
White Paper
Intel® Software Guard Extensions (Intel® SGX)

1

Debugging Intel® Software Guard

Extensions (Intel® SGX) Enclaves in

Microsoft* Windows*

Scope

This paper describes the process for debugging Intel® Software Guard Extensions (Intel® SGX)

enclaves for Microsoft* Windows*. The paper covers prerequisites and typical steps to debug

an enclave using Microsoft Visual Studio*, the Intel SGX Debugger, and the Intel SGX debug

API. Also included are examples of common errors that can occur in enclave code. This paper

assumes a basic understanding of Intel SGX application development. Information on Intel

SGX can be found on the Intel SGX portal at: https://software.intel.com/sgx.

Introduction

Much of the debugging process for Intel SGX enabled applications is similar to any other

application developed for Windows. For example, the Windows Debugger can introspect

application code in untrusted memory just as it can with typical (non-Intel SGX) applications.

But the protected nature of Intel SGX enclaves prevents the Windows Debugger from

introspecting enclave code.

However, the Intel SGX Debugger, an extension to the Windows Debugger included in the Intel

SGX SDK, does provide debugging access to protected enclave code. The Intel SGX Debugger

allows you to set breakpoints, step through enclave code, inspect/modify enclave variables,

and output debug messages in enclaves from within Microsoft Visual Studio.

Debugging preconditions

Project setup

Specific settings must be configured to debug an Intel SGX enabled application. The settings

are usually set by the Intel SGX SDK Visual Studio Wizard, but it’s good to verify they have

been done.

 The Debugger to launch: for the project must be Intel(R) SGX Debugger.

 The Working Directory for the application project must be set from the default of

$(ProjectDir) to $(OutDir). If the application is not set to $(OutDir), the message

Error: Can’t open enclave file. is generated when the application tries to load

the enclave.

https://software.intel.com/sgx

White Paper | Intel® SGX

2

These settings can be accessed using PropertiesDebugging. Figure 1 shows these settings

for the application.

Figure 1. Project settings for debugging enclaves

Build configurations

There are three build configurations for Intel SGX applications:

Debug: Compiler optimizations are disabled and symbol information is saved. This mode is

suitable for source-level debugging. Enclaves built in debug mode are launched in enclave-

debug mode. Only enclaves built in Debug mode can be debugged using the full capabilities of

the Intel SGX Debugger. (See below on Pre-Release debug limitations.)

Pre-Release: Compiler optimizations are enabled and symbols are not saved. But the enclave

is set to debug mode so that production-level code can be debugged. Once your Debug mode

enclave is working, you can rebuild the enclave in Pre-Release mode to apply compiler

optimizations to look for performance issues and work out any final issues before moving to

Release. Enclaves in Pre-Release mode can also be used with the Intel SGX Debugger, but

since debug symbols are not saved and compiler optimizations are enabled, debug support is

limited when compared with Debug mode enclaves.

Release: Compiler optimizations are enabled and no symbol information is saved. This mode

is suitable for production build and final product release. Enclaves built in this mode are

White Paper | Intel® SGX

3

launched in enclave-production (non-debug) mode and cannot be introspected using the Intel

SGX Debugger (or any debugger).

For details on the three configurations, see the following white paper:

https://software.intel.com/sites/default/files/managed/e5/d8/intel-sgx-build-

configuration.pdf.

Enclave debug setting

To debug an enclave, developers must:

1. Select a build configuration that allows debugging of enclaves (Debug or Pre-Release

mode)

2. Launch the enclave in Debug mode

To accomplish this, configure the Visual Studio project to build the application in Debug (or

Pre-Release) mode. In Visual Studio, select Project SolutionsPropertiesConfiguration

PropertiesConfiguration.

Figure 2. Set the Configuration to Debug mode

This sets a helper macro in the underlying SDK call where the enclave is created, as follows:

ret = sgx_create_enclave(ENCLAVE_FILENAME, SGX_DEBUG_FLAG, &token,
 &updated, &global_eid, NULL);

https://software.intel.com/sites/default/files/managed/e5/d8/intel-sgx-build-configuration.pdf
https://software.intel.com/sites/default/files/managed/e5/d8/intel-sgx-build-configuration.pdf

White Paper | Intel® SGX

4

For Debug and Pre-Release builds, the helper macro SGX_DEBUG_FLAG is 1 to launch the

enclave in debug mode. For Release builds, the helper macro SGX_DEBUG_FLAG is 0 to launch

the enclave in non-debug mode.

You can also set the value of the debug parameter directly, as follows:

sgx_create_enclave(const char *file_name, const int debug,

 sgx_launch_token_t *launch_token, int *launch_token_updated,

 sgx_enclave_id_t *enclave_id, sgx_misc_attribute_t *misc_attr)

The debug parameter should be set to 1 to launch the enclave in debug mode and to 0 to

launch the enclave in non-debug mode.

Debugging

Assuming the environment was configured correctly and the application and debug mode

enclave were built successfully, you may have one or more issues that you suspect lie in the

enclave code. So it’s time to debug the enclave.

Standard breakpoints

First let’s cover the use of standard Window Debugger breakpoints.

3. Verify that the Intel(R) SGX Debugger as the Debugger to launch for the project, and

make sure that Working Directory is set to $(OutDir) for the application (shown in Figure

1). Note that the Windows Debugger can handle breakpoints in the untrusted part of the

application, but cannot access breakpoints inside the enclave. Only the Intel® SGX

Debugger can access breakpoints in the enclave.

4. Set break points in the enclave source code at the points where you want to inspect

values. This allows you to check values of selected variables at specific points of time.

Sample breakpoints are shown as red dots in the left column of Figure 3.

Figure 3. Sample code with breakpoints at lines 18, 20, etc.

White Paper | Intel® SGX

5

5. Run the code using the Intel SGX Debugger. Execution pauses at each breakpoint, allowing

you to inspect the values at that point by clicking on desired variable. Press F5 to move

through the code from one break point to the next. Use F11 and Shift+F11 to step

into/out of nested code. Figure 4 shows inspection of the values for the variable buffer.

Figure 4: Inspecting the value of variables during debugging

SGX Debug API

Now let’s discuss Intel SGX Debugger support for three Windows APIs, which provide some

additional capability to introspect enclaves. You must include the following header and library

in your project configuration to use these APIs:

Header: sgx_debug.h

Library: sgx_trts.lib or sgx_trts_sim.lib (simulation)

IsDebuggerPresent

This call tests for the presence of the Intel SGX Debugger to prevent an application crash if

DebugBreak() were included by itself, as follows:

if (IsDebuggerPresent()) {

 DebugBreak();

}

DebugBreak

DebugBreak() lets you programmatically insert a breakpoint in enclave code as shown in

Figure 6. This can be useful in hard to reproduce situations where specific timing/resource

conditions exist; for example, where something occurs only after n iterations of a loop.

Note: DebugBreak() causes the application to crash (due to an illegal instruction) if the

Intel® SGX Debugger is not attached. You should only include the call inside an

IsDebuggerPresent() call.

White Paper | Intel® SGX

6

Example1

 sgx_status_t ret = sgx_cpuid(cpuinfo, leaf);

 if (ret != SGX_SUCCESS)

 {

 if (IsDebuggerPresent())

 {

 // sgx_cpuid should not fail.

 DebugBreak();

 }

 else

 {

 abort();

 }

 }

Example2

 for (int i = 0; i < 1000; i++)

 {

 if (i == 999 && IsDebuggerPresent())

 {

 DebugBreak();

 }

 }

Figure 5. Example programmatic use of DebugBreak()

OutputDebugString

As shown in the code sample in Figure 6, the OutputDebugString() function lets you send a

string to the debugger output. If the Intel® SGX Debugger is not attached, nothing happens; no

message is sent and the application continues past the call.

White Paper | Intel® SGX

7

Figure 6. OutputDebugString usage example

Common issues during debugging

This section summarizes common errors you may see in enclaves during debugging.

Notes:

 The code used to generated error examples is not real-world code. It was written to

intentionally generate the errors described.

 Certain exceptions are reported back to the enclave, which, therefore, provides an

opportunity to handle them by including exception handling code.

Illegal Instruction in enclave

Intel SGX prohibits execution of CPU instructions inside an enclave that would gather host

system attributes, perform I/O, or require a higher privilege level than ring 3. When code that

depends on underlying illegal HW instructions attempts to execute, the enclave aborts with an

Invalid Opcode Exception (#UD) at the machine level. See Figure 7 for the Visual Studio

exception message that is based on the machine level exception. For a list of instructions that

are illegal in enclaves, see Section 39.6.1 in Intel 64- and 32-bit Architectures Software

Developer’s Manual, Volume 3D, Part 4.

https://www.intel.com/content/dam/www/public/emea/xe/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
https://www.intel.com/content/dam/www/public/emea/xe/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf

White Paper | Intel® SGX

8

Figure 7. Example CPUID (illegal) instruction in enclave

Buffer overflow in enclave

While Intel SGX SDK does not prevent developers from writing enclave code that can overflow

a buffer, it does support runtime security features that help detect buffer overflows. The

enclave aborts (based on a UD2 instruction at the machine level) with the Visual Studio error

message shown in Figure 8 when a potential buffer overflow is detected.

Figure 8. Example buffer overflow in enclave

C++ runtime exception thrown in enclave

If a C++ runtime exception occurs in enclave code and it is not caught, the enclave aborts and

a C++ exception is reported, as shown in Figure 9. For help understanding the C++ runtime

exception in Windows, see: https://docs.microsoft.com/en-us/cpp/cppcx/exceptions-c-cx.

https://docs.microsoft.com/en-us/cpp/cppcx/exceptions-c-cx

White Paper | Intel® SGX

9

Figure 9. Example C++ runtime exception in enclave

Uncaught exception thrown in enclave

When an uncaught exception is thrown in an enclave, the enclave aborts with the message

shown in Figure 10. The test case for generating this message is divide-by-zero.

Figure 10. Example uncaught exception in enclave

Intel SGX enclave recovery (multiple threads)

In multi-threaded applications, it is important that only one thread perform the recovery of an

enclave lost due to power events. If more than one thread could validly be responsible for

attempted to handle the SGX_ERR_ENCLAVE_LOST message on an application abort, logic

must be created that decides which thread will perform the actual recovery. If this is not done,

the application can get trapped in an endless chain of enclave recovery operations. For details,

see https://software.intel.com/articles/intel-sgx-tutorial-part-9-power-events-and-data-

sealing.

https://software.intel.com/articles/intel-sgx-tutorial-part-9-power-events-and-data-sealing
https://software.intel.com/articles/intel-sgx-tutorial-part-9-power-events-and-data-sealing

White Paper | Intel® SGX

10

Summary

The combination of the Intel SGX Debugger for Microsoft Visual Studio* 2015, and the Intel

SGX Debug and Pre-Release mode capabilities, allow you to debug enclaves for Microsoft

Windows applications.

Prepare to debug an enclave by configuring Visual Studio properly and, if appropriate, adding

Debug API calls.

Build/execute the enclave in Debug mode (or Simulation mode) and step through the code

with the Intel SGX Debugger, using breakpoints and messages to identify and correct errors.

The Debug compilation profile (or Simulation profile) allows the full capabilities of the Intel

SGX Debugger to be used with your enclaves.

References

1. Intel Software Guard Extensions SDK Users Guide for Windows OS — 2017 Intel

Corporation. https://software.intel.com/sgx-sdk/documentation.

2. Intel Software Guard Extensions SDK Developer Reference for Windows OS — 2017 Intel

Corporation. https://software.intel.com/sgx-sdk/documentation.

3. Intel SGX Forums. https://software.intel.com/forums/intel-software-guard-extensions-

intel-sgx.

https://software.intel.com/sgx-sdk/documentation
https://software.intel.com/sgx-sdk/documentation
https://software.intel.com/forums/intel-software-guard-extensions-intel-sgx
https://software.intel.com/forums/intel-software-guard-extensions-intel-sgx

White Paper | Intel® SGX

11

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY

THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,

INTEL® ASSUMES NO LIABILITY WHATSOEVER AND INTEL® DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or

indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH

MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL® AND ITS SUBSIDIARIES,

SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS

AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,

DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY

WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL® OR ITS SUBCONTRACTOR WAS

NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL® PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not

rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities

arising from future changes to them. The information here is subject to change without notice. Do not finalize a

design with this information.

No computer system can provide absolute security under all conditions. Built-in security features available on

select Intel® processors may require additional software, hardware, services and/or an Internet connection. Results

may vary depending upon configuration. Consult your system manufacturer for more details.

Intel®, the Intel® Logo, Intel® Inside, Intel® Core™, Intel® Atom™, and Intel® Xeon® are trademarks of Intel Corporation

in the U.S. and/or other countries. Other names and brands may be claimed as the property of others.

* Other names and brands may be claimed as properties of others.

Copyright © 2017 Intel® Corporation

