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Abstract

Software code caches help amortize the overhead of dy-
namic binary transformation by enabling reuse of trans-
formed code. Since code caches contain a potentially-
altered copy of every instruction that executes, run-time
access to a code cache can be a very powerful opportu-
nity. Unfortunately, current research infrastructures lack
the ability to model and direct code caching, and as a re-
sult, past code cache investigations have required access to
the source code of the binary transformation system.

This paper presents a code cache-aware interface to the
Pin dynamic instrumentation system. While a program exe-
cutes, our interface allows a user to inspect the code cache,
receive callbacks when key events occur, and manipulate
the code cache contents at will. We demonstrate the util-
ity of this interface on four architectures (IA32, EM64T,
IPF, XScale) and present several tools written using our
API. These tools include a self-modifying code handler, a
two-phase instrumentation analyzer, a code cache visual-
izer, and custom code cache replacement policies. We also
show that tools written using our interface have comparable
performance to direct, source-level implementations. Both
our interface and sample open-source tools that utilize the
interface have been incorporated into the standard distribu-
tion of the Pin dynamic instrumentation engine, which has
been downloaded over 5,000 times in 18 months.

1. Introduction

Dynamic binary transformation systems are becoming
commonplace in both the research and product communi-
ties. The ability to manipulate the instruction stream of an
executing program enabled by these systems has had nu-
merous implications in program performance, security, and
portability. While developing a dynamic binary optimizer
and covering the numerous corner cases is a challenge, sev-
eral research groups have successfully built robust systems
capable of executing today’s applications with little or no
overhead [7, 12, 21].

In working to reduce overall system overhead, a signif-

icant observation is that the single largest performance im-
provement results from the use of code caches. Software-
managed code caches serve the role of storing transformed
application code to enable reuse. They improve the over-
all system performance by amortizing the cost of expensive
transformations over the entire program execution time.

Providing researchers access to the contents of the code
cache enables many powerful opportunities. A user can
manipulate the code cache contents to investigate run-time
optimizations or security policies; they can instrument and
compare applications across several architectures; they can
even investigate the code cache implementation itself and
develop and compare custom code cache replacement poli-
cies. Our users have demonstrated that the possibilities are
nearly endless.

While general frameworks have been developed for
studying binary instrumentation and optimization, they
have not been designed to provide user-level access to the
code cache. In fact, most frameworks have gone to great
lengths to mask the presence of a code cache from the user
by converting cached instruction addresses to their corre-
sponding addresses in the original application before pre-
senting the addresses to the user. Therefore, code cache re-
lated investigations have required access to the source code
of a dynamic binary optimizer. Unfortunately, most of the
popular and robust systems are not open source. Even with
access to source code, the lack of an API that allows fine-
grained control but still abstracts away the details prevents
a casual user from rapidly constructing sophisticated anal-
ysis tools. These traits complicate the task of investigat-
ing and manipulating code cache contents and implementa-
tions. The goal of our work is to remedy this situation, and
to provide a general framework for studying and altering
code caches using a clean, well-designed interface.

Our framework is built upon Pin [21], a dynamic instru-
mentation tool developed at Intel Corporation that uses a
code cache to amortize the cost of program instrumenta-
tion. We provide access to the statistics and details of the
code cache contents, as well as support for insertions to and
deletions from the code cache. This functionality enables
implementation and wall-clock comparisons of client tools.
Furthermore, both Pin and our cache interface are portable
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across four Intel architectures: IA32 (32-bit x86), EM64T
(64-bit x86), IPF (64-bit Itanium), and XScale (ARM).
Therefore, a user can evaluate their technique on four archi-
tectures using the same platform-independent API. Finally,
an added benefit of building our system upon Pin is that
users also have access to Pin’s instrumentation client inter-
face, which provides support for lightweight profiling and
source-level information about the executing application.

To our knowledge, this is the first body of work that fo-
cuses on a client interface to code caches. Furthermore, this
is the first work that compares code cache behavior across
multiple architectures. The specific contributions of this pa-
per are as follows:

An introduction and evaluation of a general framework
for code cache investigation and manipulation in the
Pin dynamic instrumentation system.

An investigation and comparison of code cache be-
havior on four different instruction-set architectures:
IA32, EM64T, IPF, and XScale.

An overview of several plug-in tools written using our
code cache interface, including a self-modifying code
handler, a two-phase instrumentation analyzer, a cache
visualization GUI, and custom code cache replacement
algorithms.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief overview of the Pin dynamic instru-
mentation tool as well as a historical review of code caches.
Section 3 introduces the C/C++ API of the code cache in-
terface that can be used to build ISA-independent tools and
quantifies the overhead of using our API as compared to na-
tive Pin performance. Section 4 describes several example
tools that were written using the interface. Finally, Section 5
summarizes our contributions and concludes.

2. Background

In this section, we describe several of the existing
dynamic binary transformation systems, and provide an
overview of the role of code caches in their implementa-
tion. Then we discuss the Pin dynamic instrumentation sys-
tem, upon which our interface was built, and describe the
internal structure and algorithms implemented in its code
cache.

2.1. Dynamic Binary Transformation

Several systems fall under the category of dynamic bi-
nary transformation systems. Dynamic optimizers, such
as HP’s Dynamo and DELI [4, 13], HP/MIT’s Dy-
namoRIO [7], University of Virginia’s Strata [25], and Uni-
versity of Minnesota’s ADORE [10] perform run-time opti-
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Figure 1. Software architecture of the code cache
plug-in interface.

mizations in a transparent manner in order to improve per-
formance and/or enhance security. Other systems, such as
IBM’s DAISY and BOA [1, 15], and Transmeta’s CMS [12]
focus on dynamic translation to allow pre-compiled appli-
cations to run on new or incompatible hardware. Still other
systems use binary transformation to introduce instrumen-
tation to existing applications, such as Intel’s Pin [21], Ju-
lian Seward’s Valgrind [22], Microsoft’s Detours and Vul-
can [20, 26], University of Maryland’s Dyninst [8], and
Sun’s DTrace [9]. Finally, systems such as IBM’s Jikes
RVM [2] perform adaptive re-optimization in addition to
just-in-time compilation of Java programs.

Nearly all dynamic binary transformation systems em-
ploy one or more code caches to store altered copies of the
original instructions. This approach has been very success-
ful in amortizing the costs of transformation, often resulting
in a net performance improvement of the overall system.

2.2. Pin Overview

Pin [21] is a dynamic binary rewriting system developed
at Intel Corporation. It supports IA32, EM64T, ARM and
IPF programs for Linux, Windows, and FreeBSD. Pin was
designed with instrumentation in mind. Hence, instrument-
ing a program is both easy and efficient. A user can write
instrumentation tools using an API that is rich enough to al-
low many plug-ins to be source compatible for all the sup-
ported instruction sets. Pin allows a tool to insert function
calls at any point in the program. It automatically saves
and restores registers so the insert call does not overwrite
application registers. Pin reallocates registers and inlines
instrumentation to improve performance.

Figure 1 illustrates Pin’s software architecture. At the
highest level, Pin consists of a virtual machine (VM), a code
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cache, and an instrumentation API invoked by Pintools. The
VM consists of a just-in-time compiler (JIT), an emulator,
and a dispatcher. After Pin gains control of the application,
the VM coordinates its components to execute the applica-
tion. The JIT compiles and instruments application code,
which is then launched by the dispatcher. The compiled
code is stored in the code cache. Entering/leaving the VM
from/to the code cache involves saving and restoring the ap-
plication register state. The emulator interprets instructions
that cannot be executed directly, such as system calls that
require special handling from the VM. Since Pin sits above
the operating system, it can only capture user-level code.

A thorough description of the internal functionality of
Pin is provided by Luk et al. [21].

2.3. Pin’s Code Cache Structure

Like many other binary modifiers, Pin uses a code cache
to amortize its overhead. Pin’s code cache is partitioned into
multiple equal-sized cache blocks (see Figure 2) that are
generated on demand. This configuration allows the code
cache to adapt to increasing application requirements. In
the default case, each cache block is sized at (PageSize
* 16), which evaluates to 64 KB on IA32, EM64T and
XScale, and 256 KB on IPF. Pin’s entire code cache is un-
bounded by default on IA32, EM64T and IPF, while a 16
MB limit is placed on the XScale code cache due to a hard
limit on XScale resources. Users may override the code
cache or block size limits via command-line switches. Al-
ternatively, users may dynamically adjust these values at run
time using our client API as we will describe in Section 3.

Code traces – or more specifically superblocks – are used
as the basis for instrumentation and code caching in Pin.
Unlike other systems, which provide a separate cache for
basic blocks and superblocks, Pin combines all regions into
a single code cache. Just before the first execution of a
basic block, Pin speculatively creates a straight-line trace
of instructions that is terminated by either (1) an uncondi-
tional branch, or (2) an instruction count limit. The first
termination condition – unconditional branches – is very
different from other dynamic transformation systems which
follow the execution path through unconditional branches
while generating traces [14]. Pin’s approach stems from the
fact that it is designed to be an instrumentation system, so it
made more sense to ensure that traces reside in contiguous
memory before allowing users to add instrumentation.

After generating a trace, Pin immediately places it in the
code cache and updates the cache directory. The directory
is a hash table of code cache contents that is indexed by
both the original application address of the first instruction
in the trace and a register binding at that trace entrance:

. Recording the reg-
ister bindings allows Pin to reallocate registers across trace
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Figure 2. Pin’s code cache consists of multiple
cache blocks. Traces are inserted at the top of a
cache block. Exit stubs are inserted at the bottom.

boundaries. A side-effect is that multiple traces may exist in
the code cache with the same starting address but different
register bindings.

For every potential off-trace path, Pin generates an exit
stub, which redirects control back to the VM and passes
information about the next trace to execute. Over time,
Pin will patch any branches targeting exit stubs directly
to the target trace in the code cache (this process is also
called linking). For this reason, the code cache is config-
ured such that the exit stubs are geographically separated
from the traces, as shown in Figure 2. This configuration is
designed to improve the hardware instruction-cache perfor-
mance because in the common case, traces will branch to
other nearby traces and not to the distant exit stubs.

Pin links cached traces proactively. As each trace is in-
serted into the code cache, all off-trace branches are imme-
diately patched to any targets that already reside in the code
cache. For those targets not yet present, a special marker
is placed in the code cache directory. This marker allows
future traces to link any previously-generated branches in
other traces to the new trace.

To keep memory usage under control, Pin employs a
shared code cache across all threads in a multithreaded ap-
plication, and employs a staged flush algorithm to handle
code invalidations and other consistency events. Each cache
block (see Figure 2) has an associated stage that indicates
the number of flushes that have been triggered since the
program began. As each thread enters the VM, it is redi-
rected to the cache blocks marked with the latest stage,
and the thread count for the previous stage is decremented.
When the thread count for a particular stage reaches zero,
the space allocated for all cache blocks marked with that
stage is freed.
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Callbacks Actions Lookups Statistics
PostCacheInit FlushCache TraceLookupID MemoryUsed
TraceInserted FlushBlock TraceLookupSrcAddr MemoryReserved
TraceRemoved InvalidateTrace TraceLookupCacheAddr CacheSizeLimit
TraceLinked UnlinkBranchesIn BlockLookup CacheBlockSize
TraceUnlinked UnlinkBranchesOut TracesInCache
CodeCacheEntered ChangeCacheLimit ExitStubsInCache
CodeCacheExited ChangeBlockSize
CacheIsFull NewCacheBlock
OverHighWaterMark
CacheBlockIsFull

Table 1. A subset of the actions and opportunities available in the code cache API.

3. The Code Cache API

Now that we understand the structure of Pin and its code
cache, we can describe our interface for inspecting and con-
trolling the code cache. We implemented the API using
a methodology similar to Pin’s existing approach to user-
defined instrumentation. The software architecture is de-
picted in Figure 1. As the figure indicates, there are three
programs executing: the input application (such as a SPEC
benchmark), the Pin instrumentation system, and the user’s
code cache plug-in that alters the cache contents, specifies
the replacement policy, and/or collects code cache informa-
tion from Pin. The cache plug-in communicates with Pin
using our code cache plug-in API described in this section.

3.1. The Client Interface

The API calls we provide to our users (shown in Ta-
ble 1) can be grouped into four categories: callbacks, ac-
tions, lookups, and statistics. Callbacks allow our users to
be notified when key code cache events occur. Actions can
be invoked any time the plug-in has control (such as during
a callback). Lookups provide access to Pin’s internal data
structures that keep track of the code cache’s contents. Fi-
nally, the plug-in can inspect statistics. We discuss each of
these categories in the following paragraphs.

Callbacks Our API allows a user to register routines to be
executed after specific events (such as initialization, inser-
tions, etc.) occur in the code cache. These routines give the
client tools an opportunity to “gain control” of the executing
application in order to perform whatever actions they wish.
Implementing a code cache replacement policy, for exam-
ple, simply requires a user to register a routine that will be
called any time the code cache exceeds a high water mark
and/or completely fills. Ten events for which we provide
callbacks are listed in the leftmost column of Table 1.

Actions While the callback opportunities in the previous
section allow a client to gain control, the API routines in

this section allow a client to then invoke actions in the code
cache. One particularly useful action is trace invalidation.
Users have found that this action allows them to direct the
regeneration of code (after it is determined to be hot, for
example). After an invalidation, the code will likely be re-
generated, and during that phase, the user can add new in-
structions or change some other trait of the newly-generated
code before it is re-inserted into the code cache.

While trace invalidation is a single API call to our users,
it actually performs quite a bit of work behind the scenes.
This includes converting the program address to a code
cache address (if necessary), unlinking all incoming and
outgoing branches that originate from or target other cached
traces, updating all of the internal data structures, ensuring
correctness in light of multithreading concerns (i.e., ensur-
ing that no other thread is executing the invalidated trace),
etc. All of this complexity is masked from our users and is
embedded into a single API call.

Cache Lookup The API routines in the lookup category
allow a plug-in to directly access the code cache directory
that contains information about all of the traces and exit
stubs in the code cache. As described in Section 2.3, the
directory is simply a hash table that contains the entries
and details of traces currently residing in the code cache.
This information can be used either to collect information
or to guide actions. Invalidating a trace, for example, re-
quires knowledge of either the original program address or
the code cache address. The mapping from original to code
cache addresses is available via code cache lookup routines.

Statistics Our final API category exports various sum-
mary statistics concerning the contents, history, and foot-
print of the code cache. These statistics can be useful not
only for an analysis of the code cache’s contents, but also to
trigger code cache events (such as trace invalidation or full
code cache flushes) if called for by the design.

Summary In this section, we provided a high-level view
of our API for writing code cache manipulation tools, and
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Figure 3. Wall-clock performance comparison of
Pin without callbacks to Pin with various code
cache callback combinations. All values are rel-
ative to native performance (without Pin). Values
below 100% represent speedups with respect to
native performance.

more detailed information is available in the full Pin man-
ual [11]. It’s important to emphasize that the code cache
API is provided in addition to Pin’s extensive instrumenta-
tion API defined in the user manual. Therefore tools can be
designed that perform both instrumentation and code cache
manipulation, as we will demonstrate in Section 4.

3.2. System Performance

From a usability standpoint, our goal was is to provide
as much information about and access to the code cache as
possible without sacrificing the overall system performance.
For many of our users’ applications, it is very important
that the performance of a plug-in style implementation ap-
proaches the performance of a direct source-code imple-
mentation in order to enable fair, wall-clock comparisons of
multiple design choices. For instance, the performance of a
code cache management policy implemented using our API
should provide a realistic representation of the performance
of a direct implementation of that policy.

One way we accomplished this goal is that all of the call-
backs out to a client’s routines occur at a point when Pin’s
VM has control (i.e., Pin’s own code is executing, not the
application’s code). Therefore, there is no need to perform
an expensive state switch to/from the application’s register
state in order to execute a user’s callback routine. (Note:
This register state switch is a major cause of slowdown in
standard binary instrumentation.) This fact allows us to pro-
vide our code cache interface with a much lower perfor-
mance penalty than standard instrumentation tasks.

To confirm that our API doesn’t needlessly introduce
overhead to the design, we measured the wall-clock perfor-

mance of executing the SPEC benchmarks1 while exercis-
ing our API with empty callback routines. This allows us to
isolate the overhead of our API from the overhead of the ad-
ditional functionality the user incorporates into the design.

Figure 3 shows the result of our measurements, relative
to the native run time of the benchmarks (without Pin). For
each benchmark, the leftmost bar reports the run time of
executing the benchmark under Pin’s control, without exer-
cising our API. The second bar exercises several of our call-
back opportunities2, including calling routines when (a) the
cache is full, (b) control enters the cache, (c) a trace is linked
to another, and (d) a trace is inserted into the code cache.
The next four bars isolate the overhead of each of the four
callback opportunities described above. As we can see from
the figure, the overhead of each callback mechanism almost
always falls within the noise of wall-clock timing results,
simply because our callback API does not trigger a regis-
ter state switch. This remains true when we exercise sev-
eral callback opportunities at once (All Callbacks) or
when we exercise a callback opportunity that occurs fairly
frequently at run time (Trace Link).

In the event that a user adds complex logic to their user-
level callback routines, we would expect to see the same
slowdown that they would experience were they to directly
implement that complex logic in the source code. We have
validated this internally by comparing direct and API-based
implementations of the code cache replacement policies de-
scribed in Section 4.4.

In summary, users should feel confident that the cache
API provides both the ability for rapid prototyping, and
comparable performance to a direct implementation of their
desired functionality in the source code. The results (even
wall-clock timing results) that users will acquire are both
relevant and realistic, yet the system is still robust, portable,
and easy-to-use.

4. System Utility

The API described in Section 3 can be used to write a
variety of architecture-independent code cache tools. We
use some sample tools to illustrate the utility of the API.
In this section, we present the details of tools designed for
code cache introspection, manipulation, visualization, and
replacement. All of the tools were very easy to develop due
to the richness of our API, and generally required less than
100 lines of commented C++ code. The tools we present
are freely available (including the source code) as part of
the standard distribution of our code cache client.

1We report the median run time of five executions of the reference input
set. The error bars indicate the run-time variance.

2We are simply trying to isolate the overhead of the API, therefore we
do not perform any complex logic in the callback routines.
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Figure 4. Code cache statistics of SPECint2000 on
four architectures, with IA32 as a baseline.

4.1. Cross-Architectural Code Cache Comparison

When researching software code caches, it is necessary
to understand the actual contents of the code cache. Our in-
terface takes this one step further, and allows a user to com-
pare code cache contents across four architectures: IA32,
EM64T, IPF, and XScale. This permits researchers to un-
derstand the ISA tradeoffs of every design choice. Our first
sample tool compares code caches across the four architec-
tures in terms of the final unbounded code cache size, the
number of traces and exit stubs generated, the average in-
struction length of a trace, and the number of times the sys-
tem patches trace branches to link to other traces. The tests
were performed using the SPECint2000 benchmarks with
the training input set to allow a fair comparison with the
XScale system, which does not have sufficient memory to
execute the reference input set. (The reference inputs result
in similar conclusions for the remaining architectures.)

As we can see from Figures 4–5 the code cache behavior
on one architecture is not necessarily indicative of the be-
havior on another architecture, despite the fact that the same
dynamic instrumentation system was used to perform the
study. As we move to 64-bit architectures, such as EM64T
and IPF, we see that code cache pressure increases. This
is indicated in Figure 4 by the 2.6X and 3.8X code cache
expansion on IPF and EM64T, respectively, as compared to
IA32. Furthermore, we see that more code is generated on
EM64T than on IA32. There are a number of contributing
factors. First, the instruction encoding is less dense for 64-
bit ISAs. Second, the larger number of registers gives Pin
more freedom to do code expanding optimizations.

In Figure 5, we see that traces on IPF are much longer.
This is expected because of the padding nops required by
instruction bundling and the aggressive use of speculation.
We can validate this using the code cache API by inspecting
the instructions after they are inserted into the code cache to
measure the number of nops and use of predication.
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4.2. Self-Modifying Code Handler

Self-modifying code is a challenge to handle efficiently
in a dynamic translator [6, 12]. The problem occurs when
an application executes some code, modifies it, and then ex-
ecutes the new code at the same address. After the first exe-
cution, a dynamic translator will save a copy of the code in
its code cache. When the modified code is executed, the dy-
namic translator must detect that the code it has in its cache
is no longer valid. Without any detection, it will continue to
execute the old code and the program will eventually fail.

Several mechanisms have been proposed to detect self-
modifying code such as write-protecting code pages, check-
ing store addresses, and inserting extra code to check that
instruction memory has not changed. Access to source
code and an intimate understanding of the code genera-
tion system is typically required to study solutions for self-
modifying code. By combining an instrumentation and
cache control API, it is possible to implement a simple solu-
tion in 15 lines of code. In Figure 6, we show the code writ-
ten by one of our users. The function InsertSmcCheck
is the instrumentation function which is passed a list of
instructions in the trace. While an instrumentation func-
tion typically inserts calls to count basic block executions
or record the effective address for a memory reference,
this particular function makes a copy of the original in-
structions in the trace and inserts a call to DoSmcCheck,
passing it the address in memory of the instructions and
the saved copy. When the trace is executed, it calls
DoSmcCheck. This function compares the current con-
tents of the instruction memory against the saved copy. If it
has changed, it invalidates the cached copy of the trace and
uses PIN ExecuteAt [24] to re-invoke the trace. Note
that this example is just a demonstration – it does not han-
dle a trace that overwrites its own code (after the check) or
multithreading.

It is also possible to study mechanisms that use page
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Self-Modifying Code Handler
void main (int argc, char **argv)
{
PIN_Init(argc, argv);
TRACE_AddInstrumentFunction(InsertSmcCheck,0);
PIN_StartProgram(); // Never returns

}

// Pin calls this function every time a new trace is
// encountered
void InsertSmcCheck ()
{
traceAddr = (VOID *)TRACE_Address(trace);
traceSize = TRACE_Size(trace);
traceCopyAddr = malloc(traceSize);
if (traceCopyAddr != 0)
{
memcpy(traceCopyAddr, traceAddr, traceSize);

// Insert DoSmcCheck call before every trace
TRACE_InsertCall(trace,

IPOINT_BEFORE, (AFUNPTR)DoSmcCheck,
IARG_PTR, traceAddr,
IARG_PTR, traceCopyAddr,
IARG_UINT32, traceSize,
IARG_CONTEXT, IARG_END);

}
}

// This function is called before every
// trace is executed
VOID DoSmcCheck(VOID * traceAddr, VOID * traceCopyAddr,

USIZE traceSize, CONTEXT * ctxP)
{
if (memcmp(traceAddr, traceCopyAddr, traceSize) != 0)
{
smcCount++;
free(traceCopyAddr);
CODECACHE_InvalidateTrace((ADDRINT)traceAddr);
PIN_ExecuteAt(ctxP);

}
}

Figure 6. A code cache client tool (developed by
one of our users) that detects and handles self-
modifying code.

protections by instrumenting memory management system
calls. Mechanisms that watch store addresses can be imple-
mented by instrumenting memory store instructions. Note
that the example is architecture independent and allows the
writer to focus on the detection mechanism and not the de-
tails of managing the cache, inserting extra code, and the
idiosyncrasies of the instruction set.

4.3. Two-Phase Instrumentation

Instrumentation is a powerful technique for observing
dynamic program behavior, but it can be costly. Collecting
a control-flow profile may not reduce the performance of a
program significantly, but observing every memory instruc-
tion can slow down a program by 25x or more, depending
on the amount of work done to process each memory ref-
erence. Hardware performance monitors incur much less
overhead by sampling, but tools are limited to observing

events that the original hardware designers anticipated. In-
strumentation allows a tool to inspect all of the architectural
state.

Arnold [3] and Hirzel [19] propose using a combina-
tion of instrumentation and sampling to get the flexibility
of instrumentation and the performance of sampling. They
duplicate whole procedures and insert checks to decide
whether to execute the instrumented or un-instrumented
code. If instrumented code is executed infrequently, the cost
is dominated by the overhead of the checks, not the instru-
mentation.

Dynamic compilation systems use a simpler, but more
limited technique called two-phase compilation [5, 7, 23].
In the first phase, the compiler inserts instrumentation to
count execution. When the instrumentation routines indi-
cate that a trace or routine is hot, it is recompiled with op-
timization and no instrumentation. In this section we show
how cache control in an instrumentation system can be used
to implement two-phase instrumentation, greatly improving
the instrumentation performance. In two-phase instrumen-
tation, all traces initially have heavyweight instrumentation.
When a trace is known to be hot, it is recompiled without
instrumentation.

The goal of our two-phase instrumentation tool is to ob-
serve a memory address stream to find the addresses of in-
structions that are likely to reference global data. The in-
formation can be used for an optimization in a static com-
piler that speculatively keeps global variables in registers.
In the baseline case, we check addresses for the entire run
of the program. Memory instructions are instrumented to
store their effective address in a buffer, and the buffer con-
tents are processed when full. A conservative static analysis
is used to eliminate the instrumentation of instructions that
are known to touch only stack or global data.

As can be seen from the data series labeled full in Fig-
ure 7, the slowdown for programs with full profiling varies
from no overhead to as much as 14.9x slower with an av-
erage of 6.2x (520%). Two phase instrumentation is im-
plemented by instrumenting traces to observe memory ref-
erences and count executions. When the count exceeds a
threshold, the trace expires and we invalidate the trace from
the code cache (similar to the self-modifying code exam-
ple). On the next execution of the trace, it is retranslated
with no instrumentation. Eventually, all frequently executed
traces are uninstrumented, running at full speed. In Fig-
ure 7, the data series labeled 100 shows the slowdown for
program with two-phase instrumentation and a threshold of
100 executions. The maximum slowdown has been reduced
to 5.9x with an average of 2.0x.

An assumption in two-phase instrumentation is that the
early behavior is a good predictor for the entire execution of
the program. For varying thresholds, we measured how well
the early executions of a trace predict the behavior of the full
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Figure 7. Memory profiling slowdown comparison
of full-run profiling and two-phase profiling with a
threshold of 100.

program. In Table 2, we see that on average 5% of dynamic
references were incorrectly predicted to be unaliased with
global data (false positive). The average error is misleading
because one program (wupwise), has 100% error, but all
other programs have a maximum error of 0.25%. Table 2
also shows that false negatives are rare as we find almost
all of the unaliased references. Finally, we use the code
cache API to measure the size of the expired traces. The
results in Table 2 indicate that typically 1/3 of the code that
is executed at least once exceeds the execution threshold
and is discarded. This is a good indicator of the cost for two-
phase instrumentation as most of the time overhead comes
from the extra compilation of expired traces.

Converting a full program profiler into a two-phase pro-
filer adds about 30 lines of C code to the tool. (The full
source code for the two-phase profiler is distributed with
the API. For brevity, we do not include it in this paper.)
At the head of the trace, we insert a call to decrement the
per-trace counter. When the count reaches zero, we call
CODECACHE InvalidateTrace to remove the instru-
mented trace from the cache and record that this address
has expired. The next time the code is executed, it is not
found in the code cache, causing a new trace to be fetched.
The instrumentation tool notes that the trace has expired,
and chooses not to instrument it.

Arnold-Ryder and bursty sampling have the potential to
be more accurate with lower overhead. However, it also re-
quires duplicating all the code and finding the proper places
to switch between instrumented and uninstrumented copies,
which makes it harder to implement and generalize. Our
experience with a publicly available tool with a large user
community [21] is that the accuracy and overhead of phased
instrumentation is sufficient for many tasks, and the sim-
plicity of implementation makes it a tractable technique.
For users that need the higher accuracy, we are investigat-
ing simple extensions to the code cache API to support the
presence of multiple versions of a trace in the code cache

100 200 400 800 1600
speedup over full 3.34 3.31 3.23 3.29 3.24

false negative 2.59% 1.07% 1.06% 0.86% 0.82%
false positive 5% 5% 5% 5% 5%

expired traces 38% 37% 35% 33% 31%

Table 2. Performance and accuracy of two-phase
profiling with varying thresholds.

at a given time, and techniques for dynamically selecting
between the versions at run time.

4.4. Code Cache Replacement

Like most caching problems, code caches have several
capacity and consistency issues that result in the need for
a cache management policy. Earlier studies have shown
that the code expansion exhibited in code caches results
in a significant motivation for bounding the size of a code
cache [17, 18], particularly when executing large interactive
applications. An equally pressing motivation results from
dynamically-loaded and -unloaded libraries, self-modifying
code, and multi-threaded applications that result in consis-
tency issues and require the removal of stale translations
from the code cache.

Several code cache replacement algorithms have been
proposed that focus on maintaining the application’s cur-
rent working set in the code cache while minimizing code
cache maintenance overhead. All such investigations have
required access to the source code of the dynamic binary
transformation system, therefore the domain has been re-
stricted to a few researchers. Unless the system has been
designed with a user-interface to the code cache in mind, ac-
cess to the source code isn’t always the best solution for in-
vestigating code caches. The assumptions of the code cache
are often tightly integrated into the design in unseen ways.

As mentioned earlier, a compelling motivation for our
code cache plug-in interface is that it is the first to allow
users to implement a complete, custom code cache replace-
ment policy without the need to access the source code of
the dynamic transformation system. This motivation is even
more compelling by noting that of the dozen or so dynamic
transformation systems listed in Section 2.1, very few are
open source and readily available.

Some of the more common cache management poli-
cies include flush-on-full, first-in first-out (FIFO), and
least-recently used (LRU). Figure 8 shows the code
necessary to implement a standard flush-on-full code
cache replacement policy, and illustrates the interface’s
ease-of-use. As shown in the figure, only two API
calls were needed (CODECACHE CacheIsFull and
CODECACHE FlushCache) to implement this policy
aside from the boilerplate Pin instrumentation routines:
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Full Code Cache Flush
void main (int argc, char **argv)
{

PIN_Init(argc, argv);
CODECACHE_CacheIsFull(FlushOnFull);
PIN_StartProgram(); // Never returns

}
void FlushOnFull ()
{

CODECACHE_FlushCache();
}

Figure 8. Sample code for a flush-on-full code
cache replacement policy implemented as a plug-
in utility using our API. When the code cache sig-
nals that it is full, this routine flushes the entire
code cache.

PIN Init and PIN StartProgram. When executed,
this code will override the default mechanisms already im-
plemented in Pin.

Moving to a slightly more sophisticated cache pol-
icy, Figure 9 shows the code necessary to implement
the medium-grained FIFO replacement policy proposed by
Hazelwood and J. Smith [16]. This policy deletes an entire
cache block (containing numerous traces) at a time. This
policy results in an improved cache miss rate compared to
flush-on-full (because there are more traces residing in the
code cache on average), without the high invocation count
and link repair overhead of a fine-grained trace-at-a-time
flush policy. Again, we see that the implementation is ex-
tremely straightforward (only one more API call than the
previous policy) because the system takes care of all direc-
tory updates and link repairs behind the scenes.

The TraceInvalidatemechanism makes it straight-
forward to implement a pure FIFO replacement policy,
while the instrumentation API makes it straightforward to
compute hit rates and implement LRU by inserting counter
code into the traces that execute. More sophisticated poli-
cies that take into account threading simply require the use
of our high-water mark detection API, which allows the sys-
tem to initiate the flushing process early enough to allow
threads the opportunity to phase themselves out of the old
code before freeing the associated code cache memory.

4.5. Code Cache Visualization

For many applications, insight can be gained by visual-
izing the contents and structure of the code cache. To this
end, we developed a code cache visualization tool, shown
in Figure 10. The Code Cache GUI is a graphical tool for
browsing and manipulating the content of the code cache.
Internally, this tool has been used for debugging, tuning,

Medium-Grained FIFO Implementation
void main (int argc, char **argv)
{

PIN_Init(argc, argv);
CODECACHE_CacheIsFull(FlushOldestBlock);
PIN_StartProgram(); // Never returns

}
void FlushOldestBlock ()
{

static int nextBlockId = 1;
CODECACHE_FlushBlock(nextBlockId++);

}

Figure 9. Sample code for a medium-grained FIFO
replacement policy. When the code cache signals
that it is full, this routine flushes the oldest cache
block (which contains multiple traces).

and verification of Pin’s code cache and the algorithms and
policies associated with it.

The tool intercepts code cache events such as the creation
of a new trace and renders the information in a graphical
form. A user can browse this information interactively and
also trigger actions such as cache flushes.

As can be seen from the screenshot in Figure 10, the
main window is subdivided into five areas. From top to
bottom there is (1) a status line (2) a trace table (3) individ-
ual trace information (4) code cache actions, and (5) break-
points.

The Status Line area shows various summary statistics
for the traces currently residing in the code cache. The
Trace Table lists the main characteristics of all (or a subset
of) the traces in the code cache. For each trace it displays in-
formation such as the trace ID, the original address, the code
cache address, the trace size, the originating function name,
etc., and it is possible to sort the table by any of these crite-
ria. The Individual Trace area allows you to inspect and/or
flush a particular trace from the code cache. The Cache Ac-
tion area is a collection of actions affecting the entire code
cache, e.g. flushing the entire code cache or writing all the
traces into a file which can later be reread. (It is possible
to reload a code cache log file back into the GUI for offline
investigation.) Finally, the user can specify various break-
points either symbolically or by address, which, when hit,
will cause the tool to stop processing further traces and ef-
fectively stall the instrumented application.

4.6. Dynamic Optimizations

The code cache API can also be used to supplement the
functionality of existing dynamic optimizers. As a demon-
stration, we wrote a simple tool to dynamically optimize
programs that do integer divide by powers of two. In the
first phase of program execution, we do value profiling of
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Figure 10. Screen shot of a code cache visualization tool that is driven by our plug-in interface.

the operands of integer divide instructions. In the next
phase, we remove the instrumentation and strength reduce
divides with frequently occurring divisors, e.g. ( ) be-
comes .

One of our users has also implemented a multi-phase
optimization for prefetching. The tool begins by profiling
for hot traces. When discovered, the traces are then invali-
dated and re-instrumented to profile for strided memory ref-
erences. Finally, in the third phase, traces are regenerated
to include prefetches with the appropriate stride.

4.7. Tool Summary

The sample uses of our code cache interface described
in this section provide a feel for the utility and ease-of-use
of our system. Each tool will execute on four architectures3

and three operating systems. All of the tools were imple-
mented using less than 100 lines of C++ code, with the ex-
ception of the Code Cache Visualization Tool, which also
included about 500 lines of Python code for rendering and
formatting the GUI. All of the sample applications are cur-
rently shipped with our code cache interface.

Transparent access to an executing application via a code
cache is a very powerful opportunity. Just as ATOM opened
the doors for many new opportunities in computer architec-
ture and compiler research 10 years ago, exposing the code
cache via a well-defined API could enable a similar level of
creative applications. The examples presented in this sec-
tion only scratch the surface of possible applications.

3Pin supports all four Intel architectures, yet those architectures are
different enough to provide insight into other existing or new architectures.

5. Conclusions

Code caches are vital to the performance of any dynamic
binary transformation system, but they also present a unique
opportunity to access the instructions and state of an execut-
ing application. In the past, code cache investigations have
been hindered by the need for a general framework that ex-
poses the details of a code cache in a real system. This
paper addresses that need and introduces a low-overhead
but highly functional API for accessing and altering the de-
tails of the code cache in the Pin binary instrumentation
system. We demonstrated the utility of this API by using
it to perform an architectural comparison of code caches, to
handle self-modifying code, to investigate two-phase instru-
mentation, to develop a code cache visualization GUI, and
to implement several code cache replacement algorithms.
Furthermore, we showed that implementing code cache re-
placement policies using our API approaches the perfor-
mance of a direct implementation, without the need for ac-
cess to or an understanding of the source code of Pin.
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