
Software Fault Detection Using Dynamic Instrumentation

George A. Reis David I. August
Depts. of Electrical Engineering and Computer Science

Princeton University

{gareis,august }@princeton.edu

Shubhendu S. Mukherjee Robert Cohn
FACT and VSSAD Groups

Intel Massachusetts

{shubu.mukherjee,robert.cohn }@intel.com

Abstract
In recent decades, microprocessor performance has been

increasing exponentially. A large fraction of this perfor-
mance gain is directly due to smaller and faster transistors
enabled by improved fabrication technology. While such
transistors yield performance enhancements, their lower
threshold voltages and tighter noise margins make them
less reliable [1], rendering processors that use them more
susceptible totransient faults. Transient faults, also known
as soft errors, are intermittent faults caused by external
events, such as energetic particles striking the chip, that
do not cause permanent damage but may result in incor-
rect program execution by altering signal transfers or stored
values.

To detect or recover from these faults, designers have
typically introduced redundant hardware. For example,
storage structures such as caches and memory often include
error correcting codes (ECC) or parity bits while techniques
like lockstepping or Redundant Multithreading [5] have
been proposed for full processor protection. Although these
techniques are able to increase reliability, they all require
changes to the hardware design.

Software-only approaches to reliability have been pro-
posed and evaluated as alternatives to hardware modifi-
cation [3, 4, 6]. These techniques have shown that they
can significantly improve reliability with reasonable per-
formance overhead.

Software-only techniques do not require any hardware
support and thus are far cheaper and easier to deploy. In
fact, these techniques can be used for systems that have al-
ready been manufactured and now require higher reliability
than the hardware can offer. This need can occur because
of poor estimates of the soft error problem or changes in
the environment, such as moving to higher altitudes.

Software-only approaches also benefit from reconfigura-
bility after deployment. Since reliability is achieved via
software, the system can dynamically configure the trade-
off between reliability and performance. Software tech-
niques can be configured to only add reliability in certain
environments, for specific applications, or even for critical
regions of an application, thus maximizing the reliability
while minimizing the costs.

Although software-only error mitigation techniques do
exist, all previous proposals have been static compilation
techniques that relied on source code transformations or al-
terations to the compilation process. Our proposal is the
first application of software fault detection for transient er-
rors that increases reliability dynamically. Our proposal
uses a modified version of the PIN dynamic instrumenta-

tion framework [2] to enact the reliability transformations.
Using dynamic instrumentation in this way to increase

reliability, rather than static compilation, is advantagous for
a number of reasons. The application of our technique is
trivial since the only requirement is the program binary. It
does not require a recompilation, which is necessary in sit-
uations with legacy applications that no longer have read-
ily available or easily re-compilable source code. Even if
the application source is available, users typically do not
recompile libraries (such asglibc ) when recompiling an
application.

It is possible to create a binary to binary translation that
enhances reliability, but our dynamic reliability technique
can seamlessly handle variable-length instructions, mixed
code and data, statically unknown indirect jump targets,
dynamically generated code, and dynamically loaded li-
braries. Our technique is also able to modify executing pro-
grams. It can attach to a running application and increase
its reliability, and detach when appropriate, thus returning
to faster (and unreliable) execution.

We based our fault detection implementation on the
SWIFT software-only reliability technique [6]. The SWIFT
technique is composed of two mainly orthogonal parts, in-
struction duplication with detection and control flow pro-
tection. In this work, we focus on the duplication and de-
tection and do not implement the control flow protection
mechanism. Our technique dynamically duplicates all in-
structions, except for those instructions that write to mem-
ory. Since a fault will only manifest itself as a program
error if it changes the output, it is desirable to delay val-
idation until an instruction that may affect output. In our
mechanism, we assume that data going to memory can af-
fect output, so we delay validation until store instructions.
This delay reduces the number of false errors detected. Al-
though a fault may have changed a data value, if that value
is dynamically dead or if the faulted bits are masked away,
then our technique will not halt the execution because that
fault is irrelevant.

There are certain instructions that we cannot duplicate
and these instructions must be handled differently. Our
technique does not duplicate load instruction, but rather
creates a copy of the loaded value into a redundant regis-
ter. This copy needs to occur because two loads from the
same address may not always produce the same value. For
example, in a multi-process environment, another process
may change the value stored in memory between the orig-
inal and redundant loads. This would cause the reliable
program to signal a detected error although no fault has oc-
curred. Since out technique targets the x86 instruction set,



0

5

10

15

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
6.b

zip
2

30
0.t

wolf AVG

AddFlagProtect
AddStackProtect
Protect
BasePin

Figure 1. Performance for duplication only,
accounting for specialized registers.

certain other instructions also require special handling of
this type. TheRDTSCinstruction, which reads the hard-
ware time-stamp counter, must have its destination value
copies because two invocations of this instruction will al-
ways result in two distinct values.

Our reliability enhancements were implemented in the
PIN dynamic instrumentation framework [2]. Redundant
instructions, as well as validation and copying instructions,
are inserted during the dynamic instrumentation. We use
the existing PIN framework to register allocate the addi-
tional code, as well as perform other basic optimizations
like data liveness analysis. Due to current limitations with
register allocation in the PIN tool, we do not duplicate float-
ing point or multimedia instructions, but this is part of our
future work to increase reliability.

To analyze the performance of our reliability approach,
we first calculated the cost of duplicating instructions with-
out data verification. We compared the performance exe-
cutions relative to a base PIN execution with no reliability
and no instrumentation tools. We ran all SPECINT2000
executions on native hardware using reference inputs.

We found that inserting redundancy was dominated by
the duplication of theEFLAGSregister. Figure 1 shows
the normalized execution times when duplicating instruc-
tion without duplicating the stack pointer andEFLAGSreg-
isters, as well as performance when duplicating those reg-
isters. The average normalized executing time without the
EFLAGSregister is 2.31x slower that the base, but when
protecting that one register, the time increases to 9.00x. Du-
plicating theEFLAGSregister is extremely expensive due
to the restricted manner in which it may be fully accessed.
It can only be completely moved to and from the memory
stack, whereas non-EFLAGSregisters can be moved into
other architectural register. In addition, moving the entire
EFLAGSregister is a very expensive operation.

Duplication of the stack pointer was the second most
expensive register, bringing the normalized execution time
from 2.02x to 2.31x. This degradation was mainly due to
instructions that implicitly read or write to the stack pointer.
Since this required theESParchitectural register, the allo-
cation of the two virtual stack pointers was limited.

Instruction duplication adds the redundancy necessary
for independent computation, but comparison of the inde-
pendent versions is necessary for fault detection. Figure 2

0

2

4

6

8

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
6.b

zip
2

30
0.t

wolf AVG

Detection

Duplication

BasePin

Figure 2. Performance of detection compared
to duplication.

shows the normalized performance for full detection, at-
tributing the performance costs for duplication and verifi-
cation. These performance execution use only a single ver-
sion of the stack pointer andEFLAGSregister.

On average, the normalized execution time for instruc-
tion duplication alone is 2.02x while duplication plus data
verification is 3.77x. The per benchmark degradations vary,
ranging from 254.gap with a cost of 6.84x to 181.mcf with
a cost only 1.99x. Benchmarks like 181.mcf which contain
many cache misses have extra instruction level parallelism
to execute the redundant and detection instruction without
affecting the critical path.

Our technique shows that a dynamic software-only ap-
proach to reliability is possible with acceptable perfor-
mance degradation. Our future work involves targeting
ways to further increase performance of the reliable execu-
tion though smarter register allocation and scheduling. We
also plan to simulate fault injections to determine the pre-
cise fault coverage which will guide the dynamic trade-off
between reliability and performance.

References
[1] R. C. Baumann. Soft errors in advanced semiconductor devices-part

I: the three radiation sources.IEEE Transactions on Device and Ma-
terials Reliability, 1(1):17–22, March 2001.

[2] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. InProceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, June 2005.

[3] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by dupli-
cated instructions in super-scalar processors. InIEEE Transactions
on Reliability, volume 51, pages 63–75, March 2002.

[4] M. Rebaudengo, M. S. Reorda, M. Violante, and M. Torchiano. A
source-to-source compiler for generating dependable software. pages
33–42, 2001.

[5] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via
simultaneous multithreading. InProceedings of the 27th annual in-
ternational symposium on Computer architecture, pages 25–36. ACM
Press, 2000.

[6] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
SWIFT: Software implemented fault tolerance. InProceedings of the
3rd International Symposium on Code Generation and Optimization,
March 2005.


