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Debugging Intel® Software Guard 

Extensions (Intel® SGX) Enclaves in 

Microsoft* Windows* 

Scope 

This paper describes the process for debugging Intel® Software Guard Extensions (Intel® SGX) 

enclaves for Microsoft* Windows*. The paper covers prerequisites and typical steps to debug 

an enclave using Microsoft Visual Studio*, the Intel SGX Debugger, and the Intel SGX debug 

API. Also included are examples of common errors that can occur in enclave code. This paper 

assumes a basic understanding of Intel SGX application development. Information on Intel 

SGX can be found on the Intel SGX portal at: https://software.intel.com/sgx. 

Introduction 

Much of the debugging process for Intel SGX enabled applications is similar to any other 

application developed for Windows. For example, the Windows Debugger can introspect 

application code in untrusted memory just as it can with typical (non-Intel SGX) applications. 

But the protected nature of Intel SGX enclaves prevents the Windows Debugger from 

introspecting enclave code. 

However, the Intel SGX Debugger, an extension to the Windows Debugger included in the Intel 

SGX SDK, does provide debugging access to protected enclave code. The Intel SGX Debugger 

allows you to set breakpoints, step through enclave code, inspect/modify enclave variables, 

and output debug messages in enclaves from within Microsoft Visual Studio. 

Debugging preconditions 

Project setup 

Specific settings must be configured to debug an Intel SGX enabled application. The settings 

are usually set by the Intel SGX SDK Visual Studio Wizard, but it’s good to verify they have 

been done. 

 The Debugger to launch: for the project must be Intel(R) SGX Debugger.  

 The Working Directory for the application project must be set from the default of 

$(ProjectDir) to $(OutDir). If the application is not set to $(OutDir), the message 

Error: Can’t open enclave file. is generated when the application tries to load 

the enclave. 

https://software.intel.com/sgx
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These settings can be accessed using PropertiesDebugging. Figure 1 shows these settings 

for the application. 

 

Figure 1. Project settings for debugging enclaves 

Build configurations 

There are three build configurations for Intel SGX applications: 

Debug: Compiler optimizations are disabled and symbol information is saved. This mode is 

suitable for source-level debugging. Enclaves built in debug mode are launched in enclave-

debug mode. Only enclaves built in Debug mode can be debugged using the full capabilities of 

the Intel SGX Debugger. (See below on Pre-Release debug limitations.) 

Pre-Release: Compiler optimizations are enabled and symbols are not saved. But the enclave 

is set to debug mode so that production-level code can be debugged. Once your Debug mode 

enclave is working, you can rebuild the enclave in Pre-Release mode to apply compiler 

optimizations to look for performance issues and work out any final issues before moving to 

Release. Enclaves in Pre-Release mode can also be used with the Intel SGX Debugger, but 

since debug symbols are not saved and compiler optimizations are enabled, debug support is 

limited when compared with Debug mode enclaves. 

Release: Compiler optimizations are enabled and no symbol information is saved. This mode 

is suitable for production build and final product release. Enclaves built in this mode are 
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launched in enclave-production (non-debug) mode and cannot be introspected using the Intel 

SGX Debugger (or any debugger). 

For details on the three configurations, see the following white paper: 

https://software.intel.com/sites/default/files/managed/e5/d8/intel-sgx-build-

configuration.pdf. 

Enclave debug setting 

To debug an enclave, developers must: 

1. Select a build configuration that allows debugging of enclaves (Debug or Pre-Release 

mode) 

2. Launch the enclave in Debug mode 

To accomplish this, configure the Visual Studio project to build the application in Debug (or 

Pre-Release) mode. In Visual Studio, select Project SolutionsPropertiesConfiguration 

PropertiesConfiguration. 

 

Figure 2. Set the Configuration to Debug mode 

This sets a helper macro in the underlying SDK call where the enclave is created,  as follows: 

ret = sgx_create_enclave(ENCLAVE_FILENAME, SGX_DEBUG_FLAG, &token, 
                         &updated, &global_eid, NULL); 

 

https://software.intel.com/sites/default/files/managed/e5/d8/intel-sgx-build-configuration.pdf
https://software.intel.com/sites/default/files/managed/e5/d8/intel-sgx-build-configuration.pdf
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For Debug and Pre-Release builds, the helper macro SGX_DEBUG_FLAG is 1 to launch the 

enclave in debug mode. For Release builds, the helper macro SGX_DEBUG_FLAG is 0 to launch 

the enclave in non-debug mode. 

You can also set the value of the debug parameter directly, as follows: 

sgx_create_enclave(const char *file_name, const int debug, 

            sgx_launch_token_t *launch_token, int *launch_token_updated, 

            sgx_enclave_id_t *enclave_id, sgx_misc_attribute_t *misc_attr) 

 

The debug parameter should be set to 1 to launch the enclave in debug mode and to 0 to 

launch the enclave in non-debug mode. 

Debugging 

Assuming the environment was configured correctly and the application and debug mode 

enclave were built successfully, you may have one or more issues that you suspect lie in the 

enclave code. So it’s time to debug the enclave. 

Standard breakpoints 

First let’s cover the use of standard Window Debugger breakpoints.  

3. Verify that the Intel(R) SGX Debugger as the Debugger to launch for the project, and 

make sure that Working Directory is set to $(OutDir) for the application (shown in Figure 

1). Note that the Windows Debugger can handle breakpoints in the untrusted part of the 

application, but cannot access breakpoints inside the enclave. Only the Intel® SGX 

Debugger can access breakpoints in the enclave. 

4. Set break points in the enclave source code at the points where you want to inspect 

values. This allows you to check values of selected variables at specific points of time. 

Sample breakpoints are shown as red dots in the left column of Figure 3. 

 

Figure 3. Sample code with breakpoints at lines 18, 20, etc. 
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5. Run the code using the Intel SGX Debugger. Execution pauses at each breakpoint, allowing 

you to inspect the values at that point by clicking on desired variable. Press F5 to move 

through the code from one break point to the next. Use F11 and Shift+F11 to step 

into/out of nested code. Figure 4 shows inspection of the values for the variable buffer. 

 

Figure 4: Inspecting the value of variables during debugging 

SGX Debug API 

Now let’s discuss Intel SGX Debugger support for three Windows APIs, which provide some 

additional capability to introspect enclaves. You must include the following header and library 

in your project configuration to use these APIs: 

Header: sgx_debug.h 

Library: sgx_trts.lib or sgx_trts_sim.lib (simulation) 

IsDebuggerPresent 

This call tests for the presence of the Intel SGX Debugger to prevent an application crash if 

DebugBreak() were included by itself, as follows: 

 

if (IsDebuggerPresent()) { 

    DebugBreak(); 

} 

DebugBreak 

DebugBreak() lets you programmatically insert a breakpoint in enclave code as shown in 

Figure 6. This can be useful in hard to reproduce situations where specific timing/resource 

conditions exist; for example, where something occurs only after n iterations of a loop. 

Note: DebugBreak() causes the application to crash (due to an illegal instruction) if the 

Intel® SGX Debugger is not attached. You should only include the call inside an 

IsDebuggerPresent() call.  
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Example1 

 

    sgx_status_t ret = sgx_cpuid(cpuinfo, leaf); 

    if (ret != SGX_SUCCESS) 

    { 

        if (IsDebuggerPresent()) 

        { 

            // sgx_cpuid should not fail. 

            DebugBreak(); 

        } 

        else 

        { 

            abort(); 

        } 

    } 

 

 

Example2 

 

    for (int i = 0; i < 1000; i++) 

    { 

        if (i == 999 && IsDebuggerPresent()) 

        { 

            DebugBreak(); 

        } 

    } 

 

Figure 5. Example programmatic use of DebugBreak() 

OutputDebugString 

As shown in the code sample in Figure 6, the OutputDebugString() function lets you send a 

string to the debugger output. If the Intel® SGX Debugger is not attached, nothing happens; no 

message is sent and the application continues past the call. 
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Figure 6. OutputDebugString usage example 

 

Common issues during debugging 

This section summarizes common errors you may see in enclaves during debugging. 

Notes: 

 The code used to generated error examples is not real-world code. It was written to 

intentionally generate the errors described. 

 Certain exceptions are reported back to the enclave, which, therefore, provides an 

opportunity to handle them by including exception handling code. 

Illegal Instruction in enclave 

Intel SGX prohibits execution of CPU instructions inside an enclave that would gather host 

system attributes, perform I/O, or require a higher privilege level than ring 3. When code that 

depends on underlying illegal HW instructions attempts to execute, the enclave aborts with an 

Invalid Opcode Exception (#UD) at the machine level. See Figure 7 for the Visual Studio 

exception message that is based on the machine level exception. For a list of instructions that 

are illegal in enclaves, see Section 39.6.1 in Intel 64- and 32-bit Architectures Software 

Developer’s Manual, Volume 3D, Part 4. 

https://www.intel.com/content/dam/www/public/emea/xe/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
https://www.intel.com/content/dam/www/public/emea/xe/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
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Figure 7. Example CPUID (illegal) instruction in enclave 

Buffer overflow in enclave 

While Intel SGX SDK does not prevent developers from writing enclave code that can overflow 

a buffer, it does support runtime security features that help detect buffer overflows. The 

enclave aborts (based on a UD2 instruction at the machine level) with the Visual Studio error 

message shown in Figure 8 when a potential buffer overflow is detected. 

 

Figure 8. Example buffer overflow in enclave 

C++ runtime exception thrown in enclave 

If a C++ runtime exception occurs in enclave code and it is not caught, the enclave aborts and 

a C++ exception is reported, as shown in Figure 9. For help understanding the C++ runtime 

exception in Windows, see: https://docs.microsoft.com/en-us/cpp/cppcx/exceptions-c-cx. 

https://docs.microsoft.com/en-us/cpp/cppcx/exceptions-c-cx
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Figure 9. Example C++ runtime exception in enclave 

Uncaught exception thrown in enclave 

When an uncaught exception is thrown in an enclave, the enclave aborts with the message 

shown in Figure 10. The test case for generating this message is divide-by-zero. 

 

Figure 10. Example uncaught exception in enclave 

Intel SGX enclave recovery (multiple threads) 

In multi-threaded applications, it is important that only one thread perform the recovery of an 

enclave lost due to power events. If more than one thread could validly be responsible for 

attempted to handle the SGX_ERR_ENCLAVE_LOST message on an application abort, logic 

must be created that decides which thread will perform the actual recovery. If this is not done, 

the application can get trapped in an endless chain of enclave recovery operations. For details, 

see https://software.intel.com/articles/intel-sgx-tutorial-part-9-power-events-and-data-

sealing. 

https://software.intel.com/articles/intel-sgx-tutorial-part-9-power-events-and-data-sealing
https://software.intel.com/articles/intel-sgx-tutorial-part-9-power-events-and-data-sealing
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Summary 

The combination of the Intel SGX Debugger for Microsoft Visual Studio* 2015, and the Intel 

SGX Debug and Pre-Release mode capabilities, allow you to debug enclaves for Microsoft 

Windows applications. 

Prepare to debug an enclave by configuring Visual Studio properly and, if appropriate, adding 

Debug API calls. 

Build/execute the enclave in Debug mode (or Simulation mode) and step through the code 

with the Intel SGX Debugger, using breakpoints and messages to identify and correct errors. 

The Debug compilation profile (or Simulation profile) allows the full capabilities of the Intel 

SGX Debugger to be used with your enclaves. 
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