

DPDK Cookbook

Featuring: Solution-Oriented Mini Sections User-Friendly Screen shots Links to Videos and Online Contents

Overview

The DPDK Cookbook modules teach you everything you need to know to be productive with the <u>Data Plane Development</u> <u>Kit (DPDK)</u>. Here's an overview of the topics covered:

- Build Your Own DPDK Traffic Generator—DPDK-In-A-Box
- DPDK Transmit and Receive—DPDK-in-a-Box
- Build Your Own DPDK Packet Framework with DPDK-In-A-Box
- DPDK Data Plane—Multicores and Control Plane Synchronization
- DPDK Performance Optimization Guidelines White Paper
- Profiling DPDK Code with Intel[®] VTune[™] Amplifier
- References

I highly recommend that you devour the <u>Architecture Overview</u> section of the Programmer's Guide at dpdk.org. This excellent document, authored by architects and designers, goes into both the how and the why of DPDK design.

Change is the only constant in this fast-moving field, with some of these components delivering new releases every three months. Please refer to the related user guides and release notes to be sure you use the latest version when applying these cookbook recipes. I provide links to many resources, and some of those will inevitably change as well, so please accept my apology in advance if you encounter a broken link.

Acknowledgements

I'm grateful to many people for their valuable input, including early access customers, architects, design engineers, managers, platform application engineers, DPDK community, and Intel® Network Builders. In particular, this cookbook is possible only due to the encouragement, support, and reviews from Jim St Leger, Venky Venkatesan, Tim O'Driscoll, John DiGiglio, John Morgan, Cristian Dumitrescu, Sujata Tibrewala, Debbie Graham, Ray Kinsella, Jasvinder Singh, Deepak Jain, Steve Cunming, Heqing Zhu, Dave Hunt, Kannan Ramia Babu, Walt Gilmore, Mike Glynn, Curran Greg, Ai Bee Lim, Larry Wang, Nancy Yadav, Chiu-Pi Shih, Deepak S, Anand Jyoti, Dirk Blevins, Andrew Duignan, Todd Langley, Joel Auernheimer, Joel Schuetze, and Eric Heaton.

About the Author

Muthurajan Jayakumar (M Jay) has worked with the DPDK team since 2009. He joined Intel in 1991 and has worked in various roles and divisions with Intel, including roles as a 64-bit CPU front side bus architect, and as a 64-bit HAL developer. M Jay holds 21 US patents, both individually and jointly, all issued while working at Intel. M Jay was awarded the Intel Achievement Award in 2016, Intel's highest honor based on innovation and results. Before joining Intel, M Jay architected a CPU node board for a

1000-node machine design in India. M Jay won a gold medal for graduating with the university first rank ECE batch in 1984, from TCE, Madurai.

Please send your feedback about the DPDK Cookbook to Muthurajan.Jayakumar@intel.com.

Getting Started: Documentation and Tools

Key Documentation

Dpdk.org contains a rich set of documentation. The table below highlights some of the guides and other materials that you'll find useful to familiarize yourself with DPDK programming. You can read the guides online or download many of them in PDF form.

Programmers Guide	The guide you must read first.	
Quick Start Guide	Simple forwarding test with pcap PMD, which works with	
	any NIC.	
API Documentation	All libraries and APIs.	
Supported NICs	The list of supported NICs grows with each new release of DPDK.	
	Please refer to this document for the latest list.	
Network Interface Controller	Poll mode drivers for supported NICs—virtual as well as	
<u>Drivers</u>	physical.	
DPDK Sample Application	More than 40 sample applications—find the closest match	
<u>User Guide</u>	to your application.	
DPDK Testpmd Application	The key DPDK tool with port, NIC set, and show commands.	
<u>User Guide</u>		
Release Notes	The latest features, issues addressed, and issues to be	
	addressed in the future.	
Getting Started Guide for	Build, install, and Getting Started.	
Linux*		
How-to Guides	Covers topics such as live migration of a VM with SR-IOV VF,	
	live migration of a VM with Virtio on host running	
	vhost_user, a flow bifurcation guide, and more.	
Crypto Device Drivers Contains Crypto Device Supported Functionality Matrice		
	and details about support for many drivers, including:	
	AESN-NI Multi Buffer Crypto Poll Mode Driver	
	AES-NI GCM Crypto Poll Mode Driver	
	KASUMI Crypto Poll Mode Driver	
	Null Crypto Poll Mode Driver	
	SNOW 3G Crypto Poll Mode Driver	
	Quick Assist Crypto Poll Mode Driver	
FAQ	Frequently asked questions.	
Getting Started Guide for	e for DPDK FreeBSD Linux GSG.	
FreeBSD		
Contributor's Guidelines	Do you want to contribute code and/or documentation to	
	the DPDK community?	

Frequently Used Tools and Scripts

The scripts listed in this section can be found in the tools or scripts subdirectories of your DPDK install. Below are some frequently used tools and scripts to study.

./tools/setup.h	Menu-driven setup script	In tools subdirectory
./tools/dpdk_nic_bind.p y	For binding NIC to driver	In tools subdirectory
./tools/cpu_layout.py	For icore number and layout	In tools subdirectory
./tools/pmdinfo.py	For PMD info	In tools subdirectory
http://dpdk.org/doc/dts/gsg	DPDK Test Suite (DTS)	Getting Started Guide—DTS

Tool Usage Examples

Finding Memory Information with Linux* Command /proc/meminfo

root@test-Minno	who and - Turk	-DA-DIATEODM / home / test# cat / proc/ma	minfo
MemTotal ·	1030152 6		nemo
MemEree:	155802 kg		
MemAvailable:	200044 kF		
Ruffers:	12068 kF		
Cached:	300116 kg		
SwanCached:	1/106 VE		
Active:	519924 VE		
Toactivet	165260 VE		
Active(apon):	403200 KE		
Tractive(anon):	10/1212 LE		
Activo(filo):	111100 LD		
Active(file):	60440 kg		
Unavistable:	00448 KC		
Mlacked.	22 KC		
SuppTotal:	1006556 kg		
SwapTotat:	1960330 KE		
Swaprree:	155/500 KE		
Ulrty:	0 KE		
Writeback:	CEEAAA KE		
AnonPages:	055444 KE		
mapped:	14/228 KE		
Shmem:	149330 KE		
Stap:	53084 KE		
SReclaimable:	25100 KE		
SUNFECTAIM:	27984 KE		
KernelStack:	7392 KE		
Pagelables:	30136 KE		
NFS_Unstable:	0 KE		
Bounce:	0 KE		
WritebackImp:	0 KE		
CommitLimit:	2615140 KE		
Committed_AS:	4444120 KE		
VmallocTotal:	34359738367	кв	
VmallocUsed:	0 KE		
VmallocChunk:	0 KE		
HardwareCorrupte	ed: 0 kE		
AnonHugePages:	215040 KE		
Cmalotal:	0 KE		
CmaFree:	0 KE		
HugePages_Total	: 333		
HugePages_Free:	0		
HugePages_Rsvd:	0		
HugePages_Surp:	0		
Hugepagesize:	2048 kE		
DirectMap4k:	95824 kE		
DirectMap2M:	1892352 kE		
root@test-Minno	wboard-Turbo	-D0-PLATFORM:/home/test#	

Finding Huge Page Information with ./setup.sh

./setup.sh has an option to list huge page information from **/proc/meminfo** (option 29 in the version of DPDK shown here).

Step 4: Other tools
[29] List hugepage info from /proc/meminfo
Step 5: Uninstall and system cleanup
[30] Unbind NICs from IGB UIO or VFIO driver [31] Remove IGB UIO module [32] Remove VFIO module [33] Remove KNI module [34] Remove hugepage mappings [35] Exit Script Option: 29
AnonHugePages: 198656 kB
HugePages_Iotal: 256
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Press enter to continue

Binding/ Unbinding NIC with ./dpdk_nic_bind.py

Exa	nples:	
то	display current device status: dpdk_nic_bind.pystatus	
то	pind eth1 from the current driver and move to use igb_uio dpdk_nic_bind.pybind=igb_uio eth1	
То	unbind 0000:01:00.0 from using any driver dpdk_nic_bind.py -u 0000:01:00.0	
то	pind 0000:02:00.0 and 0000:02:00.1 to the ixgbe kernel driver dpdk_nic_bind.py -b ixgbe 02:00.0 02:00.1	

Finding CPU layout with ./cpu_layout.py

CPU info can also be found with DPDK script ./cpu_layout.py.

<pre>root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test/dpdk/tools# ls cpu_layout.py dpdk_nic_bind.py pmdinfo.py setup.sh root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test/dpdk/tools# ./cpu_layout.py</pre>
Core and Socket Information (as reported by '/proc/cpuinfo')
cores = [0, 2] sockets = [0]
Socket 0
Core 0 [0] Core 2 [1] root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test/dpdk/tools#

More Scripts in Scripts Subdirectory

Fill in the description for each script:

Auto-config-h.sh	
Check-git-log.sh	
Check-maintainers.sh	
Checkpatches.sh	
Cocci.sh	
Depdirs-rule.sh	
Gen-build-mk.sh	
Gen-config-h.sh	
Load-devel-config.sh	
Relpath.sh	
Test-build.sh	
Test-null.sh	
Validate-abi.sh	

Build Your Own DPDK Traffic Generator—DPDK-In-A-Box

Introduction

The purpose of this cookbook module is to guide you through the steps required to build a <u>Data</u> <u>Plane Development Kit</u> (<u>DPDK</u>) based traffic generator.

We built a DPDK-in-a-Box using the <u>MinnowBoard Turbot* Dual Ethernet Dual-Core</u>, which is a low cost, portable platform based on the Intel Atom[®] processor E3826. For the OS, we installed Ubuntu* 16.04 client with DPDK. The instructions in this document are tested on our DPDK-in-a-Box, an Intel[®] Core[™] i7-5960X processor Extreme Edition brand desktop, and an Intel[®] Xeon[®] Scalable processor. You can use any Intel[®] architecture platform to build your own device.

For the traffic generator, we use the <u>TRex*</u> realistic traffic generator. The TRex package is self-contained and can be easily installed.

Any Intel[®] processor-based platform will work—desktop, server, laptop, or embedded system.

The DPDK Traffic Generator

Block Diagram

Software

- Ubuntu 16.04 Client OS with DPDK installed
- TRex Realistic Traffic Generator

Hardware

Our DPDK-in-a-Box uses a MinnowBoard Turbot Dual Ethernet Dual-Core single board computer:

- Out of the three Ethernet ports, the two at the bottom are for the traffic generator (dual gigabit Intel[®] Ethernet Controller I350). Connect a loopback cable between them.
- Connect the third Ethernet port to the Internet (to download the TRex package).
- Connect the keyboard and mouse to the USB ports.
- Connect a display to the HDMI Interface.

The MinnowBoard Turbot* Dual Ethernet Dual-Core

The MinnowBoard includes a microSD card and an SD adapter.

- Insert the microSD card into the microSD Slot. The SD adapter should be ignored and not used.
- Power on the DPDK-in-a-Box system. Ubuntu will be up and running right away.

Install and Configure the TRex* Traffic Generator

Choose the username test and assign the password tester (or use the username and password specified by the Quick Start Guide that comes with the platform).

• Log on as root and verify that you are in the /home/test directory with the following two commands:

```
# sudo su
# ls
```

```
root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test# ls
Desktop Documents Downloads dpdk examples.desktop Music Pictures Public Templates Videos
```

Note NIC Information

The configuration file for the traffic generator needs the PCI bus-related information and the MAC address. Note this information first using Linux* commands, because once the DPDK or packet generator is run, these ports are unavailable to Linux.

- 1. For PCI bus-related NIC information, type the following command:
- # lspci

You will see the following output. Note down that for port 0 the bus, function, and device number information is 03:00.0, and for port 1 the information is 03:00.1.

cost@test.Wipperbased Turbet D@ DIATEODN:/here/test/ded/# least
Pool a lock higher the construction the process and the spect
00:00.0 Host bridge: Intel Corporation Acom Processor Z30xxx/Z37xxx Series Sol Transaction Register (rev 11
00:02.0 VGA compatible controller: Intel corporation Atom Processor 230xxx/237xxx Series Graphics & Display
00:14.0 USB controller: Intel Corporation Atom Processor Z36xxx/Z37xxx, Celeron N2000 Series USB xHCI (rev
00:1a.0 Encryption controller: Intel Corporation Atom Processor Z36xxx/Z37xxx Series Trusted Execution Engi
00:1b.0 Audio device: Intel Corporation Atom Processor Z36xxx/Z37xxx Series High Definition Audio Controlle
00:1c.0 PCI bridge: Intel Corporation Atom Processor E3800 Series PCI Express Root Port 1 (rev 11)
00:1c.2 PCI bridge: Intel Corporation Atom Processor E3800 Series PCI Express Root Port 3 (rev 11)
00:1c.3 PCI bridge: Intel Corporation Atom Processor E3800 Series PCI Express Root Port 4 (rev 11)
00:1f.0 ISA bridge: Intel Corporation Atom Processor Z36xxx/Z37xxx Series Power Control Unit (rev 11)
00:1f.3 SMBus: Intel Corporation Atom Processor E3800 Series SMBus Controller (rev 11)
02:00.0 Ethernet-controller- Realtek Seniconductor Co Etd: RTL8444/8468/8411 PCI Express Gigabit Ethernet
03:00.0 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)
03:00.1 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)
root atest-Minnowboard-Turbot-DO-PLATEORN >/bene/test/dodk#

2. Find the MAC address with this command:

ifconfig

You will see the following output. Note down that for port 0 the MAC address is 00:30:18:CB:F2:70 and for port 2 the MAC address is 00:30:18:CB:F2:71.

Note that the first port in the screenshot below, enp2s0, is the port connected to the Internet. No need to make a note of this.

root@test enp2s0	-Minnowboard-Turbot-D0-PLATFORM:/home/test# ifconfig Link encap:Ethernet HWaddr 00:08:a2:09:f2:1d inet addr:192.168.0.11 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::56cd:7409:7867:9572/64 Scope:Link inet6 addr: 2601:647:4902:79c0:6a14:5825:3e6c:de09/64 Scope:Global inet6 addr: 2601:647:4902:79c0:ac82:14bd:f4da:e627/64 Scope:Global UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:82453 errors:0 dropped:0 overruns:0 frame:0 TX packets:56424 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:60196138 (60.1 MB) TX bytes:17006340 (17.0 MB)
enp3s0f0	Link encap:Ethernet HWaddr 00:30:18:cb:f2:70 inet6 addr: fe80::ef12:bbrd.4cff.5034/64 scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:103 errors:0 dropped:0 overruns:0 frame:0 TX packets:135 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:20949 (20.9 KB) TX bytes:22055 (22.0 KB) Memory:90500000-9057ffff
enp3s0f1	Link encap:Ethernet HWaddr 00:30:18:cb:f2:71 inet6 addr: fe80::2ad4:3545.f1fa:73f0/61 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:85 errors:0 dropped:0 overruns:0 frame:0 TX packets:146 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:16637 (16.6 KB) TX bytes:24515 (24.5 KB) Memory:90600000-9067ffff
lo	Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:10234 errors:0 dropped:0 overruns:0 frame:0 TX packets:10234 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1 RX bytes:1072552 (1.0 MB) TX bytes:1072552 (1.0 MB)

Here's what I recorded after these two steps:

Item	Port 0	Port 1
PCI Bus-related NIC info (from lspci)	03:00.0	03:00.1
MAC address	00:30:18:CB:F2:70	00:30:18:CB:F2:71

Fill the following table with the information you gathered from your specific platform:

Item	Port 0	Port 1
PCI Bus-related NIC info (from lspci)		
MAC address		

If you succeeded in using *ifconfig* to get the port information described above, skip the next section and move on to the section titled *Install the Traffic Generator*.

Troubleshooting – Ports Not Found

What if you don't see both ports in response to the ifconfig command? One possible reason might be that you've run the DPDK based application previously and the application might have claimed those ports, making them unavailable to the kernel. In that case, you need to unbind the ports from the DPDK so that the kernel can claim them and you can find the MAC address with the ifconfig command.

Root Cause

ifconfig is not showing the two ports below. Why?

```
root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test/dpdk/tools# ifconfig
         Link encap:Ethernet HWaddr 00:08:a2:09:f2:1d
enp2s0
          inet addr:192.168.0.6 Bcast:192.168.0.255 Mask:255.255.255.0
          inet6 addr: 2601:647:4902:79c0:b98c:9a9e:55f6:8314/64 Scope:Global
          inet6 addr: 2601:647:4902:79c0:8712:fcc2:af9:a689/64 Scope:Global
         inet6 addr: fe80::3603:79d2:fe9e:8468/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:60216 errors:0 dropped:0 overruns:0 frame:0
         TX packets:53600 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
         RX bytes:33276201 (33.2 MB) TX bytes:10484345 (10.4 MB)
lo
         Link encap:Local Loopback
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:65536
                                         Metric:1
         RX packets:15976 errors:0 dropped:0 overruns:0 frame:0
          TX packets:15976 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1
         RX bytes:1594031 (1.5 MB) TX bytes:1594031 (1.5 MB)
root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test/dpdk/tools#
```

The reason that *ifconfig* is unable to find the two ports is possibly because the DPDK application was previously run and was aborted without releasing the ports, or it might be that a DPDK script runs automatically after boot and claims the ports. Regardless of the reason, the solution below will enable *ifconfig* to show both ports.

Solution

1. Run ./setup.sh in the directory /home/test/dpdk/tools.

```
root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test/dpdk/tools# ls
cpu_layout.py dpdk_nic_bind.py pmdinfo.py setup.sh
root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test/dpdk/tools# ./setup.sh
```

2. Display current Ethernet device settings.

Select Display current Ethernet device settings (option 23 in this case).

You can see that two ports are claimed by the DPDK driver.

The NICs in use by DPDK (specifically IGB-UIO)

3. Unbind the first port from IGB UIO.

Step	5: Uni	install and system cleanup
[30] [31] [32] [33] [34]	Unbind Remove Remove Remove Remove	NICs from IGB UIO or VFIO driver IGB UIO module VFIO module KNI module hugepage mappings

Select option 30 and then enter the PCI address of device to unbind:

4. Bind the kernel driver igb to the device:

If the inputs entered are correct, the script acknowledges OK.

5. Verify by displaying current Ethernet device settings.

Success!

Above you will see the first port 0000:30:00.0 bound to the kernel.

Repeat steps 3–5 to unbind the second port, 0000:30:00.1, from IGB UIO and bind to IGB.

Use the ifconfig command to show that both ports are bound back to the kernel.

root@test	-Minnowboard-Turbot-D0-PLATFORM:/home/test/dpdk# ifconfig
enp2s0	Link encap:Ethernet HWaddr 00:08:a2:09:f2:1d
	inet addr:192.168.0.6 Bcast:192.168.0.255 Mask:255.255.255.0
	inet6 addr: 2601:647:4902:79c0:249:ce31:c570:85a/64 Scope:Global
	inet6 addr: fe80::a572:b28f:7fd6:5336/64 Scope:Link
	inet6 addr: 2601:647:4902:79c0:6cc6:fc3c:5f31:d114/64 Scope:Global
	UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
	RX packets:21515 errors:0 dropped:0 overruns:0 frame:0
	TX packets:18422 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:1000
	RX bytes:6537879 (6.5 MB) TX bytes:5099447 (5.0 MB)
enp3s0f0	Link encap:Ethernet HWaddr 00:30:18:cb:f2:70
•	UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
	RX packets:21 errors:0 dropped:0 overruns:0 frame:0
	TX packets:115 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:1000
	RX bytes:5995 (5.9 KB) TX bytes:21997 (21.9 KB)
	Memory:90500000-9057ffff
enp3s0f1	Link encap:Ethernet HWaddr 00:30:18:cb:f2:71
	inet6 addr: fe80::f596:8de9:9963:4008/64 Scope:Link
	UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
	RX packets:2 errors:0 dropped:0 overruns:0 frame:0
	TX packets:54 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:1000
	RX bytes:486 (486.0 B) TX bytes:10474 (10.4 KB)
	Memory:90600000-9067fff
10	Link encap:Local Loopback
	inet addr:127.0.0.1 Mask:255.0.0.0
	inet6 addr: ::1/128 Scope:Host
	UP LOOPBACK RUNNING MTU:65536 Metric:1
	RX packets:6303 errors:0 dropped:0 overruns:0 frame:0
	TX packets:6303 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:1
	RX bytes:582195 (582.1 KB) TX bytes:582195 (582.1 KB)

Install the Traffic Generator

In the following sections, we will assume that you successfully found the ports and have noted down the MAC addresses.

Keeping in mind my earlier note that change is the only constant thing in this fast-moving field, refer to the current <u>TRex</u> <u>user manual</u> to make sure you have the latest script names, directory structure, and release information relevant to this recipe. Enter the following commands:

pwd
mkdir trex
cd trex
wget -no-cache http://trex-tgn.cisco.com/trex/release/latest

You should see that the install is complete and saved in /home/test/trex/latest:

The next step is to untar the package:

tar -xzvf latest

Below you see that version 2.08 is the latest version at the time of this screen capture:

ls -al

You will see the directory with the version installed. In this exercise, the directory is v2.08, as shown below in response to the ls -al command. Change directory to the version installed on your system; for example, cd <dir name with version installed>:

cd v2.08

```
root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test/trex# ls -al
total 142640
drwxr-xr-x 3 root root 4096 Aug 26 01:48 .
drwxr-xr-x 18 test test 4096 Aug 26 01:44 .
-rw-r--r-- 1 root root 146045560 Aug 24 14:35 latest
drwxr-xr-x 11 33066 floppy 4096 Aug 24 14:35 v2.08
root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test/trex# cd v2.08
root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test/trex# cd v2.08#
```

ls -al

You will see the file t-rex-64, which is the traffic generator executable:

total 17636	i4			NC DO ILN				
drwxr-xr-x	11	33066	floppy	4096	Aug	24	14:35	
drwxr-xr-x	3	root	root	4096	Aug	26	01:48	
drwxr-xr-x	6	33066	floppy	4096	Aug	24	14:34	automation
drwxr-xr-x	2	33066	floppy	4096	Aug	24	14:34	avl
-rwxr-xr-x	1	33066	floppy	27200827	Aug	24	14:34	bp-sim-64
-rwxr-xr-x	1	33066	floppy	16798769	Aug	24	14:34	bp-sim-64-debug
drwxr-xr-x	2	33066	floppy	4096	Aug	24	14:34	cap2
drwxr-xr-x	2	33066	floppy	4096	Aug	24	14:34	cfg
- FWXF - XF - X	1	33066	floppy	5501	Aug	24	14:34	daemon_server
- FWXF - XF - X	1	33066	floppy	2207	Aug	24	14:34	doc_process.py
-rwxr-xr-x	1	33066	floppy	26985	Aug	24	14:34	dpdk_nic_bind.py
- FWXF - XF - X	1	33066	floppy	33325	Aug	24	14:34	dpdk_setup_ports.py
drwxr-xr-x	2	33066	floppy	16384	Aug	24	14:34	exp
drwxr-xr-x	22	33066	floppy	4096	Aug	24	14:34	external_libs
-rwxr-xr-x	1	33066	floppy	2291	Aug	24	14:34	find_python.sh
drwxr-xr-x	15	33066	floppy	4096	Aug	24	14:34	ko
- rw-rr	1	33066	floppy	3150071	Aug	24	14:34	libzmq.so.3
- rwxr-xr-x	1	33066	floppy	11148	Aug	24	14:34	master_daemon.py
drwxr-xr-x	3	33066	floppy	4096	Aug	24	14:34	python-lib
-rwxr-xr-x	1	33066	floppy	802	Aug	24	14:34	run_functional_tests
- FWXF - XF - X	1	33066	floppy	832	Aug	24	14:34	run_regression
drwxr-xr-x	6	33066	floppy	4096	Aug	24	14:34	stl
- FWXF - XF - X	1	33066	floppy	403	Aug	24	14:34	stl-sim
- rwxr-xr-x	1	33066	floddy	34390661	Aud	24	14:34	t-rex-64
-rwxr-xr-x	1	33066	floppy	902	Aug	24	14:34	t-rex-64
-rwxr-xr-x	1	33000	Toppy	20043174	Aug	24	14.34	_t-rex-64-debug
-rwxr-xr-x	1	33066	теорру	902	Aug	24	14:34	t-rex-64-debug
-rwxr-xr-x	1	33066	тгорру	28812951	Aug	24	14:34	_t-rex-64-debug-o
-rwxr-xr-x	1	33066	гторру	902	Aug	24	14:34	t-rex-64-debug-0
-rwxr-xr-x	1	33066	теорру	35101658	Aug	24	14:34	_t-rex-64-0
-rwxr-xr-x	1	33066	горру	902	Aug	24	14:34	t-rex-64-0
-rwxr-xr-x	1	33000	горру	2086	Aug	24	14:34	trex-crg
-rw-rr	1	33066	горру	6077140	Aug	24	14:35	trex_client_v2.08.tar.gz
-rwxr-xr-x	1	33066	горру	444	Aug	24	14:34	Trex-console
- FWXF - XF - X	1	33066	TLOPPY	5501	AUQ	24	14:34	trex daemon server

Configure the Traffic Generator

The good news is that the TRex package comes with a sample config file cfg/simple_cfg.yaml. Copy that to /etc/trex_cfg.yaml and edit the file by issuing the following commands, making sure that you're in your /home/test/trex/<your version> directory:

pwd

```
# cp cfg/simple cfg.yaml /etc/trex cfg.yaml
```

gedit /etc/trex cfg.yaml

Edit the file as shown below with the applicable NIC information you gathered in previous steps:

YAML
Tab Width: 8
 Ln 1, Col 1
 INS

Below is a line-by-line description of the configuration information required for /etc/trex cfg.yaml:

- Port limit should be 2 (since DPDK-in-a-Box has two ports)
- Version should be 2
- Interfaces should be the PCI bus ports you gathered using lspci. In this exercise they are ["03:00.0", "03:00.1"]
- Port_information contains a dest_mac, src_mac pair, which will be in the packet header of the traffic generated. The first pair is for port 0. Since port 0 is connected to port 1, the first dest_mac is the MAC address of port 1. The second pair is for port 1. Since port 1 is connected to port 0, the second dest_mac is the MAC address of port 0.

Please note that when you connect an appliance to which traffic must be injected, the dest_mac addresses will be that of the appliance.

Note Platform lcore Count

This section is for informational purposes only.

cat /proc/cpuinfo will give you the logical core (lcore) information as shown in the Exercises section.

Why is this information useful?

The command line below that runs the traffic generator uses the -c option to specify the number of lcores to be used for the traffic generator. You want to know how many lcores exist in the platform. Hence, issuing cat /proc/cpuinfo and eyeballing the number of lcores that are available in the system will be helpful.

Run the Traffic Generator

sudo ./t-rex-64 -f cap2/dns.yaml -c 1 -d 100

What are the parameters -f, -c, and -d?

- -f for YAML traffic configuration file
- -c for number of cores. Monitor the CPU percentage of TRex—it should be ~50 percent. Use cores accordingly
- -d for duration of the test (sec). Default: 0

Below are three output screens: 1) During the traffic run, 2) Linux top command output, and 3) Final output after the completion of the run.

😕 🗐 🕤 root@te	st-Minnov	wboard	Turbot-D	0-PLATF	ORM: /h	nome/test/trex/v2.08
Per port stats	table					
ports			0		1	
opackate I			5 1	• • • • • • • •	15	
obutes		115			1395	
inackets		115	21		15	
ibutes		130	21		1155	
ierrors		133			1133	
			Ă		Å	
TX BW	584.	18 bo	s I	705.57	bos	
		F				
Global stats e	nabled					
Cpu Utilizatio	n : 0.0	% 0	.0 Gb/cd	ore		
Platform facto	r : 1.0					
Total-Tx		1.2	9 Kbps			
Total-Rx		1.2	9 Kbps			
Total-PPS		1.9	0 DDS			
Total-CPS	:	0.9	7 cps			
Expected-PPS		2.0	o pps			
Expected-CPS		1.0	0 cps			
Expected-BPS		1.3	0 Kbps			
Active-flows		0	Clients	5:	511	Socket-util : 0.0000 %
Open-flows		15	Servers	5 :	255	Socket : 15 Socket/Clients : 0.0
drop-rate	1	0.0	0 bps			
current time	: 27.0	9 sec				
The second s	States and a state					

Screen output showing traffic during run (15 packets so far Tx and Rx).

Thread %Cpu(s KiB Mo KiB Si	ds: 41 s): 53 em : wap:	18 total 3.0 us, 1939152 1986556	2.0 tota tota	2 running sy, 0.0 al, 296 al, 1639	, 416 s ni, 42 884 fre 292 fre	leeping .0 id, e, 1122 e, 347	3.0 2584 7264	0 s 0 wa 4 us 4 us	toppe , 0. sed, sed.	d, 0 zombie 0 hi, 0.0 si, 0.0 st 519684 buff/cache 454792 avail Mem
PID	USER	PR	NI	VIRT	RES	SHR S	S %(CPU	%MEM	TIME+ COMMAND
16986	root	20	0	893584	9400	5852	R 99	9.3	0.5	0:45.47 lcore-slave+
1956	test	20	Θ	662648	20424	11936 9	S 2	2.6	1.1	0:32.98 gnome-termi+
1441	test	20	0	1491584	89496	23572 9	5	1.6	4.6	4:06.93 compiz
16983	root	20	Θ	893584	9400	5852	S 1	1.6	0.5	0:05.17 t-rex-64-0
 775	TOOT	20	v	379904	32092	23024	5	1.5	1.7	1.20.03 XOLD
16114	root	20	0	49268	3468	2444	R 1	1.0	0.2	1:07.05 top
589	root	20	Θ	173360	2100	1888	5 (0.3	0.1	0:00.07 thermald
16925	root	20	0	0	0	0 9	5 (0.3	0.0	0:00.13 kworker/u8:3
1	root	20	Θ	185372	3520	2192 9	5 (0.0	0.2	0:04.57 systemd
2	root	20	Θ	0	0	0 9	S (0.0	0.0	0:00.00 kthreadd
3	root	20	0	0	0	0 9	5 (0.0	0.0	0:00.43 ksoftirgd/0
5	root	0	-20	0	θ	0 9	5 (0.0	0.0	0:00.00 kworker/0:0H
7	root	20	θ	0	0	0 9	S (0.0	0.0	0:07.56 rcu_sched
8	root	20	Θ	0	0	0 9	5 (0.0	0.0	0:00.00 rcu bh

Output of top –H command during the run.

```
🔋 🗇 🕕 root@test-Minnowboard-Turbot-D0-PLATFORM: /home/test/trex/v2.08
 precent
               : -nan %
 histogram
 m_total_bytes
                                                            15.82 Kbytes
 m_total_pkt
                                                           200.00 pkt
 m_total_open_flows
                                                           100.00 flows
 m_total_pkt
                                                   : 200
 m_total_open_flows
                                                   : 100
 m_total_close_flows
                                                   : 100
 m_total_bytes
                                                   : 16200
port : 0
.....
 opackets
                                                    : 100
                                                    : 7700
 obytes
                                                    : 100
 ipackets
                                                    : 9300
 ibytes
 Tx :
           291.61 bps
port : 1
                                                    : 100
 opackets
 obytes
                                                    : 9300
 ipackets
                                                    : 100
 ibytes
                                                    : 7700
 Tx :
            352.41 bps
 Cpu Utilization : 0.0 % 0.0 Gb/core
 Platform_factor : 1.0
 Total-Tx : 644.02
Total-Rx : 643.99
Total-PPS : 0.95
                                      bps
                                      bps
 Total-PPS
Total-CPS
                                      pps
                              0.47 Cps
Expected-PPS : 2.00 pps
Expected-CPS : 1.00 cps
Expected-BPS : 1.30 Kbps
Active-flows:0Clients:511Socket-util:0.0000 %Open-flows:100Servers:255Socket:0Socketdrop-rate:0.00bps::::::::
                                                     255 Socket : 0 Socket/Clients : 0.0
 summary stats
Total-pkt-drop : 0 pkts
Total-tx-bytes : 17000 bytes
Total-tx-sw-bytes : 0 bytes
Total-rx-bytes : 17000 byte
Total-tx-pkt : 200 pkt
Total-rx-pkt : 200 pkt
Total-sw-tx-pkt : 0 pkts
Total-sw-err : 0 pkts
                          : 200 pkts
                          : 200 pkts
root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test/trex/v2.08#
```

Screen output after completing the run (100 packets Tx and Rx).

Congratulations! By completing the above hands-on exercise, you have successfully built your own DPDK based traffic generator.

Next Steps

As a next step, you can connect back-to-back two DPDK-in-a-Box platforms, and use one as a traffic generator and the other as a DPDK application development and test vehicle.

Exercises

- 1. How would you configure the traffic generator for different packet lengths?
- 2. To run the traffic generator forever, what should be the value of -d?
- 3. How would you measure latency (assuming you have more cores)?

4. Reason out the root cause and find the solution by looking up the error, "Note that the uio or vfio kernel modules to be used should be loaded into the kernel before running the dodk-devbind.py script" in <u>Chapter 3</u> of the DPDK.org document *Getting Started Guide for Linux*.

DPDK Transmit & Receive Loopback—DPDK-In-A-Box

Introduction

In the previous module, Build Your Own Traffic Generator—DPDK-In-A-Box, you learned how to build a DPDK traffic generator. Once you've done this, the next step is to connect two platforms back to back, and use one as the DPDK traffic generator and the other as a DPDK application development and test vehicle. But what if you have just one system? Read on to learn how to generate traffic and run your DPDK application on the same machine.

Traffic and the DPDK Application on a Single System

The purpose of this article is to show how to configure a single system to run the DPDK application and provide autogenerated traffic. To provide the traffic, we will showcase **testpmd**, which many DPDK developers and customers consider to be the stethoscope of a DPDK developer.

For your system, you can use any Intel[®] platform. The instructions in this article have been tested with an Intel[®] Xeon[®] processor-based desktop, server, and laptop using either the DPDK traffic generator you built from scratch, or a commercially available DPDK in-a-Box. This is a low-cost, portable platform based on an Intel Atom E3826 processor. At the time this article was published, it was possible to purchase a DPDK-in-a-Box. Look online if you're interested in this option.

If you are new to DPDK, spend some time reading the <u>DPDK Programmer's Guide</u> at dpdk.org.

Stethoscope of DPDK Developer—Testpmd

Auto-Generating Traffic with tx_first Parameter

Challenge

Data plane applications need a traffic generator. The DPDK provides both RX and TX functionality and DPDK applications build poll mode drivers with the RX and TX libraries. With the DPDK poll mode driver, the RX

functionality of the driver polls ingress traffic, and after applicable processing, the TX functionality of the poll driver transmits the processed data to the egress interface.

Because the start of the data path involves polling for packets received, data plane applications need a traffic generator. But here we have only one platform. How do you configure the application for this traffic?

Solution

This is where the testpmd tx_first parameter comes in handy. When testpmd is started with the tx_first parameter, the TX function gets executed first—hence the name tx_first—and with an external cable connecting RX and TX, those packets are now available for the RX function to poll. Thus, you have achieved running traffic through testpmd without an external traffic generator.

The following screenshots show how to start testpmd and run tx first with a loopback cable in place.

Starting testpmd

./x86_64-native-linuxapp-gcc/app/testpmd -- -i starts <u>testpmd</u>. -i stands for interactive. Please refer to the <u>Testpmd Application User Guide</u> at dpdk.org and to the article <u>Testing DPDK Performance and Features with</u> <u>TestPMD</u> on Intel[®] Developer Zone for more information about how to build and run testpmd.

While you can use the above command in your specific platform, it is available as a script named run.sh in DPDK-in-a-Box.

root@test-Minnowboard-Turbot-D0-PLATFORM:/home/test/dpdk# cat run.sh ./x86_64-native-linuxapp-gcc/app/testpmd -- -i

😣 🖲 🗊 roc	t@test-Minno	wboard-Turbot-D0-P	LATFORM: /	home/test/dpdk
test@test-l [sudo] pass root@test-l /home/test	Minnowboard- sword for te Minnowboard-	Turbot-D0-PLATFO st: Turbot-D0-PLATFO	RM:~\$ sudo RM:/home/t	su est# pwd
root@test-	Minnowboard-	Turbot-D0-PLATF0	RM:/home/t	est# ls
Desktop	Downloads	examples.desktop	Pictures	Templates
Documents	dpdk	Music	Public	Videos
root@test-	Minnowboard-	Turbot-D0-PLATFO	RM:/home/t	est# cd dpdk/
root@test-I	Minnowboard-	Turbot-D0-PLATFO	RM:/home/t	est/dpdk# ls′
app	doc	lib	Makefile	run.sh
build	drivers	LICENSE.GPL	mk	scripts
buildtools	examples	LICENSE.LGPL	pkg	tools
config	GNUmakefil	e MAINTAINERS	README	x86_64-native-linuxapp-gcc
root@test-I	Minnowboard-	Turbot-D0-PLATFO	RM:/home/t	est/dpdk# ./run.sh

./run.sh starts testpmd, as shown below, yielding the testpmd prompt. Look at the flowchart. What does the initial portion of testpmd do? And what does the runtime portion of testpmd do? Our next step is to initialize testpmd.

Initialization

Initialization consists of three steps as shown below.

- 1. EAL (Environment Abstraction Layer)—Find the number of cores and probe PCI devices
- 2. Initialize memory zones and memory pools
- 3. Configure the ports for data path operation

Operation

After initialization, data path operations start and continue in a loop. The <u>Poll Mode Driver (PMD) section</u> of the *DPDK Programmer's Guide* is a must-read chapter. It will help you understand and appreciate how you can get the juice out of your system and achieve the desired throughput.

Optimization Knobs You Should Understand

You may want to read through the documentation to fully understand the optimization knobs like those shown in the last paragraph of the output from the start tx first command.

For example, you can note that the RX descriptor counts are 128, whereas the TX desc descriptors are shown as 512. Why are they not equal? And why is the TX descriptor four times that of the RX descriptor? Also, analyze the values indicated for the RX threshold registers: pthresh = 8, hthresh = 8, and wthresh = 4; whereas for the TX registers: pthresh = 8, hthresh = 1, and wthresh = 16.

Reading the data sheet, and more importantly the optimization white papers of the Intel[®] 82599 10-GbE Ethernet Controller, at least the Receive and Transmit sections, will help you to understand and make the best use of your knobs.

Running testpmd Using tx_first Option
testpmd> start tx first

As shown above, at the **testpmd**> prompt, enter start tx_first to auto-generate the traffic. Packets are transmitted when the **testpmd**> command returns. Please note that packets continue to be generated until they are stopped.

In this case, let it run for 10 to 20 seconds, and then stop the run.

testpmd> stop

Below you can see the RX and TX total packets per port as well as accumulated totals for both ports.

Starting testpmd Without tx_first

What happens when you start testpmd without tx_first ? The flowchart below shows that RX starts polling first, so in this case you need a traffic generator.

Flowchart for the case of without tx_first.

We saw that with tx_first , TX gets executed first. This emits packets first and before polling, thus auto-generating the traffic. This allows us to run testpmd with traffic using a single platform.

Now, draw the flowchart for using tx first.

Learn More About testpmd

Use -h or --help to find the available command-line options and thus the available functionality of testpmd.

I highly recommend that you learn hands-on the functionalities of interest to you and note them in the Exercise section. Once you are done, quit by using the quit command. quit, as shown below, does the following:

- Stops the ports
- Closes the ports

Summary

At this point, you've configured a single system to run the DPDK application and generated tx-first and rx_first traffic with **testpmd**. Test your knowledge with the exercises below.

Exercises

- 1. tx_first auto-generates traffic. How are the parameters of the traffic programmed in this case?
- 2. You saw the flowchart for the case of without tx_first. Draw the flowchart for the case with tx_first.
- 3. Note each command-line option and functionality you tried with testpmd, and list what you learned about each one, with any suggestions you may have.
- 4. What is the difference between detaching a port and closing a port? Where will you use detaching a port? Where will you use closing a port?
- 5. What is the difference between **dpdk_nic_bind.py** and **dpdk-devbind.py**? Explain.
- 6. Search the Internet and the dpdk.org <u>dev</u> mailing list to analyze the root cause and find the solution for the error. Note that the uio or vfio kernel modules to be used should be loaded into the kernel before running the dpdk-devbind.py script.

Build Your Own DPDK Packet Framework with DPDK-In-A-Box

Introduction

The title of this module might just as well be "Build Your Own *Software Defined* DPDK Application." The DPDK packet framework uses a modular building block approach defined by a configuration file to build complex DPDK applications. For an overview of the value of the DPDK packet framework, watch the short video <u>Deep Dive into the</u> <u>Architecture of a Pipeline Stage</u> before you get started with this module.

Here you will build a DPDK packet framework with just two cores—one for master core tasks and the other to perform DPDK application functions.

For hardware, you can use any IA platform—Intel Xeon brand or Intel Atom brand desktop, server, or laptop. We will use DPDK-in-a-Box here. This is a low-cost, portable platform based on the Intel Atom E3826 processor.

To build your own DPDK-in-a-Box, or learn where to purchase a DPDK-in-a-Box, please

see the earlier module in this cookbook, *Build Your Own DPDK Traffic Generator—DPDK-In-A-Box*.

Set DPDK Traffic Generator MAC Addresses

If you remember when we built a DPDK Traffic Generator, the configuration file of the DPDK traffic generator was set with its own port's MAC Addresses, since we looped the ports within themselves.

Here we are connecting the ports to an external DPDK packet Generator, so we will set the MAC addresses in the DPDK traffic generator to match those of the external system that will run the DPDK packet framework.

It is left as an exercise for the developers to find out the MAC address and set the traffic generator configuration file with them.

Update the Configuration File for the DPDK Packet Framework

The DPDK packet framework configuration files provide a *software defined* modular way to implement complex DPDK applications. If your system has multiple lcores available for packet processing, you can implement both run-to-completion as well as pipelined applications. Here, since we have only one core for packet processing with DPDK-in-a-box, we will showcase the run-to-completion implementation.

Building and Installing DPDK Packet Framework

We'll now go through the steps for building and installing DPDK packet framework, as described in the DPDK sample application user's guide.

Running the Traffic Through DPDK Packet Framework

Connect the systems together. Provide the command-line option of the traffic generator continuously (this was part of the exercise in the traffic generator building cookbook section). This runs the traffic through DPDK packet framework.

Run Your Application that is Software Defined by Packet Framework

- Run your application that is software defined by packet framework.
- Use profilers to find out where the CPU is spending most of the cycles and if it is in line with your expectation.
- Write up your observations and share with the community in dpdk.org

Summary

Application developers will benefit by understanding DPDK assumptions on roles / responsibilities of applications. They need to comprehend the scope of DPDK's roles / responsibilities to begin with. This helps them to rightly architect from the get-go obeying DPDK's assumptions in terms of thread safety, lockless API call usage, multiprocessor synchronization, and control plane and data plane synchronization.

Exercise

1. Draw your software-defined application block diagram.

DPDK Data Plane—Multicores and Control Plane Synchronization

Introduction

Many developers and customers are under the impression that DPDK documentation and sample applications include only data plane applications. In a real-life scenario, it is necessary to integrate the data plane with the control and management plane. The purpose of this cookbook module is to describe some simple multiplane scenarios.

For hardware, you can use any IA platform—Intel Xeon brand or Intel Atom brand desktop, server, or laptop. We will use DPDK -in-a-Box here. This is a low-cost, portable platform based on the Intel Atom E3826 processor.

To build your own DPDK-in-a-Box, please see the earlier module in this cookbook, <u>Build Your Own DPDK Traffic</u> <u>Generator—DPDK-In-A-Box</u>.

Simple Scenarios—Data Plane and Control Plane Interactions

Every product or appliance will have its own share of data plane and control plane functionality. Here we will illustrate two simple run-time scenarios:

- 1. A NIC port configuration change
- 2. Changing the port itself

Scenario 1: Change of Hardware

In a multiple core server with as many as 72 lcores (lcore stands for logical core), with multiple NIC ports performing packet processing in parallel, how do you synchronize the control plane operations with the data plane? What do you need to understand in order to play by the DPDK rules of the game?

What must be synchronized in order to pull out a transceiver and insert it again-during runtime?

Likewise, to pull out a transceiver, say 10 Gig, and insert a completely different one, say 1 Gig?

If a change of hardware device requires a release of the instance of the device that was removed and creation of a device instance for the new one, what do you do with threads that are still accessing the data structures of the original instance?

Releasing resources requires coordination with the user space applications using those resources. Applications can be using a single core or multiple cores. If the resource being released is used by multiple cores, we need to request an acknowledgement handshake from each core in use, indicating that they are all finished with the resource and it can be released safely.

Scenario 2: No Change of Hardware but Change of Parameter

Assume you are not changing any hardware during runtime. But you do want to change some global parameter—say MTU. This may be a *lightweight* initialization compared to the previous case of *heavy weight* initialization. So, when you use an API that does a lightweight initialization, which parameters can you expect to be persistent across the operation and which parameters can you not assume will remain the same? This is very useful information to know in order to correctly change parameters during runtime.

Please note that this is only part of the story. The other part is synchronizing with data plane applications that are running, that is, waiting for a resource to be available, so that APIs to reconfigure can be called. We will look at that and refer to pointers available in DPDK documentation and source code.

Before we get into these details, let's step back and look at the big picture:

- 1. What are the core assumptions DPDK makes in terms of concurrency?
- 2. What are the boundaries of what DPDK controls and what the application must manage to ensure synchronization?

Rules for Polling Queues

Can Multiple Cores Poll One RX Queue Simultaneously?

By design, the receive function of a PMD **CANNOT** be invoked in parallel on multiple, that is, two or more logical cores to poll the same RX queue [of the same port]. What is the benefit of this design? It is that all the functions of the Ethernet Device API exported by a PMD are lock-free functions. This is possible because the receive function will not be invoked in parallel on different logical cores to work on the same target object.

In the case of a single RX queue per port, only one core at a time can do RX processing.

When you have multiple RX queues per port, each queue can be polled by only one lcore at a time. Thus, if you have 4 RX queues per port, you can have four cores simultaneously polling the port if you've configured one core per queue.

Can You Have Eight Cores and Four RX Queues per Port?

No, since that assigns more than one core per RX queue.

Can You Have Four Cores with Eight RX Queues per Port?

We can only answer this question by knowing full configuration details. Even though you have more RX queues than cores, if you have configured two cores for any single RX queue, that is not allowed. The key is not having more than one core per RX queue, irrespective of more queues in total available, compared to the number of cores.

Can One Icore Poll Multiple RX Queues?

Yes. One lcore can poll multiple RX queues. What is the maximum number of RX queues that one lcore can poll? That depends on performance requirements and how much headroom should be available for applications after servicing some number of queues. Packet size and packet arrival rates also constrain the cycle budget available on the core.

Note that with the port numbering in the system, one lcore can poll multiple RX queues that need not be necessarily consecutive. This is clear from the figure below. Lcore 0 polls RX Queue 0 and Rx Queue 2. It does not poll RX Queue 1 and RX Queue 3.

One lcore polling multiple RX queues.

Who is Responsible for Mutual Exclusion so that Multiple Cores Don't Work on the Same Receive Queue?

The one-line answer is—you—the application developer. All the functions of the Ethernet Device API exported by a PMD are lock-free functions which are not to be invoked in parallel on different logical cores to work on the same target object.

For instance, the receive function of a PMD cannot be invoked in parallel on two logical cores to poll the same RX queue [on the same port].

Of course, this function can be invoked in parallel by different logical cores on different RX queues.

Please note and be aware that it is the responsibility of the upper-level application to enforce this rule.

If you don't design your application to enforce this exclusion, allowing multiple cores to step on each other while accessing the device, you will get segmentation errors and crashes for sure. DPDK goes with lockless accesses for high performance and assumes that you, as a higher-level application developer, will ensure that multiple cores do not work on the same receive queue.

What if Your Design Requires Multiple Cores to Share Queues?

If needed, parallel accesses to shared cores by multiple logical cores must be explicitly protected by dedicated inline lockaware functions built on top of their corresponding lock-free functions of the PMD API.

TX Port: Why Should Each Core be Able to Transmit on Each and Every Transmit Port?

We saw that for an RX queue, an lcore can only poll a subset of RX ports, but what about TX ports? Can an lcore connect only to a subset of TX ports in the system? Or should each and every lcore connect to all TX ports?

The answer is that a forwarding operation running on an lcore may result in a packet destined for *any* TX port in the system. Because of this, each lcore should be able to transmit to each and every TX port.

An lcore can poll only a subset of RX ports, but can transmit to any TX port in the system.

While the Data Plane can be Parallel, the Control Plane is Sequential

Control plane operations like device configuration, queue (RX and TX) setup, and device start depend on certain sequences to be followed. Hence, they are sequential.

Device Setup Sequence

To set up a device, follow this sequence:

```
rte_eth_dev_configure()
rte_eth_tx_queue_setup()
rte_eth_rx_queue_setup()
rte_eth_dev_start()
```

After that, the network application can invoke, in any order, the functions exported by the Ethernet API to get the MAC address of a given device, the speed and the status of a device physical link, receive/transmit packet bursts, and so on.

Summary

Application developers will benefit from understanding DPDK assumptions regarding application roles and responsibilities. To start, it's important to comprehend the scope of DPDK's roles and responsibilities. This will help you to correctly architect from the get-go in terms of thread safety, lockless API call usage, multiprocessor synchronization, and control plane and data plane synchronization.

Next Steps

Architect a couple of your own usage models of the data plane coexisting with the control and management plane. Look for similar approaches used by testpmd and other applications, and described by the DPDK <u>HowTo Guides</u>. Test them out.

Exercises

- 1. Can you have eight cores per port with four RX queues per port?
- 2. Can you have four cores per port with eight RX queues per port?
- 3. What are the implications of multiple cores transmitting on one transmit port—in terms of control plane and data plane synchronization?

4. Control plane operations—should it be done in interrupt context itself or as a deferred procedure?

DPDK Performance Optimization Guidelines White Paper

Abstract

This paper illustrates best-known methods and performance optimizations used in the <u>Data Plane Development Kit</u> (<u>DPDK</u>). DPDK application developers will benefit by implementing these optimization guidelines in their applications. A problem well stated is a problem half solved, thus the paper starts with profiling methodology to help identify the bottleneck in an application. Once the type of bottleneck is identified, this module will help you determine the optimization mechanism that DPDK uses to overcome the bottleneck. Specifically, we refer to the respective sample application and code snippet that implements the corresponding performance optimization technique. The module concludes with a checklist flowchart that DPDK developers and users can use to ensure they follow the guidelines given here.

For cookbook-style instructions on how to do hands-on performance profiling of your DPDK code with VTune[™] tools, refer to the module <u>Profiling DPDK Code with Intel VTune Amplifier</u>.

Strategy and Methodology

A chain is really only as strong as its weakest link. So, the strategy is to use profiling tools to identify hotspots in the system. Once the hotspot is identified, the corresponding optimization technique is looked up for the sample application and code snippet as how it is already solved and implemented in the DPDK. Developers at this stage will implement those specific optimization techniques in their application. They can run respective micro-benchmarks and unit tests on applications provided with the DPDK.

Once the particular hotspot has been addressed, the application is again profiled to find the next hotspot in the system. The above methodology is repeated to the point of satisfaction in terms of achieving desired performance.

The performance optimization involves a gamut of considerations shown in the checklist below:

- 1. Optimize the BIOS settings.
- 2. Efficiently partition non-uniform memory access (NUMA) resources with improved locality in mind.
- 3. Optimize the Linux configuration.
- 4. To validate each configuration change, run *l3fwd*—as is with default settings—and compare with published performance numbers.
- 5. Run micro-benchmarks to pick and choose optimum high-performance components (for example, **bulk enqueue/bulk dequeue** as opposed to single enqueue/single dequeue).
- 6. Pick a sample application that is similar to the target appliance, using the already fine-tuned optimum default settings (*for example, more TX buffer resources than Rx*).
- 7. Adapt and update the sample application (**for example, # of queues**). Compile with the correct optimization flag levels.
- 8. Profile the chosen sample application in order to have a known good comparison base.
- 9. Run with optimized command-line options, keeping improved locality and concurrency in mind.
- 10. How to best match application and algorithm to underlying architecture? Run profiling to find memory-bound? I/O-bound? CPU-bound?
- 11. Apply the corresponding solution: Software prefetch for memory, block mode for I/O, to use Intel[®] Hyper-Threading Technology (Intel[®] HT Technology) or not, if the application is CPU-bound.
- 12. Rerun profiling—Front-end pipeline stall? Back-end pipeline stall?
- 13. Apply corresponding solution. Write efficient code—branch prediction, loop unroll, compiler optimization, and so on.
- 14. Still don't have desired performance? Back to #9.
- 15. Record best-known methods and share in <u>dpdk.org</u>.

Recommended Pre-reading

It is recommended that you read, at a minimum, the <u>DPDK Programmer's Guide</u>, and refer to the <u>DPDK Sample Application</u> <u>User Guides</u> before proceeding.

Please refer to other DPDK documents as needed.

BIOS Settings

To get repeatable performance, DPDK L3fwd performance numbers are achieved with the following BIOS settings:

NUMA	ENABLED
Enhanced Intel SpeedStep [®] technology	DISABLED
Processor C3	DISABLED
Processor C6	DISABLED
Intel [®] Hyper-Threading Technology	ENABLED
Intel [®] Virtualization Technology for Directed I/O	DISABLED
Intel [®] Memory Latency Checker (Intel [®] MLC) Streamer	ENABLED
Intel [®] MLC Spatial Prefetcher	ENABLED
DCU Data Prefetcher	ENABLED
DCU Instruction Prefetcher	ENABLED
CPU Power and Performance Policy	Performance
Memory Power Optimization	Performance Optimized
Memory RAS and Performance Configuration -> NUMA Optimized	ENABLED

Memory RAS and Performance Configuration -> NUMA Optimized

Please note that if the DPDK power management feature is to be used, <u>Enhanced Intel SpeedStep® technology</u> must be enabled. In addition, C3 and C6 should be enabled. However, to start with, it is recommended that you use the BIOS settings as shown in the table and run basic L3fwd to ensure that the BIOS, platform, and Linux settings are optimal for performance.

Refer to Intel document # 557159 titled <u>Intel Xeon processor E7-8800/4800 v3 Product Family</u>, for detailed understanding of BIOS setting and performance implications.

Platform Optimizations

Platform optimizations include (1) configuring memory, and (2) I/O (NIC Cards), to take advantage of affinity to achieve lower latency.

Platform Optimizations-NUMA and Memory Controller

Below is an example of a multi (dual) socket system. For the threads that run on CPU0, all the memory accesses going to memory local to socket 0 result in lower latency. Any accesses that cross Intel[®] QuickPath Interconnect (Intel[®] QPI) to access remote memory (that is, memory local to socket 1) incurs additional latency and should be avoided.

NUMA Local & Remote Memory Example

Problem: What happens when NUMA is set to DISABLED in the BIOS? When NUMA is disabled in the BIOS, the memory controller interleaves the accesses across the sockets.

For example, as shown below, CPUO is reading 256 bytes (four cache lines). With the BIOS NUMA state set to DISABLED, memory controller interleaves the access across the sockets. Out of 256 bytes, 128 bytes are read from local memory and 128 bytes are read from remote memory.

The remote memory accesses end up crossing the Intel QPI link. The impact of this is increased time for accessing remote memory, resulting in lower performance.

Solution: As shown below, with BIOS setting NUMA = Enabled, all the accesses go to the same socket (local) memory and there is no crossing of Intel QPI. This results in improved performance due to lower memory access latency.

Key Take Away

Be sure to set NUMA = Enabled in the BIOS.

Platform optimizations—PCle* layout and IOU affinity.

		Socket 0		Socket 1					
IOU	100-1	IOU-0	IOU-0	IOU-1	IOU-1	IOU-0	IOU-0		
Gen3	X8/x16	x8	x8	x8	x8	x8	x8		
Slot	Slot1	Slot2	Slot3	Slot4	Slot5	Slot6	Slot7		
Device	SFDA4	X520-SR2	SFDA4	X520-SR2	SFDA4	X520-SR2	SFDA4		
	4x10GbE	2x10GbE	4x10GbE	2x10GbE	4x10GbE	2x10GbE	4x10Gb		

Linux* Optimizations

Reducing Context Switches with isolcpus

To reduce the possibility of context switches, it is desirable to give a hint to the kernel to refrain from scheduling other *user space tasks* on to the cores used by DPDK application threads. The *isolcpus* Linux kernel parameter serves this purpose. For example, if DPDK applications are to run on logical cores 1, 2, and 3, the following should be added to the kernel parameter list:

Note: Even with the *isolcpus* hint, the scheduler may still schedule kernel threads on the isolated cores. Please note that *isolcpus* requires a reboot.

Adapt and Update the Sample Application

Now that the relevant sample application has been identified as a starting point to build the end product, the following are the next set of questions to be answered.

Configuration Questions

How to Configure the Application for Best Performance? **For example:**

- How many queues can be configured per port?
- Can the same number of Tx and Rx resources be allocated?
- What are the optimal settings for threshold values?

Recommendation: The good news is that each sample application comes with not only optimized code flow but also optimized parameters settings as default values. The recommendation is to use a similar ratio between resources for Tx and Rx. The following are the references and recommendations for the Intel[®] 82599 10 Gigabit Ethernet Controller. For other NIC controllers, please refer to the corresponding data sheets.

How Many Queues can be Configured per Port?

Please refer to the white paper <u>Evaluating the Suitability of Server Network Cards for Software Routers</u> for detailed test setup and configuration on this topic.

The following graph (from the above white paper) indicates that you should **not** use more than two to four queues per port since the performance degrades with a higher number of queues.

For the best-case scenario, the recommendation is to use one queue per port. In case more are needed, two queues per port can be considered, but not more than that.

Ratio of the forwarding rate varying the number of hardware queues per port.

Can Tx Resources be Allocated the Same Size as Rx Resources?

Please use as per the default values that are used in the application. For example, for Intel 82599 10-GbE Ethernet Controller, the default values are not equal; whereas for XL710, both RX and TX descriptors are of equal size.

Intel 82599 10-GbE Ethernet Controller: It is a natural tendency to allocate equal-sized resources for Tx and Rx. However, please note that http://git.dpdk.org/dpdk/tree/examples/l3fwd/main.c shows that optimal default size for the number of Tx ring descriptors is 512 as opposed to Rx ring descriptors being 128. Thus, the number of Tx ring descriptors is four times that of the Rx ring descriptors.

⇒ C fi	dpdk.org/browse/dpdk/tree/examples/I3fwd/main.c	Qt
Apps 😁 Redire	ecting	
157	* Configurable number of RX/TX ring descriptors	
158	*/	
159	#define RTE_TEST_RX_DESC_DEFAULT 128	
160	#define RTE_TEST_TX_DESC_DEFAULT 512	
161	<pre>static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;</pre>	
1.00	static wint16 + ph tyd - PTE TEST TY DESC DEEAU T:	

The recommendation is to choose Tx ring descriptors four times the size of Rx ring descriptors and not to have them both equal size. The reasoning for this is left as an exercise for the readers to find out.

Intel® 82599 10-GbE Ethernet Controller

However, for XL710 NIC [Equal Size RX and TX Descriptors]

RX Ring Descriptors

TX Ring Descriptors

What are the Optimal Settings for Threshold Values?

For instance, <u>http://git.dpdk.org/dpdk/tree/test/test/test_pmd_perf.c</u>uses the following optimized default parameters for the Intel 82599 10-Gigabit Ethernet Controller.

Data P	ane Develo X	
C fi	bidpdk.org/browse/dpdk/tree/app/test/test_pmd_perf.c	
🔗 Red	recting	
57		
58	/*	
59	* RX and TX Prefetch, Host, and Write-back threshold values should be	
60	* carefully set for optimal performance. Consult the network	
61	* controller's datasheet and supporting DPDK documentation for guidance	
62	* on how these parameters should be set.	
63	*/	
64	<pre>#define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */</pre>	
65	<pre>#define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */</pre>	
66	#define RX_WTHRESH 0 /**< Default values of RX write-back threshold reg. */	
67		
68	7*	
69	* These default values are optimized for use with the Intel(R) 82599 10 GbE	
70	* Controller and the DPDK ixgbe PMD. Consider using other values for other	
71	* network controllers and/or network drivers.	
72	*/	
73	#define TX_PTHRESH 32 /**< Default values of TX prefetch threshold reg. */	
74	#define TX_HTHRESH 0 /**< Default values of TX host threshold reg. */	
75	#define TX_WTHRESH 0 /**< Default values of TX write-back threshold reg. */	

Please refer to Intel 82599 10-Gigabit Ethernet Controller: Datasheet for detailed explanations.

The key takeaway is amortization of the cost of the PCIe* operation of updating the hardware register is done by processing batches of packets before updating the hardware register.

Rx_Free_Thresh—In Detail

As shown below, communication of packets received by the hardware is done using a circular buffer of packet descriptors. There can be up to 64 K-8 descriptors in the circular buffer. Hardware maintains a shadow copy that includes those descriptors completed but not yet stored in memory.

The Receive Descriptor Head register (RDH) indicates the in-progress descriptor.

The *Receive Descriptor Tail register (RDT)* identifies the location beyond the last descriptor that the hardware can process. This is the location where software writes the first new descriptor.

During runtime, the software processes the descriptors and upon completion of a descriptor, increments the Receive Descriptor Tail (RDT) registers. However, updating the RDT after each packet has been processed by the software has a cost, as it increases PCIe operations.

Rx_free_thresh represents the maximum number of free descriptors that the DPDK software will hold before sending them back to the hardware. Hence, by processing batches of packets before updating the RDT, we can reduce the PCIe cost of this operation.

Fine tune with the parameters in the rte_eth_rx_queue_setup () function for your configuration:

```
1 ret =
  rte_eth_rx_queue_setup(portid,
  0, rmnb_rxd,
2 socketid, &rx_conf, 3
  mbufpool[socketid]);
```

Compile With the Correct Optimization Flags

Apply the corresponding solution: Software prefetch for memory, block mode for I/O, to use Intel HT Technology for CPUbound applications.

Software prefetch for memory helps to hide memory latency and thus improves memory-bound tasks in data plane applications.

PREFETCHW

Prefetch data into cache in anticipation of write: PREFETCHW, a new instruction from Intel[®] Xeon[®] processor E5-2650 v3 onward, hides memory latency and improves the network stack. PREFETCHW prefetches data into the cache in anticipation of a write.

PREFETCHWT1

Prefetch hint T1 (temporal L1 cache) with intent to write: PREFETCHWT1 fetches the data to a location in the cache hierarchy specified (T1 => temporal data with respect to first-level cache) by an intent to write a hint (so that data is brought into *Exclusive* state via a request for ownership) and a locality hint.

T1 (temporal data with respect to first-level cache)—prefetches data into the second-level cache.

For more information about these instructions refer to the Intel® 64 and IA-32 Architectures Developer's Manual.

Running with Optimized Command-Line Options

Optimize the application using command-line options to improve affinity, locality, and concurrency.

coremask Parameter and (Wrong) Assumption of Neighboring Cores

The *coremask* parameter is used with the DPDK application to specify the cores on which to run the application. For higher performance, reducing inter-processor communication cost is of key importance. The *coremask* should be selected such that the communicating cores are physical neighbors.

Problem: One may (mistakenly), assume core 0 and core 1 are neighboring cores and may choose the *coremask* accordingly in the DPDK command-line parameter. Please note that these logical core numbers, and their mapping to specific cores on specific NUMA sockets, can vary from platform to platform. While in one platform core 0 and core 1 may be neighbors, in another platform, core 0 and core 1 may end up being across another socket.

For instance, in a single-socket machine (screenshot shown below), lcore 0 and lcore 4 are siblings of the same physical core (core 0). So, the communication cost between lcore 0 and lcore 4 will be less than the communication cost between lcore 0 and lcore 1.

🔽 root@	localhost:/home/mjay/dpdk-2.0.0		
Eile	iick Connect <u></u> Profiles <u>E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u> elp	b	
EAL: D EAL: D EAL: D EAL: D EAL: D EAL: D EAL: D EAL: S EAL: D	Detected lcore 0 as core 0 on socket Detected lcore 1 as core 1 on socket Detected lcore 2 as core 2 on socket Detected lcore 3 as core 3 on socket Detected lcore 4 as core 0 on socket Detected lcore 5 as core 1 on socket Detected lcore 6 as core 2 on socket Detected lcore 7 as core 3 on socket Detected lcore 7 as core 3 on socket Detected lcore (s)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	aration.
Conne SS	H2 - aes128-cbc - hmac-sha1 - no 60x10	6, 524	04:16:17

Solution: Because of this, it is recommended that the core layout for each platform be considered when choosing the *coremask* to use in each case.

Tools-dpdk/tools/cpu_layout.py

Use ./cpu_layout.py in the tools directory to find out the socket ID, the physical core ID, and the logical core ID (processor ID). From this information, correctly fill in the *coremask* parameter with locality of processors in mind.

Below is the cpu_layout of a dual-socket machine.

The list of physical cores is [0, 1, 2, 3, 4, 8, 9, 10, 11, 16, 17, 18, 19, 20, 24, 25, 26, 27]

Please note that physical core numbers 5, 6, 7, 12, 13, 14, 15, 21, 22, 23 are not in the list. This indicates that one *cannot* assume that the physical core numbers are sequential.

How to find out which lcores are using Intel HT Technology from the cpu_layout?

In the picture below, Lcore 1 and lcore 37 are hyper threads in socket 0. Assigning intercommunicating tasks to lcore 1 and lcore 37 will have lower cost and higher performance compared to assigning tasks to lcore 1 with any other core (other than lcore 37).

🔽 root@localhost:/home/mjay/dpdk-2.0.0/tools				
8 6 8 2 4	I 🖬 🎒 🗟 🗏 🛸 📾 🕋 🛤 😨 🖻 💌 🦓 🛷 k?			
🛛 🗋 Quick Connect 📄 P	rofiles			
<u>File E</u> dit <u>V</u> iew <u>W</u> ind	ow <u>H</u> elp	Eq.		
[root@localhost too /home/mjay/dpdk-2.0	ls]‡ pwd .0/tools	^		
[root@localhost too	ls]# ls			
[root@localhost too	ls]# ./cpu_layout.py			
Core and Socket Inf	ormation (as reported by '/proc/cpuin	fo')		
cores = [0, 1, 2, sockets = [0, 1]	3, 4, 8, 9, 10, 11, 16, 17, 18, 19, <mark>2</mark>	0, 24, 25, 26, 27]		
Socket 0	Socket 1			
Core 0 [0, 36]	[18, 54]			
Core 1 [1, 37]	[19, 55]			
Core 2 [2, 38]	[20, 56]			
Core 3 [3, 39]	[21, 57]			
Core 4 [4, 40]	[22, 58]			
Core 8 [5, 41]	[23, 59]			
Core 9 [6, 42]	[24, 60]			
Core 10 [7, 43]	[25, 61]			
Core 11 [8, 44]	[26, 62]			
Core 16 [9, 45]	[27, 63]			
Core 17 [10, 46]	[28, 64]			
Core 18 [11, 47]	[29, 65]			
Core 19 [12, 48]	[30, 66]			
Core 20 [13, 49]	[31, 67]			
Core 24 [14, 50]	[32, 68]			
Core 25 [15, 51]	[33, 69]			
Core 26 [16, 52]	[34, 70]			
Core 27 [17, 53]	[35, 71]	E.		
[root@localhost tools]#				
Connected to 192.168.0.10	SSH2 - aes128-cbc - hmac-sha1 - no 78x51	25, 51 01:24:30		

Save core 0 for Linux use and do not use core 0 for the DPDK.

Refer below for the initialization of the DPDK application. Core 0 is being used by the master core.

```
EAL: Master core 0 is ready (tid=c9f8c880)
EAL: Core 4 is ready (tid=b4dfb700)
EAL: Core 3 is ready (tid=b55fc700)
EAL: Core 2 is ready (tid=b5dfd700)
EAL: Core 1 is ready (tid=b65fe700)
```

Do not use core 0 for the DPDK applications because it is used by Linux as the master core. For example, using l3fwd - c 0x1 ... should be avoided since that would be using core 0 (which is serving the functionality of the master core) for l3fwd DPDK application as well.

Instead, the command *l3fwd* –*c* 0*x*2 can be used so that the l3fwd application uses core 1.

In realistic use cases like <u>Open vSwitch* with DPDK</u>, a control plane thread pins to the master core and is responsible for responding to control plane commands from the user or the SDN controller. So, the DPDK application should not use the master core (core 0), and the core bit mask in the DPDK command line should not set bit 0 for the *coremask*.

Correct use of the Channel Parameter

Be sure to make correct use of the channel parameter. For example, use CHANNEL PARAMETER N = 3 for a 3-channel memory system.

Both Packet Headers in Channel 0

1st Pkt Hdr in ChO; 2nd Hdr in Ch2; 3rd Hdr in Ch1

DPDK Micro-Benchmarks and Auto-Tests

DPDK micro-benchmarks and auto-tests are available as part of DPDK applications and examples. Developers use these micro-benchmarks to do focused measurements for evaluating performance.

The auto-tests are used for functionality verification.

The following are a few sample capabilities of distributor micro-benchmarks for performance evaluation.

Time_cache_line_switch ()

How can I measure the time taken for a cache line round-trip between two cores and back again?

Perf_test()

How can I measure the processing time per packet?

🔽 root@localhost:/home/mjay/dpdk-2.0.0			×
Ouick Connect 🦳 Profiles			
Ella Edit Viaw Window Holp			
RTE>>distributor_perf_autotest			1
Time for 1040576 iterations = 525120205 ticks			
Ticks per iteration = 500			
Ticks per iteration - 500			
=== Performance test of distributor ===			
Time per burst: 2878			
Time per packet: 89			
Worker 0 handled 5240831 packets			
Worker 1 handled 5235/41 packets			
Worker 3 handled 5242516 packets			
Worker 4 handled 4199659 packets			
Worker 5 handled 4196002 packets			
Worker 6 handled 4195472 packets			
Total packets: 33554432 (2000000)			
=== Perf test done ===			+
Connected to 192.168.0.8 SSH2 - aes128-cbc - hmac-sha1 - no 78x18	6, 21	00:20:00	

ring_perf_auto_test

How can I find the performance difference between single producer/single consumer (sp/sc) and multi-producer/multi-consumer (mp/mc)?

Running ring_perf_auto_test in /app/test gives the number of CPU cycles, which enables you to study the performance difference between single producer/single consumer and multi-producer/multi-consumer. It also shows the differences for different bulk sizes. See the following screenshot output.

The key takeaway: Using sp/sc with higher bulk sizes gives higher performance.

Please note that even though the default ring_perf_autotest runs through the performance test with block sizes of 8 and 32, one can update the source code to include other desired sizes (modify the array bulk_sizes[] to include bulk sizes of interest). For instance, find below the output with the block sizes 1, 2, 4, 8, 16, and 32.

Two-Socket System—Huge Page Size = 2 Meg

- 0 × root@localhost:/home/mjay/dpdk-2.0.0 🖬 🗿 🐧 🗏 🌋 🐂 📾 🛍 🛤 😨 🖭 🕅 🦓 🤣 🎙 🗌 Quick Connect 📄 Profiles File Edit View Window Help RTE>>ring perf autotest ### Testing single element and burst eng/deg ### SP/SC single eng/dequeue: 13 MP/MC single eng/dequeue: 58 SP/SC burst eng/dequeue (size: 1): 19 MP/MC burst eng/dequeue (size: 1): 36 SP/SC burst enq/dequeue (size: 2): 5 MP/MC burst eng/dequeue (size: 2): 24 SP/SC burst eng/dequeue (size: 4): 4 MP/MC burst eng/dequeue (size: 4): 9 SP/SC burst eng/dequeue (size: 8): 2 MP/MC burst enq/dequeue (size: 8): 6 SP/SC burst enq/dequeue (size: 16): 2 MP/MC burst eng/dequeue (size: 16): 4 SP/SC burst eng/dequeue (size: 32): 2 MP/MC burst enq/dequeue (size: 32): 2 ### Testing empty dequeue ### SC empty dequeue: 1.28 MC empty dequeue: 1.79 ### Testing using a single lcore ### SP/SC bulk eng/dequeue (size: 1): 12.18 MP/MC bulk eng/dequeue (size: 1): 33.38 SP/SC bulk eng/dequeue (size: 2): 6.49 MP/MC bulk eng/dequeue (size: 2): 24.96 SP/SC bulk eng/dequeue (size: 4): 3.87 MP/MC bulk eng/dequeue (size: 4): 9.87 SP/SC bulk eng/dequeue (size: 8): 2.92 MP/MC bulk enq/dequeue (size: 8): 5.47 SP/SC bulk eng/dequeue (size: 16): 2.40 MP/MC bulk enq/dequeue (size: 16): 3.82 SP/SC bulk eng/dequeue (size: 32): 2.16 MP/MC bulk eng/dequeue (size: 32): 2.61 ### Testing using two hyperthreads ### SP/SC bulk eng/dequeue (size: 1): 57.03 MP/MC bulk eng/dequeue (size: 1): 113.39 SP/SC bulk eng/dequeue (size: 2): 29.31 MP/MC bulk eng/dequeue (size: 2): 58.36 SP/SC bulk eng/dequeue (size: 4): 15.04 MP/MC bulk eng/dequeue (size: 4): 29.94 SP/SC bulk eng/dequeue (size: 8): 8.57 MP/MC bulk eng/dequeue (size: 8): 16.51 SP/SC bulk eng/dequeue (size: 16): 5.32 MP/MC bulk eng/dequeue (size: 16): 9.44 SP/SC bulk eng/dequeue (size: 32): 4.46 MP/MC bulk eng/dequeue (size: 32): 5.08 ### Testing using two physical cores ### SP/SC bulk eng/dequeue (size: 1): 102.69 MP/MC bulk eng/dequeue (size: 1): 503.37 E SP/SC bulk eng/dequeue (size: 2): 51.83 MP/MC bulk eng/dequeue (size: 2): 206.98 SP/SC bulk eng/dequeue (size: 4): 49.75 MP/MC bulk eng/dequeue (size: 4): 109.59 SP/SC bulk eng/dequeue (size: 8): 25.49 MP/MC hulk eng/demieue (size, S), 53 49

😨 root@localhost:/home/mjay/dpdk-2.0.0
🖬 🎒 🗟 🗏 🍠 🐂 🖷 🖷 🗛 😨 😒 🕬 🏈 📢
<u>File E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u> elp
SP/SC bulk eng/dequeue (size: 16): 16.27
MP/MC bulk eng/dequeue (size: 16): 29.46
SP/SC bulk eng/dequeue (size: 32): 10.30
MP/MC bulk eng/dequeue (size: 32): 17.56
Testing using two NUMA nodes
SP/SC bulk eng/dequeue (size: 1): 310.15
MP/MC bulk eng/dequeue (size: 1): 1621.59
SP/SC bulk eng/dequeue (size: 2): 246.07
MP/MC bulk eng/dequeue (size: 2): 743.24
SP/SC bulk eng/dequeue (size: 4): 156.30
MP/MC bulk eng/dequeue (size: 4): 388.59
SP/SC bulk eng/dequeue (size: 8): 87.79
MP/MC bulk eng/dequeue (size: 8): 186.75
SP/SC bulk eng/dequeue (size: 16): 54.47
MP/MC bulk eng/dequeue (size: 16): 97.42
SP/SC bulk eng/dequeue (size: 32): 31.07
MP/MC bulk eng/dequeue (size: 32): 55.06
Test OK
-
Con SSH2 - aes128-cbc - hmac-sha1 - no 52x19 🛛 🎯 6, 22 02

Cycle Cost [Enqueue + Dequeue] in CPU cycles

hash_perf_autotest runs through 1,000,000 iterations for each test, varying the following parameters, and reports Ticks/Op for each combination shown in the table below:

Hash Function	Operation	Key Size (bytes)	Entries	Entries per Bucket
a) Jhash b) Rte_hash_CRC	a) Add on Empty b) Add Update c) Look up	a) 16 b) 32 c) 48	a) 1024, b) 1048576	a) 1 b) 2 c) 4

	d) 64	d) 8
		e) 16

The <u>Detailed Test Output</u> section contains detailed test output and the commands you can use to evaluate performance with your platform. The summary of the result is tabulated and charted below:

root@localhost:/home/m	njay/dpdk-2.0.0	3		
		🗩 💌 🧠 🗞	,	
📲 📋 Quick Connect 🔛 I	Profiles			
File Edit View Win	dow Help			
				<u>^</u>
222 TT-12 Frances Com	E.			
Number of iterati	performance tes	st results ***		
Number of iteratio	ons for each tes	st = 1000000	Tialra (On	
ibash 2	Lengen (byces),	A A A A A A A A A A A A A A A A A A A	20 84	
jhash 4	-	,	20.68	
jhash 5	1	,	20.83	
jhash 6		,	20.84	
ihash 7		0	21.31	
ihash 8		0	21.65	
jhash . 10		0	21.36	
jhash . 11		0	21.73	
jhash . 15		0	31.30	
jhash , 16	-	0	32.12	
jhash , 21	1	0	35.60	
jhash , 31	-	0	45.61	
jhash , 32		0 ,	46.50	
jhash , 33		0 ,	47.60	
jhash , 63		0 ,	91.01	
jhash , 64		0 ,	90.80	
rte hash crc, 2		0 ,	20.18	
rte hash crc, 4		0 ,	18.89	
rte hash crc, 5		0 ,	19.96	
rte_hash_crc, 6		0,	19.89	
rte_hash_crc, 7		0,	19.96	
rte_hash_crc, 8		0,	15.81	
rte_hash_crc, 10		0,	17.13	
rte_hash_crc, 11	,	0,	17.55	
rte_hash_crc, 15	,	0,	18.63	
rte_hash_crc, 16	,	0,	16.02	
rte_hash_crc, 21		0,	19.48	
rte_hash_crc, 31		0,	22.06	
rte_hash_crc, 32		0,	18.27	
rte_hash_crc, 33	,	• •	22.20	
rte_hash_crc, 63	,	0 ,	26.83	
rte_hash_crc, 64	,	ο,	23.92	
*** FBK Hash funct	tion performanc	e test results	***	
Number of ticks per	r lookup = 35.1	876		
Test OK	的基础			=
RTE>>				
Connected to 192.168.0.10	SSH2 - aes128-cbc -	hmac-sha1 - no 76x43	3 6,43	06:01:02

Ticks/Ops: Jhash Vs rte_hash_crc

DPDK Micro-Benchmarks and Auto-Tests

	Focus Area to Improve	Use These Micro-Benchmarks and Auto-Tests
1	Ring for Inter- Core	Performance comparison of bulk enqueue/bulk dequeue versus single enqueue/single dequeue on a single core
	Communication	To measure and compare performance between Intel® HT Technology, cores, and sockets doing bulk enqueue/bulk dequeue on pairs of cores
		Performance of dequeue from an empty ring: <u>http://git.dpdk.org/dpdk/tree/test/test/test_ring_perf.c</u>
		Single producer, single consumer – 1 Object, 2 Objects, MAX_BULK Objects – enqueue/dequeue
		Multi-producer, multi-consumer – 1 Object, 2 Objects, MAX BULK Objects – enqueue/dequeue
		Tx Burst - http://git.dpdk.org/dpdk/tree/test/test/test_ring.c
		Rx Burst - http://git.dpdk.org/dpdk/tree/test/test/test_pmd_ring.c
2	Memcopy	Cache to cache
		Cache to memory
		Memory to memory
		Memory to cache
		http://git.dpdk.org/dpdk/tree/test/test/test_memcpy_perf.c

3	Mempool	"n_get_bulk", "n_put_bulk"
		1 core, 2 cores, max cores with cache objects
		1 core, 2 cores, max cores without cache objects
		http://git.dpdk.org/dpdk/tree/test/test_mempool.c
5	Hash	Rte_jhash, rte_hash_crc;
		Add
		Lookup
		Update
		http://git.dpdk.org/dpdk/tree/test/test/test_hash_perf.c
6	ACL Lookup	http://git.dpdk.org/dpdk/tree/test/test_acl.c
7	LPM	Rule with depth > 24 1) Add, 2) Lookup, 3)
		Delete http://git.dpdk.org/dpdk/tree/test/test/test_lpm.c
		http://git.dpdk.org/dpdk/tree/test/test/test_lpm6.c
		Large Route Tables:
		http://git.dpdk.org/dpdk/tree/test/test/test_lpm6_data.h
8	Packet Distribution	http://git.dpdk.org/dpdk/tree/test/test/test_distributor_perf.c
9	NIC I/O	Measure Tx Only
	Benchmark	Measure Rx Only,
		Measure Tx and Rx
		Benchmarks Network I/O Pipe - NIC h/w + PMD
		http://git.dpdk.org/dpdk/tree/test/test/test_pmd_perf.c
10	NIC I/O +	Increased CPU processing – NIC h/w + PMD + hash/lpm Examples/I3fwd
	ncreased CPU	
11	Atomic	http://git.dpdk.org/dpdk/tree/test/test/test_atomic.c
	Operations/ Lock-rd/wr	http://git.dpdk.org/dpdk/tree/test/test/test_rwlock.c
12	SpinLock	Takes global lock, displays something, then releases the global lock
		Takes per-lcore lock, displays something, then releases the per-core lock
		http://git.dpdk.org/dpdk/tree/test/test/test_spinlock.c
13	Software	http://git.dpdk.org/dpdk/tree/test/test/test_prefetch.c
	Prefetch	Its usage: http://git.dpdk.org/dpdk/tree/lib/librte_table/rte_table_hash_ext.c
14	Packet Distribution	http://git.dpdk.org/dpdk/tree/test/test/test_distributor_perf.c
15	Reorder and Seq. Window	http://git.dpdk.org/dpdk/tree/test/test/test_reorder.c
16	Software Load	http://git.dpdk.org/dpdk/tree/examples/load_balancer
	Balancer	
17	ip_pipeline	Using the packet framework to build a pipeline:
		nttp://git.dpdk.org/dpdk/tree/test/test_table.c

	ACL Using Packet Framework			
		http://git.dpdk.org/dpdk/tree/test/test/test_table_acl.c		
18	Re-entrancy	http://git.dpdk.org/dpdk/tree/test/test_func_reentrancy.c		
19	mbuf	http://git.dpdk.org/dpdk/tree/test/test_mbuf.c		
20	memzone	http://git.dpdk.org/dpdk/tree/test/test/test_memzone.c		
21	Virtual PMD	http://git.dpdk.org/dpdk/tree/test/test/virtual_pmd.c		
22	QoS	http://git.dpdk.org/dpdk/tree/test/test/test_meter.c		
		http://git.dpdk.org/dpdk/tree/test/test_red.c		
		http://git.dpdk.org/dpdk/tree/test/test_sched.c		
23	Link Bonding	http://git.dpdk.org/dpdk/tree/test/test_link_bonding.c		
24	Kni	1. Transmit		
		2. Receive to / from kernel space		
		3. Kernel requests		
		http://git.dpdk.org/dpdk/tree/test/test_kni.c		
25	Malloc	http://git.dpdk.org/dpdk/tree/test/test_malloc.c		
26	Debug	http://git.dpdk.org/dpdk/tree/test/test_debug.c		
27	Timer	http://git.dpdk.org/dpdk/tree/test/test_cycles.c		
28	Alarm	http://git.dpdk.org/dpdk/tree/test/test/test_alarm.c		

Compiler Optimizations

Reference: PySter*—Compiler design and construction—"Adding optimizations to a compiler is a lot like eating chicken soup when you have a cold. Having a bowl full never hurts, but who knows if it really helps. If the optimizations are structured modularly so that the addition of one does not increase compiler complexity, the temptation to fold in another is hard to resist. How well the techniques work together or against each other is hard to determine."

Performance Optimization and Weakly Ordered Considerations

Background: Linux kernel synchronization primitives contain needed memory barriers as shown below (both uniprocessor and multiprocessor versions):

Smp_mb()	Memory barrier
Smp_rmb()	Read memory barrier
Smp_wmb()	Write memory barrier
Smp_read_barrier_depends (Forces subsequent operations that depend on prior operations

)	to be ordered
Mmiowb ()	Ordering on MMIO writes that are guarded by global spinlocks

Code that uses standard synchronization primitives (spinlocks, semaphores, read copy updates) should not need explicit memory barriers, since any required barriers are already present in these primitives.

Challenge: If you are writing code bypassing these standard synchronization primitives for optimization purposes, then consider your requirement in using the proper barrier.

Consideration: x86 provides a *process ordering* memory model in which writes from a given CPU are seen in order by all CPUs, and weak consistency, which permits arbitrary reordering, limited only by explicit memory-barrier instructions.

The *smp_mp* (), *smp_rmb* (), *smp_wmb* () primitives also force the compiler to avoid any optimizations that would have the effect of reordering memory optimizations across the barriers.

Some Intel[®] Streaming SIMD Extensions (SSE) instructions are weakly ordered (clflush and non-temporal move instructions). CPUs that have SSE can use mfence for smp mb(), lfence for smp rmb(), and sfence for smp wmb().

Detailed Test Output

Pmd_perf_autotest

To evaluate your platform's performance, run /app/test/pmd_perf_autotest.

The key takeaway: The cost for RX+TX cycles per packet in test Polled Mode Driver is 54 cycles with 4 ports and -n = 4 memory channels.

- O X root@localhost/home/mjay/dpdk-2.0.0 🖬 📇 🗋 🧝 🐂 🖷 📾 🖬 🐼 😨 🖭 👘 🆓 🗞? 🗌 Quick Connect 🦳 Profiles Ele Edit View Window Help . RTE>>pmd perf autotest Start PMD RXTX cycles cost test. Allocated mbuf pool on socket 0 Allocated mbuf pool on socket 1 CONFIG RXD=128 TXD=512 Performance test runs on 1core 18 socket 1 Port 0 Address:00:1B:21:C3:D6:1C PMD: ixgbe dev tx queue setup(): sw ring=0x7f6a963e0940 hw ring=0x7f6a8f880080 dma addr=0x823080080 PMD: ixgbe_set_tx_function(): Using simple tx code path PMD: ixgbe set tx function(): Vector tx enabled. PMD: ixgbe dev rx queue setup(): sw ring=0x7f6a963e00c0 hw ring=0x7f6a8f890080 dma addr=0x823090080 PMD: ixgbe_set_rx_function(): Vector rx enabled, please make sure RX burst size no less than 32. Port 1 Address:00:1B:21:C3:D6:1D PMD: ixgbe dev tx queue setup(): sw ring=0x7f6a963ddf80 hw ring=0x7f6a8f8a0100 dma addr=0x8230a0100 PMD: ixgbe set tx function(): Using simple tx code path PMD: ixgbe_set_tx_function(): Vector tx enabled. PMD: ixgbe dev rx queue setup(): sw ring=0x7f6a963dd700 hw ring=0x7f6a8f8b0100 dma addr=0x8230b0100 PMD: ixgbe_set_rx_function(): Vector rx enabled, please make sure RX burst size no less than 32. Port 2 Address:00:1B:21:C3:D5:FC PMD: ixgbe_dev_tx_queue_setup(): sw_ring=0x7f6a963db5c0 hw_ring=0x7f6a8f8c0180 dma_addr=0x8230c0180 PMD: ixgbe set tx function(): Using simple tx code path PMD: ixgbe set tx function(): Vector tx enabled. PMD: ixgbe dev rx queue setup(): sw ring=0x7f6a963dad40 hw ring=0x7f6a8f8d0180 dma addr=0x8230d0180 PMD: ixgbe set rx function(): Vector rx enabled, please make sure RX burst size no less than 32. Port 3 Address:00:18:21:C3:D5:FD PMD: ixgbe dev tx queue setup(): sw ring=0x7f6a963d8c00 hw ring=0x7f6a8f8e0200 dma addr=0x8230e0200 PMD: ixgbe set tx function(): Using simple tx code path PMD: ixgbe set tx function(): Vector tx enabled. PMD: ixgbe dev rx queue setup(): sw ring=0x7f6a963d8380 hw ring=0x7f6a8f8f0200 dma addr=0x8230f0200 PMD: ixgbe_set_rx_function(): Vector rx enabled, please make sure RX burst size no less than 32. Checking link statuses ... Port 0 Link Up - speed 10000 Mbps - full-duplex Port 1 Link Up - speed 10000 Mbps - full-duplex Port 2 Link Up - speed 10000 Mbps - full-duplex Port 3 Link Up - speed 10000 Mbps - full-duplex IPv4 pktlen 46 UDP pktlen 26 Generate 8192 packets @socket 1 inject 2048 packet to port 0 inject 2048 packet to port 1 inject 2048 packet to port 2 inject 2048 packet to port 3 Total packets inject to prime ports = 8192 Each port will do 14880952 packets per second Test will stop after at least 119047616 packets received free 2048 mbuf left in port 0 free 2048 mbuf left in port 1 free 2048 mbuf left in port 2 free 2048 mbuf left in port 3 119047712 packet, 0 drop, 0 idle Result: 54 cycles per packet Test OK RTE>> Connected to 192.168.0.10 SSH2 - aes128-cbc - hmac-sha1 - no 101x53 6, 53 00:07:22

What if you need to find the cycles taken for only RX? Or only TX?

To find RX-only time, use the command set_rxtx_anchor rxonly before issuing the command pmd_perf_autotest.

Similarly, to find TX-only time, use the command *set_rxtx_anchor txonly* before issuing the command pmd_perf_autotest.

- 0 × root@localhost:/home/mjay/dpdk-2.0.0 🗌 Quick Connect 🔛 Profiles File Edit View Window Help RTE>>set rxtx anchor rxonly type switch to rxonly RTE>>pmd_perf_autotest Start PMD RXTX cycles cost test. CONFIG RXD=128 TXD=512 Performance test runs on 1core 18 socket 1 Port 0 Address:00:1B:21:C3:D6:1C PMD: ixgbe_dev_tx_queue_setup(): sw_ring=0x7f6a963e0940 hw_ring=0x7f6a8f880080 dma_addr=0x823080080 PMD: ixgbe set tx function(): Using simple tx code path PMD: ixgbe_set_tx_function(): Vector tx enabled. PMD: ixgbe dev rx queue setup(): sw ring=0x7f6a963e00c0 hw ring=0x7f6a8f890080 dma addr=0x823090080 PMD: ixgbe_set_rx_function(): Vector rx enabled, please make sure RX burst size no less than 32. Port 1 Address:00:1B:21:C3:D6:1D PMD: ixgbe_dev_tx_queue_setup(): sw_ring=0x7f6a963ddf80 hw_ring=0x7f6a8f8a0100 dma_addr=0x8230a0100 PMD: ixgbe set tx function(): Using simple tx code path PMD: ixgbe_set_tx_function(): Vector tx enabled. PMD: ixgbe dev rx queue setup(): sw ring=0x7f6a963dd700 hw ring=0x7f6a8f8b0100 dma addr=0x8230b0100 PMD: ixgbe set rx function(): Vector rx enabled, please make sure RX burst size no less than 32. Port 2 Address:00:1B:21:C3:D5:FC PMD: ixgbe_dev_tx_queue_setup(): sw_ring=0x7f6a963db5c0 hw_ring=0x7f6a8f8c0180 dma_addr=0x8230c0180 PMD: ixgbe set tx function(): Using simple tx code path PMD: ixgbe_set_tx_function(): Vector tx enabled. PMD: ixgbe_dev_rx_queue_setup(): sw_ring=0x7f6a963dad40 hw_ring=0x7f6a8f8d0180 dma_addr=0x8230d0180 PMD: ixgbe set rx function(): Vector rx enabled, please make sure RX burst size no less than 32. Port 3 Address:00:1B:21:C3:D5:FD PMD: ixgbe dev tx queue_setup(): sw ring=0x7f6a963d8c00 hw ring=0x7f6a8f8e0200 dma addr=0x8230e0200 PMD: ixgbe set tx function(): Using simple tx code path PMD: ixgbe_set_tx_function(): Vector tx enabled. PMD: ixgbe dev rx queue setup(): sw ring=0x7f6a963d8380 hw ring=0x7f6a8f8f0200 dma addr=0x8230f0200 PMD: ixgbe_set_rx_function(): Vector rx enabled, please make sure RX burst size no less than 32. Checking link statuses... Port 0 Link Up - speed 10000 Mbps - full-duplex Port 1 Link Up - speed 10000 Mbps - full-duplex Port 2 Link Up - speed 10000 Mbps - full-duplex Port 3 Link Up - speed 10000 Mbps - full-duplex IPv4 pktlen 46 UDP pktlen 26 Generate 8192 packets @socket 1 inject 2048 packet to port 0 inject 2048 packet to port 1 inject 2048 packet to port 2 inject 2048 packet to port 3 Total packets inject to prime ports = 8192 Each port will do 14880952 packets per second Test will stop after at least 119047616 packets received free 2048 mbuf left in port 0 free 2048 mbuf left in port 1 free 2048 mbuf left in port 2 free 2048 mbuf left in port 3 119047616 packet, 0 drop, 0 idle Result: 31 cycles per packet Test OK RTE>>pmd_perf_autotest Connected to 192.168.0.10 SSH2 - aes128-cbc - hmac-sha1 - no 131x53 6,56 00:14:01

- 0 - X root@localhost:/home/mjay/dpdk-2.0.0 🖬 📇 🗋 🍠 🐂 🖷 🖷 🗛 🗵 🔄 👒 🔗 M? Quick Connect Profiles Elle Edit View Window Help RTE>>set_rxtx_anchor txonly type switch to txonly RTE>>pmd perf autotest Start PMD RXTX cycles cost test. CONFIG RXD=128 TXD=512 Performance test runs on 1core 18 socket 1 Port 0 Address:00:1B:21:C3:D6:1C PMD: 1xgbe dev tx queue setup(): sw ring=0x7f6a963e0940 hw ring=0x7f6a8f880080 dma addr=0x823080050 PMD: ixgbe set tx function(): Using simple tx code path PMD: ixgbe_set_tx_function(): Vector tx enabled. PMD: ixgbe dev rx queue setup(): sw ring=0x7f6a963e00c0 hw ring=0x7f6a8f890080 dma addr=0x823090080 PMD: ixgbe set rx function(): Vector rx enabled, please make sure RX burst size no less than 32. Port 1 Address:00:1B:21:C3:D6:1D PMD: ixgbe dev tx queue setup(): sw ring=0x7f6a963ddf80 hw ring=0x7f6a8f8a0100 dma addr=0x8230a0100 PMD: ixgbe set tx function(): Using simple tx code path PMD: ixgbe set tx function(): Vector tx enabled. PMD: ixgbe_dev_rx_queue_setup(): sw_ring=0x7f6a963dd700 hw_ring=0x7f6a8f8b0100 dma addr=0x8230b0100 PMD: ixgbe set rx function(): Vector rx enabled, please make sure RX burst size no less than 32. Port 2 Address:00:1B:21:C3:D5:FC PMD: ixgbe dev tx queue setup(): sw ring=0x7f6a963db5c0 hw ring=0x7f6a8f8c0180 dma addr=0x8230c0180 PMD: ixgbe set tx function(): Using simple tx code path PMD: ixgbe_set_tx_function(): Vector tx enabled. PMD: ixgbe_dev_rx_queue_setup(): sw_ring=0x7f6a963dad40 hw_ring=0x7f6a8f8d0180 dma_addr=0x8230d0180 PMD: ixgbe_set_rx_function(): Vector rx enabled, please make sure RX burst size no less than 32. Port 3 Address:00:1B:21:C3:D5:FD PMD: ixgbe dev tx queue setup(): sw ring=0x7f6a963d8c00 hw ring=0x7f6a8f8e0200 dma addr=0x8230e0200 PMD: ixgbe set tx function(): Using simple tx code path PMD: ixgbe_set_tx_function(): Vector tx enabled. PMD: ixgbe dev rx queue setup(): sw ring=0x7f6a963d8380 hw ring=0x7f6a8f8f0200 dma addr=0x8230f0200 PMD: ixgbe set rx function(): Vector rx enabled, please make sure RX burst size no less than 32. Checking link statuses ... Port 0 Link Up - speed 10000 Mbps - full-duplex Port 1 Link Up - speed 10000 Mbps - full-duplex Port 2 Link Up - speed 10000 Mbps - full-duplex Port 3 Link Up - speed 10000 Mbps - full-duplex IPv4 pktlen 46 UDP pktlen 26 Generate 8192 packets @socket 1 inject 2048 packet to port 0 inject 2048 packet to port 1 inject 2048 packet to port 2 inject 2048 packet to port 3 Total packets inject to prime ports = 8192 Each port will do 14880952 packets per second Test will stop after at least 119047616 packets received do tx measure free 2048 mbuf left in port 0 free 2048 mbuf left in port 1 free 2048 mbuf left in port 2 free 2048 mbuf left in port 3 119047616 packet, 0 drop, 0 idle Result: 21 cycles per packet Test OK 00-15-18 Connected to 192.168.0.10 SSH2 - aes128-cbc - hmac-sha1 - no 131x53 6,53

Hash Table Performance Test Results

To evaluate the performance in your platform, run /app/test/hash_perf_autotest.

T root@k	ocalhost	:/h	iome/mjay/dpdk-2.0	.0	-												- Artes	- 0	x
88	DA 1	5		44	🕎 💽 [ए]	* @ K	?												
Quici	k Conne	ect	🗀 Profiles																
Ele E	dit Vie	w	Window Help																
DTEXT																			
*** Ha	ish ta	bl	e performance	te:	st result	3 ***													
Hash Fu	inc.	e	Operation		Key size	(bytes),	Ent	ries	3,	Entries	per	bucket,	Ξ	rrors		Avg. bucket	entries,	Ticks/Op.	
jhash			Add on Empty		16		102	4		1		•	3	80		0.63		162.34	
jhash		•	Add on Empty	1	16	1	102	4	1	2			2	92	1	1.43	1	181.18	
thash		1	Add on Empty	1	16		102	4	1	8		:	1	49	1	6.84	1	231.41	
jhash		;	Add on Empty	1	16		102	4	1	16		2	9	6	1	14.50		284.72	
jhash			Add on Empty		32	,	102	4		1			3	75	,	0.63		215.20	
jhash			Add on Empty		32		102	4		2			2	74		1.46		243.38	
jhash		*	Add on Empty		32		102	4	1	4			1	93	1	3.25	1	250.46	
thash		1	Add on Empty	1	32	1	102	4	1	16		1	- 0	8	1	14.47	1	337.22	
jhash		,	Add on Empty	1	48		102	4	1	1		2	3	68	4	0.64		309.59	
jhash		,	Add on Empty		48	4	102	4		2			2	80		1.45		328.60	
jhash			Add on Empty		48		102	24		4			2	03		3.21		320.48	
jhash			Add on Empty		48		102	4		8			1	53		6.80		344.08	
jhash		1	Add on Empty	1	90	1	102	4	1	10			4	81	1	14.38	1	390.21	
thash		1	Add on Empty	1	64		102	4	1	2		1	2	80	1	1.45		348.27	
jhash		,	Add on Empty		64	,	102	14		4			2	18	ι,	3.15		356.72	
jhash			Add on Empty		64		102	4		8			1	38		6.92	,	383.35	
jhash		ł.	Add on Empty		64		102	24		16			1	05		14.36		446.90	
jhash		1	Add Update	1	16	1	102	14	1	1			9	644	1	0.35	1	109.51	
jhash		*	Add Update	1	16	*	102	4	1	4		1	9	806	1	0.76	1	128.44	
thash		1	Add Update	1	16		102	4	1	8		1	9	848	1	1.19	8	142.09	
jhash			Add Update	4	16		102	4	4	16			9	914	4	1.34		177.46	
jhash			Add Update		32		102	24		1			9	625		0.37		133.12	
jhash		1	Add Update		32		102	14	1	2			9	725		0.54		131.36	E
jhash		•	Add Update	*	32		102	4	1	4		*	0	792	*	0.81	1	131.08	
thash		1	Add Undate	*	32	1	102	4	1	16			9	914	1	1.34	1	170.49	
jhash		1	Add Update	4	48		102	4	1	1		2	9	618	4	0.37		160.77	1.11
jhash			Add Update		48		102	14		2			9	716		0.55		158.35	
jhash			Add Update		48		102	4		4			9	804		0.77		157.92	
jhash		•	Add Update		48		102	4		B			9	860		1.09		165.57	
jhash		٢.	Add Update	*	48	*	102	4	1	16			9	913	1	0.94	1	187.64	
thash		1	Add Undate	1	64		102	4	1	2		1	9	739	1	0.51		167.95	
jhash		2	Add Update		64		102	4		4			9	791	1	0.82		177.04	
jhash		1	Add Update		64		102	4	\$	8			9	856		1.12		191.44	
jhash			Add Update		64		102	14		16		,	9	900		1.56		216.30	
jhash		٠	Lookup	+	16		102	24		1			1	0000		0.00		59.53	
jhash		•	Lookup	*	16	*	102	4	1	2		1	1	0000	1	0.00	1	60.78	
thash		1	Lookup	1	16		102	4	1	B		1	1	0000	1	0.00	1	70.77	
jhash		2	Lookup	1	16		102	4	1	16			1	0000	1	0.00		84.26	
jhash			Lookup		32	,	102	4		1			1	0000		0.00		85.09	
jhash			Lookup		32		102	4		2			1	0000		0.00		88.28	
jhash		•	Lookup		32		102	4		4			1	0000		0.00		90.68	
jnash		1	Lookup	*	32		102	9	1	1.6			1	0000		0.00	1	98.99	
ihash		1	Lookup	1	48	1	102	4	1	1			1	0000	1	0.00	1	133.06	
jhash		,	Lookup	4	48		102	4		2		1	1	0000	1	0.00		135.47	
jhash			Lookup		18		102	4	+	4			1	0000		0.00		139.37	
jhash			Lookup		48		102	4		8			1	0000		0.00		147.39	
jhash			Lookup		48		102	4		16		í.	1	0000		0.00	19	157,92	-
Connected	to 192.1	68	.0.10							\$50	H2 - ae	s128-cbc - H	hm	ac-shal -	no	119:58	6,78	06:08:34	

Image: Second	root@localhost/home/mjay/dpd	-2.0.0	of the second	The Party of the P	and the second	- • • · ×
□ Quok Connett □ Profiles ■ Ext Yew Yerdew Heb Tre_hash_crc, Lookup , 32 1048576, 1 49 0.015 \$4.55 Tre_hash_crc, Lookup , 48 1048576, 2 1 0.02 \$7.52 Tre_hash_crc, Lookup , 48 1048576, 1 49 0.014 \$38.60 Tre_hash_crc, Lookup , 48 1048576, 1 45 0.02 \$37.52 Tre_hash_crc, Lookup , 48 1048576, 16 0 0.038 \$38.60 Tre_hash_crc, Lookup , 64 1048576, 1 45 0.01 \$38.50 Tre_hash_crc, Lookup , 64 1048576, 1 45 0.02 \$40.03 Tre_hash_crc, Lookup , 64 1048576, 1 9 0.02 \$40.03 Tre_hash_crc, Lookup , 64 1048576, 1 9 0.02 \$40.03 Tre_hash_crc, Lookup , 64 1048576, 16 0 0.02 \$40.03 Tre_hash_crc, Lookup , 64 1048576, 16 0 0.015 \$44.83 **** Hash function performance test results *** Numeer of iterations for each test = 100000 Hash \$20.53 <		A 💌 🖲 💌 🦠	@ N?			
Phe Edit Yew Yundow Heb tre_hash_crc, Lookup 32 1048576, 16 0 0.15 94.55 tre_hash_crc, Lookup 48 1048576, 2 1 0.00 27.52 tre_hash_crc, Lookup 48 1048576, 2 1 0.02 27.52 tre_hash_crc, Lookup 48 1048576, 2 0 0.04 29.80 tre_hash_crc, Lookup 48 1048576, 1 4.55 0.01 29.80 tre_hash_crc, Lookup 64 1048576, 1 4.55 0.01 29.80 tre_hash_crc, Lookup 64 1048576, 1 4.55 0.01 29.30 tre_hash_crc, Lookup 64 1048576, 1 4.55 0.01 29.30 tre_hash_crc, Lookup 64 1048576, 16 0 0.004 41.53 tre_hash_crc, Lookup 64 1048576, 16 0 0.015 44.63 tre_hash_crc, Lookup 64 1048576, 16 0 0.015 44.63 tre_hash_crc, Lookup 64 1048576, 16 <t< th=""><th>Quick Connect 📄 Profiles</th><th></th><th></th><th></th><th></th><th></th></t<>	Quick Connect 📄 Profiles					
rte_hash_crc, Lookup , 32 , 1048576, 16 , 0 , 0.15 , 34.55 rte_hash_crc, Lookup , 48 , 1048576, 1 , 49 , 0.01 , 37.82 rte_hash_crc, Lookup , 48 , 1048576, 2 , 1 , 0.02 , 37.52 rte_hash_crc, Lookup , 48 , 1048576, 8 , 0 , 0.08 , 38.64 rte_hash_crc, Lookup , 64 , 1048576, 1 , 45 , 0.01 , 38.30 rte_hash_crc, Lookup , 64 , 1048576, 2 , 1 , 0.02 , 40.03 rte_hash_crc, Lookup , 64 , 1048576, 2 , 1 , 0.02 , 40.03 rte_hash_crc, Lookup , 64 , 1048576, 3 , 0 , 0.08 , 41.83 rte_hash_crc, Lookup , 64 , 1048576, 8 , 0 , 0.08 , 41.83 rte_hash_crc, Lookup , 64 , 1048576, 16 , 0 , 0.08 , 41.83 rte_hash_crc, Lookup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 rte_hash_crc, Lookup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 rte_hash_crc, Lookup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 rte_hash_crc, Lookup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 rte_hash_crc, Lookup , 64 , 20.43 jhash , 2 , 0 , 20.71 jhash , 4 , 0 , 20.63 jhash , 5 , 0 , 20.71 jhash , 6 , 0 , 20.91 jhash , 6 , 0 , 21.97 jhash , 10 , 0 , 22.46 jhash , 10 , 0 , 22.47 jhash , 10 , 0 , 22.47 jhash , 10 , 0 , 32.07 jhash , 10 , 0 , 22.47 jhash , 10 , 0 , 32.67 jhash , 63 , 0 , 91.10 jhash , 64 , 0 , 91.10 rte_has1_crc, 4 , 0 , 19.09 rte_has1_crc, 4 , 0 , 19.09 rte_has1_crc, 6 , 0 , 32.67 jhash , 63 , 0 , 91.10 rte_has1_crc, 6 , 0 , 32.67 jhash , 63 , 0 , 91.10 rte_has1_crc, 6 , 0 , 32.67 jhash , 63 , 0 , 91.10 rte_has1_crc, 6 , 0 , 32.67 jhash , 63 , 0 , 91.10 rte_has1_crc, 6 , 0 , 32.67 jhash , 63 , 0 , 91.10 rte_has1_crc, 6 , 0 , 32.67 jhash , 64 , 0 , 91.10 rte_has1_crc, 6 , 0 , 32.67 jhash , 63 , 0 , 91.10 rte_has1_crc, 6 , 0 , 32.67 jhash , 63 , 0 , 91.10 rte_has1_crc, 6 , 0 , 32.67 jhash , 63 , 0 , 91.10 rte_has1_crc, 6 , 0 , 32.67 jhash , 64 , 0 , 91.10 rte_has1_crc, 6 , 0 , 32.67 jhash , 64 , 0 , 91.10 rte_has1_crc, 7 , 0 , 13.43 rte_has1_crc, 7 , 0 , 13.45 rte_has1_crc, 15 , 0 , 32.64 rte_has1_crc, 15 , 0 , 33.64 rte_has1_crc, 9 , 0 , 23.90	Ele Edit View Window H	ыр				
rre_mash_crc.Lookup 48 1048576,1 99 0.01 97.82 rre_mash_crc.Lookup 48 1048576,2 1 0.02 97.52 rre_mash_crc.Lookup 48 1048576,8 0 0.0.08 38.64 rre_mash_crc.Lookup 48 1048576,1 0 0.0.8 38.64 rre_mash_crc.Lookup 48 1048576,1 0 0.0.8 38.64 rre_mash_crc.Lookup 64 1048576,1 4 0 0.0.15 40.89 rre_mash_crc.Lookup 64 1048576,2 1 0 0.0.8 40.83 rre_mash_crc.Lookup 64 1048576,2 1 0 0.0.4 41.53 rre_mash_crc.Lookup 64 1048576,6 0 0 0.0.5 40.83 rre_mash_crc.Lookup 64 1048576,16 0 0 0.0.5 40.83 rre_mash_crc.Lookup 64 1048576,16 0 0 0.0.5 40.83 rre_mash_crc.Lookup 64 1048576,16 0 0 0.15 40.83 rre_mash_crc.Lookup 7 0 20.62 jhash 2 0 0 20.62 jhash 6 0 0 20.61 jhash 6 0 0 20.61 jhash 6 0 0 20.61 jhash 6 0 0 20.61 jhash 10 0 0 21.97 jhash 11 0 0 22.26 jhash 15 0 0 31.29 jhash 16 0 0 32.07 jhash 11 0 0 45.57 jhash 31 0 0 45.57 jhash 31 0 0 45.57 jhash 31 0 0 45.57 jhash 31 0 0 45.57 jhash 33 0 7 7.79 jhash 33 0 7 7.79 jhash 33 0 7 7.79 jhash 33 0 7 7.79 jhash 64 7 0 91.00 rre_mash_crc. 6 7 0 19.61 rre_mash_crc. 6 7 0 19.65 rre_mash_crc. 7 0 0 19.65 rre_mash_crc. 7 0 0 19.65 rre_mash_crc. 7 0 0 19.64 rre_mash_crc. 7 0 0 19.64 rre_mash_crc. 15 0 0 19.24 rre_mash_crc. 13 0 0 19.24 rre_mash_crc. 31 0 0 19.24 rre_mash_crc. 31 0 0 19.23 rre_mash_crc. 31 0 0 19.54	rte hash crc. Lookup	, 32	, 1048576, 16	. 0	. 0.15	, 34.55
rte_haah_crc, Lookup +8 1048576, 2 , 1 0.02 , 37.52 rte_haah_crc, Lookup +8 1048576, 4 0 0.08 38.64 rte_haah_crc, Lookup +8 1048576, 16 0 0.015 40.08 rte_haah_crc, Lookup +6 1048576, 16 0 0.015 40.08 rte_haah_crc, Lookup +6 1048576, 2 1 0.002 40.03 rte_haah_crc, Lookup +6 1048576, 2 1 0.002 40.03 rte_haah_crc, Lookup +6 1048576, 1 0 0.015 41.83 rte_haah_crc, Lookup +6 1048576, 1 0 0.015 41.83 rte_haah_crc, Lookup +6 1048576, 1 0 0.015 41.83 rte_haah_crc, Lookup +6 1048576, 1 0 0.015 41.85 rte_haah_crc, Lookup +6 1048576, 1 0 0.015 41.85 rte_haah_crc, Lookup +6 1048576, 1 0 0.015 41.85 rte_haah_crc, Lookup +6 100000 Hash Func. , Key Length (bytes), Initial value, Ticks/Cp. jhash , 2 , 0 , 20.91 jhash , 6 , 0 , 20.91 jhash , 10 , 0 , 21.13 jhash , 10 , 0 , 21.13 jhash , 15 , 0 , 31.29 jhash , 16 , 0 , 31.29 jhash , 15 , 0 , 31.29 jhash , 16 , 0 , 31.29 jhash , 31 , 0 , 45.57 jhash , 31 , 0 , 31.60 jhash , 3	te hash crc, Lookup	. 48	, 1048576, 1	. 49	, 0.01	. 37.82
rre_haah_crc, Lookup 48 104576, 4 0 0.04 39.80 rre_haah_crc, Lookup 48 104576, 8 0 0.08 38.64 rre_haah_crc, Lookup 48 104576, 1 45 0.01 38.30 rre_haah_crc, Lookup 64 104576, 2 1 0.02 40.03 rre_haah_crc, Lookup 64 104576, 2 1 0.02 40.03 rre_haah_crc, Lookup 64 0.04576, 2 1 0.02 40.03 rre_haah_crc, Lookup 64 0.04576, 8 0 0.0.08 41.85 rre_haah_crc, Lookup 64 0.04576, 8 0 0.0.08 41.85 rre_haah_crc, Lookup 64 0.04576, 16 0 0.0.15 44.83 *** Hash function performance test results *** Number of iterations for each test = 100000 Heash Func, Key Length (bytes). Initial value, Ticks/Op. jhaah 2 0 20.62 jhaah 5 0 20.91 jhaah 6 0 20.91 jhaah 6 0 20.91 jhaah 10 0 0 21.97 jhaah 11 0 2.226 jhaah 15 0 0 22.071 jhaah 16 0 22.071 jhaah 31 0 46.677 jhaah 33 0 47.79 jhaah 31 0 45.57 jhaah 31 0 45.57 jhaah 33 0 47.79 jhaah 64 0 91.00 jhaah 64 0 91.00 jhaah 64 0 91.00 jhaah 64 0 91.00 rre_haah_crc, 2 0 0 10 jhaah 64 0 91.00 rre_haah_crc, 2 0 0 10 rre_haah_crc, 2 0 0 10 rre_haah_crc, 3 0 0 10.00 rre_haah_crc, 6 0 0 10.00 rre_haah_crc, 7 0 0 10.50 rre_haah_crc, 7 0 0 10.50 rre_haah_crc, 7 0 0 10.50 rre_haah_crc, 10 0 10.50 rre_haah_crc,	rte hash crc, Lookup	. 48	, 1048576, 2	. 1	. 0.02	. 37.52
rre_nash_crc, Lookup + 48 , 1048576, 8 , 0 , 0.08 , 38.64 rre_hash_crc, Lookup , 46 , 1048576, 15 , 0 , 0.08 , 38.64 rre_hash_crc, Lookup , 64 , 1048576, 1 , 45 , 0.01 , 38.30 rre_hash_crc, Lookup , 64 , 1048576, 1 , 0 , 0.03 , 40.03 rre_hash_crc, Lookup , 64 , 1048576, 8 , 0 , 0.08 , 41.83 rre_hash_crc, Lookup , 64 , 1048576, 8 , 0 , 0.08 , 41.83 rre_hash_crc, Lookup , 64 , 1048576, 8 , 0 , 0.08 , 41.83 rre_hash_crc, Lookup , 64 , 1048576, 8 , 0 , 0.08 , 41.83 rre_hash_crc, Lookup , 64 , 1048576, 8 , 0 , 0.08 , 41.83 rre_hash_crc, Lookup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 rre_hash_crc, Lookup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 rre_hash_crc, Lookup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 rre_hash_crc, Lookup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 rre_hash_crc, Lookup , 64 , 0 , 20.63 Jaash , 4 , 0 , 20.63 Jaash , 5 , 0 , 20.71 Jaash , 6 , 0 , 20.91 Jaash , 5 , 0 , 21.13 Jaash , 10 , 0 , 22.26 Jaash , 15 , 0 , 31.29 Jaash , 15 , 0 , 31.29 Jaash , 16 , 0 , 32.07 Jaash , 15 , 0 , 31.29 Jaash , 16 , 0 , 32.07 Jaash , 16 , 0 , 31.29 Jaash , 16 , 0 , 31.00 Jaash , 66 , 0 , 91.10 rre_hash_crc, 1 , 0 , 15.09 Jaash , 66 , 0 , 91.10 rre_hash_crc, 4 , 0 , 19.09 Jre_hash_crc, 5 , 0 , 20.10 rre_hash_crc, 1 , 0 , 15.64 rre_hash_crc, 1 , 0 , 15.64 rre_hash_crc, 1 , 0 , 15.64 rre_hash_crc, 1 , 0 , 19.65 rre_hash_crc, 1 , 0 , 19.54 rre_hash_crc, 3 , 0 , 42.30	te hash crc, Lookup	48	, 1048576, 4	. 0	, 0.04	, 39.80
rre_mash_crc, Lookup , 48 , 1048576, 18 , 0 , 0.15 , 40.89 rre_hash_crc, Lookup , 64 , 1048576, 1 , 45 , 0.01 , 38.30 rre_hash_crc, Lookup , 64 , 1048576, 2 , 1 , 0.02 , 40.03 rre_hash_crc, Lookup , 64 , 1048576, 8 , 0 , 0.08 , 41.83 rre_hash_crc, Lookup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 *** Hash function performance test results *** Number of iterations for each test = 100000 Hash Func , Key Length (bytes), Initial value, Ticks/Op. Jhash , 2 , 0 , 20.82 Jhash , 4 , 0 , 20.63 Jhash , 6 , 0 , 20.91 Jhash , 6 , 0 , 21.13 Jhash , 10 , 0 , 21.33 Jhash , 11 , 0 , 22.26 Jhash , 11 , 0 , 22.26 Jhash , 15 , 0 , 31.29 Jhash , 16 , 0 , 31.29 Jhash , 16 , 0 , 31.29 Jhash , 18 , 0 , 46.67 Jhash , 21 , 0 , 35.27 Jhash , 32 , 0 , 46.67 Jhash , 33 , 0 , 46.67 Jhash , 33 , 0 , 40.63 Jhash , 64 , 0 , 91.00 tre_hash_crc, 4 , 0 , 19.09 Tre_hash_crc, 6 , 0 , 19.09 Tre_hash_crc, 6 , 0 , 19.09 Tre_hash_crc, 7 , 0 , 19.51 Tre_hash_crc, 10 , 0 , 17.22 Tre_hash_crc, 11 , 0 , 17.22 Tre_hash_crc, 11 , 0 , 17.23 Tre_hash_crc, 11 , 0 , 17.23 Tre_hash_crc, 11 , 0 , 17.23 Tre_hash_crc, 11 , 0 , 19.64 Tre_hash_crc, 11 , 0 , 19.65 Tre_hash_crc, 11 , 0 , 19.64 Tre_hash_crc, 12 , 0 , 19.64 Tre_hash_crc, 13 , 0 , 19.64 Tre_hash_crc, 14 , 0 , 19.64 Tre_hash_crc, 15 , 0 , 19.64 Tre_hash_crc, 16 , 0 , 19.64 Tre_hash_crc, 17 , 0 , 19.54 Tre_hash_crc, 18 , 0 , 19.54 Tre_hash_crc, 19 , 0 , 19.54	te hash crc. Lookup	. 48	, 1048576, B	. 0	. 0.08	. 38.64
rre_nash_crc. Lookup . 64 . 1048576. 1	rte hash crc, Lookup	. 48	, 1048576, 16	. 0	. 0.15	. 40.89
rre_nash_crc, Lookup , 64 , 1048576, 2 , 1 , 0.02 , 40.03 rre_hash_crc, Lookup , 64 , 1048576, 8 , 0 , 0.08 , 41.53 rre_hash_crc, Lookup , 64 , 1048576, 8 , 0 , 0.08 , 41.84 rre_hash_crc, Lookup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 *** Hash function performance test results *** Number of iterations for each test = 1000000 Hash Func , Key Length (bytes), Initial value, Ticks/Op. jhash , 2 , 0 , 20.82 jhash , 6 , 0 , 20.71 jhash , 6 , 0 , 20.91 jhash , 6 , 0 , 21.13 jhash , 10 , 0 , 21.13 jhash , 11 , 0 , 22.26 jhash , 15 , 0 , 31.29 jhash , 16 , 0 , 32.07 jhash , 11 , 0 , 35.22 jhash , 32 , 0 , 46.67 jhash , 33 , 0 , 47.79 jhash , 33 , 0 , 47.79 jhash , 63 , 0 , 91.00 rre_hash_crc, 2 , 0 , 20.40 rre_hash_crc, 7 , 0 , 19.51 rre_hash_crc, 7 , 0 , 19.51 rre_hash_crc, 10 , 0 , 17.22 rre_hash_crc, 11 , 0 , 17.25 rre_hash_crc, 21 , 0 , 19.54 rre_hash_crc, 21 , 0 , 19.54 rre_hash_crc, 10 , 0 , 17.25 rre_hash_crc, 10 , 0 , 17.25 rre_hash_crc, 21 , 0 , 19.24 rre_hash_crc, 21 , 0 , 19.24 rre_hash_crc, 21 , 0 , 19.54 rre_hash_crc, 31 , 0 , 22.30	te hash crc, Lookup	, 64	, 1048576, 1	45	, 0.01	, 38.30
rte_hash_crc, Lookup , 64 , 1048576, 4 , 0 , 0.04 , 41.53 rte_hash_crc, Lookup , 64 , 1048576, 8 , 0 , 0.08 , 41.86 rte_hash_crc, Lookup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 *** Hash function performance test results *** Number of iterations for each test = 1000000 Hash Func. , Key Length (bytes), Initial value, Ticks/Op.]hash , 2 , 0 , 20.63]hash , 6 , 0 , 20.91]hash , 6 , 0 , 20.91]hash , 10 , 0 , 21.97]hash , 11 , 0 , 22.26]hash , 16 , 0 , 31.29]hash , 16 , 0 , 31.29]hash , 16 , 0 , 35.22]hash , 16 , 0 , 91.00 rte_hash_crc, 4 , 0 , 91.00 rte_hash_crc, 5 , 0 , 20.40 rte_hash_crc, 6 , 0 , 19.51 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 10 , 0 , 17.25 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 13 , 0 , 16.16 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 13 , 0 , 16.16 rte_hash_crc, 13 , 0 , 17.25 rte_hash_crc, 13 , 0 , 16.16 rte_hash_crc, 13 , 0 , 17.25 rte_hash_crc, 13 , 0 , 16.16 rte_hash_crc, 13 , 0 , 22.30	te hash crc, Lookup	, 64	, 1048576, 2	. 1	, 0.02	, 40.03
rre_mash_crc, Lockup , 64 , 1048576, 8 , 0 , 0.08 , 41.86 rre_mash_crc, Lockup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 *** Hash function performance test results *** Number of iterations for each test = 100000 Hash Func, , Key Length (bytes), Initial value, Ticks/Op. jhash , 2 , 0 , 20.82 jhash , 6 , 0 , 20.91 jhash , 6 , 0 , 20.91 jhash , 6 , 0 , 21.13 jhash , 10 , 0 , 21.97 jhash , 11 , 0 , 21.97 jhash , 16 , 0 , 31.29 jhash , 16 , 0 , 35.22 jhash , 16 , 0 , 46.67 jhash , 33 , 0 , 46.67 jhash , 33 , 0 , 46.67 jhash , 63 , 0 , 91.00 rte_hash_crc, 2 , 0 , 20.10 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 11 , 0 , 19.65 rte_hash_crc, 11 , 0 , 19.51 rte_hash_crc, 11 , 0 , 19.54 rte_hash_crc, 11 , 0 , 19.54 rte_hash_crc, 11 , 0 , 19.54 rte_hash_crc, 21 , 0 , 19.54 rte_hash_crc, 31 , 0 , 22.30	rte hash crc, Lookup	. 64	, 1048576, 4	. 0	, 0.04	, 41.53
<pre>rte_nash_orc, Lookup , 64 , 1048576, 16 , 0 , 0.15 , 44.83 *** Hash function performance test results *** Number of iterations for each test = 100000 Hash Func, , Key Length (bytes), Initial value, Ticks/Op.]hash , 2 , 0 , 20.63]hash , 5 , 0 , 20.71]hash , 6 , 0 , 20.91]hash , 6 , 0 , 20.91]hash , 10 , 0 , 21.97]hash , 11 , 0 , 22.26]hash , 15 , 0 , 31.29]hash , 16 , 0 , 32.07]hash , 16 , 0 , 32.07]hash , 31 , 0 , 46.67]hash , 32 , 0 , 46.67]hash , 33 , 0 , 47.79]hash , 33 , 0 , 47.79]hash , 64 , 0 , 91.00 rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 5 , 0 , 20.10 rte_hash_crc, 6 , 0 , 19.51 rte_hash_crc, 6 , 0 , 19.51 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 15 , 0 , 19.24 rte_hash_crc, 16 , 0 , 19.54 rte_hash_crc, 16 , 0 , 19.54 rte_hash_crc, 11 , 0 , 19.54 rte_hash_crc, 11 , 0 , 19.54 rte_hash_crc, 13 , 0 , 42.30</pre>	rte hash crc, Lookup	, 64	, 1048576, 8	. 0	, 0.08	, 41.86
<pre>*** Hash function performance test results *** Number of iterations for each test = 100000 Hash Func. , Key Length (bytes), Initial value, Ticks/Op.]hash , 2 , 0 , 20.82]hash , 4 , 0 , 20.63]hash , 5 , 0 , 20.71]hash , 6 , 0 , 20.91]hash , 7 , 0 , 21.34]hash , 10 , 0 , 21.33]hash , 11 , 0 , 22.26]hash , 15 , 0 , 31.29]hash , 16 , 0 , 35.22]hash , 31 , 0 , 46.67]hash , 33 , 0 , 47.79]hash , 64 , 0 , 91.10 rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 5 , 0 , 19.51 rte_hash_crc, 6 , 0 , 19.24 rte_hash_crc, 10 , 0 , 17.22 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 16 , 0 , 19.84 rte_hash_crc, 17 , 0 , 19.84 rte_hash_crc, 18 , 0 , 19.84 rte_hash_crc, 10 , 0 , 19.84 rte_hash_crc, 10 , 0 , 19.84 rte_hash_crc, 10 , 0 , 19.84 rte_hash_crc, 11 , 0 , 19.84 rte_hash_crc, 11 , 0 , 19.84 rte_hash_crc, 11 , 0 , 19.84 rte_hash_crc, 12 , 0 , 19.84 rte_hash_crc, 13 , 0 , 19.84 rte_hash_crc, 14 , 0 , 19.84 rte_hash_crc, 15 , 0 , 19.84 rte_hash_crc, 16 , 0 , 19.84 rte_hash_crc, 11 , 0 , 19.84</pre>	rte_hash_crc, Lookup	, 64	, 1048576, 16	, 0	, 0.15	, 44.83
*** Hash function performance test results *** Number of iterations for each test = 100000 Hash 2 0 20.82 jhash 2 0 20.82 jhash 5 0 20.71 jhash 6 0 20.91 jhash 7 0 21.34 jhash 8 0 21.97 jhash 11 0 22.26 jhash 11 0 22.197 jhash 11 0 22.26 jhash 15 0 31.29 jhash 16 0 35.22 jhash 31 0 46.67 jhash 33 0 47.79 jhash 64 0 91.00 rte_hash_crc, 4 0 19.09 rte_hash_crc, 5 ,0 ,20.40 rte_hash_crc, 6 ,0 19.65 rte_hash_crc, 10 ,0 19.51 rte_hash_crc						
Hash Func. , Key Length (bytes), Initial value, Ticks/Op. jhash , 2 , 0 , 20.82 jhash , 6 , 0 , 20.91 jhash , 6 , 0 , 20.91 jhash , 6 , 0 , 21.13 jhash , 8 , 0 , 21.13 jhash , 10 , 0 , 22.26 jhash , 11 , 0 , 22.26 jhash , 16 , 0 , 31.29 jhash , 16 , 0 , 32.07 jhash , 16 , 0 , 45.57 jhash , 31 , 0 , 45.57 jhash , 33 , 0 , 47.79 jhash , 63 , 0 , 91.00 rte_hash_crc, 2 , 0 , 20.40 rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 6 , 0 , 19.51 rte_hash_crc, 10 , 0 , 17.12 rte_hash_crc, 11 , 0 , 19.54 <trte_hash_crc, 16<="" td=""> , 0</trte_hash_crc,>	Number of iterations for	mance test results c each test = 10000	00			
jhash , 0 , 20.82 jhash , 4 , 0 , 20.63 jhash , 6 , 0 , 20.91 jhash , 6 , 0 , 21.34 jhash , 8 , 0 , 21.31 jhash , 10 , 0 , 22.97 jhash , 10 , 0 , 22.97 jhash , 11 , 0 , 22.97 jhash , 15 , 0 , 32.97 jhash , 16 , 0 , 32.97 jhash , 16 , 0 , 32.97 jhash , 11 , 0 , 45.57 jhash , 31 , 0 , 45.57 jhash , 31 , 0 , 45.67 jhash , 33 , 0 , 91.00 rte_hash_crc, 2 , 0 , 20.40 rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 5 , 0 , 20.10 rte_hash_crc, 5 , 0 , 20.40 rte_hash_crc, 10 , 0 , 19.55 rte_hash_crc, 10 , 0 <	lash Func Key Length	(bytes). Initial s	alue, Ticks/Op.			
jhash , 4 , 0 , 20.63 jhash , 5 , 0 , 20.91 jhash , 6 , 0 , 20.91 jhash , 8 , 0 , 21.34 jhash , 8 , 0 , 21.97 jhash , 10 , 0 , 22.26 jhash , 16 , 0 , 31.29 jhash , 16 , 0 , 35.22 jhash , 31 , 0 , 45.57 jhash , 64 , 0 , 91.00 rte_hash_crc, 2 , 0 , 20.40 rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 10 , 0 , 17.12 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 16 , 0 , 19.54 rte_hash_crc, 16 , 0 , 19.54 rte_hash_crc, 16 , 0 , 19.54 rte_hash_crc, 21 , 0 , 22.30	hash 2	. 0	. 20.82			
jhash , 5 , 0 , 20,71 jhash , 6 , 0 , 20,91 jhash , 7 , 0 , 21,34 jhash , 8 , 0 , 21,13 jhash , 10 , 0 , 22,26 jhash , 15 , 0 , 31,29 jhash , 16 , 0 , 32,07 jhash , 16 , 0 , 35,22 jhash , 16 , 0 , 35,22 jhash , 31 , 0 , 45,57 jhash , 32 , 0 , 46,67 jhash , 32 , 0 , 46,67 jhash , 63 , 0 , 91,10 rte_hash_crc, 2 , 0 , 20,40 rte_hash_crc, 4 , 0 , 19,09 rte_hash_crc, 6 , 0 , 19,65 rte_hash_crc, 8 , 0 , 15,64 rte_hash_crc, 10 , 0 , 17,22 rte_hash_crc, 11 , 0 , 17,25 rte_hash_crc, 12 , 0 , 19,54 rte_hash_crc, 14 , 0 , 19,24 rte_hash_crc, 16 , 0 , 19,54 rte_hash_crc, 16 , 0 , 19,54 rte_hash_crc, 31 , 0 , 22,30	hash 4		20,63			
jhash , 6 , 0 , 20.91 jhash , 7 , 0 , 21.34 jhash , 8 , 0 , 21.13 jhash , 10 , 0 , 21.97 jhash , 11 , 0 , 22.26 jhash , 15 , 0 , 31.29 jhash , 16 , 0 , 32.07 jhash , 16 , 0 , 35.22 jhash , 31 , 0 , 45.57 jhash , 32 , 0 , 46.67 jhash , 32 , 0 , 46.67 jhash , 63 , 0 , 91.00 rte_hash_crc, 4 , 0 , 91.00 rte_hash_crc, 5 , 0 , 20.40 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 10 , 0 , 19.51 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 15 , 0 , 19.24 rte_hash_crc, 16 , 0 , 19.24 rte_hash_crc, 13 , 0 , 22.30	thanh 5	. 0	20.71			
jhash 7 0 21.34 jhash 8 0 21.13 jhash 10 0 21.97 jhash 11 0 22.26 jhash 11 0 22.26 jhash 15 0 31.29 jhash 16 0 32.07 jhash 21 0 35.22 jhash 31 0 45.57 jhash 31 0 45.57 jhash 33 0 47.79 jhash 63 0 91.00 jhash 63 0 91.00 rte_hash_crc, 2 0 91.00 rte_hash_crc, 4 0 91.10 rte_hash_crc, 5 0 91.10 rte_hash_crc, 6 0 91.10 rte_hash_crc, 6 0 91.10 rte_hash_crc, 7 0 91.51 rte_hash_crc, 8 0 15.64 rte_hash_crc, 10 0 15.64 rte_hash_crc, 11 0 17.25 rte_hash_crc, 16 0 19.24 rte_hash_crc, 16 0 19.24	hash 6	. 0	. 20.91			
jhash , 8 , 0 , 21.13 jhash , 10 , 0 , 21.97 jhash , 11 , 0 , 22.26 jhash , 15 , 0 , 31.29 jhash , 16 , 0 , 32.07 jhash , 21 , 0 , 35.22 jhash , 31 , 0 , 46.67 jhash , 32 , 0 , 46.67 jhash , 33 , 0 , 47.79 jhash , 63 , 0 , 91.00 rte_hash_crc, 2 , 0 , 20.40 rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 8 , 0 , 15.64 rte_hash_crc, 10 , 0 , 15.64 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 15 , 0 , 19.24 rte_hash_crc, 15 , 0 , 19.24 rte_hash_crc, 16 , 0 , 19.54 rte_hash_crc, 17 , 0 , 19.54	ihash 7	. 0	. 21.34			
jhash , 10 , 0 , 21.97 jhash , 11 , 0 , 22.26 jhash , 15 , 0 , 31.29 jhash , 16 , 0 , 32.07 jhash , 21 , 0 , 35.22 jhash , 31 , 0 , 45.57 jhash , 32 , 0 , 46.67 jhash , 33 , 0 , 47.79 jhash , 63 , 0 , 91.00 rte_hash_crc, 4 , 0 , 91.00 rte_hash_crc, 5 , 0 , 20.10 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 10 , 0 , 15.64 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 15 , 0 , 19.24 rte_hash_crc, 16 , 0 , 19.24 rte_hash_crc, 17 , 0 , 19.24 rte_hash_crc, 18 , 0 , 19.54 rte_hash_crc, 11 , 0 , 22.30	ihash 8		21.13			
jhash , 11 , 0 , 22.26 jhash , 15 , 0 , 31.29 jhash , 16 , 0 , 35.22 jhash , 21 , 0 , 35.22 jhash , 31 , 0 , 46.67 jhash , 32 , 0 , 46.67 jhash , 63 , 0 , 91.00 jhash , 64 , 0 , 91.10 rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 5 , 0 , 20.40 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 10 , 0 , 15.64 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 15 , 0 , 19.24 rte_hash_crc, 16 , 0 , 19.24 rte_hash_crc, 17 , 0 , 19.54 rte_hash_crc, 18 , 0 , 19.54 rte_hash_crc, 10 , 0 , 19.54 rte_hash_crc, 11 , 0 , 19.54 rte_hash_crc, 12 , 0 , 19.54 rte_hash_crc, 13 , 0 , 22.30	hash 10		21.97			
jhash , 15 , 0 , 31.29 jhash , 16 , 0 , 32.07 jhash , 21 , 0 , 35.22 jhash , 31 , 0 , 45.57 jhash , 32 , 0 , 46.67 jhash , 33 , 0 , 47.79 jhash , 63 , 0 , 91.00 rte_hash_crc, 2 , 0 , 20.40 rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 5 , 0 , 20.10 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 7 , 0 , 19.65 rte_hash_crc, 10 , 0 , 15.64 rte_hash_crc, 11 , 0 , 17.12 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 12 , 0 , 16.54 rte_hash_crc, 13 , 0 , 16.54 rte_hash_crc, 14 , 0 , 16.54 rte_hash_crc, 15 , 0 , 16.24 rte_hash_crc, 16 , 0 , 16.54 rte_hash_crc, 16 , 0 , 16.54	hash . 11	. 0	. 22.26			
jhash , 16 , 0 , 32.07 jhash , 21 , 0 , 35.22 jhash , 31 , 0 , 45.57 jhash , 32 , 0 , 46.67 jhash , 33 , 0 , 47.79 jhash , 63 , 0 , 91.00 jhash , 64 , 0 , 91.10 rte_hash_crc, 2 , 0 , 20.40 rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 5 , 0 , 20.10 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 10 , 0 , 15.64 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 15 , 0 , 19.24 rte_hash_crc, 16 , 0 , 19.54 rte_hash_crc, 21 , 0 , 19.54 rte_hash_crc, 31 , 0 , 22.30	ihash 15		31.29			
jhash , 21 , 0 , 35.22 jhash , 31 , 0 , 45.57 jhash , 32 , 0 , 46.67 jhash , 33 , 0 , 47.79 jhash , 63 , 0 , 91.00 rte_hash_crc, 2 , 0 , 20.40 rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 5 , 0 , 20.10 rte_hash_crc, 6 , 0 , 19.51 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 10 , 0 , 17.12 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 16 , 0 , 19.24 rte_hash_crc, 16 , 0 , 19.54 rte_hash_crc, 31 , 0 , 22.30	hash 16		32.07			
jhash , 31 , 0 , 45.57 jhash , 32 , 0 , 46.67 jhash , 33 , 0 , 47.79 jhash , 63 , 0 , 91.00 jhash , 64 , 0 , 91.10 rte hash crc, 2 , 0 , 20.40 rte hash crc, 4 , 0 , 19.09 rte hash crc, 5 , 0 , 20.10 rte hash crc, 6 , 0 , 19.65 rte hash crc, 7 , 0 , 19.65 rte hash crc, 8 , 0 , 15.64 rte hash crc, 11 , 0 , 17.25 rte hash crc, 16 , 0 , 19.24 rte hash crc, 16 , 0 , 19.24 rte hash crc, 31 , 0 , 22.30	hash . 21	. 0	35.22			
jhash , 32 , 0 , 46.67 jhash , 33 , 0 , 47.79 jhash , 63 , 0 , 91.00 jhash , 64 , 0 , 91.10 rte_hash_crc, 2 , 0 , 20.40 rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 5 , 0 , 20.10 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 10 , 0 , 17.12 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 16 , 0 , 19.54 rte_hash_crc, 21 , 0 , 19.54 rte_hash_crc, 31 , 0 , 22.30	thash 31		. 45.57			
jhash , 33 , 0 , 47.79 jhash , 63 , 0 , 91.00 jhash , 64 , 0 , 91.10 rte_hash_crc, 2 , 0 , 20.40 rte_hash_crc, 5 , 0 , 20.10 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 8 , 0 , 15.64 rte_hash_crc, 10 , 0 , 17.12 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 15 , 0 , 19.24 rte_hash_crc, 21 , 0 , 19.54 rte_hash_crc, 21 , 0 , 19.54 rte_hash_crc, 31 , 0 , 22.30	hash . 32	. 0	46.67			
jhash , 63 , 0 , 91.00 jhash , 64 , 0 , 91.10 rte hash crc, 2 , 0 , 20.40 rte hash crc, 4 , 0 , 19.09 rte hash crc, 5 , 0 , 20.10 rte hash crc, 6 , 0 , 19.65 rte hash crc, 7 , 0 , 19.51 rte hash crc, 8 , 0 , 15.64 rte hash crc, 10 , 0 , 17.12 rte hash crc, 11 , 0 , 17.25 rte hash crc, 15 , 0 , 19.24 rte hash crc, 21 , 0 , 19.54 rte hash crc, 31 , 0 , 22.30	ihash . 33	. 0	47.79			
jhash , 64 , 0 , 91.10 rte_hash_crc, 2 , 0 , 20.40 rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 5 , 0 , 20.10 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 10 , 0 , 17.12 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 15 , 0 , 19.24 rte_hash_crc, 16 , 0 , 19.54 rte_hash_crc, 21 , 0 , 19.54 rte_hash_crc, 31 , 0 , 22.30	thash , 63		. 91.00			
rte hash crc, 2 ,0 , 20,40 rte hash crc, 4 ,0 , 19,09 rte hash crc, 5 ,0 , 20,10 rte hash crc, 6 ,0 , 19,65 rte hash crc, 7 ,0 , 19,65 rte hash crc, 8 ,0 , 15,64 rte hash crc, 10 ,0 , 17,12 rte hash crc, 11 ,0 , 17,25 rte hash crc, 15 ,0 , 19,24 rte hash crc, 16 ,0 , 16,54 rte hash crc, 21 ,0 , 19,54 rte hash crc, 31 ,0 , 22,30	hash . 64	. 0	. 91.10			
rte_hash_crc, 4 , 0 , 19.09 rte_hash_crc, 5 , 0 , 20.10 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 8 , 0 , 15.64 rte_hash_crc, 10 , 0 , 17.12 rte_hash_crc, 11 , 0 , 19.24 rte_hash_crc, 16 , 0 , 16.64 rte_hash_crc, 13 , 0 , 19.24 rte_hash_crc, 16 , 0 , 16.64 rte_hash_crc, 31 , 0 , 22.30	te hash crc. 2	. 0	20.40			
rte_hash_crc, 5 , 0 , 20.10 rte_hash_crc, 6 , 0 , 19.65 rte_hash_crc, 7 , 0 , 19.51 rte_hash_crc, 8 , 0 , 15.64 rte_hash_crc, 10 , 0 , 17.12 rte_hash_crc, 11 , 0 , 19.24 rte_hash_crc, 16 , 0 , 16.64 rte_hash_crc, 13 , 0 , 19.24 rte_hash_crc, 16 , 0 , 19.54 rte_hash_crc, 31 , 0 , 22.30	te hash crc. 4		. 19.09			
rte hash crc, 6 , 0 , 19.65 rte hash crc, 7 , 0 , 19.51 rte hash crc, 8 , 0 , 15.64 rte hash crc, 10 , 0 , 17.12 rte hash crc, 11 , 0 , 17.25 rte hash crc, 15 , 0 , 19.81 rte hash crc, 16 , 0 , 16.16 rte hash crc, 21 , 0 , 19.54 rte hash crc, 31 , 0 , 22.30	te hash crc. 5	. 0	, 20,10			
rte hash crc, 7 , 0 , 19.51 rte hash crc, 8 , 0 , 15.64 rte hash crc, 10 , 0 , 17.12 rte hash crc, 11 , 0 , 17.25 rte hash crc, 15 , 0 , 19.24 rte hash crc, 16 , 0 , 16.16 rte hash crc, 21 , 0 , 19.54 rte hash crc, 31 , 0 , 22.30	te hash crc. 6	. 0	. 19.65			
rte_hash_crc, 8 , 0 , 15.64 rte_hash_crc, 10 , 0 , 17.12 rte_hash_crc, 11 , 0 , 17.25 rte_hash_crc, 15 , 0 , 19.24 rte_hash_crc, 16 , 0 , 16.16 rte_hash_crc, 21 , 0 , 19.54 rte_hash_crc, 31 , 0 , 22.30	te hash crc. 7		, 19,51			
rte hash crc, 10 , 0 , 17.12 rte hash crc, 11 , 0 , 17.25 rte hash crc, 15 , 0 , 19.24 rte hash crc, 16 , 0 , 16.16 rte hash crc, 21 , 0 , 19.54 rte hash crc, 31 , 0 , 22.30	te hash crc. 8	. 0	. 15.64			
rte hash crc, 11 , 0 , 17.25 rte hash crc, 15 , 0 , 19.24 rte hash crc, 16 , 0 , 16.16 rte hash crc, 21 , 0 , 19.54 rte hash crc, 31 , 0 , 22.30	rte hash crc. 10	. 0	. 17.12			
rte hash crc, 15 , 0 , 19.24 rte hash crc, 16 , 0 , 16.16 rte hash crc, 21 , 0 , 19.54 rte hash crc, 31 , 0 , 22.30	te hash crc, 11	. 0	, 17.25			
rte hash crc, 16 , 0 , 16.16 rte hash crc, 21 , 0 , 19.54 rte hash crc, 31 , 0 , 22.30	te hash crc. 15	. 0	, 19,24			
rte_hash_crc, 21 , 0 , 19.54 rte_hash_crc, 31 , 0 , 22.30	rte hash crc, 16	, 0	, 16.16			
rte_hash_crc, 31 , 0 , 22.30	tte hash crc, 21	. 0	, 19.54			
	tte hash crc, 31	. 0	, 22.30			
rte hash crc, 32 , 0 , 18.82	rte hash crc, 32	. 0	, 18.82			
rte hash crc, 33 , 0 , 22.55	rte hash crc, 33	. 0	, 22.55			
rte hash crc, 63 , 0 , 26.75	rte hash crc, 63	, 0	, 26.75			
rte_hash_crc, 64 , 0 , 23.87	rte_hash_crc, 64	, 0	, 23.87			
*** FOY Mask function parformance has require ***	ANA FRY Useb Average					
Fox hash function periodimance test results	rak Hash function p	m a 16 1264	UACH STR			7
Nummer of ticks per 100kup - 35.5268	Number of ticks per 100k	1p = 35.3268				
RTE>>	RTE>>					
Connected to 192 168 0 10 SSH2 - aes128cbc - hmar-shal - no 110-54 🔿 5 54 06-16-54	onsected to 192 168 0 10		CCL12	- aes128-chc - hmac-chal -	no 119:54	Q 6 54 0616-54

Memcpy_perf_autotest Test Results

To evaluate the performance in your platform, run /app/test/memcpy_perf_autotest, for both 32 bytes aligned and unaligned.

😨 root@loc	alhost:/ho	me/i	mjay/dpo	dk-2.0.0									ж
	2 8	8	-	8 M	2	(7	S	N	?				
	Connect	-	Profiles										
Elo Edi	Viour	Mir	dow 1	Jolo									
Elle Edit	L <u>V</u> iew	VVs	idow i	Teh									
RTE>>mem	cpy_per	ī_a	utote	st									0
** rte_m	emcpy()	-	memcp	y perf.	te	sts (c = comp	11	e-time	const	ant) **	
Siza	Cache r		ache	Cache	***	mem	Mem to		ache	Mem		mem	
(bytes)	caone o	(ti	cks)	Guone	(ti	cks)	iiem cc	ti	cks)	riem	(ti	.cks)	
1	4	-	6	=== 32B 14	a1	113	27	_	30	41	-	148	
2	4	-	6	14	-	114	27	-	30	41	1.C	147	
3	4		6	19	-	124	31	-	31	40	-	161	
4	4	-	6	14	-	114	27	-	30	41	-	148	
5	4	-	0	19	2	124	31	_	31	40	0	161	
7	5	-	7	21	_	124	36	-	30	43	-	162	
8	4	-	6	14	-	114	27	-	30	41	-	147	
9	4		6	19		124	29	-	31	40	-	162	
12	4	-	6	19	-	124	29	-	31	40	-	162	
15	5	-	7	22	-	124	37	-	30	44	-	162	
10	3	-	07	19	2	124	23	_	30	39	-	162	
31	3	-	7	19	-	125	23	-	31	39	-	162	
32	3	-	7	19	-	124	23	-	31	39	-	162	
33	4	-	7	30	-	150	36	-	37	63	-	191	
63	4	-	8	30	-	154	36	-	34	64	-	194	
64	4	2.40	7	29	-	152	29	-	34	60	-	192	
127	7	-	8	42		1/3	50	-	92	107	-	219	
128	6	-	8	54	_	187	50	-	50	104	-	224	
129	8	-	10	65	-	258	58	-	60	128	-	329	
191	8	-	14	77	-	268	64	-	73	145	-	325	
192	8	-	15	76	-	324	62	-	75	143	-	366	
193	10		18	88	-	345	70	-	80	166	-	418	
255	10	2	19	99	2	219	74	-	90	185	-	334	
257	12	-	19	111	-	286	83	_	100	207	-	385	
319	12	-	21	122	-	294	91	-	109	229	-	348	
320	13	-	22	122	-	358	90	-	113	228	-	393	
321	14	-	22	133	-	379	99	-	120	248	-	451	
383	14	-	24	144	-	386	106	-	129	269	-	458	
385	16	1	25	152	Ξ.	306	114	-	141	200	-	428	
447	16	-	27	164	-	311	122	-	149	309	-	429	
448	15	-	26	164	_	375	120	-	151	308	1	461	E
449	17	-	27	175	-	397	130	-	156	330	-	502	
511	17	-	29	185	-	391	138	-	165	350	-	526	
512	16	-	30	185	-	251	136	-	170	349	-	479	
767	24	-	40	268	2	472	205	-	241	582	-	677	
768	24	-	40	267	-	362	203	-	243	581	E	621	
769	36	-	54	274	-	421	216	-	256	593	-	657	
1023	28	-	51	322	-	410	240	-	286	653	-	638	
1024	27	-	51	322	-	375	240	-	288	652	-	627	
1518	28	1	51	432	2	531	295	-	387	861	-	832	
1522	35		71	432	6	502	323	-	378	861	E	809	
1536	35	-	71	432	-	480	323	-	383	861	-	804	
1600	25	-	74	446	-	511	335	-	396	887	-	831	

2	root@local	host:/hom	ne/n	njay/dp	dk-2.0.0									- 0	x
	8 6 6			h 📾	a A	2	₹ (1 🎭 🥝	k	?					
t.	Quick Co	onnect (Profiles											
	File Edit	View	Win	dow	Help										
r	2048	45	-	92	539		585	402	-	469	1050	-	986		
	2560	55		113	647	_	691	478	_	551	1231	-	1167		
	3072	65	-	133	750	-	792	553	-	628	1410	-	1350		
	3584	76	-	153	852	-	893	627	-	708	1590	_	1530		
	4096	91	-	174	953	4	994	701	_	784	1770	4	1704		
	4608	101	4	203	1054	-	1093	776	-	864	1950	æ	1885		
	5120	109	-	223	1155	-	1194	848	-	940	2130	-	2064		
	5632	118	-	244	1256	-	1292	920	-	1018	2310	-	2242		
	6144	127	-	264	1357	-	1391	993	-	1095	2490	-	2419		
	6656	137	-	285	1457	-	1493	1065	-	1174	2670	-	2599		
	7168	147	-	305	1558	-	1591	1138	-	1250	2850	4	2772		
	7680	158	-	325	1659	-	1691	1210	-	1326	3030	-	2953		
	8192	173	-	346	1760	-	1791	1285	-	1407	3208	-	3132		
						-			-						
C	6	2	-	2	19	-	18	21	-	17	39	Ċ.	39		
C	64	3	33	6	28	-	33	29	7	42	60	3	67		
C	128	4	-	12	53	-	58	44	-	10	103	-	116		
L C	192	0	-	30	/6	-	104	59	-	123	144	-	1/4		
2	250	16		35	105		109	107		154	105		210		
č	769	10	_	55	267	2	410	201	2	200	517	0	593		
č	1024	23	-	57	322	2	494	239	_	330	587	2	712		
č	1536	34	-	66	433	_	602	323	_	397	772	8	948		
-					==== Un/	1	igned		_						
	1	4	-	7	14	-	114	27	-	30	41	-	148		
	2	4	-	7	14	-	114	27	-	30	41	-	148		
	3	4	-	7	19	-	124	31	-	30	41	æ	161		
	4	4	-	7	14	-	114	27	-	30	41	-	147		
	5	4	-	7	19	-	124	30	-	30	40	-	161		
	6	4	-	7	19	-	124	31	-	30	41	-	161		
	7	5	-	7	21	-	124	36	-	30	44	-	161		
	8	4	-	7	14	-	114	26	-	30	41	4	148		
	9	4	-	7	19	-	124	29	-	30	40	æ	162		
	12	4	-	7	19	-	124	29	-	30	40	-	161		
	15	5	-	7	22	-	124	37	-	30	45	1	162		
	16	3	7	7	19	-	114	23	-	30	39	7	148		
	17	3	-	7	19	-	124	23	-	30	39	-	161		
	31	3		7	19	-	124	34	-	43	51	1	171		
	32	3	-	7	30	-	145	34	-	42	63	-	184		
	33	4	-	-	94	-	151	32	-	37	110		193		
	63	-	- T- C	0 7	12	-	152	41	-	41	13	-	190		
	65		-	6	105	-	174	54	2	42	196	173	212		
	127	7	3	0	105	2	197	62	Ξ	57	110	2	227		
	128	7	-	10	66	_	243	63	_	57	129	122	306		
	129	8	-	11	125	_	243	63	-	60	172	-	310		
	191	10	-	17	78	-	310	72	-	87	157	-	358		10010
	192	11	-	19	89	_	342	74	_	89	170	-	418		
	193	13	-	19	144	-	342	74	-	89	206	9	418		
	255	13	-	21	101	-	355	86	-	102	197	-	434		=
	256	13	-	22	111	-	368	86	-	104	210	-	444		
	257	15	-	22	157	-	368	86	-	104	245	-	445		
	319	16	-	23	123	-	342	99	-	123	238	÷	390		1
	320	17	-	24	134	-	376	100	-	126	250	÷	450		
	321	19	-	24	183	-	376	102	-	126	278	-	450		
	383	19	-	26	146	-	382	116	-	141	280	-	466		
	384	19	-	26	152	-	397	116	-	144	292	-	476		
	385	21	-	26	200	-	397	117	_	144	326	-	477		

2	root@local	host:/ho	me/	mjay/d	odk-2.0.0										X
E	1 6 D		2	-	M	2	😨 💎	-	R	9					
F] Ouick Co	nnect	0	Profiles											
5		mecc	-	FIUNE	2										
ł	<u>Eile E</u> dit	<u>V</u> iew	Wi	ndow	Help										
	447	21	å	29	165		377	131	-	161	319	-	536		
	448	22		29	176	-	411	132	-	163	331	_	589		
	449	22	2 -	29	217	-	412	133	-	163	370	-	589		
	511	23	3 -	33	187	-	418	148	-	176	361	-	611		
	512	24	1 -	33	197	-	434	148	-	178	373	-	621		
	513	21	ine-	33	196	-	434	154	-	178	374	-	620		
	767	46	5 -	45	276	-	507	212	-	254	525	-	904		
	768	62		52	282	-	507	222	-	260	531	_	911		
	769	63	3 -	52	282	-	508	221	-	260	531	_	912		
	1023	53	3 -	57	326	-	472	247	-	304	595	_	1004		
	1024	53	3 -	57	332	-	501	249	-	305	602	_	1030		
	1025	53	3 -	57	333	-	501	249	-	304	603	_	1030		
	1518	55	-	80	433	_	623	329	-	389	775	_	1353		
	1522	50	-	81	433	_	594	328	_	391	774	_	1348		
	1536	5.6		82	440		626	333	_	405	786	_	1384		
	1600	57		85	453		645	346		421	817	_	1444		
	2048	60		107	546	0.000	757	411	on the	403	083		1726		
	2560	91		191	653	0.000	996	499	Certak Certak	577	1166	SATIN Dellar	2033		
	3072	01	a come	156	755	00000	007	561	Contraction of the local distance of the loc	660	1344		2300		
	3594	101		101	957	2777	1103	636		743	1522		2500		
	4006	114		200	057		1207	700		022	1600		2020		
	1090	100		200	1060		1207	700	970) 	023	1070	977.9 	2006		
	1000	121		230	1160	80778	1400	702		901	10/0		2906		
	5120	155		203	1103	30773	1423	034	-	9/8	2056	-	3099		
	5632	105		287	1263		1529	926	-	1057	2238	-	3297		
	0144	1/5		312	1365	30773	1034	997	-	1134	2415	-	3486		
	6656	186		331	1464	20773	1/39	1069	-2	1209	2594	-	3682		
	7168	196		362	1563	877.8	1846	1142	-	1288	2775	-	3876		
	7680	208		387	1665	-	1949	1212	-	1363	2955	-	4070		
	8192	221	100 0	413	1766	-	2051	1286	-	1441	3133	-	4263		
	6	2	2 -	2	19	8 	18	20	-	17	38	-	38		
	64	23	3 -	7	41	-	45	38	-	45	85	-	88		
	128	e	5 -	14	65	-	69	53	-	79	126	-	131		
	192	12	2 -	32	89	-	93	68	-	165	167	-	215		
1.4	256	14	1 -	37	111	-	115	84	-	195	209	-	248		
1	512	24	1 -	60	197	-	203	149	-	300	373	-	424		
1	768	62	2 -	82	282	-	462	220	-	321	531	-	621		
1.4.1	1024	49	- 6	106	428	-	536	249	-	360	682	-	771		
	1536	58	3 -	114	528	8 97 8	642	334	-	423	892	-	994		
-															1
e	st OK														
T	E>>														3
												_		10	
	nected to 1	92.168.0).10	SS	H2 - aes128-	cbo	- hmac-	sha1 - no	11	9x43	0	6,	43	06:24:13	

Mempool_perf_autotest Test Results

Core	Cache Object	Bulk Get	Bulk Put	# of Kept
Configuration		Size	Size	Objects
a) One Coreb) Two Coresc) Max. Cores	 a) with cache object b) without cache object 	a) 1 b) 4 c) 32	a) 1 b) 4 c) 32	a) 32 b) 128

To evaluate the performance in your platform, run /app/test/mempool_perf_autotest.

vot@localhost/home/mjay/dpdk-2.0.0	
Ele Edit View Window Help	
RTE>>mempool_perf_autotest	-
start performance test (without cache)	
mempool autotest cache=0 cores=1 n get bulk=1 n put bulk=1 n keep=32 rate persec=4/539614	
mempool autotest cache=0 cores=1 n get bulk=1 n put bulk=4 n keep=32 rate persec=79010201	
mempool_autotest cache=0 cores=1 n_get_bulk=1 n_put_bulk=4 n_keep=128 rate_persec=78879129	ŧ.
mempool_autotest cache=0 cores=1 n_get_bulk=1 n_put_bulk=32 n_keep=32 rate_persec=95617024	
mempool autotest cache=0 cores=1 n get bulk=1 n put bulk=32 n keep=32 rate persec=9502/20	0
mempool autotest cache=0 cores=1 n get bulk=4 n put bulk=1 n keep=128 rate persec=79036416	8
mempool_autotest cache=0 cores=1 n_get_bulk=4 n_put_bulk=4 n_keep=32 rate_persec=180682752	
<pre>mempool_autotest cache=0 cores=1 n_get_bulk=4 n_put_bulk=4 n_keep=128 rate_persec=18136432</pre>	6
mempool autotest cache=0 cores=1 n get bulk=4 n put bulk=32 n keep=32 rate persec=29824122	56
mempool autotest cache=0 cores=1 n get bulk=32 n put bulk=1 n keep=32 rate persec=94162124	
mempool_autotest cache=0 cores=1 n_get_bulk=32 n_put_bulk=1 n_keep=128 rate_persec=9434562	5
mempool_autotest cache=0 cores=1 n_get_bulk=32 n_put_bulk=4 n_keep=32 rate_persec=28491120	6
mempool autotest cache=0 cores=1 n_get_bulk=32 n_put_bulk=4 n_keep=128 rate_persec=2854092	80
mempool autotest cache=0 cores=1 n get bulk=32 n put bulk=32 n keep=32 rate persec=709020 mempool autotest cache=0 cores=1 n get bulk=32 n put bulk=32 n keep=128 rate persec=709020	876
mempool autotest cache=0 cores=2 n get bulk=1 n put bulk=1 n keep=32 rate persec=9738649	
<pre>mempool_autotest cache=0 cores=2 n_get_bulk=1 n_put_bulk=1 n_keep=128 rate_persec=9673112</pre>	
<pre>mempool_autotest cache=0 cores=2 n_get_bulk=1 n_put_bulk=4 n_keep=32 rate_persec=13867416</pre>	
mempool autotest cache=0 cores=2 n get bulk=1 n put bulk=3 n keep=128 rate persec=14850456	1001
mempool autotest cache=0 cores=2 n get bulk=1 n put bulk=32 n keep=128 rate persec=1515192	2
mempool_autotest cache=0 cores=2 n_get_bulk=4 n_put_bulk=1 n_keep=32 rate_persec=12845056	
<pre>mempool_autotest cache=0 cores=2 n_get_bulk=4 n_put_bulk=1 n_keep=128 rate_persec=12845056</pre>	
mempool autotest cache=0 cores=2 n get bulk=4 n put bulk=4 n keep=32 rate persec=38967705	į.
mempool autotest cache=0 cores=2 n get bulk=4 n put bulk=32 n keep=32 rate persec=54407986	
mempool_autotest cache=0 cores=2 n_get_bulk=4 n_put_bulk=32 n_keep=128 rate_persec=5811732	4
<pre>mempool_autotest cache=0 cores=2 n_get_bulk=32 n_put_bulk=1 n_keep=32 rate_persec=13474200</pre>	
mempool autotest cache=0 cores=2 n get bulk=32 n put bulk=1 n keep=128 rate persec=1363148	8
mempool autotest cache=0 cores=2 n get bulk=32 n put bulk=4 n keep=32 rate persec=50410290	5
mempool autotest cache=0 cores=2 n get bulk=32 n put bulk=32 n keep=32 rate persec=2360999	93
mempool_autotest cache=0 cores=2 n_get_bulk=32 n_put_bulk=32 n_keep=128 rate_persec=271043	788
mempool_autotest cache=0 cores=35 n_get_bulk=1 n_put_bulk=1 n_keep=32 rate_persec=1834980	
mempool autotest cache=0 cores=35 n get bulk=1 n put bulk=4 n keep=32 rate persec=2752505	
mempool autotest cache=0 cores=35 n get bulk=1 n put bulk=4 n keep=128 rate persec=2752505	
mempool_autotest cache=0 cores=35 n_get_bulk=1 n_put_bulk=32 n_keep=32 rate_persec=2752505	
mempool_autotest cache=0 cores=35 n_get_bulk=1 n_put_bulk=32 n_keep=128 rate_persec=275250	5
mempool autotest cache=0 cores=35 n get bulk=4 n put bulk=1 n keep=32 rate persec=2752505	
mempool autotest cache=0 cores=35 n get_bulk=4 n put_bulk=4 n keep=32 rate persec=6881280	
mempool_autotest cache=0 cores=35 n_get_bulk=4 n_put_bulk=4 n_keep=128 rate_persec=7340025	é la
mempool_autotest cache=0 cores=35 n_get_bulk=4 n_put_bulk=32 n_keep=32 rate_persec=9895925	
mempool autotest cache=0 cores=35 n get bulk=4 n put bulk=32 n keep=128 rate persec=105512 mempool autotest cache=0 cores=35 n get bulk=32 n put bulk=1 n keep=32 rate persec=2752505	15
mempool autotest cache=0 cores=35 n get bulk=32 n put bulk=1 n keep=128 rate persec=275250	5
mempool_autotest cache=0 cores=35 n_get_bulk=32 n_put_bulk=4 n_keep=32 rate_persec=9633785	Geo II
mempool_autotest cache=0 cores=35 n_get_bulk=32 n_put_bulk=4 n_keep=128 rate_persec=100925	30
mempool autotest cache=0 cores=35 n get bulk=32 n put bulk=32 n keep=32 rate persec=428998	91 1
start performance test (with cache)	2.2.2 ×
n - Casadonador - Adamar - Adamar - Casadon - Cas	
Connected to 192.168.0.10 SSH2 - aes128-cbc - hmac-sha1 - no 119/58	06:40:44

voot@localhost:/home/mjay/dpdk-2.0.0	
Ele Edit View Window Help	
mempool autotest cache=0 cores=35 n get bulk=32 n put bulk=4 n keep=128 rate persec=10092530	
mempool_autotest cache=0 cores=35 n_get_bulk=32 n_put_bulk=32 n_keep=32 rate_persec=42899841	
mempool_autotest cache=0 cores=35 n_get_bulk=32 n_put_bulk=32 n_keep=128 rate_persec=51838955	
start performance test (With cache)	
mempool autotest cache=512 cores=1 n get bulk=1 n put bulk=1 n keep=128 rate persec=123286323	
mempool_autotest cache=512 cores=1 n_get_bulk=1 n_put_bulk=4 n_keep=32 rate persec=196463820	
<pre>mempool_autotest cache=512 cores=1 n_get_bulk=1 n_put_bulk=4 n_keep=128 rate_persec=212061388</pre>	
mempool_autotest cache=512 cores=1 n_get_bulk=1 n_put_bulk=32 n_keep=32 rate_persec=242142412	
mempool autotest cache=512 cores=1 n get bulk=1 n put bulk=32 n keep=128 rate persec=256612761	
mempool autotest cache=512 cores=1 n get bulk=4 n put bulk=1 n keep=32 rate persec=101500354	
mempool autotest cache=512 cores=1 n get bulk=4 n put bulk=4 n keep=32 rate persec=415026380	
mempool_autotest cache=512 cores=1 n_get_bulk=4 n_put_bulk=4 n_keep=128 rate_persec=381511270	
<pre>mempool_autotest cache=512 cores=1 n_get_bulk=4 n_put_bulk=32 n_keep=32 rate_persec=583100006</pre>	
mempool autotest cache=512 cores=1 n get bulk=4 n put bulk=32 n keep=128 rate persec=564317388	
mempool autotest cache=512 cores=1 n get bulk=32 n put bulk=1 n keep=32 rate_persec=202230988	
mempool autotest cache=512 cores=1 n get bulk=32 n put bulk=4 n keep=32 rate persec=597308211	8
mempool_autotest cache=512 cores=1 n_get_bulk=32 n_put_bulk=4 n_keep=128 rate_persec=560660480	Y
mempool_autotest cache=512 cores=1 n_get_bulk=32 n_put_bulk=32 n_keep=32 rate_persec=840931737	
mempool_autotest cache=512 cores=1 n_get_bulk=32 n_put_bulk=32 n_keep=128 rate_persec=11107041	.2
mempool_autotest_cache=512_cores=2 n_get_bulk=1 n_put_bulk=1 n_keep=32_rate_persec=246598860	
mempool autotest cache=512 cores=2 n get bulk=1 n put bulk=4 n keep=32 rate persec=400110387	
mempool_autotest cache=512 cores=2 n_get_bulk=1 n_put_bulk=4 n_keep=128 rate_persec=417975500	
<pre>mempool_autotest cache=512 cores=2 n_get_bulk=1 n_put_bulk=32 n_keep=32 rate_persec=456615526</pre>	
mempool_autotest cache=512 cores=2 n_get_bulk=1 n_put_bulk=32 n_keep=128 rate_persec=510774476	5
mempool_autotest_cache=512_cores=2 n_get_bulk=4 n_put_bulk=1 n_keep=32_rate_persec=361024/16	
mempool autotest cache=512 cores=2 n get bulk=4 n put bulk=4 n keep=32 rate persec=838677299	
mempool_autotest cache=512 cores=2 n_get_bulk=4 n_put_bulk=4 n_keep=128 rate_persec=774963199	
mempool_autotest cache=512 cores=2 n_get_bulk=4 n_put_bulk=32 n_keep=32 rate_persec=1159397375	
mempool_autotest cache=512 cores=2 n_get_bulk=4 n_put_bulk=32 n_keep=128 rate_persec=112987996	51
mempool autotest cache=512 cores=2 n get bulk=32 n put bulk=1 n keep=32 rate persec=391276134	12
mempool autotest cache=512 cores=2 n get bulk=32 n put bulk=4 n keep=32 rate persec=1212284927	
mempool_autotest cache=512 cores=2 n get_bulk=32 n put_bulk=4 n keep=128 rate persec=111569797	10
mempool_autotest cache=512 cores=2 n_get_bulk=32 n_put_bulk=32 n_keep=32 rate_persec=166461439	9
mempool_autotest cache=512 cores=2 n_get_bulk=32 n_put_bulk=32 n_keep=128 rate_persec=20691025	8
mempool autotest cache=512 cores=35 n get bulk=1 n put bulk=1 n keep=32 rate persec=3211565450	6
mempool autotest cache=512 cores=35 n get bulk=1 n put bulk=4 n keep=32 rate persec=1047986160	,
mempool_autotest cache=512 cores=35 n_get_bulk=1 n_put_bulk=4 n_keep=128 rate_persec=133546637	18
mempool_autotest cache=512 cores=35 n_get_bulk=1 n_put_bulk=32 n_keep=32 rate_persec=194582936	51
mempool_autotest cache=512 cores=35 n_get_bulk=1 n_put_bulk=32 n_keep=128 rate_persec=24569446	528
mempool autotest cache=512 cores=35 n get bulk=4 n put bulk=1 n keep=32 rate persec=537106827	5
mempool autotest cache=512 cores=35 n get bulk=4 n put bulk=4 n keep=32 rate persec=2434360918	
mempool autotest cache=512 cores=35 n get bulk=4 n put bulk=4 n keep=128 rate persec=171353045	5
mempool_autotest cache=512 cores=35 n_get_bulk=4 n_put_bulk=32 n_keep=32 rate_persec=235757894	2
mempool_autotest cache=512 cores=35 n_get_bulk=4 n_put_bulk=32 n_keep=128 rate_persec=20861812	58
mempool autotest cache=512 cores=35 n get bulk=32 n put bulk=1 n keep=32 rate persec=128194968	3
mempool autotest cache=512 cores=35 n get bulk=32 n put bulk=4 n keep=120 rate persec=290525733	1 E
mempool autotest cache=512 cores=35 n get bulk=32 n put bulk=4 n keep=128 rate persec=16237461	37
mempool_autotest cache=512 cores=35 n_get_bulk=32 n_put_bulk=32 n_keep=32 rate_persec=61206690	00
	+
Connected to 192.168.0.10 SSH2 - aes128-cbc - hmac-shal - no 119x58 💮 1, 58 06:5	54:46

Timer_perf_autotest Test Results

# of Timers Configuration	Operations Timed
 a) 0 Timer b) 100 Timers c) 1000 Timers d) 10,000 Timers e) 100,000 Timers f) 1,000,000 Timers 	AppendingCallbackResetting

To evaluate the performance in your platform, run /app/test/timer_perf_autotest.

Quck Connect Profiles Be Edt Vew Window Heb RTE>>timer perf_autotest Appending 100 timers Time for 100 timers Collbacks: 100 timers Time for 100 timers Collbacks: 100 timers Time for 1000 timers Time for 10000 timers	
<pre>Quick Connect Profiles Ele Edt View Window Help RTE>>timer_perf_autotest Appending 100 timers Time for 100 timers: 62826 (0ms), Time per timer: 628 (0us) Time for 100 timers: 62826 (0ms), Time per timer: 628 (0us) Resetting 100 timers Time for 100 timers: 56955 (0ms), Time per timer: 569 (0us) Appending 1000 timers Time for 1000 timers: 569344 (0ms), Time per timer: 569 (0us) Time for 1000 timers: 569344 (0ms), Time per timer: 569 (0us) Resetting 1000 timers Time for 10000 timers Time for 100000 timers Time for 10000 timers Time for 10000 timers Time</pre>	
<pre>File Edit View Window Heb RTE>>timer_perf_autotest Appending 100 timers Time for 100 timers 62826 (Oms), Time per timer: 628 (Ous) Time for 100 callbacks: 18379 (Oms), Time per callback: 183 (Ous) Resetting 100 timers Time for 100 timers: 56955 (Oms), Time per timer: 569 (Ous) Appending 1000 timers Time for 1000 timers: 564344 (Oms), Time per timer: 564 (Ous) Time for 1000 callbacks: 145213 (Oms), Time per timer: 564 (Ous) Resetting 1000 timers Time for 1000 timers: 772899 (Oms), Time per timer: 772 (Ous) Appending 10000 timers Time for 100000 timers Time for 100000 timers Time for 100000 timers Time for</pre>	
<pre>RTE>>timer_perf_autotest Appending 100 timers Time for 100 callbacks: 18379 (0ms), Time per timer: 628 (0us) Time for 100 callbacks: 18379 (0ms), Time per callback: 183 (0us) Resetting 100 timers Time for 100 timers: 56955 (0ms), Time per timer: 569 (0us) Appending 1000 timers Time for 1000 timers: 564344 (0ms), Time per timer: 564 (0us) Time for 1000 timers: 564344 (0ms), Time per callback: 145 (0us) Resetting 1000 timers Time for 1000 timers 772899 (0ms), Time per timer: 772 (0us) Appending 10000 timers Time for 10000 timers</pre>	
Appending 100 timers Time for 100 timers: 62826 (Oms), Time per timer: 628 (Ous) Time for 100 callbacks: 18379 (Oms), Time per callback: 183 (Ous) Resetting 100 timers Time for 100 timers: 56955 (Oms), Time per timer: 569 (Ous) Appending 1000 timers: 564344 (Oms), Time per timer: 564 (Ous) Time for 1000 callbacks: 145213 (Oms), Time per callback: 145 (Ous) Resetting 1000 timers Time for 1000 timers: 772899 (Oms), Time per timer: 772 (Ous) Appending 10000 timers Time for 10000 timers	
Time for 100 timers: 62826 (0ms), Time per timer: 628 (0us) Time for 100 callbacks: 18379 (0ms), Time per callback: 183 (0us) Resetting 100 timers Time for 100 timers: 56955 (0ms), Time per timer: 569 (0us) Appending 1000 timers: 564344 (0ms), Time per timer: 564 (0us) Time for 1000 timers: 564344 (0ms), Time per timer: 564 (0us) Resetting 1000 timers Time for 1000 timers: 772899 (0ms), Time per timer: 772 (0us) Appending 10000 timers Time for 10000 timers: 5990463 (3ms), Time per timer: 599 (0us) Time for 10000 timers Time for 10000 timers	
Time for 100 callbacks: 18379 (0ms), Time per callback: 183 (0us) Resetting 100 timers Time for 100 timers: 56955 (0ms), Time per timer: 569 (0us) Appending 1000 timers Time for 1000 timers: 564344 (0ms), Time per timer: 564 (0us) Time for 1000 callbacks: 145213 (0ms), Time per callback: 145 (0us) Resetting 1000 timers Time for 1000 timers: 772899 (0ms), Time per timer: 772 (0us) Appending 10000 timers Time for 10000 timers Time for 10000 timers: 5990463 (3ms), Time per timer: 599 (0us) Time for 10000 timers: 1421798 (1ms), Time per callback: 142 (0us) Resetting 10000 timers Time for 10000 timers Time for 10000 timers Time for 10000 timers	
Resetting 100 timers Time for 100 timers: 56955 (0ms), Time per timer: 569 (0us) Appending 1000 timers: Time for 1000 timers: 564344 (0ms), Time per timer: 564 (0us) Time for 1000 callbacks: 145213 (0ms), Time per callback: 145 (0us) Resetting 1000 timers Time for 10000 timers: 772899 (0ms), Time per timer: 772 (0us) Appending 10000 timers Time for 10000 timers: 5990463 (3ms), Time per timer: 599 (0us) Time for 10000 timers: 1421798 (1ms), Time per callback: 142 (0us) Resetting 10000 timers Time for 10000 timers	
Appending 1000 timers Time for 1000 timers Time for 1000 timers: 564344 (Oms), Time per timer: 564 (Ous) Time for 1000 timers Time for 1000 timers Time for 10000 timers Time for 10000 timers Time for 10000 timers: 5990463 (Sms), Time per timer: 599 (Ous) Time for 10000 timers: 1421798 (Ims), Time per timer: 599 (Ous) Time for 10000 timers Time for 10000 timers	
Appending 1000 timers Time for 1000 timers: 564344 (Oms), Time per timer: 564 (Ous) Time for 1000 callbacks: 145213 (Oms), Time per callback: 145 (Ous) Resetting 1000 timers Time for 10000 timers: 772899 (Oms), Time per timer: 772 (Ous) Appending 10000 timers Time for 10000 timers: 5990463 (Sms), Time per timer: 599 (Ous) Time for 10000 callbacks: 1421798 (Ims), Time per callback: 142 (Ous) Resetting 10000 timers Time for 10000 timers Time for 10000 timers Time for 10000 timers	
Time for 1000 timers: 564344 (Oms), Time per timer: 564 (Ous) Time for 1000 callbacks: 145213 (Oms), Time per callback: 145 (Ous) Resetting 1000 timers Time for 1000 timers: 772899 (Oms), Time per timer: 772 (Ous) Appending 10000 timers Time for 10000 timers: 5990463 (Sms), Time per timer: 599 (Ous) Time for 10000 callbacks: 1421798 (Ims), Time per callback: 142 (Ous) Resetting 10000 timers Time for 10000 timers Time for 10000 timers Time for 10000 timers Time for 10000 timers	
Time for 1000 callbacks: 145213 (Oms), Time per callback: 145 (Ous) Resetting 1000 timers Time for 1000 timers: 772899 (Oms), Time per timer: 772 (Ous) Appending 10000 timers Time for 10000 timers: 5990463 (Sms), Time per timer: 599 (Ous) Time for 10000 callbacks: 1421798 (Ims), Time per callback: 142 (Ous) Resetting 10000 timers Time for 10000 timers Time for 10000 timers: 11300631 (Sms), Time per timer: 1130 (Ous) Appending 100000 timers	
Resetting 1000 timers Time for 1000 timers: 772899 (Oms), Time per timer: 772 (Ous) Appending 10000 timers Time for 10000 timers: 5990463 (Sms), Time per timer: 599 (Ous) Time for 10000 callbacks: 1421798 (Ims), Time per callback: 142 (Ous) Resetting 10000 timers Time for 10000 timers: 11300631 (Sms), Time per timer: 1130 (Ous) Appending 100000 timers	
Appending 10000 timers: //2899 (0ms), lime per timer: //2 (0ms) Time for 10000 timers: 5990463 (3ms), Time per timer: 599 (0ms) Time for 10000 timers: 1421798 (1ms), Time per callback: 142 (0ms) Resetting 10000 timers Time for 10000 timers: 11300631 (5ms), Time per timer: 1130 (0ms) Appending 100000 timers	
Appending 10000 timers Time for 10000 timers: 5990463 (3ms), Time per timer: 599 (0us) Time for 10000 callbacks: 1421798 (1ms), Time per callback: 142 (0us) Resetting 10000 timers Time for 10000 timers: 11300631 (5ms), Time per timer: 1130 (0us) Appending 100000 timers	
Time for 10000 timers: 5990463 (3ms), Time per timer: 599 (0us) Time for 10000 callbacks: 1421798 (1ms), Time per callback: 142 (0us) Resetting 10000 timers Time for 10000 timers: 11300631 (5ms), Time per timer: 1130 (0us) Appending 100000 timers	
Time for 10000 callbacks: 1421798 (lms), Time per callback: 142 (Ous) Resetting 10000 timers Time for 10000 timers: 11300631 (5ms), Time per timer: 1130 (Ous) Appending 100000 timers	
Resetting 10000 timers Time for 10000 timers: 11300631 (5ms), Time per timer: 1130 (Ous) Appending 100000 timers	
Time for 10000 timers: 11300631 (5ms), Time per timer: 1130 (0us) Appending 100000 timers	
Appending 100000 timers	
N 등 전 등 것 같아. 이 등 것 방법에 있는 것 같아. 이 것 같아. 이 가 있는 것 같아. 이 것 같아. 이 것 같아. 이 가 있는 것 같아. 이 가 있 이 가 있는 것 같아. 이 가 이 것 같아. 이 이 것 같아. 이 이 이 이 이 이 이 이 이 이 이	
Time for 100000 timers: 57467025 (25ms), Time per timer: 574 (Ous)	
Time for 100000 callbacks: 13187024 (6ms), Time per callback: 131 (0us)	
Resetting 100000 timers	
lime for 100000 timers: 15/051862 (60ms), lime per timer: 15/0 (10s)	
Appending 1000000 timers	
Time for 1000000 timers: 450082271 (196ms), Time per timer: 450 (Ous)	
Time for 1000000 callbacks: 118351010 (51ms), Time per callback: 118 (Ous)	
Resetting 1000000 timers	
lime for 1000000 timers: 10000550// (/22ms), lime per timer: 1000 (lus)	
All timers processed ok	
Time new sta times manage with save timese: 10 quales	
Time per rte timer manage with zero callbacks; 24 gvgles	
Test OK	E
RTE>>	3
Connected to 192.168.0.10 SSH2 - aes128-cbc - hmac-sha1 - no 119x37 @ 6.37 06	:59:47

For cookbook-style instructions on how to do hands-on performance profiling of your DPDK code with VTune tools, continue to the module *Profiling DPDK Code with Intel VTune Amplifier*.

Performance Profiling Resources

- Document #5571159 Intel Xeon processor E7-8800/4800 v3 Performance Tuning Guide
- Intel[®] Optimizing Non-Sequential Data Processing Applications Brian Forde and John Browne
- Measuring Cache and Memory Latency and CPU to Memory Bandwidth For use with Intel <u>Architecture</u> – Joshua Ruggiero
- Tuning Applications Using a Top-down Microarchitecture Analysis Method
- Intel[®] Processor Trace architecture details can be found in the <u>Intel 64 and IA-32 Architectures</u> <u>Software Developer Manuals</u>
- Evaluating the Suitability of Server Network Cards for Software Routers
- Low Latency Performance Tuning Guide For Red Hat Enterprise Linux 6 Jeremy Eder, Senior Software Engineer
- Red Hat Enterprise Linux 6 Performance Tuning Guide
- Memory Ordering in Modern Microprocessors Paul E McKenney Draft of 2007/09/19 15:15
- What is RCU, Fundamentally?

Profiling DPDK Code with Intel[®] VTune[™] Amplifier

Introduction

Performance is a key factor in designing and shipping best of class products. Optimizing performance requires visibility into system behavior. In this module, we'll learn how to use <u>Intel VTune Amplifier</u> to profile <u>Data Plane Development Kit (DPDK)</u> code.

You will find this module to be a comprehensive reference for installing and use of the Intel VTune Amplifier, and will learn how to run some **DPDK micro benchmarks** as an example of how to get deep visibility into system, cores, communication, and core pipeline and usage.

Extensive screenshots are provided for comparison with your output. The commands are given, in addition, so that the readers can copy and paste wherever possible.

Outline

This module walks you through the following steps to get started using Intel VTune Amplifier with a DPDK application.

- Install Linux
- Install Data Plane Development Kit (DPDK)
- Install the tools
 - o Source editor
 - o Intel VTune Amplifier
- Install and profile the application of your choice
 - o Distributor application

- Ring tests application
- Conclusion and next steps

Install Linux

Install from the Linux DVD with an ISO image: <u>http://old-releases.ubuntu.com/releases/15.04/ubuntu-15.04-desktop-amd64.iso</u>

Prior to Install

If you have a laptop installed with Windows* 8, go to safe mode (SHIFT+RESTART). Once in safe mode, choose boot option # 1 to boot from the external USB DVD drive. Restart and install.

After Install

1. Verify whether the kernel version installed is the correct version as per the DPDK release notes.

```
$uname -a
```

```
dpdk@dpdk:~/dpdk-16.04$ uname -a
Linux dpdk 3.19.0-59-generic #66-Ubuntu SMP Thu May 12 22:35:27 UTC 2016 x86_64 x86_64
NU/Linux
```

The above output verifies the kernel release as 3.19.0-59-generic, the version number as #66, and the distro as Ubuntu 64 bit.

\$uname -v

Displays the version # – version #66 as shown below.

\$lsb release -c

Shows the code name—the code name is *vivid*, as shown below.

😣 🗐 🗊 root@dpdk: ~

```
root@dpdk:/# sudo -i
root@dpdk:~#
root@dpdk:~#
root@dpdk:~# uname -r
3.19.0-59-generic
root@dpdk:~#
root@dpdk:~#
root@dpdk:~#
root@dpdk:~#
root@dpdk:~#
root@dpdk:~#
root@dpdk:~#
root@dpdk:~#
root@dpdk:~#
```

- 2. Verify Internet connectivity. In some cases, the network-manager service has to be restarted for the Ethernet service to be operational.
 - \$ sudo service network-manager restart

dpdk@dpdk:~/dpdk-16.04\$ sudo service network-manager restart

Install DPDK Download the DPDK

- 3. Get the latest DPDK release, as shown below and in the screenshot.
- \$ sudo wget www.dpdk.org/browse/dpdk/snapshot/dpdk-16.04.tar.xz

```
dpdk@dpdk:-$ sudo wget www.dpdk.org/browse/dpdk/snapshot/dpdk-16.04.tar.xz
```

The response for the above command is as shown below.

You will find the DPDK tar file downloaded, as shown below.

4. Extract the tar ball.

\$ tar xf dpdk-16.04.tar.xz

You will find that the directory dpdk-16.04 was created.

\$ ls

```
dpdk@dpdk:~$ tar xf dpdk-16.04.tar.xz
dpdk@dpdk:~$
dpdk@dpdk:~$ ls
Desktop Downloads dpdk-16.04.tar.xz Music Public Videos
Documents dpdk-16.04 examples.desktop Pictures Templates
```

5. Change to the DPDK directory to list the files.

```
$ cd dpdk-16.04
$ ls -al
dpdk@dpdk:~$ cd dpdk-16.04/
dpdk@dpdk:~/dpdk-16.04$
dpdk@dpdk:~/dpdk-16.04$ ls -al
total 128
drwxrwxr-x 12 dpdk dpdk
                         4096 Apr 11 14:56 .
drwxr-xr-x 18 dpdk dpdk
                         4096 Jun
                                   2 21:36 ...
drwxrwxr-x 8 dpdk dpdk
                         4096 Apr 11 14:56 app
            2 dpdk dpdk
                         4096 Apr 11 14:56 config
drwxrwxr-x
drwxrwxr-x 5 dpdk dpdk
                         4096 Apr 11 14:56 doc
            4 dpdk dpdk
drwxrwxr-x
                         4096 Apr 11 14:56 drivers
drwxrwxr-x 44 dpdk dpdk
                         4096 Apr 11 14:56 examples
            1 dpdk dpdk
                            0 Apr 11 14:56 .gitignore
- FW- FW- F--
            1 dpdk dpdk
                         1826 Apr 11 14:56 GNUmakefile
- FW- FW- F--
drwxrwxr-x 30 dpdk dpdk
                         4096 Apr 11 14:56 lib
-rw-rw-r-- 1 dpdk dpdk 17987 Apr 11 14:56 LICENSE.GPL
- FW- FW- F--
            1 dpdk dpdk 26530 Apr 11 14:56 LICENSE.LGPL
            1 dpdk dpdk 16797 Apr 11 14:56 MAINTAINERS
- FW- FW- F--
            1 dpdk dpdk
                        1708 Apr 11 14:56 Makefile
- FW- FW- F--
drwxrwxr-x 8 dpdk dpdk
                         4096 Apr 11 14:56 mk
drwxrwxr-x 2 dpdk dpdk
                         4096 Apr 11 14:56 pkg
- FW- FW- F--
            1 dpdk dpdk
                          499 Apr 11 14:56 README
drwxrwxr-x 3 dpdk dpdk
                         4096 Apr 11 14:56 scripts
drwxrwxr-x 2 dpdk dpdk
                         4096 Apr 11 14:56 tools
dpdk@dpdk:~/dpdk-16.04$
```

Install the Tools

Install the source editor of your choice. Here, CSCOPE is chosen.

1. First, check to see whether the correct repository is enabled.

Check that the universe repository is enabled by inspecting /etc/apt/sources.list

\$ sudo gedit /etc/apt/sources.list

As highlighted below, you may see that the archive is *restricted*.

```
# See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
# newer versions of the distribution.
deb http://us.archive.ubuntu.com/ubuntu/ vivid main restricted
deb-src http://us.archive.ubuntu.com/ubuntu/ vivid main restricted
```

If this is the case, edit the file by replacing restricted with universe.

See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to # newer versions of the distribution. deb http://us.archive.ubuntu.com/ubuntu/ vivid main universe deb-src http://us.archive.ubuntu.com/ubuntu/ vivid main universe

Now save the file.

- 2. Update the system.
 - \$ sudo apt-get update

dpdk@dpdk:~/dpdk-16.04\$ sudo apt-get update

The system is updated as shown below.

dpdk@dpdk:~/dpdk-16.04\$ sudo apt-get update
Hit http://us.archive.ubuntu.com vivid InRelease
Hit http://us.archive.ubuntu.com vivid-updates InRelease
Hit http://us.archive.ubuntu.com vivid-backports InRelease
Hit http://security.ubuntu.com vivid-security InRelease
Hit http://us.archive.ubuntu.com vivid/main Sources
Hit http://security.ubuntu.com vivid-security/main Sources
Hit http://us.archive.ubuntu.com vivid/multiverse Sources
Hit http://us.archive.ubuntu.com vivid/main amd64 Packages

Install CSCOPE.

```
$ sudo apt-get install cscope
```


As shown above, CSCOPE 15.8a-2 is installed.

Install Kernel Debug Symbols

1. The first step is to **add the repository containing debugging symbols**. For that, create a new file, ddebs.list (if it does not exist already).

\$ cat /dev/null > /etc/apt/sources.list.d/ddebs.list

2. Edit the file.

\$ gedit /etc/apt/sources.list.d/ddebs.list

root@dpdk:/home/dpdk# gedit /etc/apt/sources.list.d/ddebs.list

3. Add the following line to /etc/apt/sources.list.d/ddebs.list as shown below and save it.

deb http://ddebs.ubuntu.com/ vivid main restricted universe

- 4. **Update the system** to load the package list from the new repository.
 - \$ sudo apt-get update

dpdk@dpdk:~/dpdk-16.04\$ sudo apt-get update
In this example, the system gave the following error:

If you don't see the resolution error in your system, skip the instructions that follow and proceed to the next section.

- 5. To resolve name servers:
 - \$ sudo gedit /etc/resolvconf/resolv.conf.d/tail

Add to the file the two name servers (below) as seen in the example below, and save the file.

6. **Restart the service**. It is necessary to do this before the step that follows, or you'll still see the resolve error.

```
$ sudo /etc/init.d/resolveconf restart
```

After the shutdown and restart, **restart the service**.

7. Update the system.

\$ sudo apt-get update

ntt nttp://us.archive.ubuntu.com viviu-backports/universe franstation-en
Get:3 http://ddebs.ubuntu.com vivid/main amd64 Packages [418 kB]
Get:4 http://ddebs.ubuntu.com vivid/restricted amd64 Packages [40 B]
Get:5 http://ddebs.ubuntu.com vivid/universe amd64 Packages [3,102 kB]
Get:6 http://ddebs.ubuntu.com vivid/multiverse amd64 Packages [42.4 kB]
Get:7 http://ddebs.ubuntu.com vivid/main i386 Packages [419 kB]
Get:8 http://ddebs.ubuntu.com vivid/restricted i386 Packages [40 B]
Get:9 http://ddebs.ubuntu.com vivid/universe i386 Packages [1,963 kB]
Get:10 http://ddebs.ubuntu.com vivid/multiverse i386 Packages [42.5 kB]
Ign http://ddebs.ubuntu.com vivid/main Translation-en_US
Ign http://ddebs.ubuntu.com vivid/main Translation-en
Ign http://ddebs.ubuntu.com vivid/multiverse Translation-en_US
Ign http://ddebs.ubuntu.com vivid/multiverse Translation-en
Ign http://ddebs.ubuntu.com vivid/restricted Translation-en_US
Ign http://ddebs.ubuntu.com vivid/restricted Translation-en
Ign http://ddebs.ubuntu.com vivid/universe Translation-en_US
Ign http://ddebs.ubuntu.com vivid/universe Translation-en
Fetched 6,011 kB in 25s (235 kB/s)
Reading package lists Done
W: GPG error: http://ddebs.ubuntu.com vivid Release: The following signatures

With the above steps, access to <u>http://ddebs.ubuntu.com</u> has been resolved. However there is a new error, *GPG error*, as shown at the bottom of the screenshot below.

8. Add the GPG key.

\$ sudo apt-key adv -keyserver pool.sks-keyservers.net -recv-keys C8CAB6595FDFF622

9. With the repository added, the next step is to **install the symbol package** by running the following command:

apt-get install linux-image-<release>-dbgsym=<release>.<version>

With the release as 3.19.0-59-generic and the version as 66 this is:

\$ apt-get install linux-image-3.19.0-59-generic-dbgsym=3.19.0-59.66

Please note that the above resulted in an error because it could not locate the package **linuximage-3.19.0-59-generic-dbgsym**. If you want to set breakpoints by function names and viewing local variables, this error must be resolved.

10. Install the Linux Source Package.

```
$ sudo apt-get install linux-source-3.19.0=3.19.0-59.66
```

root@dpdk:/home/dpdk# sudo apt-get install linux-source-3.19.0=3.19.0-59.66 Reading package lists... Done Building dependency tree Reading state information... Done The following packages were automatically installed and are no longer required: linux-headers-3.19.0-15 linux-headers-3.19.0-15-generic linux-image-3.19.0-15 Use 'apt-get autoremove' to remove them. Suggested packages: libncurses-dev ncurses-dev kernel-package libgt3-dev The following NEW packages will be installed: linux-source-3.19.0 0 upgraded, 1 newly installed, 0 to remove and 11 not upgraded. Need to get 103 MB of archives. After this operation, 119 MB of additional disk space will be used. Get:1 http://us.archive.ubuntu.com/ubuntu/ vivid-updates/main linux-source-3.19 Fetched 103 MB in 5s (19.2 MB/s) Selecting previously unselected package linux-source-3.19.0. (Reading database ... 262860 files and directories currently installed.) Preparing to unpack .../linux-source-3.19.0_3.19.0-59.66_all.deb ... Unpacking linux-source-3.19.0 (3.19.0-59.66) ... Setting up linux-source-3.19.0 (3.19.0-59.66) ... root@dpdk:/home/dpdk#

11. With the package now installed, go to /usr/src/linux-source-3.19.0 and **unpack the source tarball**.

\$ cd /usr/src/linux-source-3.19.0

\$ tar xjf linux-source-3.19.0.tar.bz2

root@dpdk:/home/dpdk# cd /usr/src/linux-source-3.19.0 root@dpdk:/usr/src/linux-source-3.19.0# ls debian debian.master linux-source-3.19.0.tar.bz2 root@dpdk:/usr/src/linux-source-3.19.0# tar xjf linux-source-3.19.0.tar.bz2 root@dpdk:/usr/src/linux-source-3.19.0#

Now you're ready to install Intel VTune Amplifier to profile DPDK.

Getting Started With Intel VTune Amplifier

If you don't have Intel VTune Amplifier installed, click <u>https://software.intel.com/en-us/intel-vtune-amplifier-xe</u> to get to the Intel VTune Amplifier download page. Download Intel VTune Amplifier 2018, which is the current version at the time this article was written. The articles <u>Intel VTune Amplifier</u> <u>Installation Guide - Linux Host</u> and <u>Getting Started with Intel VTune Amplifier 2018</u> will guide you through the process and provide links to additional resources.

Key Features

Now that you have VTune Amplifier installed, let's see what it can do. Here are some key features.

Algorithi	m Anal	ysis
-----------	--------	------

💹 Basic Hotspot	s Hotspots by CPU Usage viewpoi	nt (<u>cha</u>
Image: Collection Log	🐵 Analysis Target 🖄 Analysis Type 🕅	l Summ
Grouping: Function / G	Call Stack	
	CPU Time ¥	
Function / Call Stack	Effective Time by Utilization	Spin Time
v render_one_pixel	9.815s	0s
draw_trace	8.863s	0s
[No call stack inf	0.952s 📒	0s
grid_intersect	3.545s (0s
sphere_intersect	1.296s 🛑	0s
light_normal	1.139s 🛑	0s
▶ NtAlpcDeleteSecti	0.359s 🏮	0s
[find_hotspots.exe]	0.269s 🏮	0s

- Run **Basic Hotspots** analysis type to understand application flow and identify sections of code that get a lot of execution time (hotspots).
- Use the algorithm Advanced Hotspots analysis to extend Basic Hotspots analysis by collecting call stacks and analyze the CPI (Cycles Per Instructions) metric. NEW: You can also use this analysis type to profile native or Java* applications running in a Docker* container on a Linux system.
- Use **Memory Consumption** analysis for your native Linux or Python* targets to explore RAM usage over time and identify memory objects allocated and released during the analysis run.
- Run **Concurrency** analysis to estimate parallelization in your code and understand how effectively your application uses available cores.
- Run Locks and Waits analysis to identify synchronization objects preventing effective utilization of processor resources.

Microarchitecture Analysis

🖉 General E	xploration	Seneral Exp	ploratio	on viev	vpoint (g
4 Collectio	on Log 🛛 🕘 Analys	is Target 🏼 🖗	Analysi	s Type	🛍 Sumn
Grouping: Func	tion / Call Stack				
		B	ack-End	Bound	36
Function / Call Stack	Clockticks ▼	Memory 2	C	ore Bou	nd «
		Bound	Divider	Port Ut	tilization »
multiply1	314,162,649,386	54.7%	0.033		0.239
6.000 00 000-	074 015 407	15 0.09/	0.000		1.000
pipeline slots could Amplifier XE Memory hierarchy, memory	be stalled due to de ry Access analysis to bandwidth information	have the me tion, correlation	y load and tric break on by men	down by lory obje	Use VTune memory ects.
▶ func@0x1400	117,124,414	33.1%	0.000		1.000
▶ func@0x1400	73,011,703	0.0%	0.000		0.522
5 5 10 A A A A A A A A A A A A A A A A A A	71 024 227	n n%	0.000		1 000

- Run **General Exploration** analysis to triage hardware issues in your application. This type collects a complete list of events for analyzing a typical client application.
- Use Memory Access analysis to identify memory-related issues, like NUMA problems and bandwidth limited accesses, and attribute performance events to memory objects (data structures), which is provided due to instrumentation of memory allocations/deallocations and getting static/global variables from symbol information.
- For systems with Intel[®] Software Guard Extensions (Intel[®] SGX) feature enabled, run **SGX**.
- Run Hotspots analysis to identify performance-critical program units inside security enclaves. This analysis type uses the INST_RETIRED.PREC_DIST hardware event that emulates precise clock ticks, which is mandatory for the analysis on the systems with Intel SGX enabled.
- For the Intel processors supporting Intel[®] Transactional Synchronization Extensions (Intel[®] TSX), run the **TSX Exploration** and **TSX Hotspots** analysis types to measure transactional success and analyze causes of transactional aborts.

Platform Analysis

P	latform	Architecture D	iagram
	0	200+0-0+	386.902ms 387.100ms 387.300ms
	sample_r	multi_tr (TID:	c EnqueueNDRange d cEmise
	sample_r	multi_tr (TID:	
bea	sample_r	multi_tr (TID:	sample_multi_tr (TID: 24415)
Three	sample_r	multi_tr (TID:	liter Tarle
	sample_r	multi_tr (TID:	Start: 386.888ms Duration: 194.882us
	sample_r	multi_tr (TID:	Task Type: clEnqueueNDRangeKernel
g Queue	Intel(R) H	ID Graphics	rotate_Y rotate_UV clinics
Computin	Intel(R) H	ID Graphics	

- Run **System Overview** analysis to review general behavior of a target Linux or Android* system and correlate power and performance metrics with the interrupt request (IRQ).
- Run **CPU/GPU Concurrency** analysis to identify code regions where your application is CPU- or GPU-bound.
- Use **GPU Hotspots** analysis to identify GPU tasks with high GPU utilization, and estimate the effectiveness of this utilization.
- For GPU-bound applications running on Intel[®] HD Graphics, collect GPU hardware events to estimate how effectively the processor graphics are used.
- Collect data on ftrace* events on Android and Linux targets and Atrace* events on Android targets.
- Analyze hot Intel[®] Media SDK programs and OpenCL[™] kernels running on a GPU. For OpenCL application analysis, use the architecture diagram to explore GPU hardware metrics per GPU architecture blocks.
- Run **Disk Input and Output** analysis to monitor utilization of the disk subsystem, CPU, and processor buses. This analysis type provides a consistent view of the storage subsystem combined with hardware events and an easy-to-use method to match user-level source code with I/O packets executed by the hardware.

Compute-Intensive Applications Analysis

🖉 HPC Perform	ance Cha	aracterizatior	HPC P	erformanc
Collection Lo	g 🔮 Analy	ysis Target 🙏 Ai	nalysis Type	e 🕅 Summ
Grouping: Process	/ OpenMP F	Region / OpenMF	PE v 🛠	Q
Process / OpenMP	1	OpenMP	Potential (Bain 🔻
Region / OpenMP Barrier-to-Barrier	Imbalance	Lock Contention	Creation	Scheduling
▼ sp.B.x	9.056s	0.012s	0.001s	0.005s
compute_rhs_\$	3.405s	0s	0.000s	0.002s
x_solve_\$omp:	0.904s	0.012s	0.000s	0.000s
z_solve_\$omp!	0.910s	0.000s	0.000s	0.000s
y_solve_\$omp	0.803s	0.000s	0.000s	Os
▶ pinvr_\$omp\$pa	0.695s	Os	0.000s	0.000s
▶ tzetar_\$omp\$p	0.692s	0s	0.000s	0.001s
add_\$omp\$pa	0.606s	0s	0.000s	0.000s
▶ ninvr_\$omp\$pa	0.552s	0s	0.000s	0.000s

- Run HPC Performance Characterization analysis to identify how effectively your highperformance computing application uses CPU, memory, and floating-point operation hardware resources. This analysis type provides additional scalability metrics for applications that use OpenMP* or Intel[®] MPI Library runtimes.
- Run an algorithm analysis type with the **Analyze OpenMP regions** option enabled to collect OpenMP or Intel MPI data for applications using OpenMP or Intel MPI runtime libraries. Note that **HPC Performance Characterization** analysis has the option enabled by default.
- For OpenMP applications, analyze the collected performance data to identify inefficiencies in parallelization. Review the potential gain metric values per OpenMP region to understand the maximum time that could be saved if the OpenMP region is optimized to have no load imbalance, assuming no runtime overhead.
- For hybrid OpenMP and Intel MPI applications, explore OpenMP efficiency metrics by Intel MPI processes laying on the critical path.

Source Analysis

M	Basic Hotspots Hotspots b	y CPU Usage viewpoint (@
4	📰 Collection Log 🛛 🔮 Analysis Tar	get 🙏 Analysis Type 📓 Sur
S	ource Assembly	🗟 🐼 🧐 🚱 🔍
		CPU Time: Self
S L▲	Source	Effective Time by Utilization Diffective Time by Utilization
92	mem_array [j*mem_array_i_	3.102s
93	// Code to give the array	
94	if ((iteration_count % 3)	4.7645
95	<pre>else j=iteration_count;</pre>	0.220s
96	iteration_count++;	
97	<pre>while (j < mem_array_j_max)</pre>	1.709s
98		
00		

- Double-click a hotspot function to drill down to the source code and analyze performance per source line or assembler instruction. By default, the hottest line is highlighted.
- For help on an assembly instruction, right-click the instruction in the Assembly pane and select **Instruction Reference** from the context menu.

Managed Code Analysis

		Modify.
Managed code profiling mode	Auto	
Automatically resume collection Automatically stop collection	Auto Native Mixed	
Ac Select a profiling mo data to managed source who	de. The Native mode doe urce, The Mixed mode attr ere appropriate. The Mana managed source when a	s not attribute ibutes data to ged mode tries vailable.

Configure target options for managed code analysis in the native, managed, or mixed mode:

- Windows host only: Event-based sampling (EBS) analysis for Windows Store C/C++, C# and JavaScript* applications running in the Attach or System-wide mode.
- EBS or user-mode sampling and tracing analysis for Java applications running in the Launch Application or Attach mode.
- **Basic Hotspots** and **Locks and Waits** analysis for Python applications running in the **Launch Application** and **Attach to Process** modes.

Choose Target and	Analysis Type Intel
🔹 💮 Analysis Target 🛱 Ar	nalysis Type
A A A A	Locks and Waits Copy
 Algorithm Analysis Å. Basic Hotspots Å. Advanced Hotspots Å. Concurrency Å. Locks and Waits 	Identify where your application is waiting on synchronization objects or I/O operations and discover how these waits affect your application performance. This analysis type uses user-mode sampling and tracing
Copy from Curre	ent
New Hardware E	ivent-based Sampling Analysis 6
Platform Analysis Å. CPU/GPU Concurre CPU/GPU Concurre	Analyze Intel runtimes and user s

Custom Analysis

- Select the **Custom Analysis** branch in the analysis tree to create your own analysis configurations using any of the available VTune Amplifier data collectors.
- Run your own custom collector from the VTune Amplifier to get the aggregated performance data from your custom collection and VTune Amplifier analysis in the same result.
- Import performance data collected by your own or third-party collector into the VTune Amplifier result collected in parallel with your external collection. Use the **Import from CSV** button to integrate the external data to the result.
- Collect data from a remote virtual machine by configuring KVM guest OS profiling, which makes use of the Linux Perf KVM feature. Select **Analyze KVM guest OS** from the **Advanced** options.

Remote Collection Modes

You can collect data on your Linux, Windows, or Android system using any of the following modes:

- (Linux and Android targets) Remote analysis via SSH/ADB communication with VTune Amplifier graphical and command-line interface (amplxe-cl) installed on the host and VTune Amplifier target package installed on the remote target system. Recommended for resource-constrained, embedded platforms (with insufficient disk space, memory, or CPU power).
- (Android targets) Disconnected analysis via SSH/ADB communication with VTune Amplifier installed on the host and the VTune Amplifier target package installed on the remote Android system. The analysis is initiated from the host system, but data collection does not begin until the device is unplugged from the host system. The results are finalized after the device is reconnected to the host system.
- (Linux and Windows targets) Native performance analysis with the VTune Amplifier graphical or command line interface installed on the target system. Analysis is started directly on the target system.
- (Linux and Windows targets) Native hardware event-based sampling analysis with the VTune Amplifier's Sampling Enabling Product (SEP) installed on the target embedded system.

Stepping Back to See the Big Picture

It's a good idea to step back and see the big picture first—as to what other components exist in the system. If there are some unrelated component-consuming resources, and if we only focus on measuring our specific application, then we may be coming to a wrong conclusion because of partial information.

So here, even before running the DPDK application, we run top -H to see where the CPU is spending its cycles without our specific application running.

Below you will see the VTune Amplifier showing top -H and the Firefox* web browser running. Now, top is something you just ran, whereas Firefox is something you don't want taking CPU cycles while you evaluate your application of interest. Similarly, you may find some unwanted daemons. So at this point, stop any unwanted applications, daemons, and other components.

80	🗉 roo	t@dpdk:,	/hom	e/dpdk						-	
top - Thread %Cpu(KiB Me KiB Sw	13:05 ds: 64 s): 6 em: 1 wap: 1	:42 up : 6 total, .7 us, 6350968 6694268	0.3 tota	y, 18:54, 1 running sy, 0.0 al, 1170 al, 1170	, 5 use 3, 643 9 3 ni, 98 2348 use 7060 use	ers, lo leeping 1.9 id, ed, 464 ed, 1657	0 1, 186 72	0 0 0 0.0 wa 0.0 ka 0.0 fr 0.0 fr	age: stoppe a, 0. ree, ree.	0.19, 0.08 d, 2 zor 0 hi, 0.0 293656 bu 9239260 ca	3, 0.06 mbie D si, 0.0 st uffers ached Mem
PID	USER	PR	NI	VIRT	RES	SHR	s	%CPU	%MEM	TIME+	COMMAND
8746	root	20	θ	829964	210732	54180	s	2.0	1.3	32:44.86	plugin-containe
894	root	20	0	854436	192932	171604	s	1.3	1.2	3:15.58	Xorg
2942	dpdk	20	0	1405248	602360	90560	s	1.0	3.7	32:43.33	firefox
4784	dødk	20	θ	619336	31840	25244	s	0.7	0.2	0:00.38	gnome-terminal-
4829	root	20	0	29580	3504	2572	R	0.7	0.0	0:00.47	top
8563	root	20	0	1198704	270388	93748	s	0.7	1.7	1:47.59	firefex
39	root	20	0	6	6	0	s	0.3	0.0	0:06.70	rcuos/4
53	root	20	0	0	0	0	s	0.3	0.0	0:06.66	rcuos/6
1060	dpdk	20	0	353632	11836	5580	s	0.3	0.1	0:07.05	ibus-daemon
1067	dpdk	20	0	353632	11836	5580	s	0.3	0.1	0:10.95	gdbus
1089	dpdk	20	0	1511788	133296	61456	s	0.3	0.8	2:52.13	comptz
1250	rtkit	rt	1	168956	2400	2388	s	0.3	0.0	0:00.91	rtkit-daemon
1304	dpdk	20	0	1176116	91504	43704	s	0.3	0.6	0:15.50	nautilus
2973	dpdk	20	0	1405248	602360	90560	s	0.3	3.7	2:36.30	Timer
3009	dpdk	20	0	1405248	602360	90560	s	0.3	3.7	1:06.04	DOM Worker
4786	dpdk	20	0	619336	31840	25244	s	0.3	0.2	0:00.04	gdbus
8608	root	20	θ	1198704	270388	93748	s	0.3	1.7	0:35.46	SoftwareVsyncTh
1	root	20	0	182760	5340	3644	s	0.0	0.0	1:16.68	systemd
2	root	20	0	0	0	0	s	0.0	0.0	0:00.15	kthreadd
3	root	20	0	0	0	0	s	0.0	0.0	0:00.37	ksoftirgd/0
5	root	Θ	-20	0	0	0	s	0.0	0.0	0:00.00	kworker/0:0H
7	root	20	0	0	0	0	s	0.0	0.0	0:59.60	rcu_sched
8	root	20	0	Θ	0	0	s	0.0	0.0	0:00.00	rcu_bh
9	root	20	0	0	0	0	s	0.0	0.0	0:34.56	rcuos/0
10	root	20	0	0	0	0	s	0.0	0.0	0:00.00	rcuob/0
11	root	rt	0	0	0	0	s	0.0	0.0	0:00.18	migration/0

Pointing to the Source Directory

The following screenshot shows how to point to the source directory of the software components of interest in VTune Amplifier. You can add multiple directories.

ct wavigator	· 🐘 🖄 🚱 🕨	0 🐿 🕼 🛛	Welco	me	New Ampl X	
/root/intel/amplxe/	projects	rget and Analys	is T\	/De		
For DPDK July 1	tth	igee and Analys		PC		
Kernel+Top On	ly Running 🛛 🖓 🖓 Analysis Ta	Analysis Type				
	Accessible	le Targets		Profile	System	
	eremote	Linux (SSH)		Configu	re settings for s of particular ap	y: p
	Intel Xe	eon Phi coprocessor (na eon Phi coprocessor (ho	st l	Auto	matically resur	ne
	🔻 🕞 🖉 😳 😒	Source Search				
	Addit	ional Source File Loca	tions	>		
	C Specif	v local directories to in	clude	in the se	arch. Press F1 f	or
	(Sea	rch Directories	
	Add per	w search location		Jea	i chi bh cccorres	
🔊 🗇 Choose a dire	ctory	_		-	-	
Choose a dire	linux-source-3.19.0				Create Fold	er
Choose a dire	linux-source-3.19.0 linux-source-3.19.0			Size	Create Fold Modified	er
Choose a dire Choose a dire Usr src Places Search	ccory linux-source-3.19.0 linux-source-3.19.0		*	Size	Create Fold Modified 05/12/2016	er
Choose a dire Choose a dire Usr src Places Search Recently Used	linux-source-3.19.0 linux-source-3.19.0			Size	Create Fold Modified 05/12/2016 05/12/2016	er
Choose a dire Choose a dire Usr src Places Search Recently Used dpdk	linux-source-3.19.0 linux-source-3.19.0 Nome a arch block crypto			Size	Create Fold Modified 05/12/2016 05/12/2016 05/12/2016	er
Choose a dire Choose a dire Usr src Places Q Search Recently Used Choose a dire Places Q Search Recently Used Choose a dire Search	linux-source-3.19.0 linux-source-3.19.0 Nome arch block crypto Documentation			Size	Create Fold Modified 05/12/2016 05/12/2016 05/12/2016	er
Choose a dire Choose a dire usr src Places Search Recently Used dpdk root Desktop	linux-source-3.19.0 linux-source-3.19.0			Size	Create Fold Modified 05/12/2016 05/12/2016 05/12/2016 05/12/2016	er
Choose a dire Choose a dire usr src Places Search Recently Used Choose a dire Places Recently Used Choose a dire Places Desktop Desktop File System	Inux-source-3.19.0 Inux-source-3.19.0 Nome arch block crypto Documentation drivers firmware			Size	Create Fold Modified 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016	er
Choose a dire Choose a dire Usr src Places Search Recently Used dpdk root Desktop File System	linux-source-3.19.0 linux-source-3.19.0 Nome arch block crypto Documentation drivers frmware fs			Size	Create Fold Modified 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016	er
Choose a dire Usr src Places Search Recently Used dpdk root Desktop File System	Inux-source-3.19.0 linux-source-3.19.0 Nome a arch block crypto Documentation drivers fs include			Size	Create Fold Modified 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016	er
Choose a dire Usr src Places Search Recently Used dpdk root Desktop File System	linux-source-3.19.0 linux-source-3.19.0 Nome arch block crypto Documentation drivers frimware frimware frimware include init			Size	Create Fold Modified 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016	er
Choose a dire Usr src Places Search Recently Used dpdk root Desktop File System	Inux-source-3.19.0 linux-source-3.19.0 Fieme a arch block crypto Documentation drivers frimware fs include init ipc			Size	Create Fold Modified 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016	er
Choose a dire Usr src Places Search Recently Used dpdk root Desktop File System	Inux-source-3.19.0 Inux-source-3.19.0 Nome a arch a arch block crypto Documentation drivers fs frmware fs include init ipc kernel			Size	Create Fold Modified 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016	er
Choose a dire Usr src Places Search Recently Used dpdk root Desktop File System	Inux-source-3.19.0 Inux-source-3.19.0 Nome arch arch block crypto Documentation drivers frmware fs include init ipc kernel ib			Size	Create Fold Modified 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016	er
Choose a dire Usr src Places Search Recently Used dpdk root Desktop File System	Inux-source-3.19.0 Inux-source-3.19.0 Home a arch block crypto Documentation drivers frimware fs include init ipc kernel ib mm			Size	Create Fold Modified 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016 05/12/2016	er

Profiling DPDK Code with VTune Amplifier

1. First, we'll **reserve huge pages**. Note that we've chosen 128 huge pages here to accommodate a possible memory constraint when testing on a laptop. If you're using a server or desktop, you can specify 1024 huge pages.

```
$ cd /home/dpdk/dpdk-16.04
```

\$ sudo su

\$ echo 128 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr hugepages

2. Creating /mnt/huge and mounting as hgetlbfs

Next, we'll create /mnt/huge and mount it as hgetlbfs.

\$ sudo bash \$ mkdir -p -v /mnt/huge [-v for verbose, as you can see below response from the system] \$ mount -t hugetlbfs nodev /mnt/huge Making the mount point permanent across reboots, by adding the following line to the /etc/fstab file: nodev /mnt/huge hugetlbfs defaults 0 0

Look at /etc/fstab to confirm that /mt/huge was successfully created and mounted. See example below:

3. Build the DPDK test application and DPDK library:

\$ export RTE_SDK=/home/dpdk/dpdk-16.04
\$ export RTE_TARGET=x86_64-native-linuxapp-gcc
\$ export EXTRA_CFLAGS='-g' [For DPDK symbols]
\$ make install T=x86_64-native-linuxapp-gcc DESTDIR=install

The output of the build will complete successfully, as shown below.

4. Load uio modules to enable userspace IO for DPDK.

\$ sudo modprobe uio

\$ sudo insmod x86 64-native-linuxapp-gcc/kmod/igb uio.ko

```
root@dpdk:/home/dpdk/dpdk-16.04# sudo modprobe uio
root@dpdk:/home/dpdk/dpdk-16.04#
root@dpdk:/home/dpdk/dpdk-16.04# sudo insmod x86_64-native-linuxapp-gcc/kmod/igb_uio.ko
root@dpdk:/home/dpdk/dpdk-16.04#
root@dpdk:/home/dpdk/dpdk-16.04#
```

5. Add path to DPDK test application symbols to VTune Amplifier.

See the image below to illustrate this step.

Welcome	r002ge)	<				
General Explo	ration view	/point (<u>change</u>)	0			
is Type 🔛 Collect	ion Log 📲 Su	ımmary 崎 Bottom	1-up 🤹 Event Count	🛃 Platform		
symbols for file `/o	pt/intel/vtune	_amplifier_xe_2016.	3.0.463186/	_		
s Binany/Sy	mbol Search				_	
s Specify the pos s server paths us	ary and Symb sible locations ing the form sr	of binary and symb v*local_cache_direc	ol files. These can be lo tory*http://address/. I	cal directories, or s Press F1 for more d	ymbol etails.	
s, s		Search Dir	ectories			
s/home/dpdk/dp	dk-16.04/x86_0	64-native-linuxapp-g	cc/app			
Add new search I	ocation				- 11	
9.						
1						
s						
\$						
gi						
S						
S,						
S						
e).						
1						
					1.00	
				b		
				ОК Са	ncel	

You can verify the symbols in the above directory in test.map, as shown in the image below.

🖲 🗇 🗇 test.m	ap (/home/dpdk/dpdk-16.04/	x86_64-nat	ive-linuxapp-gcc/app) - gedit
File Edic View	search tools Documents Het	p	
🛃 🚞 Open	🝷 🔮 Save 💾 🦘 L	indo: 🤿	<u>X 11 11 Q 22</u>
📄 test.map 🗵			
	0x0000000000611910		e1000_read_xmdio_reg
	0x0000000006119b0		e1000_write_xmdio_reg
	0x0000000000611a50		e1000_init_hw_i210
fill	0x000000000611c58	0×8	
.text	0x0000000000611c60	0x1671	/home/dpdk/dpdk-16.04/x86_64-native-linuxapp-gcc/lib/
A CONTRACTOR	0x000000000611c60		e1000_init_mac_params
	0x000000000611c80		e1000_init_nvm_params
	0x0000000000611ca0		e1000_init_phy_params
	0x0000000000611cc0		e1000_init_mbx_params
	0x000000000611ce0		e1000_set_mac_type
	0x00000000006123d0		e1000 setup init funcs
	0x0000000000612cb0		e1000 get bus info
	0x0000000000612cd0		e1000 clear vfta
	0x0000000000612cf0		e1000 write vfta
	0x0000000000612d10		e1000 update mc addr list
	0x0000000000612d30		e1000 force mac fc
	0x0000000000612d40		e1000 check for link
	0x0000000000612d60		e1000 check mng mode
	0x0000000000612d80		e1000 mng write dhcp info
	0x0000000000612d90		e1000 reset hw
	0x0000000000612db0		e1000_init_hw

At this point, you are ready to get started profiling your DPDK code with VTune Amplifier.

Profiling DPDK Code with VTune Amplifier

Now we will run a handful of micro benchmarks. To start, cd to the directory below and run ./test.

\$ cd /home/dpdk/dpdk-16.04/x86_64-native-linuxapp-gcc/app

\$ sudo su

\$./test

root	<pre>@dpdk:/home/dpdk/dpdk-16.04/x86_64-native-linuxapp-gcc/app# ./test</pre>
EAL:	Detected lcore 0 as core 0 on socket 0
EAL:	Detected lcore 1 as core 1 on socket 0
EAL:	Detected lcore 2 as core 2 on socket 0
EAL:	Detected lcore 3 as core 3 on socket 0
EAL:	Detected lcore 4 as core 0 on socket 0
EAL:	Detected lcore 5 as core 1 on socket 0
EAL:	Detected lcore 6 as core 2 on socket 0
EAL:	Detected lcore 7 as core 3 on socket 0
EAL:	Support maximum 128 logical core(s) by configuration.
EAL:	Detected 8 lcore(s)
EAL:	Probing VFIO support

The test will issue prompt RTE>> as shown below. Enter ? for help and the list of available tests.

Profiling Distributor Perf Autotest

```
Our first test will be the {\tt distributor\_perf\_autotest} . A diagram describing this application is below.
```

Select the test from the options offered by RTE.

```
RTE>> distributor perf autotest
```


Distributor Sample Application Layout

See below for command window output during the test run.

```
RTE>>
RTE>>distributor_perf_autotest
==== Cache line switch test ===
Time for 1048576 iterations = 233243764 ticks
Ticks per iteration = 222
=== Performance test of distributor ===
Time per burst: 2028
Time per packet: 63
Worker 0 handled 5211363 packets
Worker 1 handled 5208936 packets
Worker 2 handled 5214205 packets
Worker 3 handled 5218201 packets
Worker 4 handled 4254659 packets
Worker 5 handled 4233312 packets
Worker 6 handled 4213756 packets
Total packets: 33554432 (2000000)
=== Perf test done ===
```

The VTune Amplifier summary highlights CPI rate, indicating it is beyond the normal range. It also highlights *Back End-Bound*, indicating a memory-bound application nature. See these results on the screen capture below.

 Project Navigator Image: A second second	Welcome General Exp is Target Ar 24s 886,043,329 100,018,150 2.387 This could be cau te the other hardw 0.860 10.9%	ring_p ploration nalysis Type used by issues vare-related m	such as mem	itributo nt (cha ry 🔹 E
 Contractive description of the second second	General Exp is Target Ar 24s 886,043,329 100,018,150 2.387 This could be cau the other hardw 0.860 10.9%	ploration nalysis Type used by issues vare-related m	Summa such as mem	nt (cha ry 🔹 t
 For DPDK July Pith Kernel+Top Only Running distributor_perf ring_perf_auto_test 2nd_ring_perf_auto_test ring_auto_test mempool_auto_test memcpy_auto_test memcpy_auto_test Front-End Bound ^O: Back-End Bound ^O: Mentify slots where no uOt Back-end metrics describe execution units, and, once to the overloaded divider of the everloaded divider of the everloaded divider of the secution units, and, once a dist to the ldle CPU usage values 	24s 886,043,329 100,018,150 2.387 This could be cau the other hardw 0.860 10.9%	nalysis Type used by issues vare-related m	Summa:	ry 💼
 distributor_perf ring_perf_auto_test 2nd_ring_perf_auto_test ring_auto_test mempool_auto_test memcpy_auto_test memcpy_auto_test Front-End Bound ¹: Back-End Boun	24s 886,043,329 100,018,150 2.387 This could be cau te the other hardw 0.860 10.9%	used by issues vare-related m	such as mem	ory stall
6s - 5s - 4s - 3s - 2s - 1s -	1.5% 68.8% ps are delivered d a portion of the completed, these unit are examples 18.8% 98 05 30 am entage of the wall ue.	fue to a lack o e pipeline wh uOps get retii of back-end b	f required res ere the out-of red according jound issues.	ources fo Forder s to progr
05- 0	1 2	3	4	5
idie		Poor		Ċ.
		Simultan	eously Utilized	Logical Cl
Collection and Plat				

Analysis Details

• Function/Call Stack indicates rte_distributor_poll_pkt consumes CPI at a rate of 3.720 and mm_pause consumes CPI at a rate of 3.867.

You can observe that rte_distributor_get_pkt runs with a CPI rate of 26.30. However, it is not highlighted, since it uses fewer clock ticks than the highlighted functions.

You will see other functions listed here along with the CPI each one uses, for example: rte_distributor_process, rte_distributor_request_pkt, time_cache_line_switch.

Project Navigator	💌 🏨 🖄 🖙 🕨 😺 📣 😂 🕐 Welcome	ring_perf_a	ut distributo_
/root/intel/amplxe/projects	General Exploration General Ex	ploration vie	wpoint (cha
 For DPDK July 11th Kernel+Top Only Running distributor_perf 	4 Collection Log Analysis Target Analysis Targ	nalysis Type 🛛 🛍	Summary 👫 B
<pre>Img_perf_auto_test Img_perf_auto_test Img_auto_test Img_auto_test Img_mempoor_auto_test Img_mempoor_auto_test</pre>	Function / Call Stack	Clockticks *	Instructions Retired
	rte_distributor_poll_pkt	13,912,020,868	3,740,005,610
E mempoor_auco_cesc	_mm_pause	6,736,010,104	1,742,002,613
auto_test	rte_distributor_process	3,104,004,656	4,734,007,101
	rte_distributor_get_pkt	526,000,789	20,000,030
	rte_distributor_request_pkt	496,000,744	80,000,120
	<pre>>cpuidle_enter_state</pre>	402,000,603	22,000,033
	time_cache_line_switch	338,000,507	62,000,093
	▶flip_bit	336,000,504	70,000,105
	handle_work	298,000,447	26,000,039
	▶finish_task_switch	90,000,135	16,000,024
	▶wxAppBase::SendIdleEvents	68,000,102	10,000,015
	wxEvtHandler::SearchDynamicEventTable	66,000,099	30,000,045
	copy_page_rep	60,000,090	2,000,003
	_raw_spin_unlock_irgrestore	58,000,087	12,000,018
	[Outside any known module]	54,000,081	30,000,045
	g_type_check_instance_cast	54,000,081	14,000,021
	▶wxWindow::OnInternalIdle	46,000,069	12,000,018
	wxObjectList::compatibility_iterator::GetData	46,000,069	20,000,030
	wxWindowList::compatibility_iterator::GetDat	44,000,066	10,000,015
	add_to_backlog	36,000,054	82,000,123
	 de contrata a constant a constant a constant. 	12 012 020 040	2 740 005 610
	Selected (Tow(s).	13,912,020,000	5,740,005,010
	Conception Conceptinitettt Conceptinitity <t< td=""><td>s 3s 3.5s</td><td>3,740,005,610 Is 4.5s 5s</td></t<>	s 3s 3.5s	3,740,005,610 Is 4.5s 5s

Profiling Rings

Communication between cores for interprocessor communication as well as communication between cores and NIC happens through rings and descriptors.

test (TID: 2... vmlinux (TI...

While NIC hardware does optimizations in terms of RS bit and descriptor done bit (DD bit) in bunching the data size, DPDK in addition enhances bunching with amortizing by offering API for bulk communication through rings. The graphic below illustrates ring communication.

The rings tests show that single producer/single consumer (SP/SC) with bulk sizes both in enqueue/dequeue gives best performance compared to multiple producers/multiple consumers (MP/MC). Below are the steps.

Profiling ring_perf_autotest

In RTE, select ring perf autotest. Test output is shown in the cmd window below.

```
RTE>>ring_perf_autotest
### Testing single element and burst eng/deg ###
SP/SC single enq/dequeue: 6
MP/MC single enq/dequeue: 37
SP/SC burst eng/dequeue (size: 8): 2
MP/MC burst enq/dequeue (size: 8): 5
SP/SC burst eng/dequeue (size: 32): 2
MP/MC burst eng/dequeue (size: 32): 3
### Testing empty dequeue ###
SC empty dequeue: 1.34
MC empty dequeue: 1.90
### Testing using a single lcore ###
SP/SC bulk eng/dequeue (size: 8): 3.08
MP/MC bulk eng/dequeue (size: 8): 5.82
SP/SC bulk eng/dequeue (size: 32): 2.13
MP/MC bulk eng/dequeue (size: 32): 3.00
### Testing using two hyperthreads ###
SP/SC bulk eng/dequeue (size: 8): 9.18
MP/MC bulk eng/dequeue (size: 8): 15.96
SP/SC bulk eng/dequeue (stze: 32): 4.52
MP/MC bulk eng/dequeue (size: 32): 5.68
### Testing using two physical cores ###
SP/SC bulk eng/dequeue (size: 8): 20.62
MP/MC bulk eng/dequeue (size: 8): 46.49
SP/SC bulk enq/dequeue (size: 32): 8.52
MP/MC bulk eng/dequeue (size: 32): 15.80
Test OK
```

VTune Amplifier output for ring_perf_autotest shows in detail that the code is backend-bound. You can see the call stack showing results for SP/SC with bulk sizes as well as MP/MC.

ject Navigator	💻 🏨 🖄 💿 🕨 🖉 🐠 🚔 🕐	Welcome Op	ening resul ring	_perf_						
/root/intel/amplxe/projects	General Exploration Ge	neral Exploratio	on viewpoin	nt (ch						
For DPDK July 11th										
Kernel+Top Only Running	💁 🔤 Collection Log 🔝 Analysis Target 🖉 Analysis Type 🔤 Summary 🥸									
📠 r001ge	Grouping: Function / Thread / H/W Context / Call Stack									
🖾 r002ge										
🐱 distributor_perf	Function / Thread / H/W Context / Ca	all Clockticke	Instructions	CPI						
ing_perf_auto_test	Stack	CIOCACICKS	Retired	Rat						
	rte ring mp do enqueue	4,738,007,107	3,282,004,923	1.4						
	rte ring mc do dequeue	4,430,006,645	3,582,005,373	1.2						
	rte ring sp do enqueue	4,194,006,291	4,510,006,765	0.9						
	rte ring sc do dequeue	4,108,006,162	4,924,007,386	0.8						
	rte_atomic32_cmpset	3,222,004,833	1,744,002,616	1.8						
	rte_atomic32_cmpset	2,818,004,227	1,548,002,322	1.8						
	poll_idle	1,644,002,466	428,000,642	3.84						
	_rte_ring_sc_do_dequeue	658,000,987	2,626,003,939	0.2						
	_rte_ring_mc_do_dequeue	626,000,939	1,896,002,844	0.3						
	rte_ring_mc_do_dequeue	608,000,912	1,544,002,316	0.3						
	rte_ring_sc_do_dequeue	596,000,894	2,460,003,690	0.2						
	rte_atomic32_cmpset	576,000,864	582,000,873	0.9						
	rte_ring_sp_do_enqueue	572,000,858	2,258,003,387	0.2						
	rte_ring_mp_do_enqueue	560,000,840	1,578,002,367	0.3						
	rte_ring_mp_do_enqueue	548,000,822	1,454,002,181	0.3						
	rte_ring_sp_do_enqueue	530,000,795	2,110,003,165	0.2						
	rte_atomic32_cmpset	374,000,561	882,001,323	0.4						
	rte_atomic32_cmpset	362,000,543	662,000,993	0.54						
	rte_atomic32_cmpset	324,000,486	1,034,001,551	0.3						
	Selected 1 row	v(s): 4,738,007,107	3,282,004,923	1.44						
	(m)	 F 		$ \geq $						
	Q=Q+Q=Q# 0.5s 1s 1.5s 2	s 2.5s 3s 3.5s 4s	4.5s 5s 5.5	is 6s						
	test (TID: 2		-							
	test (TID: 2			_						
	test (TID: 2									
	vmlinux (TI									
	🔮 amplxe-gui									
	F Xorg (TID: 8									
	compiz (TI									
	amptxe-run									
	gnome-ter		1.22	2						
	0-									
	0. 1 🗰									
	Hardware0									
	0.		L. 1							
	0-		and the second se							

To appreciate the relative performance of SP/SC with single data size and bulk size, and comparing with MP/MC with single data size and bulk size, refer to the following graph. Please note the impact of core placement—a) siblings, b) within the same socket, c) across multisockets.

Conclusion and Next Steps

Practice profiling on additional sample DPDK applications. With the experience you gather, extend profiling and optimization to the applications you are building on top of DPDK.

Get plugged in to the DPDK community to learn the latest from developers and architects and keep your products highly optimized. Register at <u>https://www.dpdk.org/contribute/.</u>

References

Enabling Internet connectivity: <u>http://askubuntu.com/questions/641591/internet-connection-not-working-in-ubuntu-15-04</u>

Getting Kernel Symbols/Sources on Ubuntu Linux: http://sysprogs.com/VisualKernel/tutorials/setup/ubuntu/

How to debug libraries in Ubuntu: <u>http://stackoverflow.com/questions/14344654/how-to-use-debug-libraries-on-ubuntu</u>

How to install a package that contains Ubuntu debug symbols: <u>http://askubuntu.com/questions/197016/how-to-install-a-package-that-contains-ubuntu-kernel-debug-symbols</u>

Debug Symbol Packages: https://wiki.ubuntu.com/Debug%20Symbol%20Packages

Ask Ubuntu for challenges in Apt-get update failure to fetch: <u>http://askubuntu.com/questions/135932/apt-get-update-failure-to-fetch-cant-connect-to-any-sources</u>

DNS Name Server IP Address: <u>http://www.cyberciti.biz/faq/ubuntu-linux-configure-dns-nameserver-ip-address/</u>

How to fix public key is not available issue: <u>https://chrisjean.com/fix-apt-get-update-the-following-signatures-couldnt-be-verified-because-the-public-key-is-not-available/</u>

Ubuntu Key server: <u>http://keyserver.ubuntu.com:11371/</u>

Installing CSCOPE*: <u>http://cscope.sourceforge.net</u>

Performance optimization: http://www.agner.org/optimize/instruction_tables.pdf

Using Intel VTune Amplifier with a virtual machine: <u>https://software.intel.com/en-us/node/638180</u>

Additional Tools

The previous module helped you to understand how VTune Amplifier can help analyze performance of your DPDK application. In this module we describe two other tools that you might find helpful.

Intel® Memory Latency Checker

Memory latency has to do with the time used by an application to fetch data from the processor's cache hierarchy and memory subsystem. Intel[®] Memory Latency Checker (Intel[®] MLC) measures memory latency and bandwidth under load, with options for more detailed analysis of memory latency between a set of cores to memory or cache.

Features

By default, Intel MLC identifies system topology and generates the following:

- A matrix of idle memory latencies for requests originating from each of the sockets and addressed to each of the available sockets.
- Peak memory bandwidth measurement of requests containing varying numbers of reads and writes to local memory.
- A matrix of memory bandwidth values for requests originating from each of the sockets and addressed to each of the available sockets.
- Latencies at different bandwidth points.
- Cache to cache data transfer latencies.

For more information on basic operation of Intel MLC as well as coverage of the command options that enable finer-grained analysis, read the article Intel Memory Latency Checker v3.5. It describes the functionality of the most recent version of Intel MLC in detail, and includes download and installation instructions.

Screenshots

The screenshots below illustrate basic operation of Intel MLC.

Measuring Loaded Latencies for the system Using all the threads from each core if Hyper-threading is enabled

Intel(R) Memory Latency Checker - v3.3 Measuring idle latencies (in ns)... Memory node Socket 0 1 81.5 81.5 0 1 140.2 140.2 Measuring Peak Memory Bandwidths for the system Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec) Using all the threads from each core if Hyper-threading is enabled Using traffic with the following read-write ratios ALL Reads 93190.9 3:1 Reads-Writes : 78829.3 2:1 Reads-Writes : 74731.7 1:1 Reads-Writes : 54653.2 Stream-triad like: 68780.8 Measuring Memory Bandwidths between nodes within system Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec) Using all the threads from each core if Hyper-threading is enabled Using Read-only traffic type Memory node Socket 0 1 0 94281.2 92246.0 1 34475.4 34470.0

Using R	ead-only	traffic type
Inject	Latency	Bandwidth
Delay	(ns)	MB/sec
00000	292.12	90718.1
00002	289.80	91195.9
00008	288.13	91219.6
00015	284.77	91281.0
00050	272.97	91269.4
00100	240.02	91137.1
00200	146.29	82683.2
00300	119.82	69158.2
00400	105.74	55501.1
00500	98.42	45506.9
00700	93.26	33390.3
01000	90.15	23946.1
01300	87.74	18745.1
01700	85.99	14606.2
02500	84.24	10250.6
03500	82.74	7592.0
05000	81.89	5566.5
09000	81.54	3447.9
20000	81.54	1987.6

Measur	ing cac	he-to-cache	transfer	laten	cy (in n	s)			
Local	Socket	L2->L2 HIT	latency		53.0				
Local	Socket	L2->L2 HITM	l latency		53.1				
Remote	Socket	L2->L2 HI1	M latency	(data	address	homed	in	writer	socket)
		Reader S	ocket –						
Writer	Socket	0	1						
	0	-	114.5						
	1	184.8							
Remote	Socket	L2->L2 HI1	M latency	(data	address	homed	in	reader	socket)
		Reader S	Socket						
Writer	Socket	Θ	1						
	0		114.5						
	1	184.0							

Local memory latencies and cross-socket memory latencies can vary significantly on multisocket systems where NUMA is enabled. Intel MLC is a useful tool for measuring these latencies, as well as memory bandwidth, and can help you in the task of profiling your application's performance.

Processor Counter Monitor* (PCM)

Processor Counter Monitor* (PCM) is an open source project that includes a programming API as well as several command-line utilities for gathering real-time performance and power metrics for Intel[®] Core[™] processors, Intel Xeon processors, Intel Atom processors, and Intel[®] Xeon Phi[™] processors. It supports Linux, Windows, and several other operating systems. For detailed information, and to download, visit the <u>PCM GitHub* repository</u>.

Using PCM to Evaluate a DPDK Application

Of the several tools included as part of PCM, which are recommended for use with DPDK? The list below offers some suggestions. If your application is:

- CPU intensive, run PCM-x
- Memory intensive, run PCM-memory
- I/O intensive, run PCM-iio
- •

Screenshots

The screenshots below illustrate PCM runtime output.

```
EXEC : instructions per nominal CPU cycle

IPC : instructions per CPU cycle

FREQ : relation to nominal CPU frequency='unhalted clock ticks'/'invariant timer

AFREQ : relation to nominal CPU frequency while in active state (not in power-savin

L3MISS: L3 cache misses

L2MISS: L2 cache misses (including other core's L2 cache *hits*)

L3HIT : L3 cache hit ratio (0.00-1.00)

L2HIT : L2 cache hit ratio (0.00-1.00)

L3MPI : number of L3 cache misses per instruction

L2MPI : number of L2 cache misses per instruction

READ : bytes read from main memory controller (in GBytes)

WRITE : bytes written to main memory controller (in GBytes)

L3OCC : L3 occupancy (in KBytes)

TEMP : Temperature reading in 1 degree Celsius relative to the TjMax temperature

energy: Energy in Joules
```

Core	(SKT)	I EXEC I	I IPC I	FREQ	AFREQ	L3MISS	L2MISS	I L3HIT	L2HIT	L3MPI	L2MPI	L30CC I	TEMP
0	Θ	0.00	0.82	0.00	1.00	35 K	113 K	0.64	0.47	0.00	0.01	144	57
1	Θ	0.00	1.91	0.00	1.00	968	2796	0.45	0.38	0.00	0.00	144	56
2	0	1.15	1.16	0.99	1.00	600 K	7301 K	0.81	0.65	0.00	0.00	1224	54
3	Θ	1.16	1.16	1.00	1.00	577 K	7264 K	0.81	0.65	0.00	0.00	1656	52
4	Θ	0.01	0.99	0.01	1.00	20 K	46 K	0.47	0.68	0.00	0.00	144	55
5	Θ	1.13	1.14	0.99	1.00	597 K	7344 K	0.81	0.64	0.00	0.00	1224	54
6	Θ	1.14	1.15	0.99	1.00	600 K	7469 K	0.81	0.64	0.00	0.00	1368	52
7	0	1.16	1.16	0.99	1.00	576 K	7207 K	0.81	0.65	0.00	0.00	1296	51
8	0	1.16	1.17	0.99	1.00	573 K	6983 K	0.81	0.66	0.00	0.00	1440	51
9	0	1.15	1.15	0.99	1.00	587 K	6959 K	0.81	0.66	0.00	0.00	1296	54
10	Θ	1.11	1.11	1.00	1.00	824 K	5965 K	0.72	0.65	0.00	0.00	2016	53
11	0	1.17	1.17	1.00	1.00	571 K	6930 K	0.81	0.66	0.00	0.00	2016	52
12	0	1.15	1.15	1.00	1.00	578 K	7274 K	0.81	0.65	0.00	0.00	1224	51
13	0	1.15	1.16	0.99	1.00	587 K	6922 K	0.81	0.67	0.00	0.00	1944	52
14	0	0.00	0.65	0.01	1.00	11 K	36 K	0.55	0.65	0.00	0.00	216	56
15	U	1.17	1.18	1.00	1.00	5/1 K	7060 K	0.82	0.65	0.00	0.00	1224	52
35	1	0.00 0.	37 0.00	1.00	697	3008	0.73	0.38 0.0	90 0.01	2880	65		
SKT	0	0.77 1.	15 0.67	1.00	7415 K	85 M	0.80	0.65 0.0	90 0.00	19224	51		
SKT	1	0.00 0.	53 0.00	1.00	7050	38 K	0.74	0.45 0.0	90 0.00	8280	63		
TOTAL	. ×	0.38 1.	15 0.33	1.00	7422 K	85 M	0.80	0.65 0.0	0.00	N/A	N/A		
Instr	Instructions retired: 37 G ; Active cycles: 32 G ; Time (TSC): 2694 Mticks ; C0 (active,non-halted) core residency: 33.28 %												
C1 co C2 pa	C1 core residency: 66.72 %; C6 core residency: 0.00 %; C2 package residency: 0.00 %; C6 package residency: 0.00 %;												
PHYSI Instr SMI c	PHYSICAL CORE IPC : 1.15 => corresponds to 28.84 % utilization for cores in active state Instructions per nominal CPU cycle: 0.38 => corresponds to 9.60 % core utilization over time interval SMI count: 0												

Intel(r) UPI data traffic estimation in bytes (data traffic coming to CPU/socket through UPI links):

		UPI0	UPI1	UPI2	I	UPIO	UPI1	UPI2	
SKT SKT	0 1	646 K 660 K	738 K 586 K	0 0	l	0% 0%	0% 0%	0% 0%	
Total	UPI in	coming data	traffic:	2632 K		UPI da	ta tra	ffic/Memory	controller traffic: 0.00
Intel	(r) UPI	traffic es	timation	in bytes	(d	lata and	non-da	ata traffic	outgoing from CPU/socket through UPI links):
		UPIO	UPI1	UPI2	1	UPIO	UPI1	UPI2	
SKT SKT	0 1	305 M 304 M	303 M 304 M	0 0	 	1% 1%	1% 1%	0% 0%	
Total MEM (UPI ou GB)->	tgoing data READ WP	and non- RITE CPU	data tra Jenergy	ffi D	c: 1218 IMM ene	M rgy		
SKT SKT	0 1	3.68 2 0.00 0	2.54 1 0.00	109.80 67.91		28.02 0.00			
	*	3.68 2	2.54 1	177.70		28.02			

Summary

Intel MLC and PCM are handy, easy to use tools that you might find useful. VTune Amplifier is much more powerful and versatile. If you haven't used VTune Amplifier, download a free trial copy at the <u>Intel VTune</u> <u>Amplifier</u> home page.

Acknowledgements

This cookbook is possible only with the whole team's effort and all the encouragement, support, and review from each and every one in the internal divisions as well as early access customers, network developers, and managers.

Notices

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at <u>intel.com</u>.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting <u>www.intel.com/design/literature.htm</u>.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, Intel Xeon Phi, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other countries.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

*Other names and brands may be claimed as the property of others.

© 2018 Intel Corporation