24
SP/SC bulk eng/dequeue (=3ize: 4): 156.30
MP/MC bulk eng/dequeue (3ize: 4): 388.59
SP/SC bulk eng/dequeue (3ize: 8): 87.79
l MP/MC bulk eng/dequeue (size: 8): 186.75
SP/SC bulk eng/dequeue (=3ize: 16): 54.47
MP/MC bulk eng/dequeue (s3ize: 16): 97.42
SP/SC bulk eng/dequeue (3ize: 32): 31.07
MP/MC bulk eng/dequeue (size: 32): 55.06
Test OK

Con S - ae5128-cc - hmahal no 5219

Cycle Cost [Enqueue + Dequeue] in CPU cycles

600 1

500 1

400

300
M Cycle Cost [Enqueue + Dequeue]

200 1

100

‘ Different Block sizes

1,2,4,8 16,32
Exact Match i Wild Card
RX a ct Matc : ar
| Facks Hash Lookup Policy Lookup
: T
[Action Handler _.[W

hash_perf_autotest runs through 1,000,000 iterations for each test, varying the following parameters, and reports
Ticks/Op for each combination shown in the table below:

Hash Function Operation Key Size (bytes) | Entries Entries per Bucket
) Jhash a) Add on Empty a) 16 a) 1024, a)l
b) Rte_hash_ CRC b) Add Update b) 32 b) 1048576 b) 2

c) Look up c) 48 c)4

d) 64 d)8
e) 16

The Detailed Test Output section contains detailed test output and the commands you can use to evaluate
performance with your platform. The summary of the result is tabulated and charted below:

15

H gl 2 hWEan A TEmE G &8
] Quick Connect [] Profiles
: File Edit View Window Help

**% Hash function performance test results **%
Number of iterations for each test = 1000000
Hash Func. Key Length (bytes), Initial value, Ticks/Cp.
jhash 20.84
jhash 20.68
jhash 20.83
jhash 20.84
jhash 21.31
jhash 21.65
jhash 21.36
jhash 21.73
jhash 31.30
jhash 32.12
jhash 35.60
jhash 45.61
jhash 46.50
jhash 47.60
jhash 91.01
jhash 90.80
rte_hash crc, 20.18
rte_hash crc, 18.89
rte_hash crc, 19.96
rte_hash crc, 19.89
rte_hash crc, 19.96
rte_hash crc, i15.81
rte_hash crc, 17.13
rte_hash crc, 17.55
rte_hash crc, 18.63
rte_hash crc, 16.02
rte_hash crc, 19.48
rte_hash crc, 22.06
rte_hash crc, 18.27
rte_hash crc, 22.20
rte_hash crc, 26.83
rte_hash crc, 23.92

OO0 0000000000000 0D0D000D0D0DO0D0DO0D0D0O000O0O0

**% FBK Hash function performance test results *¥*%
Number of ticks per lookup = 35.1876
Test OK

rRTE>>]]

Connected to 192.168.0.10 SSH2 - aesl128-cbc - hmac-shal - no 76x43) 6,43 06:01:02

Ticks/Ops: Jhash Vs rte_hash_crc

160 ¢

180 ¢

120 ¢

100 1

20 7

B Ticks/Ops: Ihash Vs rte_hash_cre

y

1245 6]78/10/11(15/16/21 31/3233/63 64 |2 4 5|67 8 10 11 1516 21 31/32/3363/68) €= KeyLlength

DPDK Micro-Benchmarks and Auto-Tests

Focus Area to

Use These Micro-Benchmarks and Auto-Tests

Improve
1 | Ring for Inter-
Core
Communication

Performance comparison of bulk enqueue/bulk dequeue versus single enqueue/single dequeue
on a single core

To measure and compare performance between Intel® HT Technology, cores, and sockets doing
bulk enqueue/bulk dequeue on pairs of cores

Performance of dequeue from an empty
ring:_http://git.dpdk.org/dpdk/tree/test/test/test ring perf.c

Single producer, single consumer — 1 Object, 2 Objects, MAX_BULK Objects — enqueue/dequeue

Multi-producer, multi-consumer — 1 Object, 2 Objects, MAX BULK Objects — enqueue/dequeue

Tx Burst - http://git.dpdk.org/dpdk/tree/test/test/test ring.c
Rx Burst - http://git.dpdk.org/dpdk/tree/test/test/test pmd ring.c

2 | Memcopy

Cache to cache

Cache to memory

Memory to memory

Memory to cache

http://git.dpdk.org/dpdk/tree/test/test/test memcpy perf.c

http://git.dpdk.org/dpdk/tree/test/test/test_ring_perf.c
http://git.dpdk.org/dpdk/tree/test/test/test_ring.c
http://git.dpdk.org/dpdk/tree/test/test/test_pmd_ring.c
http://git.dpdk.org/dpdk/tree/test/test/test_memcpy_perf.c

3 | Mempool “n_get_bulk”, “n_put_bulk”
1 core, 2 cores, max cores with cache objects
1 core, 2 cores, max cores without cache objects
http://git.dpdk.org/dpdk/tree/test/test/test mempool.c
5 | Hash Rte_jhash, rte_hash_crc;
Add
Lookup
Update
http://git.dpdk.org/dpdk/tree/test/test/test hash perf.c
ACL Lookup http://git.dpdk.org/dpdk/tree/test/test/test acl.c
LPM Rule with depth > 24 1) Add, 2) Lookup, 3)
Delete http://git.dpdk.org/dpdk/tree/test/test/test lpm.c
http://git.dpdk.org/dpdk/tree/test/test/test lpm6.c
Large Route Tables:
http://git.dpdk.org/dpdk/tree/test/test/test lpm6 data.h
8 | Packet http://git.dpdk.org/dpdk/tree/test/test/test distributor perf.c
Distribution
9 | NICI/O Measure Tx Only
Benchmark Measure Rx Only,
Measure Tx and Rx
Benchmarks Network I/O Pipe - NIC h/w + PMD
http://git.dpdk.org/dpdk/tree/test/test/test pmd perf.c
10 | NICI/O + Increased CPU processing — NIC h/w + PMD + hash/lpm Examples/I3fwd
Increased CPU
processing
11 | Atomic http://git.dpdk.org/dpdk/tree/test/test/test atomic.c
E)opcir_;::;})vr\;:/ http://git.dpdk.org/dpdk/tree/test/test/test rwlock.c
12 | SpinLock Takes global lock, displays something, then releases the global lock
Takes per-Icore lock, displays something, then releases the per-core lock
http://git.dpdk.org/dpdk/tree/test/test/test spinlock.c
13 | Software http://git.dpdk.org/dpdk/tree/test/test/test prefetch.c
Prefetch Its usage: http://git.dpdk.org/dpdk/tree/lib/librte table/rte table hash ext.c
14 | Packet http://git.dpdk.org/dpdk/tree/test/test/test distributor perf.c
Distribution
15 | Reorder and http://git.dpdk.org/dpdk/tree/test/test/test reorder.c
Seq. Window
16 | Software Load | http://git.dpdk.org/dpdk/tree/examples/load balancer
Balancer
17 | ip_pipeline Using the packet framework to build a pipeline:

http://git.dpdk.org/dpdk/tree/test/test/test table.c

http://git.dpdk.org/dpdk/tree/test/test/test_mempool.c
http://git.dpdk.org/dpdk/tree/test/test/test_hash_perf.c
http://git.dpdk.org/dpdk/tree/test/test/test_acl.c
http://git.dpdk.org/dpdk/tree/test/test/test_lpm.c
http://git.dpdk.org/dpdk/tree/test/test/test_lpm6.c
http://git.dpdk.org/dpdk/tree/test/test/test_lpm6_data.h
http://git.dpdk.org/dpdk/tree/test/test/test_distributor_perf.c
http://git.dpdk.org/dpdk/tree/test/test/test_pmd_perf.c
http://git.dpdk.org/dpdk/tree/test/test/test_atomic.c
http://git.dpdk.org/dpdk/tree/test/test/test_rwlock.c
http://git.dpdk.org/dpdk/tree/test/test/test_spinlock.c
http://git.dpdk.org/dpdk/tree/test/test/test_prefetch.c
http://git.dpdk.org/dpdk/tree/lib/librte_table/rte_table_hash_ext.c
http://git.dpdk.org/dpdk/tree/test/test/test_distributor_perf.c
http://git.dpdk.org/dpdk/tree/test/test/test_reorder.c
http://git.dpdk.org/dpdk/tree/examples/load_balancer
http://git.dpdk.org/dpdk/tree/test/test/test_table.c

ACL Using Packet Framework
http://git.dpdk.org/dpdk/tree/test/test/test table acl.c
18 | Re-entrancy http://git.dpdk.org/dpdk/tree/test/test/test func reentrancy.c
19 | mbuf http://git.dpdk.org/dpdk/tree/test/test/test mbuf.c
20 | memzone http://git.dpdk.org/dpdk/tree/test/test/test memzone.c
21 | Virtual PMD http://git.dpdk.org/dpdk/tree/test/test/virtual pmd.c
22 | QoS http://git.dpdk.org/dpdk/tree/test/test/test meter.c
http://git.dpdk.org/dpdk/tree/test/test/test red.c
http://git.dpdk.org/dpdk/tree/test/test/test sched.c
23 | Link Bonding http://git.dpdk.org/dpdk/tree/test/test/test link bonding.c
24 | Kni 1. Transmit
2. Receive to / from kernel space
3. Kernel requests
http://git.dpdk.org/dpdk/tree/test/test/test kni.c
25 | Malloc http://git.dpdk.org/dpdk/tree/test/test/test malloc.c
26 | Debug http://git.dpdk.org/dpdk/tree/test/test/test debug.c
27 | Timer http://git.dpdk.org/dpdk/tree/test/test/test cycles.c
28 | Alarm http://git.dpdk.org/dpdk/tree/test/test/test alarm.c

Compiler Optimizations

Reference: PySter* —Compiler design and construction—“Adding optimizations to a compiler is a lot like eating
chicken soup when you have a cold. Having a bowl full never hurts, but who knows if it really helps. If the
optimizations are structured modularly so that the addition of one does not increase compiler complexity, the
temptation to fold in another is hard to resist. How well the techniques work together or against each other is hard
to determine."

Performance Optimization and Weakly Ordered Considerations
Background: Linux kernel synchronization primitives contain needed memory barriers as shown below (both
uniprocessor and multiprocessor versions):

Smp_mb () Memory barrier

Smp_rmb () Read memory barrier

Write memory barrier

Smp_wmb ()

Sligjel el e gl el eepes 1 Forces subsequent operations that depend on prior operations

http://git.dpdk.org/dpdk/tree/test/test/test_table_acl.c
http://git.dpdk.org/dpdk/tree/test/test/test_func_reentrancy.c
http://git.dpdk.org/dpdk/tree/test/test/test_mbuf.c
http://git.dpdk.org/dpdk/tree/test/test/test_memzone.c
http://git.dpdk.org/dpdk/tree/test/test/virtual_pmd.c
http://git.dpdk.org/dpdk/tree/test/test/test_meter.c
http://git.dpdk.org/dpdk/tree/test/test/test_red.c
http://git.dpdk.org/dpdk/tree/test/test/test_sched.c
http://git.dpdk.org/dpdk/tree/test/test/test_link_bonding.c
http://git.dpdk.org/dpdk/tree/test/test/test_kni.c
http://git.dpdk.org/dpdk/tree/test/test/test_malloc.c
http://git.dpdk.org/dpdk/tree/test/test/test_debug.c
http://git.dpdk.org/dpdk/tree/test/test/test_cycles.c
http://git.dpdk.org/dpdk/tree/test/test/test_alarm.c

to be ordered

Ordering on MMIO writes that are guarded by global
spinlocks

Mmiowb ()

Code that uses standard synchronization primitives (spinlocks, semaphores, read copy updates) should not need
explicit memory barriers, since any required barriers are already present in these primitives.

Challenge: If you are writing code bypassing these standard synchronization primitives for optimization purposes,
then consider your requirement in using the proper barrier.

Consideration: x86 provides a process ordering memory model in which writes from a given CPU are seen in order
by all CPUs, and weak consistency, which permits arbitrary reordering, limited only by explicit memory-barrier
instructions.

The smp_mp (), smp_rmb (), smp_wmb () primitives also force the compiler to avoid any optimizations that would
have the effect of reordering memory optimizations across the barriers.

Some Intel® Streaming SIMD Extensions (SSE) instructions are weakly ordered (clflush and non-temporal move
instructions). CPUs that have SSE can use mfence for smp mb(), Ifence for smp rmb(), and sfence for smp wmb().

Detailed Test Output

Pmd_perf autotest
To evaluate your platform’s performance, run /app/test/pmd_perf_autotest.

The key takeaway: The cost for RX+TX cycles per packet in test Polled Mode Driver is 54 cycles
with 4 ports and —n = 4 memory channels.

H &l 2

st:/home/mia 2.0.

E A0 A TEm N &N

) Quick Connect) Profies

Eie

Edz View Window Help

RTE>>pmd perf autotest

Start PMD RXTX cycles cost test.

Alleccated mbuf pool on socket 0

Rllocated mbuf pool on socket 1

CONFIG RXD=128 TXD=512

Performance test runs on lcore 18 socket 1

Port

0 Address:00:1B:21:C3:D6:1C

ixgbe dev_tx queue setup(): sw_ring=0x7f£6a963e0940
ixgbe set_tx function(): Using simple tx code path
ixgbe set_tx function(): Vector tx enabled.
ixgbe_dev_rx_queue_setup(): sw_ring=0x7£6a963e00<c0
ixgbe set rx function(): Vector rx enabled, please
1 Address:00:1B:21:C3:D6:1D

ixgbe dev_tx_queue setup(): sw_ring=0x7£6a963ddf80
ixgbe _set tx function(): Using simple tx code path
ixgbe set tx function(): Vector tx enabled.

ixgbe _dev_rx queue_setup(): sw_ring=0x7£6a963dd700
ixgbe set rx function(): Vector rx enabled, please
2 Address:00:1B:21:C3:D5:FC

¢ ixgbe dev_tx _queue setup(): 8w_ring=0x7£6a963db5c0

ixgbe_set tx function(): Using simple tx code path
ixgbe set tx function(): Vector tx enabled.

ixgbe dev_rx queue_ setup(): sw_ring=0x7f6a%63dad40
ixgbe set rx funcrtion(): Vector rx enabled, please
3 Address:00:1B:21:C3:D5:FD

ixgbe dev_tx queue setup(): sw_ring=0x7£62963d8c00
ixgbe set_tx function(): Using simple tx code path
ixgbe set _tx function(): Vector tx enabled.

ixgbe dev rx queue =etup(): sw_ring=0x7f6a963d8380
ixgbe set rx_ function(): Vector rx ensbled, please

Checking link statuses...

Poxet
Porc
Port
Port
IPv4

Q0 Link Up - speed 10000 Mbps -
1 Link Up - speed 10000 Mbps

2 Link Up - speed 10000 Mbps

3 Link Up - speed 10000 Mbps
pktlen 46

full-duplex
full-duplex
full-duplex
full-duplex

UDP pktlen 26

Generate 8192 packets
inject 2048 packet to
inject 2048 packet to
inject 2048 packet to
inject 2048 packet to

@socket 1
porct 0O
port 1
port 2
port 3

Total packets inject to prime ports = 5192

Each
Tesc
free
frae
free
free

119047712
Resulc:

Test

will
stop
mbuf
mbuf
mbuf left
xbuf left in port 3

packet, 0 drop, 0 idle
54 cycles per packec

pore
will
2048
2048
2048
2048

do 14880952 packets per second

left
left

in port 0
in port 1
in port 2

OK

rRTE>>f

hw ring=0x7£6a8f880080 dma addr=0x823080080
hw_ring=0x7£6a8£8350080 dma_addr=0x823090080
make sure RX burst size no less cthan 32.
hw_ring=0x7£6a8f8a0100 dma_addr=0x8230a0100
hw_ring=0x7£6a8£8b0100 dma addr=0x£230b0100
make sure RX burst size no less than 32.
hw_ring=0x7£6a8f8c0180 dma addr=0x8230c0180
hw_ring=0x7£6a8£8d0180 dma_ addr=0x8230d0180
make sure RX burst size no less than 32.

nw_ring=0x7£6a8£8e0200 dma_ addr=0x£230e0200

hw _ring=0x7£6a8f8£0200 dma_ addr=0x8230£0200
make sure RX burst size no less than 32.

after at least 119047616 packets received

SSH2 - aes128-cbc - hmac-shal - no 101x53

@ 6,53 00:07:22

What if you need to find the cycles taken for only RX? Or only TX?

To find RX-only time, use the command set_rxtx_anchor rxonly before issuing the command pmd_perf_autotest.

Similarly, to find TX-only time, use the command set_rxtx_anchor txonly before issuing the command
pmd_perf_autotest.

Packet Size = 64B # of channels n=4

of cycles per packet TX+RX Cost TXonly Cost Rxonly Cost

With four ports 54 cycles 21 cycles 31 cycles

Below is the screen output for the rxonly and txonly cost, respectively.

160 +

140 -

120 -

100 -
M TxOnly cost in cycles

80 - B Rx Only Cost in cycles

60

40 -

20 A

2 ports 4 ports

HE8R 22 man A 5 &8
() Quick Connect (] Profies
Fie Edt View Window Hep

RTE>>set_xxtx_anchor rxonly
type switch to rxonly
RTE>>pmd perf autotest
Start PMD RXTX cycles cost test.
CONFIG RXD=128 TXD=512
Performance test runs on lcore 18 socket 1
Port 0 Address:00:18:21:C3:D06:1C
PMD: ixgbe dev_tx queue setup(): sw_ring=0x7£68963e0940 hw_ring=0x7f6aSf880080 dma addr=0x823080080
BMD: ixgbe set tx function(): Using simple tx code path
PMD: ixgbe set ctx_function(): Vector tx enabled.
FMD: ixgbe_dev_rx_queue_setup(): sw_ring=0x7£62963e00c0 hw_ring~0x7f6a8£890080 dma_addr=0x823020080
ixgbe_set rx function(): Vector rx enabled, please make sure RX burst =ize no less than 32.
1 Address:00:1B:21:C3:D6:1D
ixgbe dev tx queue setup(): sw_ring=0x7f6a963ddf80 hw_ring=0x7f6a8££a0100 dma addr=0x8230a0100
¢ ixgbe ser ctx_function(): Using simple tx code path
ixgbe_set_tx function(): Vector tx enabled.
ixgbe dev_rx queue setup(): sw_ring=0x7f6a963dd700 hw_ring=0x7£6a2f8b0100 dma addr=0x8230b0100
ixgbe_set rx function(): Vector rx enabled, please make sure RX burst size no less than 352.
2 Address:00:1B:21:C3:D5:FC
ixgbe_dev_tx _queue setup(): sw_ring=0x7£6a963db5c0 hw_ring=0x7f6a8f5c01€0 dma addr=0x8230c0180
ixgbe_set_tx function(): Using simple tx code path
ixgbe set tx function(): Vector tx enabled.
ixgbe _dev_rx queue _setup(): sw_ring=0x7f6a963dad40 hw_ring=0x7f6a8f8d0180 dma addr=0x823040180
ixgbe_set_rx function(): Vector rx enabled, please make sure RX burst size no less than 32.
3 Address:00:1B:21:C3:DS:FD
ixgbe_dev_tx queue setup(): sw_ring=0x7f6a963d8c00 hw_ring=0x7£6a8£8e0200 dma_addr=0x8230e0200
ixgbe set tx_function(): Using simple tx code path
ixgbe_set _tx_function(): Vector tx enabled.
ixgbe dev rx queue setup(): sw_ring=0x7f6a%63d2380 hw_ring=0x7£6a2£8f0200 dma addr=0x8230£0200
PMD: ixgbe_set rx function(): Vector rx enabled, please make sure RX burst size no less chan 32.
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 10000 Mbps full-duplex
IPv4 pktlen 46
UDP pktlen 26
Generate 8192 packets @socket 1
inject 2048 packet to port 0
inject 2048 packer to port 1
inject 2048 packet to port 2
inject 2048 packet te port 3
Total packets inject to prime ports = 8192
Each port will do 14880952 packets per second
Test will stop after at least 119047616 packets received
free 2048 mbuf left in port 0
free 2048 mbuf left in port 1
free 2048 mbuf left in port 2
free 2048 mbuf left in porct 3
119047616 packet, 0 drop, 0 idle
Result: 31 cycles per packet
Test OK
RIE>>pmd_perf autotest

Connected to 192.168.0.10

H &SR 2% WAl A 36 % &8
[] Quick Connect _} Profies
Fle Edt Vew Wndow Heb

RIE>>set rxtx anchor txonly

Type switch teo txonly

RIE>>pmd perf autotest

Start PMD RXTX cycles cost test.

CONFIG RXD=128 TXD=512

Performance test runs on lcore 18 socket 1
0 Address:00:1B:21:C3:D6:1C
ixgbe dev_tx queue setup(): sw_ring=0x7£6a963e0940
ixgbe set_tx_ function(): Using simple tx code path
ixgbe set tx funcrion(): Vector tx enabled.
ixgbe_dev_rx_gqueue_setup(): sw_ring=0x7£6a963e00c0
ixgbe set rx function(): Vector rx enabled, please
1 Address:00:1B:21:C3:D6:1D
ixgbe dev_tx_gqueue_setup(): sw_ring=0x7£6a%63ddfs0
ixgbe_set tx function(): Using simple tx code path
ixgbe set tx function(): Vector tx enabled.
ixgbe dev_xrx queue setup(): sw_ring=0x7£6a9263dd700
ixgbe set rx function(): Vector rx enabled, please
2 Address:00:18:21:C3:DS:FC
ixgbe_dev_tx _queue_setup(): sw_ring=0x7£6a363dbScO
ixgbe ser tx function(): Using simple tx code path
ixgbe_set_tx function(): Vector tx enabled,
ixgpe dev_rx gqueue setup(): sw_ring=0x7f6a%63dad40
ixgbe_set _rx function(): Vector rx enabled, please
3 Address:00:18:21:C3:D5:FD
ixgbe dev_tx_queue setup(): sw_ring=0x7£62963d2c00
ixgbe set tx function(): Using simple tx code path
ixgbe ser tx function(): Vector tx enabled.
ixgbe dev_rx gqueue setup(): sw_ring=0x7£6a963de380
ixgbe set xx function(): Vector xx enabled, please

Checking link statuses...

Port 0 Link Up - speed 10000 Mbps -

Port 1 Link Up - speed 10000 Mbps ~-

Port 2 Link Up - speed 10000 Mbps -

Pozrt 3 Link Up - speed 10000 Mbps

IPvé pktlen 46

UDP pktlen 26

Generate 8192 packets @socket 1

inject 2048 packet to port 0

inject 2048 packet to port 1

inject 2048 packet to port 2

inject 2048 packet to port 3

Total packets inject TO prime ports = 5192

Each port will do 14880952 packets per second

full-duplex
full~-duplex
full-duplex
full-duplex

hw_xing=0x7£6a8£880080 dma addr=0x823080080
hw_xing=~0x7£6a8£890080 dma_addr=0x823090080
make sure RX burst size no less cthan 32.

hw_ring=0x7f6a8f8a0100 dma addr=0x8230a0100
hw_ring=0x7£6aS8f8b0100 dma_ addr=0x8230b0100
make sure RX burst size no less than 32.

hw_ring=0x7£6a8£8c0180 dma_addr=0x8230c0180
hw_ring=0x7£6a8£8d0180 dma addr=0x8230d0180
make sure RX burst size no less than 32.

hw_ring=0x7£6a8£80200 dma_addr=0x8230e0200

hw_ring=0x7£6as8f8f0200 dma addr=0x£230£0200
make sure RX burst size no less than 32.

Test will steop after at least 119047616 packets received

do tx measure
free 2048 mbuf lefc
free 2048 mbuf left
ree 2048 mbuf lefc
fxee 2048 mbuf left in port 3
119047616 packet, 0 drop, 0 idle
Result: 21 cycles per packet
Teat OX

in porct O
in port 1
in port 2

Connected to 192.168.0.10

Hash Table Performance Test Results

SSH2 - aes128-cb< - hmac-shal - no 13153

00:15:18

@) 6,53

To evaluate the performance in your platform, run /app/test/hash_perf_autotest.

I g Y Y i
L7 root@ocalbosty]

H &SR ¥ maa A gor $ &8
() Quick Connect) Profies
Fle Edr View Wndow Heb

RTE>>hash _perf autctest
*** Hash table performance test results **~
Operaticn Key size (bytes), Entries, Entries per bucket, Erzors Avg. bucket entries, Ticks/Op.
on Empty 1024 1 , 380 0.63 , 162.34
cn Empty 1024 2 292 1.43 181.18
on Empty 1024 4 194 3.24 204.90
on Empty 1024 3 149 6.84 231.491
on Empry 1024 16 96 14.50 284.72
on Empty 1024 b 375 0.63 215.20
on Empty 1024 2 274 1.46 243.3¢
on Empry 1024 4 193 3.25 250.46
on Empty 1024 g 151 6.82 279.74
on Empty 1024 16 -1 14.47 337.22
on Empry 1024 1 368 0.64 309.59
on Empty 1024 2 280 1.45 328.60
on Empty 1024 4 203 .21 320.482
on Empty 1024 8 153 6.80 344.08
on Empty 1024 16 104 14,38 390.21
Empty 1024 1 381 0.63 329.43

on Empty 1024 2 280 1.45 348.27
en Empty 1024 4 218 3.15 356.72
on Empty 1024 8 138 6.92 383.38
on Empty 1024 16 108 14,36 446.90
Update 1024 b 9644 0.35 109.51
Update 1024 2 9720 0.5% 118.28
Update 1024 4 9806 0.7€ 128.44
Update 1024 B 9848 142.09
Update 1024 16 9914 b 177.46
Update 1024 1 e628 133.12
Update 1024 2 9725 131.36
Update 1024 4 9732 i3i.08

8

1

b8

2

4

g

1

1

2

4

.1

1

b §

2

4

3

1

1

2

4

8

p

1

2

4

]

i

EEEREEEREER

BEEE
o o

Update 1024 0857 196.64
Update 1024 6 9914 170.49
Update 1024 9618 160.77
Update 1024 8716 158,38
Update 1024 9804 157.92
Update 1024 3860 165.57
Update 1024 & 2013 187.64
Update 1024 9649 165.35
Update 1024 9739 167.95
Update 1024 9791 177.04
1024 9856 191.44
1024 6 9900 216.30
1024 10000 £5.83
1024 10000 €0.78
1024 10000 63.83
1024 10000 .77
1024 6 10000 £4.26
1024 10000 85.09
1024 10000 es.28
1024 10000 20.68
1024 10000 93,49
1024 & 10000 105.00
1024 10000 133.06
1024 10000 135.47
1024 10000 139.37
1024 16000 147.39
1024 6 10000 157.92

REEREEEEEEEEREEREERERRER

.
.
r
.
’
-
.
.
»
.
’
’
r
’
»
r
.
.
r
’
.
r
.
.
’
.
.
’
.
.
’
r
*
’
r
.
’
v
.
.
r
.
.
v
.
.
v
3
.
r
.
v
r
r
.
.

Connected to 192.168.0.10 SSH2 - 3e5128-cbe - hmac-shal - no 11958

13:‘9"“'“;;:§p?7=

TUUSRFPUS GRS

|

| SR 72 @ A suF B &N
|J Quick Connect) Profies
Fle Edr View Wndow Heb

rte _hash _crc, Lookup 1048576,
rte_hash_cre, Lookup 1048576,
rte_hash_crc, Lockup 1048576,
rte _hash cre, Lookup 1048576,
rte_hash_cxc, Lookup 1048576,
rte_hash_crc, Lookup 1048576,
rte_hash_cre, Lookup 1048576,
rte_hash_crc, Lookup 1048576,
rte_hash crc, Lookup 1048576,
rte_hash crc, Lookup 1048576,
rte_hash_crc, Lookup 1048576,

-3
o

B2k K Pk b b
000";000"“6

o

*** Hash function performance test results **°*
Nunber of iterations for each test = 1000000
Hash Func. Key Length (bytes), Initial value, Ticks/Op.
Jhash , 20,82
Jhash 20.63
jhash 20.7%
Jhash 20.91
jhash 21.34
Shash 21.13
Jhash 21.97
Jhash 22.26
jhash 31.29
Jnhash 32.07
jhash 35.22
jhash 45,587
Jhash 46.67
Jhash 47.79
jhash 81.00
Jhash 91.10
rte_hash_cre, 20.40
rte_hash crc, 19.09
rte_hash_crc, 20.10
rte_hash_crc, 19.65
rte_hash _crc, 19,81
rte_hash_crc, 15.64
rte_hash_cxc, 17.12
rte_hash_crc, 17.28
rte_hash_crc, 19.24
rte_hash_crc, 16.16
rte_hash_crc, 19.84
rte_hash_crc, 22.30
rte_haah_crc, ig.82
rte_hash_crc, 22.85
rte_hash_crc, 26.75
rte_hasn_crc, 23.87

COOORLOOLLOOLRLOOLLDOLOLDOLDO0LODO0LDOOO0 OO

eve FBX Hash function performance test Tresulty *°**
Nuzmber of ticks per lookup = 35,3268
Testr OK
S |

Connected to 192.168.0.10 SSHD - 3e5128-che - hmac-shal - no 11954

Memcpy_perf_autotest Test Results
To evaluate the performance in your platform, run /app/test/memcpy_perf_autotest, for both 32 bytes
aligned and unaligned.

r:}h(fﬂ‘j#nz me/mijay/dpdk-2.0.
; R 2 hWEaE A 3 % &N
|- (] Quick Connect (] Profiles
Fle Edit View Window Help

RTE>>memcpy perf autotest

*% rte memcpy() - memcpy perf. tescts (C = compile-time constant) *»

Size Cache to cache Cache to mem Mem to cache Mem to mem
{bytes) (ticks) (ticks) (ticks) (ticks)

328 aligned

1l 4 - 6 4 - 113 27 - 30 41 - 148

2 S 3 Y= 314 20 - 30 41 = 247

3 4= 6 19+== 124 31— 31 40 - 161

4 4= & 14-=s 214 27 = 30 431 = 248

S 4= 6 A9ii=: 24 31 - 31 40 - 161

3 § - & 19 = 324 31 - 30 40 - 161

7 S - 7 21 .~ 124 36 - 30 48 - 162

8 W] 14—, 14 T 30 91 — 247

9 gy & o= 24 29 7= 31 40 - 182

12 q = 6 19%=~ 3124 29 = 31 40 - 162
is S = 7 22 - 124 37 - 30 44 = 162
186 3= € 19 = 214 23 - 30 39 - 148
17 3= i 19— 324 23~ 31 39 = 162
31 S 7 19— 125 23 = 31 39 - 182
32 3 - 7 19 - 124 23 - 31 39 - 162
33 4= 78 30 - 150 36 - 37 63 - 191
63 4 - 8 30 - 154 36 - 34 64 - 194
64 4= 7 28— 182 29 = 34 60 - 192
65 q it 8 42— 173 50 - 42 89 - 214
127 7 - 9 o4 = 217 85 - S0 107 - 27¢
128 6 - 8 5S4 - 187 S0 - S0 104 - 224
129 8 - i0 65 - 258 58 - 60 128 - 329
191 8 - 14 77 - 268 64 - 73 145 - 325
192 8:— 15 F6-=" 324 62 - 75 143 = 366
193 0 - i8 88 — 345 70 - €0 166 - 41¢g
255 10 - ig 928 - 350 77 - 80 187 - 429
256 0 - 19 99 .- 219 TR - 94 i85 - 334
257 12 = is 111 - 286 83 - 100 207 - 385
319 125 21 122 — 294 91.- 13105 229 - 348
320 3= 22 122 - 358 80 - 113 228 - 393
321 14:= 22 133 -- 379 89 - 120 248 - 451
383 14; = 24 144 - 386 106 - 129 269 - 458
384 14 - 25 144 - 238 104 - 133 268 - 382
385 i6 - 25 152 - 306 114~ 2141 290 - 428
447 16 - 27 164 - 311 122:'— 1389 309 - 429
448 1392= 26 164 - 375 120 - 151 308 - 4el
449 17 = 27 175 - 397 130 - 156 330 - 502
511 17 - 29 185 - 391 138 - 165 350 - 526
512 16 - 30 185 - 251 136 - 170 349 - 479
513 20 - 30 196 - 319 15y~ 2AT? 461 - 525
767 24— 40 268 — 472 205 - 241 582 - 677
768 24 - 40 267 - 362 203 - 243 S81 - 621
769 36 - 54 218 =" 421 216 - 256 593 - 657
1023 28 - 51 322 - 410 240 - 286 653 - 638
1024 27= 51 822 = 875 240 - 288 652 - 627
1025 28 - 51 330 - 423 245 - 300 660 - 668
1518 35 - €9 432 - 531 323 - 387 g6l - 832
1522 35 - 71 432 - 502 323 - 378 861 - 809
1536 35 - 72 432 - 480 323 - 383 861 - 804
1TANN 28 - 24 a4r - =811 A28 - 2QA aR7? - AR

GR 2% naE A TEE S &K
-) Quick Connect (] Profies
Fle Edt View Window Help

2048 45 - 92 539 - 585 402 - 469 1050 - 98¢ o
2560 55 - 113 647 - 691 478 - 551 1231 - 1167
3072 65 - 133 750 - 792 553 - 628 1410 - 1350
3584 76 - 153 852 - 883 627 - 1708 1590 - 1530
4096 91 - 174 8953 - 994 701 - 784 1770 - 1704
4608 101 - 203 1054 - 1083 776 - 864 1950 - 1885
5120 109 - 223 1155 - 1194 848 - 940 2130 - 2064
5632 118 - 244 1256 - 1292 920 - 1018 2310 - 2242
6144 127 - 264 1357 - 1391 993 - 1095 2490 - 2419
6656 137 - 285 1457 - 1483 1065 - 1174 2670 - 2599
7168 147 - 305 1558 - 1591 1138 - 1250 2850 - 2772
7680 158 - 325 1659 - 1691 1210 - 1326 3030 - 2953
8192 173 - 346 1760 - 1791 1285 - 1407 3208 - 3132
(o & 2 - 2 9 - is 21 - 17 38 - 39
c 64 3 - 6 28 - 33 29 - 42 60 - 67
c 128 4 - 12 53 - S8 44 - 76 103 - 116
Cc 192 6 - 30 76 - gl 59 - 123 144 - 174
c 256 g8 - 35 99 - 104 74 - 154 i85 - 216
Cc 512 i6 - S5 i85 - 193 137 - 266 350 - 385
C 768 23 - 51 267 - 410 201 - 291 517 - 588
C 1024 27 - 57 322 - 494 239 - 330 587 - 712
C 1536 34 - 66 433 - 802 323 - 397 772 - 948

Unaligned

1 4 - 7 14 - 114 27 - 30 41 - 148
2 4 - 7 14 - 114 27 - 30 41 - 148
3 4 - 7 19 - 124 31 - 30 41 - 161
4 4 - 7 14 - 114 27 - 30 41 - 147
) 4 - 7 19 - 124 30 - 30 40 - 161
6 4 - 7 19 - 124 31 - 30 41 - 161
5 4 5 - 7 21 - 124 36 - 30 44 - 161
8 4 - 7 14 - 114 26 - 30 41 - 148
9 4 - 7 18 - 124 29 - 30 40 - 162
12 4 - 7 19 - 124 29 - 30 40 - 161
is 5 - s § 22 - 124 37 - 30 45 - 162
16 3 - ¥ 4 19 - 114 23 - 30 39 - 148
17 3 - 7 19 - 124 23 - 30 39 - 181
31 3 - 7 18 - 124 34 - 43 51 - 1711
32 3 - 7 30 - 145 34 - 42 63 - 184
33 4 -~ 7 94 -~ 151 32 - 37 116 - 193
63 4 - 8 31 - 1852 41 - 41 73 - 198
64 4 - 7 42 - 172 41 - 41 86 - 212
65 7 - 8 105 - 174 54 - 42 136 - 215
127 7 - 9 56 - 187 62 - 57 119 - 227
128 7 - 10 66 - 243 63 - 57 129 - 306
129 8 - 11 125 - 243 63 - 60 172 - 310

i91 0 - 17 78 - 310 72 - 87 157 -~ 358 o
182 11 - 19 89 - 342 74 - g9 170 - 418
193 13 - 19 144 - 342 74 - g9 206 - 418

255 13 - 21 101 - 355 g6 - 102 197 - 434 e
256 13 - 22 111 - 368 86 - 104 210 - 444
257 15 - 22 157 - 368 86 - 104 245 ~ 445

319 i6 - 23 123 - 342 99 - 123 238 - 390 L4
320 17 - 24 134 - 376 100 - 126 250 - 450
321 19 - 24 183 - 3786 102 - 126 278 - 450
383 19 - 26 146 - 382 116 - 141 280 - 466

384 19 - 28 182 - 397 116 - 144 292 - 476
2R8 21 - 2a 2nn - a7 117 - %4a R2R - 477

H Eg[22 AN A T % &8
= [Quick Connect (] Profiles

File Edit View Window Help

447 21 29
448 22 29
449 22 29
511 23 33
24 33
21 33
486 45
62 52
63 52
53 57
53 57
53 57
55 80
55 g1
58
57
69

Test OK
RTE>>

Connected to 192.168.0.10 SSH2 - aeslS-cbc - hacsl - no AR 7777 :2:13

Mempool_perf_autotest Test Results

Core . Bulk Get # of Kept
Configuration et Olaf Bt Size Objects
a) One Core a) _ with cache a) 1 a) 1 a) 32
object b) 128
b) Two Cores . b) 4 b) 4
c) Max. Cores b). BT EEEE c) 32 c) 32
' object

To evaluate the performance in your platform, run /app/test/mempool_perf_autotest.

=2

2 anR

] Quick Connect _) Profiles

He Edit

View Wndow Hep

LEE A e % &N

RTE>>mempool_perf autotest
start performance test (without cache)

mempool autotest
mempool autotest
mempocl _autotest
mempool autotest
mempool autotest
mempocl autotest
mempocl_autotest
mempool autotest
mempool_sautotest
mexpool _autotest
mempool autotest
mempool autotest
mempocl _autotest
mempool autotest
mempool autotest
mempool autotest
mempool autotest
mempool autotest
mempool autotest
mempool autotest
mempool _autotest
mempocl_autotest
mempool autotest
mempool_autotest
mempocl_autotest
mempocl autotest
mempool autotest
mempool asutotest
mempool autotestc
mempool autotest
mempocl_autotest
mempool_autotest
mempcol_autotest
memposl_autotest
mempocl autotestc
mempool autotest
mempool sutotest
mempocl autotest
mempocl autotest
mempcool_autotest
mempodl autotest
mempool autotest
mempool autotest
mexpocl_autotest
mempocl autotestc
mempocl_autotest
mempocl autotest
mempocl autotest
mempool autotest
mempool autotest
mempool autotest
mempool autotest
mempool autorest
mempool autotest

cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0
cache=0

cores=1
cores=l
cores=1
cores=1
cores=31
cores=1
cores=1
cores=1
cores=1
cores=1
cores=1
cores=1
coxes=l
cores=1
cores=1
cores=1
cores=1
cores=1
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=2
cores=35
coxes=35
cores=35
cores=35
cores=35
cores=35
cores=3S
cores=35
cores=35
cores=35
cores=35
cores=35
cores=35
cores=35
coxres=35
cores=35
coxres=35
coxes=35

n_get bull=1
n_get bulk=l
n_get bulk=l
n_gec bulk=1
n_get bulk=l
n_get_bulk=l
n_get bulk=4
n_get bulk=4
n_get_bulk=4
n_gec_bulk=4
n_get bulk=4
n_get bulk=4
n_get_bulk=32
n_get bulk=32
n_get bulk=32
n_get bulk=32
n_get bulk=32
n_get bulk=32
n_get_bulk=1
n_get bulk=1l
n_get bulk=l
n_get_bulk=l
n_get bulk=1
n_get bulk=l
n_get_bulk=4
n_get bulk=4
n_get bulk=4
n_get_bulk=4
n_get bulk=4
n_get bulk=4
n_get bulk=32
n_get bulk=32
n_get bulk=32
n_get_bulk=32
n_get bulk=32
n_get_ bulk=32
n_get_bulk=l
n_get bulk=l
n_get bulk=1
n_get_bulk=l
n_get bulk=1
n_get bulk=1
n_get bulk=4
n_get_bulk=4
n_get bulk=4
n_get bulk=4
n_get_bulk=4
n_get bulik=4
n_get bulk=32
n_getr_bulk=32
n_get_bulk=32
n_get bulk=32
n_get_bulk=32
n_get bulk=32

start performance test (with cache)

Connected to 192.168.0.10

SSH2

n_put_bulk=1 n keep=32 rate_persec=47539814
n_put _bulk=l n keep=128 rate_persec=50017075
n_put_bulk=4 n_keep=32 rate persec=79010201
n_put_bulk=4 n_keep=128 rate persec=78879129
n_put_bulk=32 n keep=32 rate persec=95617024
n_put_bulk=32 n_keep=128 rate persec=35027200
n_put_bulk=1 n_keep=32 rate persec=78852918
n_put_bulk=l n keep=128 rate persec=79036416
n_put_bulk=4 n_keep=32 rate_persec=180682752
n_put_bulk=4 n_keep=128 rate persec=181364326
n_put_bulk=32 n keep=32 rate persec=298241228
o_put_bulk=32 n_keep=~128 rate persec=2348333356
n_put bulk=l n_keep=32 rate persec=94162124
n_put_bulk=l n keep=128 rate persec=94345625
n_put_bulk+4 n_keep=32 rate persec=284911206
n_put_bulk=4 n_keep=128 rate persec=285409280
n_put_bulk=32 n keep=32 rate persec=71716044%
n_put_bulk=32 n_keep~128 rate persec~=7095020876
n_put_bulk=l n_keep=32 rate_persec=2738642
n_put_bulk=1 n keep=128 rate_ persec=9673112
n_put _bulk+=4 n_keep=32 rate persec~13867416
n_put_bulk=4 n_keep=128 rate_persec=13238272
n_put_bulk=32 n keep=32 rate persec=14850456
n_put_bulk=32 n keep=128 rate persec=15151922
n_put_bulk=1 n_keep=32 rate_persec=128435056
n_put bulk=1 n keep=128 rate persec=12845056
n_put bulk=4¢ n keep=32 rate persec=38367705
n_put_bulk=4 n_keep=128 rate persec=37232236
n_put_bulk-SZ n_keep=32 rate persec=54407386
n_put_bulk=32 n keep=128 rate persec=58117324
o_put_bulk=l n_keep=32 rate persec=13474200
n_put bulk=1l n_keep=128 rate_persec=1363148E
n_put_bulk=4 n keep=32 rate persec=50410290
n_put_bulk=4 n_keep=l28 rate_persec=52822015
n_put_bulk=32 n_ keep=32 rate_persac=236099993
n_put_bulk=32 n keep=128 rate persec=271043788
n_put_bulk=l n_keep=32 rate_persec~1834980
n_put_bulk=l n_keep=128 rate persec=1834980
n_put bulk=4 n keep=32 rate persec=2752505
n_put_bulk=4 n_keep~l28 rate persec=2752505
n_put_bulk=32 n_keep=32 rate_persec=2752S05
n_put_bulk=32 n_keep=128 rate_ persec=2752505
n_put bulk=l n_keep=32 rate persec=275250S
n_put_bulk=l n_keep=128 rate persec=2752505
n_put bulk=4 n_ keep=32 rate persec=6861280
n_put_bulk=4 n keep=128 rate persec=734002S
n_put_bulk=32 n_keep=32 rate persec=9895925
n_put_bulk=32 n keep=128 rate persec=10551275
n_put bulk=l n keep=32 rate persec=275250S5
n_put_bulk=l n_keep=128 rate _persec=27523505
n_put_bulk=4 n_keep=32 rate persec=9633785
n_put bulk=4 n keep=1282 rate persec=10092530
n_put_bulk=32 n_keep=32 rate persec=42899841
n_put_bulk=32 n_keep=128 rate persec=51838955

- 3e5128-cbe - hmac-shal - no 11958

¥/ root@iocalhost:/home/mja

H &l
] Quick Connect (] Profies

fle Edt View Window Hep

18 mEE A TEF % &K

mempool autotest cache=0 cores=35 n_get_bulk=32

mempool autotest cache=0 cores=35 n get bulk=32

mempool autotest cache=0 cores=35 n_get bulk=32

start performance test (with cache)

mempool autotest cache=512 cores=1 n get bulk=1l

mempool autotest cache~512 cores*l n_get bulk=l

mempool _autotest cache=512 cores=1 n_get bulk=1

mempool autotest cache=512 cores=l n get bulk=1l

mempool sutotest cache=512 cores=1 n_get bulk=l

mempool autotest cache=512 cores=1 n get bulk=1

mempool autotest cache=512 cores=1 n_get bulk=4

mexpool autotest cache=512 cores=l1 n_get bulk=4

mempool autotest cache=512 cores=1 n get bulk=4

mempool autotest cache~512 cores=l n_get bulk=4

mempool autotest cache=512 cores=l1 n_get bulk=4

mempool autoteat cache=512 cores=1 n get bulk=4

mempool_autotest cache=512 cores=l n_get bulk=32
mempool autcotest cache=512 cores=l1 n _get_bulk=32
mempool autotest cache=512 cores=l1 n get bulk=32
mempool autotest cache=512 cores=1 n_get_bulk=32
mempool autotest cache=512 cores=1 n_get_bulk=32
mempool autotest cache=S512 cores=l n _get bulk=32
mempool autotest cache=512 cores=2 n_get_bulk=1l

mempool autotest cache=512 cores=2 n get bulk=1

mempool_autotest cache~512 cores=2 n_get bulk=l

mexpocl autotest cache=512 cores=2 n_get bulk=1

mempool autotest cache=512 cores=2 n get bulk=1

mempool_autotest cache=512 cores=2 n_get bulk=l

mempool autotest cache=512 cores=2 n_get_bulk=4

mempocl autotest cache=512 cores=2 n get bulk=4

mempool autotest cache=512 cores=2 n_get_bulk=4

mexpool autotest cache=512 cores=2 n get bulk=4

mempocl autotest cache=512 cores=2 n_get bulk=d

mempocl_autotest cache=512 cores=2 n_get_bulk=4

mexpool autotest cache=512 cores=2 n_get bulk=32
mempool autotest cache=S$12 cores=2 n_get bulk=32
mempool autotest cache=512 cores=2 n_get_bulk=32
mempool autotest cache=512 cores=2 n get bulk=32
mempool autotest cache=512 cores«2Z n_get bulk=32
mempocl autotest cache=512 cores=2 n_get_bulk=32
mempool autoteat cache=512 cores=35 n_get bulk=l
mempool autotest cache=512 cores=35 n_get_bulk=l
mempool autotest cache=512 cores=35 n_get bulk=1
mempool autotest cache=512 cores=35 n_get bulk=l
mempocl autotest cache=512 cores=35 n_get_bulk=l
mempool autotest cache=512 cores=35 n get bulk=1
mempool autotest cache=512 cores~35 n_get bulk=4
mempocl_autotest cache=512 cores=35 n_get bulk=4
mempool autotest cache=512 cores=35 n_get bulk=4
mexpool autotest cache=512 cores=35 n_get _bulk=~4

mempool _autotest cache=512 cores=35
mempool autotest
mempocl_autorest
mempool autotest
mempool_autotest
mempool autotest
mempool autotest

Connected to 192.168.0.10

cache=512
cache=512
cache=512
cache=512
cache=512
cache=512

cores=35
cores=35

res=35
cores=3S5
cores=35
cores=35

n_get bulk=4
n_get bulk=4
n_get_bulk=32
n_get bulk=32
n_get bulk=32
n_get_bulk=32
n_get bulk=32

n_put_bulk=4 n_keep=128 rate persec=10092530
n_put_bulk=32 n_keep=32 rate persec=42899841
n_put_bulk=32 n_keep~128 rate persec=51838955

n_put_bulk=l n keep=32 rate persec=10342891%
n_put_bulk=l n_keep«l28 rate persec=123286323
n_put_bulk=4 n_keep=32 rate persec=196463820
n_put_bulk=4 n keep=128 rate persec=212061388
n_put_bulk=32 n_keep=32 rate persec=242142412
n_put_bulk=32 n_keep=128 rate persec=256612761
n_put_bulk=l n_keep=32 rate_ persec=181560934
n_put_bulk=l n_keep=128 rate persec=175531622
n_put_bulk=4 n keep=32 rate persec=415026380
n_put_bulk~4 n_keep=128 rate_persec=381511270
n_put_bulk=32 n keep=32 rate persec=583100006
n_put_bulk=32 n keep=128 rate persec=564317388
n_put_bulk=l n_keep=32 rate persec=211196313
n_put_bulk=1 n keep=128 rate persec=202230988
n_put bulk=4 n_keep=32 rate persec=597308211
n_put_bulk=4 n_keep=128 rate persec=560660480
n_put_bulk=32 n_keep=32 rate persec=840931737
n_put_bulk=32 n_keep~128 rate persec=i11070412
n_put_bulk=l n_keep=32 rate_persec=238839327
n_put_bulk=1 n keep=128 rate persec=246598860
n_put bulk=4d n_keep~32 rate persec=400110387
n_put_bulk=4 n_keep=128 rate persec=417975500
n_put_bulk=32 n keep=32 rate persec=456615526
n_put_bulk=32 n_keep~128 rate persec=510774476
n_put_bulk=1 n_keep=32 rate_persec=361024716
n_put bulk=l n keep=128 rate persec=341455666
n_put_bulk=4 n_keep=32 rate_persec=838677299
n_put_bulk=4 n keep=128 rate persec=774963199
n_put_bulk=32 n_keep=32 rate persec=1159397375
n_put_bulk=32 n_keep=128 rate persec=1129879961
n_put_bulk=l1 n keep=32 rate persec=419849830
n_put bulk=l n_keep~128 rate_persec~391276134
n_put _bulk=4 n_keep=32 rate persec=1212284927
n_put bulk=4 n_keep=128 rate persec=1115697970
n_put bulk=32 n_keep=32 rate _persec=1664614399
n_put_bulk=32 n_keep=128 rate persec=206310258
n_put_bulk=l n keep=32 rate persec=3211565450
n_put bulk=l n_keep=128 rate persec=3325113126
n_put _bulk=4 n_keep=32 racte persec=1047986160
n_put_bulk=4 n_keep=128 rate persec=1335466378
n_put_bulk=32 n_keep=32 rate persec=1945829361
n_put bulk=32 n_keep=128 rate persec=2456944628
n_put_bulk=l n_keep~32 rate persec=$37106827
n_put_bulk=1l n_keep=128 rate persec=253165555
n_put bulk=4 n keep=32 rate persec=2434360918
n_put_bulk*4 n_keep~128 rate_persec~1713530455
n_put bulk=32 n_keep=32 rate persec=2357578942
n_put_bulk=32 n_keep=128 rate persec=2086181258
n_put_bulk=l n_keep=32 rate_persec=1281949683
n_put _bulk=1 n keep=128 rate persec=943443134
n_put_bulk=4 n keep=32 rate persec=2995257331
n_put_bulk=4 n_Kkeep=128 rate persec=1623746137
n_put bulk=32 n keep=32 rate_persec=6120663%00

SSH2 - ae5128-che - hmac-shal - no 11958

Timer_perf_autotest Test Results

of Timers Configuration Operations Timed

i - Appending
a) 0 Timer
b) 100 Timers - Callback
c) 1000 Timers - Resetting

d) 10,000 Timers
e) 100,000 Timers
f) 1,000,000 Timers

To evaluate the performance in your platform, run /app/test/timer_perf_autotest.

(] root@localiost/home

LIV N PUA SRS

H &SGR ¥ Waa A sur $ &8
J Quick Connect) Profies
Ele Edt View Wndow Heb

RTE>>timer perf autotest

Appending 100 timers

Time for 100 timers: 62826 (Oma), Time per timer: 628 (Ous)

Time for 100 callbacks: 18379 (Oms), Time per callback: 183 (Ous)
Resetzing 100 timers

Time for 100 timera: 56955 (Oma), Time per timer: 569 (Ous)

Appending 1000 timers

Time for 1000 timers: 564344 (Oms), Time per timer: 564 (Qus)

Time for 1000 callbacks: 145213 (Oms), Time per callback: 145 (Ous)
Reserting 1000 timers

Time for 1000 camers: 772899 (Ums), Time per timer: 772 (Quas)

Appending 10000 vimers

Time for 10000 timers: 5990463 (Sms), Time per timer: 599 (Ous)

Time for 10000 callbacks: $421788 (ims), Time per callback: 142 (Ous)
Reserring 10000 timers

Time for 10000 timers: 11300631 (Sms), Time per timer: 1130 (Ous)

Appending 100000 ctimers

Time for 100000 timers: 57467025 (25ms), Taime per timer: 574 (Ous)
Time for 100000 callbacks: 13187024 (€ma), Time per callback: 131 (Ous)
Reseteting 100000 timers

Time for 100000 timers: 157051882 (6Sms), Time per timer: 1570 (lus)

Appending 1000000 timers

Time for 1000000 timers: 450082271 (196ms), Time per cimer: 450 (Ous)
Tizme for 1000000 callbacks: 118351010 (S5ims), Time per callback: 112 (Qus)
Resetting 1000000 timers

Time for 1000000 timers: 1660035077 (722ms), Time per tvimer: 1660 (lus)

All timers processed ck

Time per Ite_timer manage with zero timerxs: 10 cycles
Time per rte_timer manage with zero callbacks: 24 cycles
Test OK

rrE>>f

Connected to 192.168.0.10 SSH2 - aes128-cbe - hmac-shal - no 11937

For cookbook-style instructions on how to do hands-on performance profiling of your DPDK code with
VTune tools, continue to the module Profiling DPDK Code with Intel VTune Amplifier.

Performance Profiling Resources

e Document #5571159 Intel Xeon processor E7-8800/4800 v3 Performance Tuning Guide

e |ntel® Optimizing Non-Sequential Data Processing Applications — Brian Forde and John Browne

e Measuring Cache and Memory Latency and CPU to Memory Bandwidth - For use with Intel
Architecture — Joshua Ruggiero

e Tuning Applications Using a Top-down Microarchitecture Analysis Method

o Intel® Processor Trace architecture details can be found in the Intel 64 and 1A-32 Architectures
Software Developer Manuals

e Evaluating the Suitability of Server Network Cards for Software Routers

e Low Latency Performance Tuning Guide For Red Hat Enterprise Linux 6 Jeremy Eder, Senior
Software Engineer

e Red Hat Enterprise Linux 6 Performance Tuning Guide

e Memory Ordering in Modern Microprocessors — Paul E McKenney Draft of 2007/09/19 15:15

e Whatis RCU, Fundamentally?

Profiling DPDK Code with Intel® VTune™ Amplifier

Introduction

Performance is a key factor in designing and shipping best of class products. Optimizing performance
requires visibility into system behavior. In this module, we’ll learn how to use Intel VTune Amplifier to
profile Data Plane Development Kit (DPDK) code.

You will find this module to be a comprehensive reference for installing and use of the Intel VTune
Amplifier, and will learn how to run some DPDK micro benchmarks as an example of how to get deep
visibility into system, cores, communication, and core pipeline and usage.

Extensive screenshots are provided for comparison with your output. The commands are given, in
addition, so that the readers can copy and paste wherever possible.

Outline
This module walks you through the following steps to get started using Intel VTune Amplifier with a DPDK
application.

Install Linux
Install Data Plane Development Kit (DPDK)
Install the tools
o Source editor
o Intel VTune Amplifier
Install and profile the application of your choice
o Distributor application

https://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://stackoverflow.com/questions/21369381/measuring-cache-latencies/21542939
https://stackoverflow.com/questions/21369381/measuring-cache-latencies/21542939
https://software.intel.com/en-us/vtune-amplifier-help-tuning-applications-using-a-top-down-microarchitecture-analysis-method
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
http://conferences.sigcomm.org/co-next/2010/Workshops/PRESTO/PRESTO_papers/05-Manesh.pdf
https://access.redhat.com/sites/default/files/attachments/2012_perf_brief-low_latency_tuning_for_rhel6_0.pdf
https://access.redhat.com/sites/default/files/attachments/2012_perf_brief-low_latency_tuning_for_rhel6_0.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html-single/performance_tuning_guide/index#s-network-commonque-nichwbuf
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf
https://lwn.net/Articles/262464/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://www.dpdk.org/

o Ring tests application
« Conclusion and next steps

Install Linux
Install from the Linux DVD with an ISO image:
http://old-releases.ubuntu.com/releases/15.04/ubuntu-15.04-desktop-amd64.iso

Prior to Install
If you have a laptop installed with Windows* 8, go to safe mode (SHIFT+RESTART). Once in safe mode,
choose boot option # 1 to boot from the external USB DVD drive. Restart and install.

After Install
1. Verify whether the kernel version installed is the correct version as per the DPDK release notes.

Suname -a

:~/dpdk-16.04S uname -a
Linux dpdk 3.19.0-59-generic #66-Ubuntu SMP Thu May 12 22:35:27 UTC 2016 x86_64 x86_64

NU/Linux

The above output verifies the kernel release as 3.19.0-59-generic, the version number as #66, and the
distro as Ubuntu 64 bit.

Suname -v
Displays the version # — version #66 as shown below.
$lsb release -c

Shows the code name—the code name is vivid, as shown below.

D25 root@dpdk: ~

oot@dpdk:/# sudo -1
oot@dpdk:~#
oot@dpdk :~#
oot@dpdk:~# uname -r
B.19.0-59-generic

#
oot@dpdk :~# uname -v

Ubuntu SMP Thu May 12 22:35:27 UTC 2016
jot@dpdk : ~#

odename:
oot@dpdk :~# |

http://old-releases.ubuntu.com/releases/15.04/ubuntu-15.04-desktop-amd64.iso

2. Verify Internet connectivity. In some cases, the network-manager service has to be restarted for the
Ethernet service to be operational.

S sudo service network-manager restart

dpdk@dpdk:~/dpdk-16.04S5 sudo service network-manager restart

Install DPDK
Download the DPDK

3. Get the latest DPDK release, as shown below and in the screenshot.

$ sudo wget www.dpdk.org/browse/dpdk/snapshot/dpdk-16.04.tar.xz

dpdk@dpdk:-$ sudo wget www.dpdk.org/browsc/dpdk/snapshot/dpdk-16.04.tar.le

The response for the above command is as shown below.

dpdk@dpdk:~$ sudo wget www.dpdk.org/browse/dpdk/snapshot/dpdk-16.084.tar.xz
--2016-06-02 19:05:07-- http://www.dpdk.org/browse/dpdk/snapshot/dpdk-16.04.tar.xz
Resolving www.dpdk.org (www.dpdk.org)... 92.243.14.124

Connecting to www.dpdk.org (www.dpdk.org)|92.243.14.124|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: unspecified [application/x-xz]

Saving to: “‘dpdk-16.84.tar.xz’

dpdk-16.04.tar.xz [<=>] 10.42M 213KB/s in 36s
2016-06-02 19:85:44 (295 KB/s) - ‘dpdk-16.04.tar.xz’ saved [18925676]

dpdk@dpdk:~$ |

You will find the DPDK tar file downloaded, as shown below.

S 1s

dpdk@dpdk:~$ 1s
Desktop Downloads exanmples.desktop

ocuments

4. Extract the tar ball.

$ tar xf dpdk-16.04.tar.xz

You will find that the directory dpdk-16.04 was created.

S 1s

dpdk@dpdk:~$ tar xf dpdk-16.04.tar.xz
dpdk@dpdk:~$
dpdk@dpdk:~$ 1s

usic

Documents d .04 examples.desktop Pictur

5. Change to the DPDK directory to list the files.

$ cd dpdk-16.04

@ :~S cd dpdk-16.

dpdk@dpdk:~/dpdk-16.045
dpdk@dpdk:~/dpdk-16.045
total 128
drwxrwxr-x 12 dpdk dpdk
drwxr-xr-x 18 dpdk dpdk
drwxrwxr - 8 dpdk dpdk
drwxrwxr - 2 dpdk dpdk
drwxrwxr - dpdk dpdk
drwxrwxr - dpdk dpdk
drwxrwxr - dpdk dpdk
“TW=-TW=T-- dpdk dpdk - .gitignore

W-TW=-r-- dpdk dpdk - GNUmakefile
drwxrwxr - dpdk dpdk - 1ib
~TW-TW-T~- dpdk dpdk - LICENSE.GPL
“TW-TW-l~~ dpdk dpdk - LICENSE.LGPL
“TW-TW-T~~- dpdk dpdk - MAINTAINERS
“TW-TW-T~~ dpdk dpdk - Makefile
drwxrwxr-x dpdk dpdk - mk
drwxrwxr-x dpdk dpdk - pkg
-rw-rw-r-- 1 dpdk dpdk - README
drwxrwxr-x 3 dpdk dpdk - scripts
drwxrwxr-x 2 dpdk dpdk - tools
dpdk@dpdk:~/dpdk-16.04S

v

4
4
1
1
0
1
1
1
1
8
p

Install the Tools
Install the source editor of your choice. Here, CSCOPE is chosen

1. First, check to see whether the correct repository is enabled.
Check that the universe repository is enabled by inspecting /etc/apt/sources.list
$ sudo gedit /etc/apt/sources.list

As highlighted below, you may see that the archive is restricted.

See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
newer versions of the distribution.

deb http://us.archive.ubuntu.com/ubuntu/ vivid main

deb-src http://us.archive.ubuntu.com/ubuntu/ vivid main restrlcted

If this is the case, edit the file by replacing restricted with universe.

See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
newer versions of the distribution.

deb http://us.archive.ubuntu.com/ubuntu/ vivid main

deb-src http://us.archive.ubuntu.com/ubuntu/ vivid main universe

Now save the file.

2. Update the system.

$ sudo apt-get update

/dpdk-16.84% sudo apt-get update

The system is updated as shown below.

dpdk@dpdk: ~/dpdk-16.84$ sudo apt-get update

Hit http://fus.archive.ubuntu.com vivid InRelease

Hit http://us.archive.ubuntu.com vivid-updates InRelease
Hit http://us.archive.ubuntu.com vivid-backports InRelease
Hit http://security.ubuntu.com vivid-security InRelease
Hit http://us.archive.ubuntu.com vivid/main Sources

Hit http://security.ubuntu.com vivid-security/main Sources
Hit http://fus.archive.ubuntu.com vivid/multiverse Sources
Hit http://us.archive.ubuntu.com vivid/main amd64 Packages

Install CSCOPE.

S sudo apt-get install cscope

dpdk@dpdk:~/dpdk-16.045 sudo apt-get install cscope
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:
cscope-el
The following NEW packages will be installed:
cscope
@ upgraded, 1 newly installed, © to remove and 313 not upgraded.
Need to get 149 kB of archives.
After this operation, 762 kB of additional disk space will be used.
Get:1 http://us.archive.ubuntu.com/ubuntu/ vivid/universe cscope amd64 15.8a-2 [149 kB]
Fetched 149 kB in @s (344 kB/s)
Selecting previously unselected package cscope.
(Reading database ... 202629 files and directories currently installed.)
Preparing to unpack .../cscope_15.8a-2_amd64.deb ...

As shown above, CSCOPE 15.8a-2 is installed.

Install Kernel Debug Symbols
1. The first step is to add the repository containing debugging symbols. For that, create a new file,
ddebs.list (if it does not exist already).

$ cat /dev/null > /etc/apt/sources.list.d/ddebs.list

dpdk@dpdk:~$ sudo su
[sudo] password for dpdk:

root@dpdk: /home /dpdk#
root@dpdk: /home /dpdk# cat /dev/null > Jetc/apt/sources.list.d/ddebs.list
root@dpdk: /home /dpdk#

Edit the file
$ gedit /etc/apt/sources.list.d/ddebs.list

root@dpdk: /home/dpdk# gedit /etc/apt/sources.list.d/ddebs.list

Add the following line to /etc/apt/sources.list.d/ddebs.list as shown below and save it.
deb http://ddebs.ubuntu.com/ vivid main restricted universe

multiverse

D @ @ +ddebs.list (fetc/apt/sources.list.d) - gedit

File Edit View Search Tools Documents Help

n POpen v mSave é €~ Undo

*ddebs.list
deb http://ddebs.ubuntu.com/ vivid main restricted universe multiverse|

Update the system to load the package list from the new repository.

$ sudo apt-get update

dpdk@dpdk:~/dpdk-16.84% sudo apt-get update

In this example, the system gave the following error:

root@dpdk: fhome/dpdk

http://us.archive.ubuntu.com vivid-backports/universe amd64 Packages
http://us.archive.ubuntu.com vivid-backports/multiverse amd64 Packages
http://us.archive.ubuntu.com vivid-backports/main 1386 Packages
http://us.archive.ubuntu.com vivid-backports/restricted 1386 Packages
http://us.archive.ubuntu.com vivid-backports/universe 1386 Packages
http://us.archive.ubuntu.com vivid-backports/multiverse 1386 Packages
http://us.archive.ubuntu.com vivid-backports/main Translation-en
http://us.archive.ubuntu.com vivid-backports/multiverse Translation-en
http://us.archive.ubuntu.com vivid-backports/restricted Translation-en
http://us.archive.ubuntu.com vivid-backports/universe Translation-en
http://us.archive.ubuntu.com vivid/universe Sources
http://us.archive.ubuntu.com vivid/universe amd64 Packages
http://us.archive.ubuntu.com vivid/universe 1386 Packages

Reading package lists... Done

W: Failed to fetch http://ddebs.ubuntu.com/dists/vivid/InRelease

W: Failed to fetch http://ddebs.ubuntu.com/dists/vivid/Release.gpg Could not resolve 'ddebs.ubu

W: Some index files failed to download. They have been ignored, or old ones used instead.

W: Duplicate sources.list entry http://us.archive.ubuntu.com/ubuntu/ vivid/universe amd64 Packag
binary-amd64_Packages)

W: Duplicate sources.list entry http://us.archive.ubuntu.com/ubuntu/ vivid/universe 1386 Package
inary-1386_Packages)

root@dpdk: /home /dpdk# I

If you don’t see the resolution error in your system, skip the instructions that follow and proceed to
the next section.

5. To resolve name servers:

$ sudo gedit /etc/resolvconf/resolv.conf.d/tail

oS %@ dpdk@dpdk: ~

dpdk@dpdk:~$ sudo gedit fetc/resolvconf/resolv.conf.d/tail
[sudo] password for dpdk: |}

Add to the file the two name servers (below) as seen in the example below, and save the file.

X *tail (fetc/resolvconf/resolv.conf.d) - gedit

File Edit View Search Tools Documents Help

n ’Open v B8 save ;:. & Undo

*tail x
nameserver 8.8.8.8
nameserver 8.8.4.4|

6. Restart the service. It is necessary to do this before the step that follows, or you’ll still see the resolve
error.

$ sudo /etc/init.d/resolveconf restart
After the shutdown and restart, restart the service.

7. Update the system.

$ sudo apt-get update

http://ddebs. .com vivid/main amd64 Packages [418 kB]
http://ddebs.ubuntu.com vivid/restricted amd64 Packages [40 B]
http://ddebs.ubuntu.com vivid/universe amd64 Packages [3,102 kB]
http://ddebs.ubuntu.com vivid/multiverse amd64 Packages [42.4 kB]
http://ddebs.ubuntu.com vivid/main 1386 Packages [419 kB]
http://ddebs.ubuntu.com vivid/restricted 1386 Packages [40 B)
:9 http://ddebs.ubuntu.com vivid/universe 1386 Packages [1,963 kB]
:10 http://ddebs.ubuntu.com vivid/multiverse 1386 Packages [42.5 kB]
http: //ddebs.ubuntu.com vivid/main Translation-en_US
http://ddebs.ubuntu.com vivid/main Translation-en
http://ddebs.ubuntu.com vivid/multiverse Translation-en_US
http://ddebs.ubuntu.com vivid/multiverse Translation-en
http://ddebs.ubuntu.com vivid/restricted Translation-en_US
http://ddebs.ubuntu.com vivid/restricted Translation-en
http://ddebs.ubuntu.com vivid/universe Translation-en_US
http://ddebs.ubuntu.com vivid/universe Translation-en
Fetched 6,011 kB in 255 (235 kB/s)
|Reading package lists... Done
L = L - DLID . [LO08NDS

U V v o =

With the above steps, access to http://ddebs.ubuntu.com has been resolved. However there is a new
error, GPG error, as shown at the bottom of the screenshot below.

8. Add the GPG key.

http://ddebs.ubuntu.com/

$ sudo apt-key adv —-keyserver pool.sks-keyservers.net -recv-keys
C8CABG6L595FDFF622

dpdk@dpdk:

[sudo] password for dpdk:

root@dpdk ome /dpdk# sudo apt-key adv --keyserver pool.sks-keyservers.net --recv-keys C8CAB6595FDFF622

Executing: gpg --ignore-time-conflict --no-options --no-default-keyring --homedir /tmp/tmp.02ydF2VUKT --no-auto-check-trustdb --trust-model always --keyr

usted.gpg --keyserver poo -keyservers.net --recv-keys C8CAB6595FDFF622

gpg: requesting key SFDFF rom hkp server pool.sks-keyservers.net

gpg: key SFDFF622: public y “Ubuntu Debug Symbol Archive Automatic Signing Key (2016) <ubuntu-archive@lists.ubuntu.com>" imported
gpg: Total number processed: 1

gpg: imported: 1 (RSA: 1)

9. With the repository added, the next step is to install the symbol package by running the following
command:

apt-get install linux-image-<release>-dbgsym=<release>.<version>
With the release as 3.19.0-59-generic and the version as 66 this is:

$ apt-get install linux-image-3.19.0-59-generic-dbgsym=3.19.0-59.66

root@dpdk: /home/dpdk# sudo apt-get install linux-image-3.19.06-59-generic-dbgsym=3.19.6-59.
Reading package lists... Done

Building dependency tree

Reading state information... Done

E: Unable to locate package linux-image-3.19.0-59-generic-dbgsym
E: Couldn't find any package by regex 'linux-image-3.19.0-59-generic-dbgsym’
root@dpdk: /home /dpdk# I

Please note that the above resulted in an error because it could not locate the package linuximage-
3.19.0-59-generic-dbgsym. If you want to set breakpoints by function names and viewing local
variables, this error must be resolved.

10. Install the Linux Source Package.

S sudo apt-get install linux-source-3.19.0=3.19.0-59.66

root@dpdk: /home/dpdk# sudo apt-get install linux-source-3.19.0=3.19.0-59.66
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
linux-headers-3.19.0-15 linux-headers-3.19.0-15-generic linux-image-3.19.0-15
Use 'apt-get autoremove' to remove them.
Suggested packages:
libncurses-dev ncurses-dev kernel-package libqt3-dev
The following NEW packages will be installed:
linux-source-3.19.0
® upgraded, 1 newly installed, © to remove and 11 not upgraded.
Need to get 103 MB of archives.
After this operation, 119 MB of additional disk space will be used.
Get:1 http://us.archive.ubuntu.com/ubuntu/ vivid-updates/main linux-source-3.19
Fetched 163 MB in 5s (19.2 MB/s)
Selecting previously unselected package linux-source-3.19.0.
(Reading database ... 262860 files and directories currently installed.)
Preparing to unpack .../linux-source-3.19.06_3.19.0-59.66_all.deb
Unpacking linux-source-3.19.0 (3.19.0-59.66)
Setting up linux-source-3.19.0 (3.19.0-59.66)
root@dpdk : /home /dpdk# |}

11. With the package now installed, go to /usr/src/linux-source-3.19.0 and unpack the source tarball.

S cd /usr/src/linux-source-3.19.0

$ tar xjf linux-source-3.19.0.tar.bz2

root@dpdk: /home/dpdk# cd Jusr/src/linux-source-3.19.0
root@dpdk /usr/src/llnux source-3.19.0# 1s

debian debian.

root@dpdk /usr/src/llnux source-3.19.6# tar xjf linux-source-3.19.0.tar.bz2
root@dpdk: /usr/src/linux-source-3.19.0# I

Now you’re ready to install Intel VTune Amplifier to profile DPDK.

Getting Started With Intel VTune Amplifier

If you don’t have Intel VTune Amplifier installed, click https://software.intel.com/en-us/intel-vtune-
amplifier-xe to get to the Intel VTune Amplifier download page. Download Intel VTune Amplifier 2018,
which is the current version at the time this article was written. The articles Intel VTune Amplifier
Installation Guide - Linux Host and Getting Started with Intel VTune Amplifier 2018 will guide you through
the process and provide links to additional resources.

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/vtune-amplifier-install-guide-linux
https://software.intel.com/en-us/vtune-amplifier-install-guide-linux
https://software.intel.com/en-us/get-started-with-vtune-linux-os

Key Features
Now that you have VTune Amplifier installed, let’s see what it can do. Here are some key features.

Algorithm Analysis

8 Basic Hotspots Hotspots by CPU Usage viewpoint (cha

B8 Collection Log | | @ Analysis Target Analysis Type! | Bt Summy

CPUTime ¥

| Function / Call Stack Effective Time by Utilization | spin |
gidle @Poor Ok @ldeal @§Over Time

render_one_pixel

| » draw_trace 8 563s Os|

| » [No call stack inf| 0.952s @ Os
‘» grid_intersect | 3.545s |(EEG—_N Os|
> sphere_intersect | 1.296s B Osi
> light_normal | 1.139s L)) Os|
E» NtAlpcDeleteSecti‘ 0.359s @ 0s/
b [ﬁnd_hotspols.exe]: 0.269s § Osi

e Run Basic Hotspots analysis type to understand application flow and identify sections of
code that get a lot of execution time (hotspots).

e Use the algorithm Advanced Hotspots analysis to extend Basic Hotspots analysis by
collecting call stacks and analyze the CPI (Cycles Per Instructions) metric. NEW: You can
also use this analysis type to profile native or Java* applications running in a Docker*
container on a Linux system.

e Use Memory Consumption analysis for your native Linux or Python* targets to explore
RAM usage over time and identify memory objects allocated and released during the
analysis run.

e Run Concurrency analysis to estimate parallelization in your code and understand how
effectively your application uses available cores.

e Run Locks and Waits analysis to identify synchronization objects preventing effective
utilization of processor resources.

Microarchitecture Analysis

* General Exploration General Exploration viewpoint (c]

8 Collection Log @ Analysis Target Analysis Type | | B Summ

‘ Grouping: Function / Call Stack
" Il 3 Back-End Bound
Function / Call Clockticks ¥ x
Stack Mermory Core Bound
Boun Divider | Port Utilization|»

L P a W L - 024 04 AN FaWal-7] o.000 1. 000 ‘
The metric value is high, This can ndicate that the significant fraction of execution
||pipeline slots could be stalled due to demand memory load and stores. Use VTune
|[Amplifier XE Memory Access analysis to have the metric breakdown by memory
[|hierarchy, memory bandwidth information, correlation by memory objects.

|5 Eama et —— - —

» unc@0x140C/ 117.124414 331% 0000 1.000 |
|» unc@0x140C, 73011703 0.0% 0.000 0522 |
E. £ A lEt AN 71 Q24 227 n nes [a¥alatal L a'alal i
L€ i 2i<] ! |

® Run General Exploration analysis to triage hardware issues in your application. This
type collects a complete list of events for analyzing a typical client application.

e Use Memory Access analysis to identify memory-related issues, like NUMA problems
and bandwidth limited accesses, and attribute performance events to memory objects
(data structures), which is provided due to instrumentation of memory allocations/de-
allocations and getting static/global variables from symbol information.

e For systems with Intel® Software Guard Extensions (Intel® SGX) feature enabled, run
SGX.

e Run Hotspots analysis to identify performance-critical program units inside security
enclaves. This analysis type uses the INST_RETIRED.PREC_DIST hardware event that
emulates precise clock ticks, which is mandatory for the analysis on the systems with
Intel SGX enabled.

e For the Intel processors supporting Intel® Transactional Synchronization Extensions
(Intel® TSX), run the TSX Exploration and TSX Hotspots analysis types to measure
transactional success and analyze causes of transactional aborts.

Platform Analysis
J Platform | Architecture Diagram

CPQ+<}Q‘. WINRRANEN S "”""I'”""“'"“3'8:'7""'""”"|'
'sample_multi_tr (TID: ...

S

;samplé_mulii;tr (TID: ...

sample_multi_tr (TID: 24415)

g 'sample_multi_tr (TID: ...
E 'sample_multi_tr (TID: ...
\sample_multi_tr (TID: ...

User Tasks
Start: 386,888ms Duration: 194.882us
Task Type: clEnqueueNDRangeKernel

|sample_multi_tr (TID: ...

:InteI(R) HD Graphics |

;Intel(R) HD Graphics

Computing Queue

e Run System Overview analysis to review general behavior of a target Linux or Android*
system and correlate power and performance metrics with the interrupt request (IRQ).

e Run CPU/GPU Concurrency analysis to identify code regions where your application is
CPU- or GPU-bound.

e Use GPU Hotspots analysis to identify GPU tasks with high GPU utilization, and estimate
the effectiveness of this utilization.

® For GPU-bound applications running on Intel® HD Graphics, collect GPU hardware
events to estimate how effectively the processor graphics are used.

e Collect data on ftrace* events on Android and Linux targets and Atrace* events on
Android targets.

e Analyze hot Intel® Media SDK programs and OpenCL™ kernels running on a GPU. For
OpenCL application analysis, use the architecture diagram to explore GPU hardware
metrics per GPU architecture blocks.

e Run Disk Input and Output analysis to monitor utilization of the disk subsystem, CPU,
and processor buses. This analysis type provides a consistent view of the storage
subsystem combined with hardware events and an easy-to-use method to match user-
level source code with I/O packets executed by the hardware.

Compute-Intensive Applications Analysis

® HPC Performance Characterization HPC Performan

E® Collection Log | | @ Analysis

|Grouping: Process / OpenMP Region /OpenMP E v ‘ % || Q ‘

; ProcesstpenMP ‘ OpenMP Potential Gain ¥

R
BZ?}.‘L'ZQS mer \Imbalance LockComenbon

¥ sp. S| 9.056s i

| »compute_ths_§ 3405s Os 0.000s 0.002s |
b x_solve_$omp! 0.904s 0012s 0.000s 0.000s
3 z_solve_somp:i 0.910s 0.000s 0.000s 0.000s |
» y_solve_$omp w 0.803s 0.000s 0.000s Os |
b pinvr_Somp$pz 0.695s 0s 0000s 0.000s|
b tzetar_SompSp | 0692s Os 0.000s 0.001s |
» add_SompSpa| 0.606s Os 0000s 0.000s|
b ninvi_SompSpz| 05525 0s 0000s 0.000s

e Run HPC Performance Characterization analysis to identify how effectively your high-
performance computing application uses CPU, memory, and floating-point operation
hardware resources. This analysis type provides additional scalability metrics for
applications that use OpenMP* or Intel® MPI Library runtimes.

® Run an algorithm analysis type with the Analyze OpenMP regions option enabled to
collect OpenMP or Intel MPI data for applications using OpenMP or Intel MPI runtime
libraries. Note that HPC Performance Characterization analysis has the option enabled
by default.

e For OpenMP applications, analyze the collected performance data to identify
inefficiencies in parallelization. Review the potential gain metric values per OpenMP
region to understand the maximum time that could be saved if the OpenMP region is
optimized to have no load imbalance, assuming no runtime overhead.

e For hybrid OpenMP and Intel MPI applications, explore OpenMP efficiency metrics by
Intel MPI processes laying on the critical path.

Source Analysis

B8 Collection Log | | @ Analysis Target

'_Souoe | Assembly 1 A D W W Q
CPU Time: Self
; ,
LA Source Effective Time by Utilization *

. | @1die @ Poor @Ok @ Ideal |
E92 mem array [j*mem array i | 3.1025_

|93 // Code to give the arrayJ

|

04 __if ((iveration counc & 3)| 4766 |

95 else j=iteration count; | 0.220¢)
9% iteration_count++; 3
97 while (j < mem array j_max) 1.7093-

DML bk b ek e e s e e e

e Double-click a hotspot function to drill down to the source code and analyze

performance per source line or assembler instruction. By default, the hottest line is
highlighted.

e For help on an assembly instruction, right-click the instruction in the Assembly pane and
select Instruction Reference from the context menu.

Managed Code Analysis

User-defined gnvironment variables:

Modify...

Managed code profiling mode: ;Auto v|
Auto
[] Automatically resume collec Native

_ _ Mixed
[[] Automatically stop collectio Managed

s
- © AdSelecta profiling mode, The Native mode does not attribute
data to managed source, The Mixed mode attributes data to
managed scurce where appropriate. The Managed mede tries
to limit attribution to managed source when available.

Configure target options for managed code analysis in the native, managed, or mixed
mode:

e Windows host only: Event-based sampling (EBS) analysis for Windows Store C/C++, C#
and JavaScript* applications running in the Attach or System-wide mode.

e EBS or user-mode sampling and tracing analysis for Java applications running in the
Launch Application or Attach mode.

e Basic Hotspots and Locks and Waits analysis for Python applications running in the
Launch Application and Attach to Process modes.

Custom Analysis

) Choose Target and Analysis Type

A» Analysis Type

W " Locks and Waits Copy
-l Algorithm Analysis Identify where your application is
A Basic Hotspots waiting on synchronization objects

: A Advanced Hotspots | ©F I/O operations and discover how

A. Concurrency these waits affect your application

. performance. This analysis type uses
A SEEIENELD | icer-mnde samnfina and tracina____
¢ Copy from Current :
h [
£

i New Hardware Event-based Sampling Analysis

i New User-mode Sampling and Tracing Analysis

oYy CETOYeY F A LLE P L S

T

-4 Platform Analysis =
".A CPU/GPU Concurre | [_|Analyze Intel runtimes and user 5
iy Enerqy Analysis

e Select the Custom Analysis branch in the analysis tree to create your own analysis
configurations using any of the available VTune Amplifier data collectors.

® Run your own custom collector from the VTune Amplifier to get the aggregated
performance data from your custom collection and VTune Amplifier analysis in the
same result.

e Import performance data collected by your own or third-party collector into the VTune
Amplifier result collected in parallel with your external collection. Use the Import from
CSV button to integrate the external data to the result.

e Collect data from a remote virtual machine by configuring KVM guest OS profiling,
which makes use of the Linux Perf KVM feature. Select Analyze KVM guest OS from the
Advanced options.

Remote Collection Modes
You can collect data on your Linux, Windows, or Android system using any of the following
modes:

e (Linux and Android targets) Remote analysis via SSH/ADB communication with VTune
Amplifier graphical and command-line interface (amplxe-cl) installed on the host and
VTune Amplifier target package installed on the remote target system. Recommended
for resource-constrained, embedded platforms (with insufficient disk space, memory, or
CPU power).

e (Android targets) Disconnected analysis via SSH/ADB communication with VTune
Amplifier installed on the host and the VTune Amplifier target package installed on the
remote Android system. The analysis is initiated from the host system, but data
collection does not begin until the device is unplugged from the host system. The
results are finalized after the device is reconnected to the host system.

e (Linux and Windows targets) Native performance analysis with the VTune Amplifier
graphical or command line interface installed on the target system. Analysis is started
directly on the target system.

e (Linux and Windows targets) Native hardware event-based sampling analysis with the
VTune Amplifier's Sampling Enabling Product (SEP) installed on the target embedded
system.

Stepping Back to See the Big Picture

It's a good idea to step back and see the big picture first—as to what other components exist in the system.
If there are some unrelated component-consuming resources, and if we only focus on measuring our
specific application, then we may be coming to a wrong conclusion because of partial information.

So here, even before running the DPDK application, we run top —H to see where the CPU is spending its
cycles without our specific application running.

Below you will see the VTune Amplifier showing top -H and the Firefox* web browser running. Now,

top is something you just ran, whereas Firefox is something you don’t want taking CPU cycles while you
evaluate your application of interest. Similarly, you may find some unwanted daemons. So at this point,

stop any unwanted applications, daemons, and other components.

o root@dpdk: /home/dpdk

top - 13:05:42 up 1 day, 18:54, 5 users, load average: 0.19, 0.08, 0.06
Threads: 646 total, 1 running, 643 sleeping, 0 stopped, 2 zombie

%*Cpu(s): 0.7 us, 0.3 sy, 0.0 ni, 98.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 16350968 total, 11702348 used, 4648620 free, 293656 buffers

KiB Swap: 16694268 total, 117060 used, 16577208 free. 9239260 cached Mem

USER I SHR S %CPU SMEM COMMAND
829964 210732 54186 plugin-containe
854436 192932 171604 Xorg
1405248 602360 90560 firefox
619336 31840 25244 gnomMe=termntaal
29580 3504 2572 top

1198704 270388 93748 ficefeon

e e (V) rcuos/4

0 e) rcuos/é
353632 11836 ibus-daemon
353632 11836 gdbus
1511788 133296 complz
168956 2400 rtkit-daemon
1176116 91504 nautilus
1405248 602360 Timer
1405248 602360 DOM Worker
619336 31840 gdbus
1198764 276388 SoftwareVsyncTh
182760 5340 systenmd

0) kthreadd
ksoftirqd/®
kworker /6:08H
rcu_sched
rcu_bh
rcuos/e
rcuob/e
migration/@

N
(O]
[

mmumumumumurmuvmuvumurmumuunuuumuruuuLuIVaII VLI Y NE
QOO0 WWWWWWWWWWWINSNNOOW

SO DO DD PO W WD O D)W m
OO PP NNNATCDOPOD L DO INONINNW

0
0
0
0
0
(+)
0
0
0
0
0
|
0
0
0
0
0
0
0
0
0
0
0
0
0
0

OO0 O

O WVWOONWVMWN M

(RN

Pointing to the Source Directory
The following screenshot shows how to point to the source directory of the software components of
interest in VTune Amplifier. You can add multiple directories.

Places
Q search

& Recently Used

& dpdk
Al root
& Desktop

wd File System

fia /root/intel/amplxe/projects

¥ & For

% Kernel+Top Only Running

Project Nawigator ® i &

B By P P O @ welome New Ampl.. X

 Choose Target and Analysis Type

S Analysis Target

=¥ Accessible Targets
@ local
remote Linux (SSH)
intel Xeon Phi coprocessor (natiw |

Profile System v

Configure settings for system-
instead of particular applicatic

Automatically resume colle

Additional Source File Locations

ocal directories to ingd he search. Press F1 for more

Search Directories

Create Folder

i arch
aa block
M Crypto

i Documentation

i drivers
i lirmware
s

il include
Ml init

M ipc

il kernel
u lib

M mm

- net

« Size Modified
05/12/2016
05/12/2016
05/12/2016
05/12/2016
05/12/2016
05/12/2016
05/12/2016
05/12/2016
05/12/2016
05/12/2016
05/12/2016
05/12/2016
05/12/2016
05/12/2016

Profiling DPDK Code with VTune Amplifier

First, we'll reserve huge pages. Note that we’ve chosen 128 huge pages here to accommodate a
possible memory constraint when testing on a laptop. If you’re using a server or desktop, you can
specify 1024 huge pages.

1.

S cd /home/dpdk/dpdk-16.04
S sudo su

s echo 128 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr hugepages

2. Creating /mnt/huge and mounting as hgetlbfs

Next, we'll create /mnt/huge and mount it as hgetlbfs.

$ sudo bash

$ mkdir -p -v /mnt/huge [-v for verbose, as you can see below
response from the system]

$ mount -t hugetlbfs nodev /mnt/huge

Making the mount point permanent across reboots, by adding the
following line to the /etc/fstab file:

nodev /mnt/huge hugetlbfs defaults 0 0

Look at /etc/fstab to confirm that /mt/huge was successfully created and mounted. See example below:

root@dpdk: /home /dpdk /dpdk-16.64% sudo bash
root@dpdk: /home /dpdk /dpdk-16.064% mkdir -p -v /mnt/huge

mkdir: created directory ‘/mnt/huge’
root@dpdk: /home /dpdk /dpdk-16.04#%

root@dpdk: /home /dpdk /dpdk-16.84% mount -t hugetlbfs nodev /mnt/huge
root@dpdk: /home /dpdk /dpdk-16.04%

root@dpdk: /home /dpdk /dpdk-16.04%# gedit /etc/fstab

-

*fstab (Jetc) - gedit

File Edit View Search Tools Documents Help

., .’Opcn - nzavc |; & Undo

*fstab
J/etc/fstab: static file system information.
z
2 Use 'blkid' to print the universally unique ildentifler for a
device; this may be used with UUID= as a more robust way to name devices
that works even if disks are added and removed. See fstab(5s).
®
<file system> <mount point> <type> <options> <dump> <pass>
/ was on Jdev/sdaZ during installation
UUID=2fc3b593-4122-4684-b1f5-093f87b5985¢e / extd errors=remount-ro 6
/boot/efil was on /dev/sdal during installation
UUID=0BD9A-2C43 /boot/efi vfat umask=0077 0 1
% swap was on /dev/sda3 during installation
UUID=24fefhc3-9dRA.4dA3.9494-6c0594¢33368 none sSwap SW 0

———

iqbdev /mnt/huge hugetlbfs defaults 6 6 >

3. Build the DPDK test application and DPDK library:
$ export RTE SDK=/home/dpdk/dpdk-16.04
s export RTE TARGET=x86 64-native-linuxapp-gcc
5 export EXTRA CFLAGS='-g’ [For DPDK symbols]

s make install T=x86 64-native-linuxapp-gcc DESTDIR=install

The output of the build will complete successfully, as shown below.

== Build app/proc_info
CC main.o
LD dpdk_proc_info
INSTALL-APP dpdk proc_info

INSTALL-MAP dpdk_proc_info.map
Build complete [x86 64-native-linuxapp-gcc]
Installing install/
Installation in install/ complete
root@dpdk: /home/dpdk /dpdk-16.04# [

4. Load uio modules to enable userspace |0 for DPDK.

S sudo modprobe uio

5 sudo insmod x86 64-native-linuxapp-gcc/kmod/igb uio.ko

root@dpdk: /home /dpdk /dpdk-16.04# sudo modprobe uio
root@dpdk: /home/dpdk /dpdk-16.04#
root@dpdk: /home /dpdk /dpdk-16.04# sudo insmod x86_64-native-linuxapp-gcc/kmod/igb uio.ko

root@dpdk: /home/dpdk /dpdk-16.04#
root@dpdk: /home/dpdk/dpdk-16.04# l

5. Add path to DPDK test application symbols to VTune Amplifier.

See the image below to illustrate this step.

5': Additional Binary and Symbaol File Locations

Specify the possible locations of binary and symbaol Files. These can be local directories, or symbol
§ server paths using the form srv*local_cache_directory*http://address/. Press F1 for more details

Saacch Directories

You can verify the symbols in the above directory in test.map, as shown in the image below.

test.map (/home/dpdk/dpdk-16.04/x86_64-native-linuxapp-gcc/app) - gadit

File Edt View Search Tools cuments Help

di
. ’Op-:-‘n v ‘E-aw: ..

test.map

0x0000000000611910 e1000_read_xmdio_reg
Ox00000000006119b0 1000 write xmdio _reg
Ox0000000000611a50 e1000_init_hw 1210

*fille Ox0000000000611¢58 Ox8

.text Ox0000000000611c60 Ox1671 [home/dpdk /dpdk-16.04/x86 64-native-1linuxapp-gcc/lLib/
Ox0000000000611¢60 1000 _inlt _mac params
Ox0000000000611c80 1000 _Init_nvm_params
Ox0000000000611cad €1000_1inlt_phy params
Ox0600000000611ccO €1080_\inilt_mbx_params
Ox0000000000611ced e1008_set_mac_type
Ox00000000006123d0 €1000_setup_init_funcs
0x0000000000612cho €1000_get_bus_{info
0x0000000000612cd0O e1000 _clear_vfta
Ox0000000000612cT0 21000 write vfta
Ox0000000000612d10 e1000 update mc_addr_ list
Ox0000000000612d30 el1000 force mac fc
0x0000000000612d40 e1000 check for link
Ox0000000000612d060 c1000 check mng mode
Ox0000000000612d80 e1000 mng write dhcp info
Ox0000000000612d90 ¢1000 reset hw
Ox0000000000612db0 ¢1000_init _hw

At this point, you are ready to get started profiling your DPDK code with VTune Amplifier.

Profiling DPDK Code with VTune Amplifier

Now we will run a handful of micro benchmarks. To start, cd to the directory below and run ./test.

$ cd /home/dpdk/dpdk-16.04/x86 64-native-linuxapp-gcc/app
S sudo su
s ./test

root@dpdk: /home /dpdk /dpdk-16.04/x86 64-native-linuxapp-gcc/app# . /test
EAL: Detected lcore ® as core © on socket

EAL: Detected lcore as core on socket

EAL: Detected lcore 2 as core on socket

EAL: Detected lcore as core on socket

EAL: Det Llcore 4 as core on socket

EAL: < d lcore S as core on socket

EAL: Detected lcore 6 as core on socket

EAL: Detected lcore 7 as core 3 on socket o

EAL: Support maximum 128 logical core(s) by conflguration.
EAL: Detected 8 lcore(s)

EAL: Probing VFIO support...

1
3
(V)
1
2

The test will issue prompt RTE>> as shown below. Enter ? for help and the list of available tests.

Profiling Distributor Perf Autotest
Our first test willbethe distributor perf autotest. A diagram describing thisapplication is
below.

Select the test from the options offered by RTE.

RTE>> distributor perf autotest

Request packet
-
Worke
-
Mbuf pointer
Mbufs In
- =
Worke
-]
RX thread & Distributor
| =
Worker
=
E 2
Worker
-
SW Ring
Mbufs Out
- TX thread

Distributor Sample Application Layout

See below for command window output during the test run.

RTE>>

RTYE>>distributor_perf_autotest

==== Cache line switch test ===

Time for 1048576 iterations = 233243764
Ticks per iteration = 222

=== Performance test of distributor ===
Time per burst: 2028
Time per packet: 63

Worker handled 5211363 packets
Worker handled 5208936 packets
Worker handled 5214205 packets
Worker handled 5218201 packets
Worker handled 4254659 packets
Worker handled 4233312 packets
Worker handled 4213756 packets
Total packets: 33554432 (2000000)
=== Perf test done ===

The VTune Amplifier summary highlights CPI rate, indicating it is beyond the normal range. It also highlights
Back End-Bound, indicating a memory-bound application nature. See these results on the screen capture
below.

Prosect Navgator
fia /root/intel/amplxe/projects
v & For DPDK July 11th
& Kernel+Top Only Running

i distributor_pesf
s ring_perf auto_test

s 2nd ring perf auto test
B ring_auto_test
s mempool auto test

i Memcpy_auto_Lest

Jroot/intel/ampixe/projects/For DPDK July 11th - Intel VTiune Amplifer

o~

% General Exploration (

] 2 P 9O = @ Welcome ring_perf_aut distributo ..

-~
w

Elapsed Time : 7.524s

Clockticks: 28,856,043 329
Instruchons Retired: 12.100,018,.150
CP1 Rate 2387

The CP1t may be too high. This could be caused by ssues such as memory stall
latency instructions, Explore the other hardwarerelated melrs Lo identifly what

MUX Reliability 0850
Front-End Bound : 109%
Bad Specylation : 15%
Back-End Bound : L8.E%

Kentily slots where no uOps are delivered due Lo a lack of required resowrces I
Back-end metrics describe a2 portion of the pipeline where the ouwtof-arder s
execution units, and, once completed, these vOps get retired according to progs
Lo the overloaded divider unit are examples of back-end bound issues.

Retiring : 18.8%

Total Theead Count 9%

Paused Time s
CPU Usage Histogram

This histogram duplays a percentage of the wall time the specific number of CPUs wy
adds Lo the idle CPU usage value.

v Ll
L3N E gl
»
b4 |
Ss X 2|
g)
- |
43 -
v
s |
s (|
|
2% |
|
154 |
|
Os - ¥ Y T
1 2 3 4 5

Simultanecusly Utilzed Logal €

Collection and Platform Info

Analysis Details

e Function/Call Stack indicates rte distributor poll pkt consumes CPIat a rate of 3.720 and
mm_pause consumes CPI at a rate of 3.867.

You can observe that rte distributor get pkt runs with a CPlrate of 26.30. However, it is not
highlighted, since it uses fewer clock ticks than the highlighted functions.

You will see other functions listed here along with the CPI each one uses, for example:
rte distributor process, rte distributor request pkt,
time cache line switch.

Jroot/intel/amplxe/projects/For DPOK July 11th - Intel
Project Nawgator
S W 5o
fia /root/intel/amplxe/projects
* @ For DPDK July 11th
= Kernel+«Top Only Running

VTune Amplifiar

P T D= @ Welcome ring_perf aut

s distributor_perf Grouping: | Function / Call Stack

= ring_perf auto Lest

Js ring_auto test

i mempool_auto test
= ¥ mm_pause
= memopy ato test

im 20d ring perf auto test Function / Call Stack Clockticks~

distribute

point (ch

Instructions
Retired

rte distributor_poll pkt 13,912,020,868| 3,740,005,610

6,736,010,104 1,742,002,613

*rte_distributor_process 3,104,004,656 4,734,007,101
*rte distributor_get pkt 526,000,789 20,000,030
Prie distributor_request pkt 496,000,744 80,000,120
*cpuidie_enter_state 402,000,603 22,000,033
*time_cache_line_switch 338,000,507 62,000,093
*Aip_bit 336,000,504 70,000,105
*handle work 298,000,447 26,000,039
*finish_task switch 90,000,135
*wxAppBase:SendidleEvents 68,000,102
*wxEvtHandler::SearchDynamicEventTable 66,000,099 30,000,045
Pcopy page rep 60,000,090
* raw_spin_unlock_Irgrestore 58,000,087
*[Outside any known module] 54,000,081 30,000,045
*g type _check_instance cast 54,000,081
*wxWindow::Oninternalidle 446,000,069
*wxObjectList::compatibility iterator:GetData 46,000,069 20,000,030
*wxwWindowList:compatibility_iterator:GetDat 44,000,066

82,000,123

*add _to_backlog 36,000,054

- _'

Selected 1 row(s):| 13,912,020,868 3,740,005,610

.

m‘"ﬂm

. i’ - -
test (TID: 2... |
test (TID: 2., |
test (TID: 2., |
test (TID: 2... |

vmlinux (T

Profiling Rings

0Ss 15 15 25 255 s 35s -{s

Communication between cores for interprocessor communication as well as communication between cores

and NIC happens through rings and descriptors.

While NIC hardware does optimizations in terms of RS bit and descriptor done bit (DD bit) in bunching the
data size, DPDK in addition enhances bunching with amortizing by offering API for bulk communication

through rings. The graphic below illustrates ring communication.

4.5s Ss

Software writes a Head
B +2 descriptor to the
o memory ring and
Base +1 _ !
1 Head &Tail moves the tail 2

Together
>

Software writes another
descriptor to the memory ring

oldest first to
he added

newest |atest '

to be added

The tail moves down after the newest
descriptor was inserted between the old tail Tail
location and the new tail location Previous Head

Head Iocation

Data from the packet represented by \
his descriptor is stored in memory

™~ Tail
Original Head location

Previous Head location
EE /

/
! Head movas towards the tail and
~ frees-up the buffer to the SWI 8

“Tail

The rings tests show that single producer/single consumer (SP/SC) with bulk sizes both in
enqueue/dequeue gives best performance compared to multiple producers/multiple consumers
(MP/MC). Below are the steps.

Profiling ring_perf_autotest

In RTE, select ring perf autotest. Test outputis shown in the cmd window below.

RTE>>ring_perf_autotest

##% Testing single element and burst enq/deq #&2
SP/SC single enq/dequeue: 6

MP/MC single enq/dequeve: 37

SP/SC burst enq/dequeue (size: 8): 2

MP/MC burst enq/dequeue (size: 8): 5

SP/SC burst enq/dequeue (size: 32): 2

MP/MC burst enq/dequeue (size: 32): 3

##% Testing empty dequeue &#%
SC empty dequeue: 1.34
MC empty dequeue: 1.90

##% Testing using a single lcore ###
SP/SC bulk enq/dequeue (size: 8): 3.08

MP/MC bulk enq/dequeue (size: 8): 5.82

SP/SC bulk enq/dequeue (size: 32): 2.13
MP/MC bulk enq/dequeue (size: 32): 3.00

gag Testing using two hyperthreads sss
SP/SC bulk enq/dequeue (size: 8): 9.18
MP/MC bulk enq/dequeue (size: 8): 15.96
SP/SC bulk enq/dequeue (size: 32): 4.52
MP/MC bulk enq/dequeue (size: 32): 5.68

##% Testing using two physical cores ##s
SP/SC bulk enqg/dequeue (size: 8): 20.62

MP/MC bulk enq/dequeue (size: 8): 46.49

SP/SC bulk enq/dequeue (size: 32): 8.52

MP/MC bulk enq/dequeue (size: 32): 15.80
Test OK

VTune Amplifier output for ring perf autotest shows in detail that the code is backend-bound. You
can see the call stack showing results for SP/SC with bulk sizes as well as MP/MC.

froot/intel/amplxe/projects/For DPDK July 11th - Intel VTune Amplifier

P 3OS @

Prosect Navgator

fia /root/intel/amplxe/projects

¥ & For DPOK July 11th

s KernelsTop Only Running

= rO01ge

s 1002ge

Ja distributor_perf

Fn ring _perl_auto test

Welcome

Grouping: Function / Thread / H/W Context / Call Stack

Opening resul

ring_perf_

Function / Thread / H/W Context / Call Clockticks Instructions CPI
Stack Retired Rate
* _rte_ring_mp_do_engqueuve 4,738,007,107 3,282,004,923 144
* _rte_ring_mc_do_dequeue 4,430,006,645 3,582,005,373 123
* rte ring sp do enqueue 4.194.006,291 4,.510,006,765 0.9%¥u
* _rte_ring sc_do_dequeue 4,108,006,162 4,924,007,386 083
Prte_atomic32_cmpset 3,222,004,833 1,744,002,616 1.84
*rte_atomic32_cmpset 2,818,004,227 1,548,002,322 1.8
*poll idle 1,644 002,466 428,000,642 184
» _rte_ring_s¢_do_dequeue 658,000,987 2,626,003,939 0.25
* _rte_ring_mc_do_dequeue 626,000,939 1,896,002,844 0.334
* rte _ring mc_do_dequeue 608,000,912 1,544,002,316 0.3%
* rte ring s¢ do_dequeue 596,000,894 2,460,003,690 24,
Prte_atomic32_cmpset 576,000,864 582,000,873 0.9%
* rte_ring_sp_do_enqueue 572,000,858 2,258,003,387 0.25:
* rte ring_mp_do_enqueuve 560,000,840 1,578,002,367 0.35!
* rte ring mp do enqueuve 548,000,822 1,454.002,187 Q.37
* rte ring sp_do_enqueue 530,000,795 2,110,003,165 0.25
*rte_atomic32_cmpset 374,000,561 882,001,323 0.424
*rte_atomic32_cmpset 362,000,543 662,000,993 0.54
Prte atomic32 cmpset 324,000,486 1,034,001,551 031
Selected 1 row(s):] 4,738,007,107 3,282,004,923 1.44
. . o —

- 05s 1s 155 25 255 35 355 4s 455 Ss 5.55 6s

test (TID: 2....
test (TID: 2
test (TID: 2.

Thread

umiinax (7. | I
ampixe-gui .| I
s Y

compiz (T1... |

amplxe-run

Hardware,..

~R-R-N-N-N-N-J
o P

To appreciate the relative performance of SP/SC with single data size and bulk size, and comparing with
MP/MC with single data size and bulk size, refer to the following graph. Please note the impact of core
placement—a) siblings, b) within the same socket, c) across multisockets.

Cycle Cost [Enqueue + Dequ
600
500
400
300
200
100
0O Bt - — - — - —__ __ _ _ —
Single Core Single Core
1121218716 32 [1121478116) 52 [112]4(8]16 32 |1]2]4]8/16 32 [1/2]4[8]16 32
Single Producer/Single Consumer Multi Producer /Multi C

Conclusion and Next Steps
Practice profiling on additional sample DPDK applications. With the experience you gather, extend profiling
and optimization to the applications you are building on top of DPDK.

Get plugged in to the DPDK community to learn the latest from developers and architects and keep your
products highly optimized. Register at https://www.dpdk.org/contribute/.

References

Enabling Internet connectivity: http://askubuntu.com/questions/641591/internet-connection-not-working-
in-ubuntu-15-04

Getting Kernel Symbols/Sources on Ubuntu Linux:
http://sysprogs.com/VisualKernel/tutorials/setup/ubuntu/

How to debug libraries in Ubuntu: http://stackoverflow.com/questions/14344654/how-to-use-debug-
libraries-on-ubuntu

How to install a package that contains Ubuntu debug symbols:
http://askubuntu.com/questions/197016/how-to-install-a-package-that-contains-ubuntu-kernel-debug-

symbols

Debug Symbol Packages: https://wiki.ubuntu.com/Debug%20Symbol%20Packages

Ask Ubuntu for challenges in Apt-get update failure to fetch: http://askubuntu.com/questions/135932/apt-
get-update-failure-to-fetch-cant-connect-to-any-sources

DNS Name Server IP Address: http://www.cyberciti.biz/fag/ubuntu-linux-configure-dns-nameserver-ip-

address/

How to fix public key is not available issue: https://chrisjean.com/fix-apt-get-update-the-following-
signatures-couldnt-be-verified-because-the-public-key-is-not-available/

Ubuntu Key server: http://keyserver.ubuntu.com:11371/

Installing CSCOPE*: http://cscope.sourceforge.net

Performance optimization: http://www.agner.org/optimize/instruction tables.pdf

Using Intel VTune Amplifier with a virtual machine: https://software.intel.com/en-us/node/638180

Additional Tools

The previous module helped you to understand how VTune Amplifier can help analyze performance of your
DPDK application. In this module we describe two other tools that you might find helpful.

https://www.dpdk.org/contribute/
http://askubuntu.com/questions/641591/internet-connection-not-working-in-ubuntu-15-04
http://askubuntu.com/questions/641591/internet-connection-not-working-in-ubuntu-15-04
http://sysprogs.com/VisualKernel/tutorials/setup/ubuntu/
http://stackoverflow.com/questions/14344654/how-to-use-debug-libraries-on-ubuntu
http://stackoverflow.com/questions/14344654/how-to-use-debug-libraries-on-ubuntu
http://askubuntu.com/questions/197016/how-to-install-a-package-that-contains-ubuntu-kernel-debug-symbols
http://askubuntu.com/questions/197016/how-to-install-a-package-that-contains-ubuntu-kernel-debug-symbols
https://wiki.ubuntu.com/Debug%20Symbol%20Packages
http://askubuntu.com/questions/135932/apt-get-update-failure-to-fetch-cant-connect-to-any-sources
http://askubuntu.com/questions/135932/apt-get-update-failure-to-fetch-cant-connect-to-any-sources
http://www.cyberciti.biz/faq/ubuntu-linux-configure-dns-nameserver-ip-address/
http://www.cyberciti.biz/faq/ubuntu-linux-configure-dns-nameserver-ip-address/
https://chrisjean.com/fix-apt-get-update-the-following-signatures-couldnt-be-verified-because-the-public-key-is-not-available/
https://chrisjean.com/fix-apt-get-update-the-following-signatures-couldnt-be-verified-because-the-public-key-is-not-available/
http://keyserver.ubuntu.com:11371/
http://cscope.sourceforge.net/
http://www.agner.org/optimize/instruction_tables.pdf
https://software.intel.com/en-us/vtune-amplifier-help-on-virtual-machine

Intel® Memory Latency Checker
Memory latency has to do with the time used by an application to fetch data from the processor’s cache

hierarchy and memory subsystem. Intel® Memory Latency Checker (Intel® MLC) measures memory latency

and bandwidth under load, with options for more detailed analysis of memory latency between a set of
cores to memory or cache.

Features
By default, Intel MLC identifies system topology and generates the following:

e A matrix of idle memory latencies for requests originating from each of the sockets and addressed to
each of the available sockets.

e Peak memory bandwidth measurement of requests containing varying numbers of reads and writes to
local memory.

e A matrix of memory bandwidth values for requests originating from each of the sockets and addressed

to each of the available sockets.
e Latencies at different bandwidth points.
e (Cache to cache data transfer latencies.

For more information on basic operation of Intel MLC as well as coverage of the command options that
enable finer-grained analysis, read the article Intel Memory Latency Checker v3.5. It describes the
functionality of the most recent version of Intel MLC in detail, and includes download and installation
instructions.

Screenshots

The screenshots below illustrate basic operation of Intel MLC.

Measuring Loaded Latencies for the system

Using all the threads from each core if Hyper-threading is enabled

https://software.intel.com/en-us/articles/intelr-memory-latency-checker

Intel(R) Memory Latency Checker - vu3.3
Measuring idle latencies (in ns)...
Memory node
Socket 0 1
0] 81.5 81.5
1 140.2 140.2

Measuring Peak Memory Bandwidths for the system

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads : 93190.9

3:1 Reads-lirites : 78829.3

2:1 Reads-lirites : TH731.7

1:1 Reads-lirites : 54653.2

Stream-triad like: 68780.8

Measuring Memory Bandwidths between nodes within system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type
Memory node

Socket 0 1

0 94281.2 92246.0

1 34475.4 34470.0

Latency Bandwidth
(ns)

90718.1
91195
91219
91281.
91269.
91137.
82683.
69158.
95501.
45506 .
33390.
23946 .
18745.
14606 .
10250.
7592.
5566 .
SHUT.
1987.

9
6
0
Y
1
p
p
1
9
3
1
1
p
6
0
S
9
6

Measuring cache-to-cache transfer latency (in ns)...
Local Socket L2->L2 HIT latency 53.0
Local Socket L2->L2 HITM latency 53.1
Remote Socket L2->L2 HITHM latency (data address homed in writer socket)
Reader Socket
Writer Socket 0 1
0 = 1145
1 184.8 =
Remote Socket L2->L2 HITM latency (data address homed in reader socket)
Reader Socket
Writer Socket 0 1
(0] = 114.5
1 184.0 =

Local memory latencies and cross-socket memory latencies can vary significantly on multisocket systems
where NUMA is enabled. Intel MLC is a useful tool for measuring these latencies, as well as memory
bandwidth, and can help you in the task of profiling your application’s performance.

Processor Counter Monitor* (PCM)

Processor Counter Monitor* (PCM) is an open source project that includes a programming APl as well as
several command-line utilities for gathering real-time performance and power metrics for Intel® Core™
processors, Intel Xeon processors, Intel Atom processors, and Intel® Xeon Phi™ processors. It supports
Linux, Windows, and several other operating systems. For detailed information, and to download, visit the
PCM GitHub* repository.

Using PCM to Evaluate a DPDK Application

Of the several tools included as part of PCM, which are recommended for use with DPDK? The list below
offers some suggestions. If your application is:

e CPU intensive, run PCM-x
e Memory intensive, run PCM-memory
e |/Ointensive, run PCM-iio

Screenshots

The screenshots below illustrate PCM runtime output.

EXEC : instructions per nominal CPU cycle

IPC : instructions per CPU cycle

FREQ : relation to nominal CPU frequency=‘'unhalted clock ticks'/'invariant timer
AFREQ : relation to nominal CPU frequency while in active state (not in power-savi
L3MISS: L3 cache misses

L2MISS: L2 cache misses (including other core's L2 cache xhitsx)

L3HIT : L3 cache hit ratio (0.00-1.00)

L2HIT : L2 cache hit ratio (0.00-1.00)

L3MPI : number of L3 cache misses per instruction

L2MPI : number of L2 cache misses per instruction

READ : bytes read from main memory controller (in GBytes)

WRITE : bytes written to main memory controller (in GBytes)

L30CC : L3 occupancy (in KBytes)

TEMP : Temperature reading in 1 degree Celsius relative to the TjMax temperature
energy: Energy in Joules

https://github.com/opcm/pcm

Core (SKT) | EXEC | IPC | FREQ | AFREQ | L3MISS | L2MISS | L3HIT | L2HIT | L3MPI | L2MPI | L30CC | TEMP

35 K 113 K 144
144
1224
1656
144
1224
1368
1296
1440
1296
2016

O NOUEWN—=O
_, O = = -0 0

—_ D e D) = - O
00— = —-00000O0O—-00O00O

[clcBoloNoNoNoNoRolNoNoNoRNoloRBoNol
RAARARARARAARARARARNAARARARNR

RAARARARARARARARARARARARARNARARARARARARN

©000000000000000
©000000000000000
©000000000000000
©000000000000000

Instructions retired: 37 G ; Active cycles: 32 G ; Time (TSC): 2694 Mticks ; CO (active,non-halted) core residency: 33.28 7%

C1 core residency: 66.72 %; C6 core residency: 0.00 %;
C2 package residency: 0.00 %; C6 package residency: 0.00 %;

PHYSICAL CORE IPC : 1.15 => corresponds to 28.84 % utilization for cores in active state
Instructions per nominal CPU cycle: 0.38 => corresponds to 9.60 % core utilization over time interval
SHI count: O
Intel(r) UPI data traffic estimation in bytes (data traffic coming to CPU/socket through UPI links):

UPI1 UPI2 UPIO UPI1 UPI2

0%
0%

Total UPI incoming data traffic: 2632 K UPI data traffic/Memory controller traffic: ©0.00

Intel(r) UPI traffic estimation in bytes (data and non-data traffic outgoing from CPU/socket through UPI links):
UPI1 UPI2 UPIO UPI1 UPI2
303 M

Total UPI outgoing data and non-data traffic: 1218 M

MEM (GB)->1 READ | WRITE | CPU energy | DIMM energy

109.80

Summary

Intel MLC and PCM are handy, easy to use tools that you might find useful. VTune Amplifier is much more
powerful and versatile. If you haven’t used VTune Amplifier, download a free trial copy at the Intel VTune

Amplifier home page.

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

Acknowledgements

This cookbook is possible only with the whole team’s effort and all the encouragement, support, and review
from each and every one in the internal divisions as well as early access customers, network developers,
and managers.

Notices

Intel technologies’ features and benefits depend on system configuration and may require enabled
hardware, software or service activation. Performance varies depending on system configuration.
Check with your system manufacturer or retailer or learn more at intel.com.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied
warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to
obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause
deviations from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be
obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, Intel Xeon Phi, VTune, and Xeon are
trademarks of Intel Corporation in the U.S. and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates. OpenCL and the OpenCL logo are
trademarks of Apple Inc. used by permission by Khronos.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
*Qther names and brands may be claimed as the property of others.

© 2018 Intel Corporation

http://www.intel.com/
http://www.intel.com/design/literature.htm
http://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement/

	Overview
	Acknowledgements
	About the Author

	Getting Started: Documentation and Tools
	Key Documentation
	Frequently Used Tools and Scripts
	Tool Usage Examples
	Finding Memory Information with Linux* Command /proc/meminfo
	Finding Huge Page Information with ./setup.sh
	Binding/ Unbinding NIC with ./dpdk_nic_bind.py
	Finding CPU layout with ./cpu_layout.py

	More Scripts in Scripts Subdirectory

	Build Your Own DPDK Traffic Generator—DPDK-In-A-Box
	Introduction
	The DPDK Traffic Generator
	Block Diagram
	Software
	Hardware

	Install and Configure the TRex* Traffic Generator
	Note NIC Information
	Troubleshooting – Ports Not Found
	Root Cause
	Solution

	Install the Traffic Generator
	Configure the Traffic Generator
	Note Platform lcore Count

	Run the Traffic Generator
	Next Steps
	Exercises

	DPDK Transmit & Receive Loopback—DPDK-In-A-Box
	Introduction
	Traffic and the DPDK Application on a Single System
	Stethoscope of DPDK Developer—Testpmd
	Auto-Generating Traffic with tx_first Parameter
	Challenge
	Solution

	Starting testpmd
	Initialization
	Operation
	Optimization Knobs You Should Understand

	Running testpmd Using tx_first Option
	Starting testpmd Without tx_first
	Learn More About testpmd
	Summary
	Exercises

	Build Your Own DPDK Packet Framework with DPDK-In-A-Box
	Introduction
	Set DPDK Traffic Generator MAC Addresses
	Update the Configuration File for the DPDK Packet Framework
	Building and Installing DPDK Packet Framework
	Running the Traffic Through DPDK Packet Framework
	Run Your Application that is Software Defined by Packet Framework

	Summary
	Exercise

	DPDK Data Plane—Multicores and Control Plane Synchronization
	Introduction
	Simple Scenarios—Data Plane and Control Plane Interactions
	Scenario 1: Change of Hardware
	Scenario 2: No Change of Hardware but Change of Parameter

	Rules for Polling Queues
	Can Multiple Cores Poll One RX Queue Simultaneously?
	Can You Have Eight Cores and Four RX Queues per Port?
	Can You Have Four Cores with Eight RX Queues per Port?

	Can One lcore Poll Multiple RX Queues?
	Who is Responsible for Mutual Exclusion so that Multiple Cores Don’t Work on the Same Receive Queue?
	What if Your Design Requires Multiple Cores to Share Queues?
	TX Port: Why Should Each Core be Able to Transmit on Each and Every Transmit Port?

	While the Data Plane can be Parallel, the Control Plane is Sequential
	Device Setup Sequence

	Summary
	Next Steps
	Exercises

	DPDK Performance Optimization Guidelines White Paper
	Abstract
	Strategy and Methodology
	Recommended Pre-reading
	BIOS Settings
	Memory RAS and Performance Configuration -> NUMA Optimized

	Platform Optimizations
	Platform Optimizations—NUMA and Memory Controller

	Linux* Optimizations
	Reducing Context Switches with isolcpus

	Adapt and Update the Sample Application
	Configuration Questions
	How to Configure the Application for Best Performance?
	How Many Queues can be Configured per Port?
	Can Tx Resources be Allocated the Same Size as Rx Resources?
	Please use as per the default values that are used in the application. For example, for Intel 82599 10-GbE Ethernet Controller, the default values are not equal; whereas for XL710, both RX and TX descriptors are of equal size.
	Intel 82599 10-GbE Ethernet Controller: It is a natural tendency to allocate equal-sized resources for Tx and Rx. However, please note that http://git.dpdk.org/dpdk/tree/examples/l3fwd/main.c shows that optimal default size for the number of Tx ring ...

	What are the Optimal Settings for Threshold Values?

	Compile With the Correct Optimization Flags
	PREFETCHWT1

	Running with Optimized Command-Line Options
	Tools—dpdk/tools/cpu_layout.py
	Correct use of the Channel Parameter

	DPDK Micro-Benchmarks and Auto-Tests
	Time_cache_line_switch ()
	Perf_test()
	ring_perf_auto_test
	DPDK Micro-Benchmarks and Auto-Tests

	Compiler Optimizations
	Performance Optimization and Weakly Ordered Considerations

	Detailed Test Output
	Pmd_perf_autotest
	Hash Table Performance Test Results
	Memcpy_perf_autotest Test Results
	Timer_perf_autotest Test Results

	Profiling DPDK Code with Intel® VTune™ Amplifier
	Introduction
	Outline
	Install Linux
	Prior to Install
	After Install

	Install DPDK
	Download the DPDK

	Install the Tools
	Install Kernel Debug Symbols
	Getting Started With Intel VTune Amplifier
	Key Features
	Algorithm Analysis
	Microarchitecture Analysis
	Platform Analysis
	Compute-Intensive Applications Analysis
	Source Analysis
	Managed Code Analysis
	Custom Analysis

	Remote Collection Modes
	Stepping Back to See the Big Picture
	Pointing to the Source Directory
	Profiling DPDK Code with VTune Amplifier
	Profiling DPDK Code with VTune Amplifier
	Profiling Distributor Perf Autotest
	Analysis Details

	Profiling Rings
	Profiling ring_perf_autotest

	Conclusion and Next Steps
	References

	Additional Tools
	Intel® Memory Latency Checker
	Features
	Screenshots

	Processor Counter Monitor* (PCM)
	Using PCM to Evaluate a DPDK Application
	Screenshots

	Summary

	Acknowledgements

