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Abstract

Dynamic instrumentation systems have proven to be ex-
tremely valuable for program introspection, architectural
simulation, and bug detection. Yet a major drawback of
modern instrumentation systems is that the instrumented
applications often execute several orders of magnitude
slower than native application performance. In this paper,
we present a novel approach to dynamic instrumentation
where several non-overlapping slices of an application are
launched as separate instrumentation threads and executed
in parallel in order to approach real-time performance.
A direct implementation of our technique in the Pin dy-
namic instrumentation system results in dramatic speedups
for various instrumentation tasks – often resulting in order-
of-magnitude performance improvements. Our implemen-
tation is available as part of the Pin distribution, which has
been downloaded over 10,000 times since its release.

1. Introduction

Understanding the characteristics of software applica-
tions is essential for effective system design, yet collect-
ing details of an applications characteristics can be a te-
dious, error-prone process. Binary instrumentation tools al-
low users to easily, automatically, and correctly instrument
existing compiled binaries. Dynamic instrumentation tools
have the added ability to instrument not only the executing
application, but all of the shared libraries that are invoked
during the application’s execution.

Dynamic instrumentation systems have been used for a
variety of applications, from application introspection, to
cache simulation drivers, to run-time security policy en-
forcement. In fact, one can envision countless reasons that a
user may want to extend the functionality of an application
at run time and/or in the absence of source code.

The single most significant drawback to dynamic instru-
mentation systems is their performance, which can vary
from a 10% overhead for no instrumentation to the order of
1000X slowdown if the user wishes to embed very sophis-
ticated and time-consuming functionality after every orig-

inal application instruction. The performance degradation
can be attributed to two primary factors. The first factor
is the overhead of the instrumentation system itself which
can account for anywhere from a 10% to a 10X slowdown,
depending on the code footprint, code reuse characteris-
tics, application run time, and the efficiency of the instru-
mentation system. Reducing this first form of overhead
has become well-charted territory in the research commu-
nity [3, 5, 7, 9, 11, 12, 17, 22]. The second factor is the
slowdown resulting from the extra functionality that the
user wishes to insert into his/her application to collect data,
perform simulations, etc., which can degrade performance
well over a factor of 1000X. Until now, controlling the latter
form of overhead has been considered the responsibility of
the user. To our knowledge, our work is one of the first to
directly tackle this second, more substantial form of over-
head in a run-time system.

Our technique for reducing instrumentation overhead is
to fundamentally change the way the dynamic instrumen-
tation system handles instrumented code. Normally, dy-
namic instrumentation systems execute one copy of the in-
strumented application in a serial fashion (much in the same
way that a normal application is executed). The alterna-
tive we explore is to execute an uninstrumented version of
the code and routinely fork off instrumented slices of large
code regions. These slices can then be executed in parallel
with the main uninstrumented application process. Depend-
ing on the number of available processor cores and memory,
and the size of each slice, we can approach the native, unin-
strumented execution speed of the application.

As expected, our solution came with a large set of de-
sign and implementation decisions and challenges. De-
sign decisions included the granularity and frequency at
which we should spawn our instrumentation slices. Less
frequent (longer) slices will minimize the forking overhead,
but will increase the pipeline delay to complete the last
slice. Furthermore, synchronizing multiple instrumentation
slices, handling system calls, and merging results from the
various instrumentation slices are but a few of the chal-
lenges we encountered during our implementation phase.

In this paper, we describe the overall design, implemen-
tation, performance, and applications of our parallelizing
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version of the Pin dynamic instrumentation system, which
we call SuperPin. Our implementation, including an ex-
tended API and sample applications, is currently available
for download. The contributions of this paper include:

• The presentation of a novel approach to dynamic pro-
gram instrumentation that has the potential to signifi-
cantly improve instrumented code performance, to the
point where it rivals native performance.

• A detailed description of the design and implementa-
tion challenges that surrounded a direct implementa-
tion of our approach.

• A full performance evaluation of our implementation.
• The presentation of our API that can be used to develop

parallelizable instrumentation routines.
• A description of the potential applications and limita-

tions of our system.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a detailed description of dynamic instrumen-
tation systems, and Pin in particular. Section 3 then presents
an overview of the SuperPin design. Section 4 discusses
our experiences while implementing the SuperPin system,
including the challenges we encountered, and our solutions
to those challenges. Section 5 presents potential applica-
tions of SuperPin, presents our exported API, and provides
sample uses of said API. Section 6 then includes a full
performance evaluation of SuperPin and shows the signifi-
cant speedups we gained from our direct implementation for
longer-running applications. Finally, Section 7 summarizes
our contributions and concludes, while Section 8 presents
our plans for followup work.

2. Background

Before delving into the implementation details of Super-
Pin, we first provide an overview of dynamic instrumenta-
tion, its goals, and its applications. Then we provide a high-
level view of the Intel Pin dynamic instrumentation system,
upon which SuperPin was built.

2.1. Dynamic Instrumentation Systems

Dynamic instrumentation systems [17, 19] intercept the
execution of an application in order to insert custom (user-
defined) code at key points in the application, such as every
instruction, branch, or function call, to name a few. This
functionality has been very useful for workload analysis
(counting instructions, branches, loads, etc.) but also for
security [15] and reliability [21].

Internally, dynamic instrumentation systems are in many
ways similar to dynamic optimization and dynamic transla-
tion systems. The primary goals of dynamic optimization

systems [3, 5, 7, 6] are to take advantage of additional in-
formation that was not available at compile time, such as
program inputs or hardware configurations, and to adapt
to run-time changes, such as stalls, phases, or temperature
changes. Dynamic translation systems [2, 4, 8, 10, 13, 14,
16, 23] are designed to convert binaries for one instruction
set into binaries for another instruction set on-the-fly. While
the goals of each system are different, the core implemen-
tation is largely similar. In nearly all implementations, the
system executes an altered, cached copy of the original ap-
plication, and goes to great lengths to ensure that control is
maintained at all times (despite interrupts, self-modifying
code, indirect branches, etc.) and that the original, unmodi-
fied code is never executed.

2.2. Overview of Pin

Pin [17] is a dynamic binary instrumentation system de-
veloped at Intel. It consists of an instrumentation engine
along with a large set of APIs that users can leverage to
write their own custom plug-in utilities (called Pintools).
Pin’s API allows many plug-in Pintools to be source com-
patible across all supported instruction sets (IA-32, Intel64,
IA-64, ARM) and operating systems (Linux, Windows,
MacOS, FreeBSD). Pin’s instrumentation engine allows a
Pintool to insert function calls at any point in the program.
It automatically saves and restores registers so the inserted
call does not overwrite application registers. It also real-
locates registers, inlines instrumentation, and caches previ-
ously modified code to improve performance.

Pin, the Pintool, and the application all execute in the
same address space. The user invokes all three along with
their corresponding run-time arguments on the command
line: pin -t pintool -- application. Pin then
uses ptrace to obtain control of the application and cap-
ture the processor context. Next, it loads and initializes the
user’s Pintool. Finally, Pin begins interpreting and/or com-
piling the application code, interleaving instrumentation as
specified by the Pintool in a manner that is transparent to
the executing application.

Pin’s internal software architecture consists of a virtual
machine (VM) and a code cache. The VM consists of a just-
in-time compiler (JIT), an emulator, and a dispatcher, all
of which work together to execute the instrumented appli-
cation. The emulator interprets instructions that cannot be
executed directly, such as system calls that require special
handling from the VM. The dispatcher determines whether
the next code region must be generated by the just-in-time
compiler or is already present in the code cache.

A thorough description of the internal functionality of
Pin is outside the scope of this paper, but is described by
Luk et al. [17].
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Figure 1. Our approach to dynamic instrumentation. SuperPin forks numerous instrumentation
slices that execute in parallel on idle processor cores. Each slice sleeps until the following slice
records its unique signature.

3. Parallelizing Instrumentation

SuperPin achieves significant speedup through paral-
lelism. It achieves this parallelism by running the original
application at full speed, while simultaneously executing
distinct timeslices of that program under instrumentation1.
After each timeslice ends, its results are merged to a col-
lective total. The final result is displayed after the entire
program has executed, and all instrumented timeslices have
completed.

Figure 1 shows how the workload and timeslices are dis-
tributed across a four processor system. The illustration
assumes the instrumented workload executes three times
slower than the original application. CPU1 executes the
original application. At the start of execution, the applica-
tion forks off its first instrumented timeslice, depicted S1+.
After some time has elapsed, the application will fork a sec-
ond, non-overlapping instrumented timeslice, S2+.

In order to properly detect when the instrumented times-
lice should end, S1+ will sleep until the second timeslice,
S2+ is forked by the application. At that point, S2+ records
a unique signature, which is a trigger for terminating the
previous timeslice. S1+ will then resume execution until it
reaches the S2 signature, i.e. the point where S2+ began.
Meanwhile, the S2+ slice will sleep until S3+ records its
signature, or an exit condition occurs.

Though the forked timeslices (S1+, S2+, ..., SN+) have
a much longer runtime latency than their uninstrumented
counterparts (S1, S2, ..., SN), they will all execute in a
parallel manner as we show in Figure 1. This allows the

1While similar approaches have been used to instrument source
code [20], our approach operates at the binary level, and is therefore auto-
matic and transparent.

original application to progress at near real-time perfor-
mance, while the longer instrumented timeslices will com-
plete shortly thereafter.

After the last slice has been forked and the application
has ended, there is a pipeline delay for the instrumentation
slices to complete. If the system is fully loaded, this will
take an extra N ∗ s seconds to finish, where N is the num-
ber of processors and s is the timeslice interval. If it is not
fully loaded, it will take an extra (F +1)s seconds, where F
is the maximum number of simultaneous slices. For exam-
ple, if F = 7 and s = 1 second, it will take 8 extra seconds
for the instrumentation to finish. Hence, application times
much greater than this are needed to show a significant im-
provement. We could reduce the timeslice size, but this can
increase the overhead, as will be shown later. Nevertheless,
as N is increased to greater than F + 1, the timeslice size
is reduced to zero, and the application-induced overhead is
reduced to zero, a close to real-time performance can be
achieved.

Figure 1 shows fairly balanced timeslices for illustrative
purposes. In reality, timeslice may vary in size, often sig-
nificantly. Our approach is designed to handle this situation
efficiently, and the signature detection mechanism becomes
a crucial design element. We will clarify this point in Sec-
tion 4.4.

4. Implementation Challenges

While the notion of parallelizing instrumentation is
straightforward in theory, several hurdles were encountered
during the implementation of SuperPin. In this section, we
present some of the design decisions and challenges we en-
countered and describe our implemented solutions.
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4.1. Spawning Instrumentation Slices

The key to SuperPin’s performance improvement is to
partition the application into instrumentable slices. Decid-
ing how and when to create a slice thus falls into the realm
of design decisions. We begin by describing how we spawn
each instrumented timeslice.

SuperPin launches the application in the same manner
as Pin. Pin performs an exec of the application and in-
jects itself into the application space. As a result, the appli-
cation and the instrumented slices all have their own copy
of Pin’s VM. They can communicate with each other via
shared memory. Before each new timeslice is created, this
shared memory space is created for the current and previous
timeslices to share signature information.

When the control process determines that a new times-
lice would be beneficial, it modifies the program counter to
jump to a special trampoline. This trampoline changes the
stack pointer to a private stack, then branches into the Pin
VM, passing along information about the original program
counter and stack.

As each slice is spawned, SuperPin will require mem-
ory for allocating the code cache and supportive data struc-
tures. These allocations should not interfere with the appli-
cation’s memory allocations, however, as that would violate
transparency. To handle this situation, SuperPin allocates
a large bubble of anonymous memory at the start of execu-
tion, which is used as a placeholder for the code cache struc-
tures. Then, immediately after spawning each slice, that
memory is deallocated. Thus, any subsequent code cache
allocations will occur in the bubble memory, away from the
memory allocated by the application. This preserves precise
memory mappings between the master and slices.

The next design decision we faced was determining
when timeslices should be spawned. We found two natural
boundaries for timeslice transitions: system calls and time-
outs. Our final design includes both boundaries, therefore
we describe each situation in the upcoming sections.

4.2. System Calls

When system calls are encountered in the master appli-
cation, special care must be taken to ensure the children
slices will behave in an identical manner. As a result, Super-
Pin employs a special control process that monitors the ap-
plication via the ptrace mechanism.

After each system call, SuperPin must either (a) force a
new slice or (b) record the effects of the system call and
play them back in the slices. On some system calls, we
perform custom emulation actions. For example, the brk
system call can be duplicated without any adverse side ef-
fects. Meanwhile the anonymousmmap call can be repeated
given the same address. In other cases where we are unsure

about the effects of a system call or encounter a new system
call, SuperPin will default to forking a new timeslice.

For applications that have moderate system call usage,
forking a new timeslice is acceptable. However, applica-
tions such as gcc will allocate and deallocate memory far
too frequently. As a result, the overhead induced by forking
becomes unacceptable. For these instances, we have imple-
mented a record-and-playback mechanism. The memory
modifications and results of system calls are recorded. The
slices then playback the system call by changing the regis-
ters and modifying memory in an identical manner.

4.3. Timeouts

SuperPin also achieves timeslicing using a special timer
process. If the control process has not forked a new slice
due to a system call in a specified time interval (e.g, 1 sec-
ond), it sends a stop signal to the master application. The
control process then returns from its ptrace call and notices
the timeout. It then creates a new slice using the trampolin-
ing technique described earlier.

4.4. Signature Detection

Each instrumented timeslice is responsible for detecting
the correct point at which to end, such that it doesn’t overlap
with the subsequent timeslice. As mentioned earlier, this is
accomplished via a unique signature that is recorded at the
start of each timeslice that describes the system state. A key
feature of SuperPin is its signature detection mechanism.

Timeslices that end as a result of a system call are
straightforward to detect. However, some timeslices end
as a result of a timeout at an arbitrary location. As a result,
SuperPin needed a reliable mechanism that would uniquely
identify a timeslice boundary. Furthermore, low overhead
signature recording and detection mechanisms were essen-
tial. After examining several options, such as recording
the last 1000 instruction pointers, we developed a relatively
simple, yet effective signature-detection mechanism.

When a new slice has been created by forking the ap-
plication, it begins instrumentation in recording mode. It
records the state of the processor at a specific location.
This includes the architectural register state and the top
100 words on the stack. The previous slice will then be-
gin normal instrumentation and enter detection mode. De-
tection is only attempted (via instrumentation) at the spec-
ified instruction pointer. The detection routine first verifies
a matching architectural state and then verifies a matching
top-of-stack state.

To further optimize the detection process, the recorder
attempts to ascertain the two registers that are most likely
to change. For example, some registers are highly likely
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to change over loop iterations. If the recorder cannot as-
certain a clear candidate within a specified block count,
then default registers are used. These two registers are
checked first using the INS InsertIfCall instrumen-
tation. This will inline a quick check at that specific lo-
cation. Only if that succeeds will the more expensive
INS InsertThenCall routine be called that performs
a complete check.

We collected statistics on how frequently the quick and
full detection is triggered. Only about 2% of the time does
the quick detector trigger a full architectural state check. A
stack check is usually only called once and succeeds. Very
rarely is a stack check triggered more than once. This is one
reason why we did not include further checking, such as a
checksum of kilobytes of the stack.

Although this signature recording and checking mech-
anism has proven to have low overhead and high reliabil-
ity, it is not foolproof. A sequence of code could be gener-
ated that incremented or decremented memory in a loop as a
loop counter, with all other registers and stack remaining the
same across iterations. In this case, we may trigger a false
positive match on the first iteration rather than a subsequent
iteration. An enhanced version of the signature detection
could be developed to include results of memory operations
when no registers change, but in practice, we have yet to
encounter this false positive situation.

4.5. Merging Results

Because SuperPin slices an application into separate pro-
cesses with their own copy of Pin and the Pintool, the data
a Pintool records will only be local to its slice. A merge
function must be called to combine the output of the last
completed slice into a collective total. To aid in determin-
ism, the merge function is called in slice order.

If we are counting instructions or profiling dynamic in-
struction types, the merge function will simply add each lo-
cal value to a running total using a shared memory region.
When the program completes, a fini function is called
which displays the results from shared memory. As another
example, if we are tracing instructions, the slice output will
be buffered, then appended to the output during merging.

SuperPin is not designed to handle cases where the ma-
chine state is abnormally changed while the application ex-
ecutes. However, with clever design, many tools can be
converted to a SuperPin tool. Though some tools may de-
pend on data from a previous slice, this can be resolved at
merge time. The general steps are as follows:

1. Assume previous slice ends with a particular state and
record data accordingly.

2. Compare the actual ending state of the previous slice
with the assumptions made. A slice may need to keep
track of extra data just for this purpose.

3. Reconcile the differences between the assumptions
and reality during the merge routine.

In the next section, we will illustrate how this can be
accomplished with a data cache tool.

5. SuperPin Applications

We have extended Pin’s API to allow tool writers to take
advantage of SuperPin’s features and even affect its behav-
ior. This API is included as a standard feature in the latest
toolkit on the Pin web site [1]. We describe the new Super-
Pin API in this section and provide details of two sample
tools – an instruction counter tool and a data cache tool.

SuperPin API Pin’s API has been extended to provide full
support controlling and accessing SuperPin. The following
calls are available to a tool writer:

• SP Init(fun): Initialize the SuperPin system.
Must be called before PIN StartProgram and af-
ter PIN Init. Pass it function fun which is used to
reset local statistics. Returns true if using SuperPin.

• SP AddSliceBeginFunction(fun,val):
Calls function fun immediately after a new SuperPin
slice has been created.

• SP AddSliceEndFunction(fun,val): Calls
function fun right before a SuperPin slice terminates.

• SP EndSlice(): Tool instructs SuperPin to termi-
nate this slice immediately.

• SP CreateSharedArea(localData, size,
autoMerge): Allocate shared memory region of
size length and return a pointer to that region if
successful and using SuperPin. Otherwise return
localData. AutoMerge indicates if and how this region
is automatically merged (e.g. addition).

An example of a SuperPin tool that uses the
SP EndSlice function is the Shadow Profiler Pin-
tool [18], which performs sampled profiling via instru-
mented timeslices, achieving lower overhead than is attain-
able via full instrumentation.

SuperPin Switches To use SuperPin, a tool must be writ-
ten using the presented API, and Pin must be executed with
the switch -sp 1. The following command-line switches
are also available for controlling SuperPin’s behavior.

• -spmsec {value}: Number of milliseconds for a time-
slice (default: 1000)

• -spmp {value}: Maximum number of running slices
(default: 8)

• -spsysrecs {value}: Maximum number of system call
records per slice, or 0 to disable system call recording
(default: 1000)
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5.1. Icount SuperTool

Icount is a simple tool that counts the number of in-
structions executed by an application and all of its shared
libraries. Two versions of the traditional icount pintool
are shipped with Pin. The first version, icount1, instru-
ments the application at the granularity of an instruction.
A call is inserted after every instruction that increments
a global counter. An optimized version of this Pintool is
called icount2, which operates at a basic-block granular-
ity. At the end of every basic block, a call is inserted that
increments a global counter by the number of instructions
in that basic block.

Figure 2 presents the SuperPin version of icount2. The
tool required a few modifications in order to use Super-
Pin’s features (highlighted). First, starting from the top,
we have added a pointer, *sharedData. This pointer
refers to memory that is either shared across all slices or
local to each slice, depending upon whether the tool is run
in SuperPin or traditional Pin mode. Second, we have added
a ToolReset function. This function resets the local in-
struction count at the start of each slice.

Next, in the main function, we have added a call
to SP Init and have passed the tool reset function,
ToolReset. We then call SP CreateSharedArea
passing along a pointer to our local data and the size of the
shared memory region. If we are not in SuperPin mode, the
sharedData pointer will be assigned to the local pointer
we pass to that function.

Finally, we call SP AddSliceEndFunction and
pass it our manual Merge function. We are using a manual
merge function instead of an automatic merge function for
illustrative purposes. In this case, Merge simply adds the
local instruction count value, icount to the value pointed
by the shared pointer. While it is possible to display the
slice count and running total at this time, we have chosen to
suppress our output until program completion.

5.2. Data Cache SuperTool

Merging the output of an instruction counting tool
turned out to be straightforward, but that may not always
be the case. Other instrumentation tasks may have de-
pendences between the timeslices. These dependences
don’t have to preclude the use of SuperPin, however.
Here we describe how a data cache simulator, such as
SimpleExamples/dcache.cpp as provided in the Pin
toolkit, can be modified to be amenable to SuperPin (using
the procedure outlined in Section 4.5). Consider the case
of a direct-mapped data cache. We assume that the first ac-
cess in a slice will be a hit. Next, upon the first access, we
increment our hit counter, but also make a special record
of the line address containing the assumed hit. Then, when

Icount SuperTool
#include <iostream>
#include "pin.H"

UINT64 icount = 0;
// points either to shared or local statistical data
UINT64 *sharedData;

VOID docount(INT32 c) { icount += c; }

// NEW: Clears slice local data
VOID ToolReset(UINT32 sliceNum) {

icount = 0;
}
// NEW: Merge local to shared data
VOID Merge(INT32 sliceNum, VOID *v) {

*sharedData += icount;
}
VOID Fini(INT32 code, VOID *v) {

// use sharedData pointer now
std::cout << "Total Count: " << *sharedData << endl;

}
VOID Trace(TRACE trace, VOID *v) {

for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl);
bbl = BBL_Next(bbl))

INS_InsertCall(BBL_InsHead(bbl), IPOINT_BEFORE,
(AFUNPTR)docount, IARG_UINT32,
BBL_NumIns(bbl), IARG_END);

}
int main(INT32 argc, CHAR **argv) {

PIN_Init(argc, argv);

/* BEGIN SuperPin */
SP_Init(ToolReset);
sharedData = (UINT64 *)SP_CreateSharedArea(&icount,

sizeof(icount), 0);
SP_AddSliceEndFunction(Merge, 0);

/* END SuperPin */

TRACE_AddInstrumentFunction(Trace, 0);
PIN_AddFiniFunction(Fini, 0);

PIN_StartProgram(); // Never returns
return 0;

}

Figure 2. SuperPin version of icount2

the slice completes, we compare the line of our first access
with the final cache state of the previous slice. If they do
not match, we subtract the assumed hit and add a miss to
our record. We then add the hits and misses to the shared
merged record.

6. Performance Comparison

We evaluated the performance of SuperPin against Pin
in traditional execution mode and against the native ap-
plication execution time. We used icount1 tool, which
instruments each individual instruction with a counter in-
crement, and icount2, which performs the instrumenta-
tion at a basic block granularity. While the output of both
tools will be identical, the icount2 tool will have much
lower overhead. We ran both tools on the SPEC2000 suite
of benchmarks on an 8-way multiprocessor using 2.2 GHz
Intel R©Xeon R©MP processors. In SuperPin mode, the max-
imum number of slices was limited to 8 (one per processor),
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and the timeslice interval was set at 2 seconds (we later vary
the processor count and timeslice interval).

The results of running the icount1 tool are shown in
Figure 3. We present the normalized execution time of the
tool in traditional mode and SuperPin mode (relative to na-
tive). On average, there was about a 12X slowdown in tra-
ditional mode. Figure 4 shows the corresponding speedup
of SuperPin over Pin for icount1, where SuperPin out-
performs Pin by 3 to over 7 times. For icount1, the tool
is instrumentation-limited. There is not enough parallelism
available to overcome the work required by the icount1
tool. Therefore, the SuperPin speedup usually will not ex-
ceed 8X unless significant cache locality benefits arise.

On the other hand, for the icount2 tool, there is
enough parallelism in most cases for the application to come
close to real-time performance, as we can see from Figure 5.
Compared to native execution, we saw a 25% average slow-
down while running with SuperPin instrumentation (rang-
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Figure 5. icount2: Pin and SuperPin perfor-
mance relative to native run

ing from 7% to just under 100% slowdown). The variation
is primarily a result of application behavior, which affects
SuperPin overhead both directly and indirectly. The dura-
tion of the application affects the pipeline delay. It becomes
difficult to achieve slowdowns under 25% for applications
with shorter execution times.

6.1. Timeslice Variation Effects

Next, we explored the effect of changing the timeslice
interval. Figure 6 shows the run time of the gcc bench-
mark as we varied the timeslice interval from 0.5–4 seconds.
We chose gcc because its large code footprint and higher
overhead best illustrate the effects of changing the times-
lice interval. We also restricted the input set to one input to
properly reflect the pipeline delay. This resulted in a native
run time of nearly 100 seconds. Figure 6 breaks the results
down into the run time overhead components of forking and
other losses, stalls within the master application to avoid ex-
ceeding maximum number of slices, and the pipeline delay
after the master application has finished.

The figure indicates that as the timeslice size increases,
the overhead due to forking and other inherent costs with
running multiple processes decreases. Also, the master does
not sleep as much because the slices do not have to compile
as frequently. On the other hand, the pipeline delay will
increase. However, the benefits of the lower overhead out-
weigh the pipeline delay for gcc, and a net runtime reduc-
tion is seen which levels off at higher time slice sizes.

6.2. Parallelism Variation Effects

The number of virtual processors available to execute
slices has a direct relationship to the performance of Super-
Pin. This is demonstrated in Figure 7, where the maxi-
mum number of slices is varied from 1 to 16 for the gcc
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Figure 6. Timeslice interval variation for gcc

benchmark. The machine used is only 8-way SMP, but with
hyperthreading enabled, it was extended to 16 virtual pro-
cessors. With only 2 processors, we saw little benefit after
the overhead, but performance improved dramatically until
we reached the limit of physical processors. When using
16 processors, the master application does not wait at all
– it will fork as quickly as possible. However, the hyper-
threading effect of sharing a processor reduces the master
application’s performance, so it is not quite real time. In
this case, the execution is said to be application limited.

6.3. Overhead

There are three main reasons why our performance ap-
proaches, but does not reach the performance of a single
processor native run. These are pipeline delay, compilation
slowdown, and master application slowdown.

1. Pipeline Delay. As explained in Section 3, the design
of SuperPin pipelines timeslices of an application. As
a result, there will be a theoretical minimum slowdown
based on the duration of a timeslice in order for the
final timeslice to complete.

2. Compilation Slowdown. Because each slice has its
own copy of the code cache, and it starts in a clean
state when each slice begins, the compilation engine is
doing much more work. This slowdown is significant
only in instrumentation-limited runs. Otherwise, the
extra parallelism hides the compilation overhead.

3. Master Application Slowdown. The running environ-
ment may degrade the performance of the master pro-
cess in some instances. This can be caused by the op-
erating system, the hardware, or SuperPin overhead.
The subcomponents of this overhead are:

Ptrace Overhead The master application is con-
trolled via ptrace, and after every system call the
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Figure 7. Impact of available processor paral-
lelism on performance

master application re-enters the VM for bookkeeping
purposes. This overhead has been measured to be less
than a few tenths of a percent.

Fork Overhead When a slice forks, it creates a copy
of the application space via copy-on-write page faults.
Every time the application or a slice touches a clean
page, the page must be copied.

Operating System Scheduling Poor scheduling by the
OS can cause swap and cache thrashing.

Hyperthreading If the master application is forced to
share its CPU with another slice or external process,
this will impact performance.

SMP Scalability Issues Running on all processors
taxes the memory and other subsystems. As a result,
each process on the individual CPU will run slower.
This has been verified by loading a system with the
same benchmark running natively. It will run slower
than running a single instance with no other load on
the system. In fact, many SuperPin application-limited
runs are very close to the time under this scenario.

7. Conclusion

We have introduced a novel approach to improving the
performance of dynamic instrumentation. Our technique
works by dividing the program into many timeslices, exe-
cuting those timeslices with instrumentation in parallel, and
merging the results.

We performed a complete implementation of our ap-
proach in Pin, and made many important design decisions
en route. One interesting feature is an effective signature de-
tection mechanism to trigger the end of an instrumentation
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slice. A full performance evaluation then illustrated that the
overhead came in several forms: pipeline delay, compila-
tion slowdown, and master application slowdown.

For a certain class of instrumentation tasks that are
amenable to parallelization and merging, the SuperPin ap-
proach provides significant performance improvements, of-
ten an order of magnitude improvement over the widely
used method for dynamic instrumentation.

8. Future Work

SuperPin exhibits significant speedup over non-
parallelized instrumentation, however, there is still room
for improvement. Section 6 described some of the over-
heads involved and our future work is to continue to
optimize these overheads.

Solving the problem of pipeline delay is challenging, but
we envision a mechanism that could automatically throttle
the timeslice duration. Ideally, we would be able to decrease
the timeslice size toward the end of application execution.
We are investigating realistic approximations of that goal.

The best approach for dramatically reducing the compi-
lation overhead may be to share the code cache across all
timeslices via shared memory. This may add a little ex-
tra overhead by performing extra consistency checks from
other slices, but we feel that the reduction in overhead will
outweigh the costs.

Finally, we would like to provide multithreading support
to our implementation. Though this will require determin-
istic replay of threads, we are working with experts in that
area to accomplish this task.
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