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Tutorial	6:	Descriptor	Sets—Using	Textures	in	Shaders	
We	know	how	to	create	a	graphics	pipeline	and	how	to	use	shaders	to	draw	geometry	on	screen.	We	have	also	learned	

how	to	create	buffers	and	use	them	as	a	source	of	vertex	data	(vertex	buffers).	Now	we	need	to	know	how	to	provide	data	
to	shaders—we	will	see	how	to	use	resources	like	samplers	and	images	inside	shader	source	code	and	how	to	set	up	an	
interface	between	the	application	and	the	programmable	shader	stages.	

In	this	tutorial,	we	will	focus	on	a	functionality	that	is	similar	to	OpenGL*	textures.	But	in	Vulkan*	there	are	no	such	
objects.	We	have	only	two	resource	types	in	which	we	can	store	data:	buffers	and	images	(there	are	also	push	constants,	
but	we	will	 cover	 them	 in	a	dedicated	 tutorial).	Each	of	 them	can	be	provided	 to	shaders,	 in	which	case	we	call	 such	
resources	descriptors,	but	we	can’t	provide	them	to	shaders	directly.	Instead,	they	are	aggregated	in	wrapper	or	container	
objects	called	descriptor	sets.	We	can	place	multiple	resources	in	a	single	descriptor	set	but	we	need	to	do	it	according	to	
a	predefined	structure	of	such	set.	This	structure	defines	the	contents	of	a	single	descriptor	set—types	of	resources	that	
are	placed	inside	it,	number	of	each	of	these	resource	types,	and	their	order.	This	description	is	specified	inside	objects	
named	descriptor	set	layouts.	Similar	descriptions	need	to	be	specified	when	we	write	shader	programs.	Together	they	
form	an	interface	between	API	(our	application)	and	the	programmable	pipeline	(shaders).	

When	we	have	prepared	a			layout,	and	created	a	descriptor	set,	we	can	fill	it;	in	this	way	we	define	specific	objects	
(buffers	and/or	images)	that	we	want	to	use	in	shaders.	After	that,	before	issuing	drawing	commands	inside	a	command	
buffer,	we	need	to	bind	such	a	set	to	the	command	buffer.	This	allows	us	to	use	the	resources	from	inside	the	shader	
source	code;	for	example,	fetch	data	from	a	sampled	image	(a	texture),	or	read	a	value	of	a	uniform	variable	stored	in	a	
uniform	buffer.	

In	this	part	of	the	tutorial,	we	will	see	how	to	create	descriptor	set	layouts	and	descriptor	sets	themselves.	We	will	
also	prepare	a	sampler	and	an	image	so	we	can	make	them	available	as	a	texture	inside	shaders.	We	will	also	learn	how	
we	can	use	them	inside	shaders.	

As	mentioned	previously,	this	tutorial	is	based	on	the	knowledge	presented	in	all	the	previous	parts	of	the	API	without	
Secrets:	 Introduction	 to	 Vulkan	 tutorials,	 and	 only	 the	 differences	 and	 parts	 important	 for	 the	 described	 topics	 are	
presented.	

Creating	an	Image	
We	start	by	creating	an	image	that	will	act	as	our	texture.	Images	represent	a	continuous	area	of	memory,	which	is	

interpreted	according	to	the	rules	defined	during	image	creation.	In	Vulkan,	we	have	only	three	basic	image	types:	1D,	2D,	
and	3D.	Images	may	have	mipmaps	(levels	of	detail),	many	array	layers	(at	least	one	is	required),	or	samples	per	frame.	
All	 these	 parameters	 are	 specified	 during	 image	 creation.	 In	 the	 code	 sample,	 we	 create	 the	 most	 commonly	 used	
two-dimensional	image,	with	one	sample	per	pixel	and	the	four	RGBA	components.	

VkImageCreateInfo image_create_info = { 
  VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,  // VkStructureType        sType; 
  nullptr,                              // const void            *pNext 
  0,                                    // VkImageCreateFlags     flags 
  VK_IMAGE_TYPE_2D,                     // VkImageType            imageType 
  VK_FORMAT_R8G8B8A8_UNORM,             // VkFormat               format 
  {                                     // VkExtent3D             extent 
    width,                                // uint32_t               width 
    height,                               // uint32_t               height 
    1                                     // uint32_t               depth 
  }, 
  1,                                    // uint32_t               mipLevels 
  1,                                    // uint32_t               arrayLayers 
  VK_SAMPLE_COUNT_1_BIT,                // VkSampleCountFlagBits  samples 
  VK_IMAGE_TILING_OPTIMAL,              // VkImageTiling          tiling 
  VK_IMAGE_USAGE_TRANSFER_DST_BIT |     // VkImageUsageFlags      usage 
  VK_IMAGE_USAGE_SAMPLED_BIT, 
  VK_SHARING_MODE_EXCLUSIVE,            // VkSharingMode          sharingMode 



  0,                                    // uint32_t               
queueFamilyIndexCount 

  nullptr,                              // const uint32_t        *pQueueFamilyIndices 
  VK_IMAGE_LAYOUT_UNDEFINED             // VkImageLayout          initialLayout 
}; 
 
return vkCreateImage( GetDevice(), &image_create_info, nullptr, image ) == 

VK_SUCCESS; 
1. Tutorial06.cpp,	function	CreateImage()	

	

To	create	an	image	we	need	to	prepare	a	structure	of	type	VkImageCreateInfo.	This	structure	contains	the	basic	set	
of	parameters	required	to	create	an	image.	These	parameters	are	specified	through	the	following	members:	

• sType	–	Typical	type	of	the	structure.	It	must	be	equal	to	a	VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO	value.	
• pNext	–	Pointer	reserved	for	extensions.	
• flags	–	Parameter	that	describes	additional	properties	of	an	image.	Through	this	parameter	we	can	specify	

that	the	image	can	be	backed	by	a	sparse	memory.	But	a	more	interesting	value	is	a	
VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT,	which	allows	us	to	use	the	image	as	a	cubemap.	If	we	don’t	
have	additional	requirements,	we	can	set	this	parameter	to	0.	

• imageType	–	Basic	type	(number	of	dimensions)	of	the	image:	1D,	2D,	or	3D.	
• format	–	Format	of	the	image:	number	of	its	components,	number	of	bits	for	each	component,	and	a	data	

type.	
• extent	–	Size	of	the	image	(number	of	texels/pixels)	in	each	dimension.	
• mipLevels	–	Number	of	levels	of	detail	(mipmaps).	
• arrayLayers	–	Number	of	array	layers.	
• samples	–	Number	of	per	texel	samples	(one	for	normal	images	and	more	than	one	for	multisampled	images).	
• tiling	–	Defines	the	inner	memory	structure	of	the	image:	linear	or	optimal.	
• usage	–	Defines	all	the	ways	in	which	we	want	to	use	an	image	during	its	overall	lifetime.	
• sharingMode	–	Specifies	whether	an	image	will	be	accessed	by	queues	from	multiple	families	at	a	time	(the	

same	as	the	sharingMode	parameter	used	during	swapchain	or	buffer	creation).	
• queueFamilyIndexCount	–	Number	of	elements	in	a	pQueueFamilyIndices	array	(used	only	when	concurrent	

sharing	mode	is	specified).	
• pQueueFamilyIndices	–	Array	with	indices	of	all	queue	families	from	which	queues	will	access	an	image	(used	

only	when	concurrent	sharing	mode	is	specified).	
• initialLayout	–	Memory	layout	image	will	be	created	with.	We	can	only	provide	an	undefined	or	preinitialized	

layout.	We	also	need	to	perform	a	layout	transition	before	we	can	use	an	image	inside	command	buffers.	

Most	of	the	parameters	defined	during	image	creation	are	quite	self-explanatory	or	similar	to	parameters	used	during	
creation	of	other	resources.	But	three	parameters	require	additional	explanation.	

Tiling	defines	the	inner	memory	structure	of	an	image	(but	don’t	confuse	it	with	a	layout).	Images	may	have	linear	or	
optimal	tiling	(buffers	always	have	linear	tiling).	Images	with	linear	tiling	have	their	texels	laid	out	linearly,	one	texel	after	
another,	one	row	after	another,	and	so	on.	We	can	query	for	all	the	relevant	image’s	memory	parameters	(offset	and	size,	
row,	array,	and	depth	stride).	This	way	we	know	how	the	image’s	contents	are	kept	in	memory.	Such	tiling	can	be	used	to	
copy	data	to	an	image	directly	(by	mapping	the	image’s	memory).	Unfortunately,	there	are	severe	restrictions	on	images	
with	 linear	 tiling.	For	example,	 the	Vulkan	specification	says	 that	only	2D	 images	must	support	 linear	 tiling.	Hardware	
vendors	may	implement	support	for	linear	tiling	in	other	image	types,	but	this	is	not	obligatory,	and	we	can’t	rely	on	such	
support.	But,	what’s	more	important,	linearly	tiled	images	may	have	worse	performance	than	their	optimal	counterparts.	

When	we	specify	an	optimal	tiling	for	 images,	 it	means	that	we	don’t	know	how	their	memory	 is	structured.	Each	
platform	 we	 execute	 our	 application	 on	 may	 keep	 an	 image’s	 contents	 in	 a	 totally	 different	 way,	 so	 it’s	 practically	



impossible	to	map	an	image’s	memory	and	copy	it	to	or	from	the	CPU	directly	(we	need	to	use	a	staging	resource,	a	buffer	
or	an	 image).	But	 this	way	we	can	create	whatever	 images	we	want	 (there	are	no	 restrictions	 similar	 to	 linearly	 tiled	
images)	and	our	application	will	have	better	performance.	That’s	why	it	is	strongly	suggested	to	always	specify	optimal	
tiling	for	images.	

Now	let’s	focus	on	an	initialLayout	parameter.	Layout,	as	it	was	described	in	a	tutorial	about	swapchains,	defines	an	
image’s	memory	layout	and	is	strictly	connected	with	the	way	in	which	we	want	to	use	an	image.	Each	specific	usage	has	
its	own	memory	layout.	Before	we	can	use	an	image	in	a	given	way	we	need	to	perform	a	layout	transition.	For	example,	
swapchain	images	can	be	displayed	on	screen	only	in	VK_IMAGE_LAYOUT_PRESENT_SRC_KHR	layout.	When	we	want	to	
render	into	an	image,	we	need	to	set	its	memory	layout	to	VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL.	There	
is	also	a	general	layout	that	allows	us	to	use	images	any	way	we	want	to,	but	as	it	impacts	performance,	it’s	use	is	strongly	
discouraged	(use	only	when	really	necessary).	

Now,	when	we	want	to	change	the	way	in	which	an	image	is	used,	we	need	to	perform	the	above-mentioned	layout	
transition.	We	must	specify	a	current	(old)	layout	and	a	new	one.	The	old	layout	can	have	one	of	two	values:	current	image	
layout	or	an	undefined	layout.	When	we	specify	the	value	of	a	current	image’s	layout,	the	image	contents	are	preserved	
during	transition.	But	when	we	don’t	need	an	image’s	contents,	we	can	provide	an	undefined	layout.	In	this	way	layout	
transition	may	be	performed	faster.	

And	 this	 is	 when	 the	 initialLayout	 parameter	 comes	 in.	 We	 can	 specify	 only	 two	 values	 for	 it—undefined	 or	
preinitialized.	The	preinitialized	 layout	value	allows	us	 to	preserve	an	 image’s	contents	during	 the	 image’s	 first	 layout	
transition.	This	way	we	can	copy	data	to	an	image	with	memory	mapping;	but	this	is	quite	impractical.	We	can	only	copy	
data	 directly	 (through	 memory	 mapping)	 to	 images	 with	 linear	 tiling,	 which	 have	 restrictions	 as	 mentioned	 above.	
Practically	speaking,	these	images	can	only	be	used	as	staging	resources—for	transferring	data	between	GPU	and	CPU.	
But	for	this	purpose	we	can	also	use	buffers;	that’s	why	it	is	much	easier	to	copy	data	using	a	buffer	than	using	an	image	
with	linear	tiling.	

All	this	leads	to	the	conclusion	that,	in	most	cases,	an	undefined	layout	can	be	used	for	an	initialLayout	parameter.	In	
such	a	case,	an	image’s	contents	cannot	be	initialized	directly	(by	mapping	its	memory).	But	if	we	want	to,	we	can	copy	
data	to	such	an	image	by	using	a	staging	buffer.	That	approach	is	presented	in	this	tutorial.	

One	last	thing	we	need	to	remember	is	the	usage.	Similar	to	buffers,	when	we	create	an	image	we	need	to	designate	
ALL	the	ways	in	which	we	intend	to	use	the	image.	We	can’t	change	it	 later	and	we	can’t	use	the	image	in	a	way	that	
wasn’t	specified	during	its	creation.	Here,	we	want	to	use	an	image	as	a	texture	inside	shaders.	For	this	purpose	we	specify	
the	VK_IMAGE_USAGE_SAMPLED_BIT	usage.	We	also	need	a	way	to	upload	data	to	the	image.	We	are	going	to	read	it	
from	an	image	file	and	copy	it	to	the	image	object.	This	can	be	done	by	transferring	data	using	a	staging	resource.	In	such	
a	 case,	 the	 image	 will	 be	 a	 target	 of	 a	 transfer	 operation;	 that’s	 why	 we	 also	 specify	 the	
VK_IMAGE_USAGE_TRANSFER_DST_BIT	usage.	

Now,	when	we	have	 provided	 values	 for	 all	 the	 parameters,	we	 can	 create	 an	 image.	 This	 is	 done	 by	 calling	 the	
vkCreateImage()	function	for	which	we	need	to	provide	a	handle	of	a	logical	device,	a	pointer	to	the	structure	described	
above,	and	a	pointer	to	a	variable	of	type	VkImage	in	which	the	handle	of	the	created	image	will	be	stored.	

Allocating	Image	Memory	
Similar	to	buffers,	images	don’t	have	their	own	memory,	so	before	we	can	use	images	we	need	to	bind	memory	to	

them.	To	do	this,	we	first	need	to	know	what	the	properties	of	memory	that	can	be	bound	to	an	image	are.	We	do	this	by	
calling	the	vkGetImageMemoryRequirements()	function.		

VkMemoryRequirements image_memory_requirements; 
vkGetImageMemoryRequirements( GetDevice(), Vulkan.Image.Handle, 

&image_memory_requirements ); 
2. Tutorial06.cpp,	function	AllocateImageMemory()	

	



The	above	call	stores	the	required	memory	parameters	in	an	image_memory_requirements	variable.	This	tells	us	how	
much	memory	we	need	and	which	memory	type	supported	by	a	given	physical	device	can	be	used	for	an	image’s	memory	
allocation.	If	we	don’t	know	what	memory	types	are	supported	by	a	given	physical	device	we	can	learn	about	them	by	
calling	 the	vkGetPhysicalDeviceMemoryProperties()	 function.	 This	was	 covered	 in	 a	previous	 tutorial,	when	we	were	
allocating	memory	for	a	buffer.	Next,	we	can	iterate	over	available	memory	types	and	check	which	are	compatible	with	
our	image.	

for( uint32_t i = 0; i < memory_properties.memoryTypeCount; ++i ) { 
  if( (image_memory_requirements.memoryTypeBits & (1 << i)) && 
    (memory_properties.memoryTypes[i].propertyFlags & property) ) { 
 
    VkMemoryAllocateInfo memory_allocate_info = { 
      VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType  sType 
      nullptr,                                // const void      *pNext 
      image_memory_requirements.size,         // VkDeviceSize     allocationSize 
      i                                       // uint32_t         memoryTypeIndex 
    }; 
 
    if( vkAllocateMemory( GetDevice(), &memory_allocate_info, nullptr, memory ) == 

VK_SUCCESS ) { 
      return true; 
    } 
  } 
} 
return false; 

3. Tutorial06.cpp,	function	AllocateImageMemory()	

	

Each	memory	type	has	a	specific	set	of	properties.	When	we	want	to	bind	memory	to	an	image,	we	can	have	our	own	
specific	requirements	too.	For	example,	we	may	need	to	access	memory	directly,	by	mapping	it,	so	such	memory	must	be	
host-visible.	If	we	have	additional	requirements	we	can	compare	them	with	the	properties	of	each	available	memory	type.	
When	 we	 find	 the	 match,	 we	 can	 use	 a	 given	 memory	 type	 and	 allocate	 a	 memory	 object	 from	 it	 by	 calling	 the	
vkAllocateMemory()	function.	

After	that,	we	need	to	bind	such	memory	to	our	image.	We	do	this	by	calling	the	vkBindImageMemory()	function	and	
providing	the	handle	of	an	image	to	which	we	want	to	bind	memory,	a	handle	of	a	memory	object,	and	an	offset	from	the	
beginning	of	the	memory	object,	like	this:	

if( vkBindImageMemory( GetDevice(), Vulkan.Image.Handle, Vulkan.Image.Memory, 0 ) != 
VK_SUCCESS ) { 

  std::cout << "Could not bind memory to an image!" << std::endl; 
  return false; 
} 

4. Tutorial06.cpp,	function	CreateTexture()	

	

Offset	value	is	very	important	when	we	bind	memory	to	an	object.	Resources	in	Vulkan	have	specific	requirements	
for	memory	offset	alignment.	Information	about	the	requirements	is	also	available	in	the	image_memory_requirements	
variable.	The	offset	that	we	provide	when	we	bind	a	memory	must	be	a	multiple	of	the	variable’s	alignment	member.	Zero	
is	always	a	valid	offset	value.	

Of	course,	when	we	want	to	bind	a	memory	to	an	image,	we	don’t	need	to	create	a	new	memory	object	each	time.	It	
is	more	optimal	to	create	a	small	number	of	larger	memory	objects	and	bind	parts	of	them	by	providing	a	proper	offset	
value.	



Creating	Image	View	
When	we	want	to	use	an	image	in	our	application	we	rarely	provide	the	image’s	handle.	Image	views	are	usually	used	

instead.	They	provide	an	additional	layer	that	interprets	the	contents	of	an	image	for	the	purpose	of	using	it	in	a	specific	
context.	For	example,	we	may	have	a	multilayer	image	(2D	array)	and	we	want	to	render	only	to	a	specific	array	layer.	To	
do	this	we	create	an	image	view	in	which	we	define	the	layer	we	want	to	use.	Another	example	is	an	image	with	six	array	
layers.	Using	image	views,	we	can	interpret	it	as	a	cubemap.	

Creation	of	image	views	was	described	in	Introduction	to	Vulkan	Part	3:	First	Triangle,	so	I	will	provide	only	the	source	
code	used	in	this	part.	

VkImageViewCreateInfo image_view_create_info = { 
  VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, // VkStructureType          sType 
  nullptr,                                  // const void              *pNext 
  0,                                        // VkImageViewCreateFlags   flags 
  image_parameters.Handle,                  // VkImage                  image 
  VK_IMAGE_VIEW_TYPE_2D,                    // VkImageViewType          viewType 
  VK_FORMAT_R8G8B8A8_UNORM,                 // VkFormat                 format 
  {                                         // VkComponentMapping       components 
    VK_COMPONENT_SWIZZLE_IDENTITY,            // VkComponentSwizzle       r 
    VK_COMPONENT_SWIZZLE_IDENTITY,            // VkComponentSwizzle       g 
    VK_COMPONENT_SWIZZLE_IDENTITY,            // VkComponentSwizzle       b 
    VK_COMPONENT_SWIZZLE_IDENTITY             // VkComponentSwizzle       a 
  }, 
  {                                         // VkImageSubresourceRange  

subresourceRange 
    VK_IMAGE_ASPECT_COLOR_BIT,                // VkImageAspectFlags       aspectMask 
    0,                                        // uint32_t                 

baseMipLevel 
    1,                                        // uint32_t                 levelCount 
    0,                                        // uint32_t                 

baseArrayLayer 
    1                                         // uint32_t                 layerCount 
  } 
}; 
 
return vkCreateImageView( GetDevice(), &image_view_create_info, nullptr, 

&image_parameters.View ) == VK_SUCCESS; 
5. Tutorial06.cpp,	function	CreateImageView()	

	

Copying	Data	to	an	Image	
Now	we	need	to	copy	data	to	our	image.	We	do	this	by	using	a	staging	buffer.	We	first	create	a	buffer	big	enough	to	

hold	our	image	data.	Next,	we	allocate	memory	that	is	host-visible	(that	can	be	mapped),	and	bind	it	to	the	buffer.	Then,	
we	copy	data	to	the	buffer’s	memory	like	this:	

// Prepare data in staging buffer 
void *staging_buffer_memory_pointer; 
if( vkMapMemory( GetDevice(), Vulkan.StagingBuffer.Memory, 0, data_size, 0, 

&staging_buffer_memory_pointer ) != VK_SUCCESS ) { 
  std::cout << "Could not map memory and upload texture data to a staging buffer!" << 

std::endl; 
  return false; 
} 
 
memcpy( staging_buffer_memory_pointer, texture_data, data_size ); 
 
VkMappedMemoryRange flush_range = { 
  VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,  // VkStructureType   sType 
  nullptr,                                // const void       *pNext 
  Vulkan.StagingBuffer.Memory,            // VkDeviceMemory    memory 



  0,                                      // VkDeviceSize      offset 
  data_size                               // VkDeviceSize      size 
}; 
vkFlushMappedMemoryRanges( GetDevice(), 1, &flush_range ); 
 
vkUnmapMemory( GetDevice(), Vulkan.StagingBuffer.Memory ); 

6. Tutorial06.cpp,	function	CopyTextureData()	

	

We	map	the	buffer’s	memory.	This	operation	gives	us	a	pointer	that	can	be	used	the	way	that	all	other	C++	pointers	
are	used.	We	copy	texture	data	to	it	and	inform	the	driver	which	parts	of	the	buffer’s	memory	were	changed	during	this	
operation	(we	flush	the	memory).	At	the	end,	we	unmap	the	memory,	but	this	is	not	necessary.	

Image	data	is	read	from	a	file	with	the	following	code:	

int width = 0, height = 0, data_size = 0; 
std::vector<char> texture_data = Tools::GetImageData( "Data06/texture.png", 4, 

&width, &height, nullptr, &data_size ); 
if( texture_data.size() == 0 ) { 
  return false; 
} 
 
if( !CopyTextureData( &texture_data[0], data_size, width, height ) ) { 
  std::cout << "Could not upload texture data to device memory!" << std::endl; 
  return false; 
} 

7. Tutorial06.cpp,	function	CreateTexture()	

	

For	the	purpose	of	this	tutorial	we	will	use	the	following	image	as	a	texture:	

	

The	operation	of	copying	data	from	a	buffer	to	an	image	requires	recording	a	command	buffer	and	submitting	it	to	a	
queue.	Calling	the	vkBeginCommandBuffer()	function	starts	the	recording	operation:	

// Prepare command buffer to copy data from staging buffer to a vertex buffer 
VkCommandBufferBeginInfo command_buffer_begin_info = { 
  VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,  // VkStructureType                        

sType 
  nullptr,                                      // const void                            

*pNext 
  VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,  // VkCommandBufferUsageFlags              

flags 



  nullptr                                       // const 
VkCommandBufferInheritanceInfo  *pInheritanceInfo 

}; 
 
VkCommandBuffer command_buffer = Vulkan.RenderingResources[0].CommandBuffer; 
 
vkBeginCommandBuffer( command_buffer, &command_buffer_begin_info); 
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At	the	beginning	of	the	command	buffer	recording	we	need	to	perform	a	layout	transition	on	our	image.	We	want	to	
copy	data	to	the	image	so	we	need	to	change	its	layout	to	a	VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL.	We	need	to	
do	this	explicitly	using	an	image	memory	barrier	and	calling	the	vkCmdPipelineBarrier()	function:	

VkImageSubresourceRange image_subresource_range = { 
  VK_IMAGE_ASPECT_COLOR_BIT,              // VkImageAspectFlags        aspectMask 
  0,                                      // uint32_t                  baseMipLevel 
  1,                                      // uint32_t                  levelCount 
  0,                                      // uint32_t                  baseArrayLayer 
  1                                       // uint32_t                  layerCount 
}; 
 
VkImageMemoryBarrier image_memory_barrier_from_undefined_to_transfer_dst = { 
  VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // VkStructureType           sType 
  nullptr,                                // const void               *pNext 
  0,                                      // VkAccessFlags             srcAccessMask 
  VK_ACCESS_TRANSFER_WRITE_BIT,           // VkAccessFlags             dstAccessMask 
  VK_IMAGE_LAYOUT_UNDEFINED,              // VkImageLayout             oldLayout 
  VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,   // VkImageLayout             newLayout 
  VK_QUEUE_FAMILY_IGNORED,                // uint32_t                  

srcQueueFamilyIndex 
  VK_QUEUE_FAMILY_IGNORED,                // uint32_t                  

dstQueueFamilyIndex 
  Vulkan.Image.Handle,                    // VkImage                   image 
  image_subresource_range                 // VkImageSubresourceRange   

subresourceRange 
}; 
vkCmdPipelineBarrier( command_buffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 

VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, 
&image_memory_barrier_from_undefined_to_transfer_dst); 
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Next,	we	can	copy	the	data	itself.	To	do	this	we	need	to	provide	parameters	describing	both	a	source	and	a	destination	
for	 the	 data:	which	 parts	 of	 the	 image	we	want	 to	 update	 (imageSubresource	member),	 a	 specific	 region	within	 the	
provided	part	(imageOffset),	and	the	total	size	of	the	image.	For	the	source	of	the	data	we	need	to	provide	an	offset	from	
the	beginning	of	a	buffer’s	memory	where	the	data	starts,	and	how	this	data	is	structured,	and	the	size	of	an	imaginary	
image	inside	the	buffer	(the	size	of	its	rows	and	columns).	Fortunately,	we	can	store	our	data	in	such	a	way	that	it	fits	our	
image.	This	allows	us	to	set	a	zero	value	for	both	parameters	(bufferRowLength	and	bufferImageHeight),	specifying	that	
the	data	is	tightly	packed	according	to	the	image	size.	

VkBufferImageCopy buffer_image_copy_info = { 
  0,                                  // VkDeviceSize               bufferOffset 
  0,                                  // uint32_t                   bufferRowLength 
  0,                                  // uint32_t                   bufferImageHeight 
  {                                   // VkImageSubresourceLayers   imageSubresource 
    VK_IMAGE_ASPECT_COLOR_BIT,          // VkImageAspectFlags         aspectMask 
    0,                                  // uint32_t                   mipLevel 
    0,                                  // uint32_t                   baseArrayLayer 
    1                                   // uint32_t                   layerCount 



  }, 
  {                                   // VkOffset3D                 imageOffset 
    0,                                  // int32_t                    x 
    0,                                  // int32_t                    y 
    0                                   // int32_t                    z 
  }, 
  {                                   // VkExtent3D                 imageExtent 
    width,                              // uint32_t                   width 
    height,                             // uint32_t                   height 
    1                                   // uint32_t                   depth 
  } 
}; 
vkCmdCopyBufferToImage( command_buffer, Vulkan.StagingBuffer.Handle, 

Vulkan.Image.Handle, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &buffer_image_copy_info ); 
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One	last	thing	is	to	perform	another	layout	transition.	Our	image	will	be	used	as	a	texture	inside	shaders,	so	we	need	
to	 transition	 it	 to	a	VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL	 layout.	After	 that,	we	can	end	our	command	
buffer,	submit	it	to	a	queue,	and	wait	for	the	transfer	to	complete	(in	a	real-life	application,	we	should	skip	waiting	and	
synchronize	operations	in	some	other	way;	for	example,	using	semaphores,	to	avoid	unnecessary	pipeline	stalls).	

VkImageMemoryBarrier image_memory_barrier_from_transfer_to_shader_read = { 
  VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,   // VkStructureType              sType 
  nullptr,                                  // const void                  *pNext 
  VK_ACCESS_TRANSFER_WRITE_BIT,             // VkAccessFlags                

srcAccessMask 
  VK_ACCESS_SHADER_READ_BIT,                // VkAccessFlags                

dstAccessMask 
  VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,     // VkImageLayout                oldLayout 
  VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, // VkImageLayout                newLayout 
  VK_QUEUE_FAMILY_IGNORED,                  // uint32_t                     

srcQueueFamilyIndex 
  VK_QUEUE_FAMILY_IGNORED,                  // uint32_t                     

dstQueueFamilyIndex 
  Vulkan.Image.Handle,                      // VkImage                      image 
  image_subresource_range                   // VkImageSubresourceRange      

subresourceRange 
}; 
vkCmdPipelineBarrier( command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, 

VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, nullptr, 0, nullptr, 1, 
&image_memory_barrier_from_transfer_to_shader_read); 

 
vkEndCommandBuffer( command_buffer ); 
 
// Submit command buffer and copy data from staging buffer to a vertex buffer 
VkSubmitInfo submit_info = { 
  VK_STRUCTURE_TYPE_SUBMIT_INFO,            // VkStructureType              sType 
  nullptr,                                  // const void                  *pNext 
  0,                                        // uint32_t                     

waitSemaphoreCount 
  nullptr,                                  // const VkSemaphore           

*pWaitSemaphores 
  nullptr,                                  // const VkPipelineStageFlags  

*pWaitDstStageMask; 
  1,                                        // uint32_t                     

commandBufferCount 
  &command_buffer,                          // const VkCommandBuffer       

*pCommandBuffers 
  0,                                        // uint32_t                     

signalSemaphoreCount 



  nullptr                                   // const VkSemaphore           
*pSignalSemaphores 

}; 
 
if( vkQueueSubmit( GetGraphicsQueue().Handle, 1, &submit_info, VK_NULL_HANDLE ) != 

VK_SUCCESS ) { 
  return false; 
} 
 
vkDeviceWaitIdle( GetDevice() ); 
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Now	our	image	is	created	and	fully	initialized	(contains	proper	data).	But	we	are	not	yet	done	preparing	our	texture.	

Creating	a	Sampler	
In	OpenGL,	when	we	created	a	 texture,	both	 the	 image	and	 its	 sampling	parameters	had	 to	be	 specified.	 In	 later	

versions	of	OpenGL	we	could	also	create	separate	sampler	objects.	Inside	a	shader,	we	usually	created	variables	of	type	
sampler2D,	which	also	combined	both	images	and	their	sampling	parameters	(samplers).	In	Vulkan,	we	need	to	create	
images	and	samplers	separately.	

Samplers	define	the	way	in	which	image	data	is	read	inside	shaders:	whether	filtering	is	enabled,	whether	we	want	to	
use	mipmaps	(or	maybe	a	specific	subrange	of	mipmaps),	or	what	kind	of	addressing	mode	we	want	to	use	(clamping	or	
wrapping).	

VkSamplerCreateInfo sampler_create_info = { 
  VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,  // VkStructureType        sType 
  nullptr,                                // const void*            pNext 
  0,                                      // VkSamplerCreateFlags   flags 
  VK_FILTER_LINEAR,                       // VkFilter               magFilter 
  VK_FILTER_LINEAR,                       // VkFilter               minFilter 
  VK_SAMPLER_MIPMAP_MODE_NEAREST,         // VkSamplerMipmapMode    mipmapMode 
  VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,  // VkSamplerAddressMode   addressModeU 
  VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,  // VkSamplerAddressMode   addressModeV 
  VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,  // VkSamplerAddressMode   addressModeW 
  0.0f,                                   // float                  mipLodBias 
  VK_FALSE,                               // VkBool32               anisotropyEnable 
  1.0f,                                   // float                  maxAnisotropy 
  VK_FALSE,                               // VkBool32               compareEnable 
  VK_COMPARE_OP_ALWAYS,                   // VkCompareOp            compareOp 
  0.0f,                                   // float                  minLod 
  0.0f,                                   // float                  maxLod 
  VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK,// VkBorderColor          borderColor 
  VK_FALSE                                // VkBool32               

unnormalizedCoordinates 
}; 
 
return vkCreateSampler( GetDevice(), &sampler_create_info, nullptr, sampler ) == 

VK_SUCCESS; 
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All	the	above	parameters	are	defined	through	variables	of	type	VkSamplerCreateInfo.	It	has	many	members:	

• sType	–	Type	of	the	structure.	It	should	be	equal	to	a	VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO	value.	
• pNext	–	Pointer	reserved	for	extensions.	
• flags	–	Must	be	set	to	zero.	This	parameter	is	reserved	for	future	use.	
• magFilter	–	Type	of	filtering	(nearest	or	linear)	used	for	magnification.	
• minFilter	–	Type	of	filtering	(nearest	or	linear)	used	for	minification.	



• mipmapMode	–	Type	of	filtering	(nearest	or	linear)	used	for	mipmap	lookup.	
• addressModeU	–	Addressing	mode	for	U	coordinates	that	are	outside	of	a	<0.0;	1.0>	range.	
• addressModeV	–	Addressing	mode	for	V	coordinates	that	are	outside	of	a	<0.0;	1.0>	range.	
• addressModeW	–	Addressing	mode	for	W	coordinates	that	are	outside	of	a	<0.0;	1.0>	range.	
• mipLodBias	–	Value	of	bias	added	to	mipmap’s	level	of	detail	calculations.	If	we	want	to	offset	fetching	data	

from	a	specific	mipmap,	we	can	provide	a	value	other	than	0.0.	
• anisotropyEnable	–	Parameter	defining	whether	anisotropic	filtering	should	be	used.	
• maxAnisotropy	–	Maximal	allowed	value	used	for	anisotropic	filtering	(clamping	value).	
• compareEnable	–	Enables	comparison	against	a	reference	value	during	texture	lookups.	
• compareOp	–	Type	of	comparison	performed	during	lookups	if	the	compareEnable	parameter	is	set	to	true.	
• minLod	–	Minimal	allowed	level	of	detail	used	during	data	fetching.	If	calculated	level	of	detail	(mipmap	level)	

is	lower	than	this	value,	it	will	be	clamped.	
• maxLod	–	Maximal	allowed	level	of	detail	used	during	data	fetching.	If	the	calculated	level	of	detail	(mipmap	

level)	is	greater	than	this	value,	it	will	be	clamped.	
• borderColor	–	Specifies	predefined	color	of	border	pixels.	Border	color	is	used	when	address	mode	includes	

clamping	to	border	colors.	
• unnormalizedCoordinates	–	Usually	(when	this	parameter	is	set	to	false)	we	provide	texture	coordinates	using	

a	normalized	<0.0;	1.0>	range.	When	set	 to	 true,	 this	parameter	allows	us	 to	specify	 that	we	want	 to	use	
unnormalized	 coordinates	 and	 address	 texture	 using	 texels	 (in	 a	 <0;	 texture	dimension>	 range,	 similar	 to	
OpenGL’s	rectangle	textures).	

Sampler	object	is	created	by	calling	the	vkCreateSampler()	function,	for	which	we	provide	a	pointer	to	the	structure	
described	above.	

Using	Descriptor	Sets	
We	created	an	image,	bound	a	memory	to	it,	and	we	even	uploaded	data	to	the	image.	We	also	created	a	sampler	to	

set	up	sampling	parameters	 for	our	texture.	Now	we	want	to	use	the	texture.	How	can	we	do	this?	We	do	 it	 through	
descriptor	sets.	

As	mentioned	at	the	beginning,	resources	used	inside	shaders	are	called	descriptors.	In	Vulkan	we	have	11	types	of	
descriptors:	

• Samplers	–	Define	the	way	image	data	is	read.	Inside	shaders,	samplers	can	be	used	with	multiple	images.	
• Sampled	images	–	Define	images	from	which	we	can	read	data	inside	shaders.	We	can	read	data	from	a	single	

image	using	different	samplers.	
• Combined	image	samplers	–	These	descriptors	combine	both	sampler	and	sampled	image	as	one	object.	From	

the	API	perspective	 (our	application),	we	still	need	to	create	both	a	sampler	and	an	 image,	but	 inside	 the	
shader	they	appear	as	a	single	object.	Using	them	may	be	more	optimal	(may	have	better	performance)	than	
using	separate	samplers	and	sampled	images.	

• Storage	images	–	This	descriptor	allows	us	to	both	read	and	store	data	inside	an	image.	
• Input	attachments	–	This	a	specific	usage	of	render	pass’s	attachments.	When	we	want	to	read	data	from	an	

image	which	 is	 used	 as	 an	 attachment	 inside	 the	 same	 render	 pass,	 we	 can	 only	 do	 it	 through	 an	 input	
attachment.	This	way	we	do	not	need	to	end	a	render	pass	and	start	another	one,	but	we	are	restricted	to	
only	 fragment	 shaders,	 and	 to	 only	 a	 single	 location	 per	 fragment	 shader	 instance	 (a	 given	 instance	 of	 a	
fragment	shader	can	read	data	from	coordinates	associated	with	the	fragment	shader’s	coordinates).	

• Uniform	buffers	(and	their	dynamic	variation)	–	Uniform	buffers	allow	us	to	read	data	from	uniform	variables.	
In	Vulkan,	such	variables	cannot	be	placed	inside	the	global	scope;	we	need	to	use	uniform	buffers.	

• Storage	buffers	(and	their	dynamic	variation)	–	Storage	buffers	allow	us	to	both	read	and	store	data	inside	
variables.	



• Uniform	texel	buffers	–	These	allow	the	contents	of	buffers	to	be	treated	as	if	they	contain	texture	data,	they	
are	interpreted	as	texels	with	a	selected	number	of	components	and	format.	In	this	way,	we	can	access	very	
large	arrays	of	data	(much	larger	than	uniform	buffers).	

• Storage	texel	buffers	–	These	are	similar	to	uniform	texel	buffers.	Not	only	can	they	be	used	for	reading,	but	
they	can	also	be	used	for	storing	data.	

All	of	the	above	descriptors	are	created	from	samplers,	images,	or	buffers.	The	difference	is	in	the	way	that	we	use	
them	 and	 access	 inside	 shaders.	 All	 additional	 parameters	 of	 such	 access	 may	 have	 performance	 implications.	 For	
example,	with	storage	buffers	we	can	only	read	data,	but	reading	data	is	probably	much	faster	than	storing	data	inside	
storage	buffers.	Similarly,	texel	buffers	allow	us	to	access	more	elements	than	with	uniform	buffers,	but	this	may	also	
come	with	the	cost	of	worse	performance.	We	should	remember	to	select	a	descriptor	that	fits	our	needs.	

In	this	tutorial	we	want	to	use	a	texture.	For	this	purpose	we	created	an	image	and	a	sampler.	We	will	use	both	to	
prepare	a	combined	image	sampler	descriptor.	

Creating	a	Descriptor	Set	Layout	
Preparing	 resources	 to	be	used	by	 shaders	 should	begin	with	 creating	a	descriptor	 set	 layout.	Descriptor	 sets	are	

opaque	objects	in	which	we	store	handles	of	resources.	Layouts	define	the	structure	of	descriptor	sets—what	types	of	
descriptors	they	contain,	how	many	descriptors	of	each	type	there	are,	and	what	their	order	is.	

	

Descriptor	set	layout	creation	starts	by	defining	the	parameters	of	all	descriptors	available	in	a	given	set.	This	is	done	
by	filling	a	structure	variable	of	type	VkDescriptorSetLayoutBinding:	

VkDescriptorSetLayoutBinding layout_binding = { 
  0,                                          // uint32_t             binding 
  VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,  // VkDescriptorType     descriptorType 
  1,                                          // uint32_t             descriptorCount 
  VK_SHADER_STAGE_FRAGMENT_BIT,               // VkShaderStageFlags   stageFlags 
  nullptr                                     // const VkSampler     

*pImmutableSamplers 
}; 
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The	above	description	contains	the	following	members:	

• binding	–	Index	of	a	descriptor	within	a	given	set.	All	descriptors	from	a	single	layout	(and	set)	must	have	a	
unique	binding.	This	same	binding	is	also	used	inside	shaders	to	access	a	descriptor.	

• descriptorType	–	The	type	of	a	descriptor	(sampler,	uniform	buffer,	and	so	on.)	
• descriptorCount	–	Number	of	descriptors	of	a	selected	type	accessed	as	an	array.	For	a	single	descriptor,	1	

value	should	be	used.	
• stageFlags	 –	 Set	 of	 flags	 defining	 all	 shader	 stages	 that	will	 have	 access	 to	 a	 given	 descriptor.	 For	 better	

performance,	we	should	specify	only	those	stages	that	will	access	the	given	resource.	
• pImmutableSamplers	–	Affects	only	samplers	that	should	be	permanently	bound	into	the	layout	(and	cannot	

be	changed	later).	But	we	don’t	have	to	worry	about	this	parameter,	and	we	can	bind	samplers	as	any	other	
descriptors	by	setting	this	parameter	to	null.	

In	our	example,	we	want	to	use	only	one	descriptor	of	a	combined	image	sampler,	which	will	be	accessed	only	by	a	
fragment	shader.	It	will	be	the	first	(binding	zero)	descriptor	in	a	given	layout.	To	avoid	wasting	memory,	we	should	keep	
bindings	as	compactly	as	possible	(as	close	to	zero	as	possible),	because	drivers	may	allocate	memory	for	descriptor	slots	
even	if	they	are	not	used.	

We	can	prepare	similar	parameters	for	other	descriptors	accessed	from	a	single	set.	Then,	pointers	to	such	variables	
are	provided	to	a	variable	of	type	VkDescriptorSetLayoutCreateInfo:	

VkDescriptorSetLayoutCreateInfo descriptor_set_layout_create_info = { 
  VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,  // VkStructureType                      

sType 
  nullptr,                                              // const void                          

*pNext 
  0,                                                    // 

VkDescriptorSetLayoutCreateFlags     flags 
  1,                                                    // uint32_t                             

bindingCount 
  &layout_binding                                       // const 

VkDescriptorSetLayoutBinding  *pBindings 
}; 
 
if( vkCreateDescriptorSetLayout( GetDevice(), &descriptor_set_layout_create_info, 

nullptr, &Vulkan.DescriptorSet.Layout ) != VK_SUCCESS ) { 
  std::cout << "Could not create descriptor set layout!" << std::endl; 
  return false; 
} 
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This	structure	contains	just	a	few	members:	

• sType	 –	 The	 type	 of	 the	 structure.	 It	 should	 be	 equal	 to	
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO.	

• pNext	–	Pointer	reserved	for	extensions.	
• flags	–	This	parameter	allows	us	to	provide	additional	options	for	layout	creation.	But	as	they	are	connected	

with	using	extensions,	we	can	set	this	parameter	to	zero.	
• bindingCount	–	The	number	of	bindings,	elements	in	the	pBindings	array.	
• pBindings	–	A	pointer	to	an	array	with	descriptions	of	all	resources	in	a	given	layout.	This	array	must	be	no	

smaller	than	the	value	of	the	bindingCount	parameter.	

After	we	have	filled	in	the	structure,	we	can	call	the	vkCreateDescriptorSetLayout()	function	to	create	a	descriptor	
set	layout.	We	will	need	this	layout	later,	multiple	times.	



Creating	a	Descriptor	Pool	
Next	step	is	to	prepare	a	descriptor	set.	Descriptor	sets,	similar	to	command	buffers,	are	not	created	directly;	they	are	

instead	allocated	from	pools.	Before	we	can	allocate	a	descriptor	set,	we	need	to	create	a	descriptor	pool.	

VkDescriptorPoolSize pool_size = { 
  VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,      // VkDescriptorType               

type 
  1                                               // uint32_t                       

descriptorCount 
}; 
 
VkDescriptorPoolCreateInfo descriptor_pool_create_info = { 
  VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,  // VkStructureType                

sType 
  nullptr,                                        // const void                    

*pNext 
  0,                                              // VkDescriptorPoolCreateFlags    

flags 
  1,                                              // uint32_t                       

maxSets 
  1,                                              // uint32_t                       

poolSizeCount 
  &pool_size                                      // const VkDescriptorPoolSize    

*pPoolSizes 
}; 
 
if( vkCreateDescriptorPool( GetDevice(), &descriptor_pool_create_info, nullptr, 

&Vulkan.DescriptorSet.Pool ) != VK_SUCCESS ) { 
  std::cout << "Could not create descriptor pool!" << std::endl; 
  return false; 
} 
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Creating	a	descriptor	pool	involves	specifying	how	many	descriptor	sets	can	be	allocated	from	it.	At	the	same	time,	
we	also	need	to	specify	what	types	of	descriptors,	and	how	many	of	them	can	be	allocated	from	the	pool	across	all	sets.	
For	example,	let’s	imagine	that	we	want	to	allocate	a	single	sampled	image	and	a	single	storage	buffer	from	a	given	pool,	
and	that	we	can	allocate	two	descriptor	sets	 from	the	pool.	When	doing	this,	 if	we	allocate	one	descriptor	set	with	a	
sampled	image,	the	second	descriptor	can	contain	only	a	storage	buffer.	If	a	single	descriptor	set	allocated	from	that	pool	
contains	both	resources,	we	can’t	allocate	another	set	because	it	would	have	to	be	empty.	During	descriptor	pool	creation	
we	define	the	total	number	of	descriptors	and	total	number	of	sets	that	can	be	allocated	from	it.	This	is	done	in	two	steps.	

First,	we	prepare	variables	of	type	VkDescriptorPoolSize	that	specify	the	type	of	a	descriptor	and	the	total	number	of	
descriptors	of	a	selected	type	that	can	be	allocated	from	the	pool.	Next,	we	provide	an	array	of	such	variables	to	a	variable	
of	type	VkDescriptorPoolCreateInfo.	It	contains	the	following	members:	

• sType	 –	 The	 type	 of	 the	 structure.	 In	 this	 case	 it	 should	 be	 set	 to	
VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO.	

• pNext	–	Pointer	reserved	for	extensions.	
• flags	 –	 This	 parameter	 defines	 (when	 using	 a	 VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT	

flag)	whether	individual	sets	allocated	from	the	pool	can	be	freed	or	reset	separately.	If	this	parameter	is	set	
to	zero,	all	descriptor	sets	allocated	from	the	pool	can	only	be	reset	at	once	(in	bulk)	by	resetting	the	whole	
pool.	

• maxSets	–	Is	the	total	number	of	sets	that	can	be	allocated	from	the	pool.	
• poolSizeCount	–	Defines	the	number	of	elements	in	the	pPoolSizes	array.	



• pPoolSizes	–	Is	a	pointer	to	an	array	containing	no	less	than	poolSizeCount	elements	containing	descriptor	
types	and	a	total	number	of	descriptors	of	that	type	that	can	be	allocated	from	the	pool.	

In	our	example	we	want	to	allocate	only	a	single	descriptor	set	with	only	one	descriptor	of	a	combined	image	sampler	
type.	 We	 prepare	 parameters	 according	 to	 our	 example	 and	 create	 a	 descriptor	 pool	 by	 calling	 the	
vkCreateDescriptorPool()	function.	

Allocating	Descriptor	Sets	
Now	we	are	ready	to	allocate	the	descriptor	set	itself.	Code	that	does	this	is	quite	short:	

VkDescriptorSetAllocateInfo descriptor_set_allocate_info = { 
  VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, // VkStructureType                

sType 
  nullptr,                                        // const void                    

*pNext 
  Vulkan.DescriptorSet.Pool,                      // VkDescriptorPool               

descriptorPool 
  1,                                              // uint32_t                       

descriptorSetCount 
  &Vulkan.DescriptorSet.Layout                    // const VkDescriptorSetLayout   

*pSetLayouts 
}; 
 
if( vkAllocateDescriptorSets( GetDevice(), &descriptor_set_allocate_info, 

&Vulkan.DescriptorSet.Handle ) != VK_SUCCESS ) { 
  std::cout << "Could not allocate descriptor set!" << std::endl; 
  return false; 
} 

16. Tutorial06.cpp,	function	AllocateDescriptorSet()	
	

To	allocate	a	descriptor	set	we	need	to	prepare	a	variable	of	VkDescriptorSetAllocateInfo	type,	which	has	the	following	
members:	

• sType	 –	 Standard	 type	 of	 the	 structure.	 For	 the	 purpose	 of	 descriptor	 set	 allocation	we	 need	 to	 set	 this	
member	to	a	value	of	VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO.	

• pNext	–	Pointer	reserved	for	extensions.	
• descriptorPool	–	Handle	of	a	descriptor	pool	from	which	the	command	buffer	should	be	allocated.	
• descriptorSetCount	 –	 Number	 of	 descriptor	 sets	 we	 want	 to	 allocate	 (and	 number	 of	 elements	 in	 the	

pSetLayouts	member).	
• pSetLayouts	–	Pointer	to	an	array	with	at	least	descriptorSetCount	elements.	Each	element	of	this	array	must	

contain	a	descriptor	set	layout	that	defines	the	inner	structure	of	the	allocated	descriptor	set	(elements	may	
repeat;	for	example,	we	can	allocate	five	descriptor	sets	at	once,	all	with	the	same	layout).	

As	we	can	see	in	the	above	structure,	we	need	to	provide	descriptor	set	layouts.	That’s	why	we	needed	to	create	them	
earlier.	To	allocate	a	selected	number	of	descriptor	sets	from	a	provided	pool	we	need	to	provide	a	pointer	to	the	above	
structure	to	the	vkAllocateDescriptorSets()	function.	

Updating	Descriptor	Sets	
We	prepared	a	descriptor	set,	but	it	is	empty;	it’s	uninitialized.	Now	we	need	to	fill	it	or	update	it.	This	means	that	we	

tell	the	driver	which	resources	should	be	used	for	descriptors	inside	the	set.	

We	can	update	a	descriptor	set	in	two	ways:	

• By	writing	to	the	descriptor	set—this	way	we	provide	new	resources.	



• By	copying	data	from	another	descriptor	set—if	we	have	a	previously	updated	descriptor	set	and	if	we	also	
want	to	use	some	of	its	descriptors	in	another	descriptor	we	can	copy	them;	this	approach	can	be	much	faster	
than	writing	descriptor	sets	directly	from	the	CPU.	

As	we	don’t	have	another	descriptor	set,	we	need	to	write	to	our	single	descriptor	set	directly.	For	each	descriptor	
type	we	need	to	prepare	two	structures.	One,	common	for	all	descriptor	types,	is	the	VkWriteDescriptorSet	structure.	It	
contains	the	following	members:	

• sType	–	Type	of	the	structure.	We	need	to	use	a	VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET	value.	
• pNext	–	Pointer	reserved	for	extensions.	
• dstSet	–	Handle	of	a	descriptor	set	that	we	want	to	update	(fill	with	specific	resources).	
• dstBinding	–	Index	within	the	descriptor	set	that	we	want	to	update.	We	must	provide	one	of	the	bindings	

specified	 during	 descriptor	 set	 layout	 creation.	What’s	more,	 the	 selected	 binding	must	 correspond	 to	 a	
provided	type	of	the	descriptor.	

• dstArrayElement	–	 Specifies	 the	 first	 array	 index	we	want	 to	update.	Using	 a	 single	VkWriteDescriptorSet	
structure	 we	 can	 update	multiple	 elements	 of	 a	 single	 array.	 Let’s	 say	 we	 have	 a	 four-element	 array	 of	
samplers	and	we	want	to	update	the	last	two	(with	indices	2	and	3);	we	can	provide	two	samplers	and	update	
the	array	starting	from	index	2.	

• descriptorCount	 –	 Number	 of	 descriptors	 we	 want	 to	 update	 (number	 of	 elements	 in	 pImageInfo	 or	
pBufferInfo,	or	pTexelBufferView	array).	For	ordinary	descriptors	we	set	the	value	to	one.	But	for	arrays	we	
can	provide	larger	values.	

• descriptorType	–	Type	of	the	descriptor	we	are	going	to	update.	It	must	be	the	same	as	the	descriptor	type	
provided	during	descriptor	set	layout	creation	with	the	same	binding	(index	within	a	descriptor	set).	

• pImageInfo	–	Pointer	to	an	array	with	at	least	descriptorCount	elements	of	type	VkDescriptorImageInfo.	Each	
such	 element	 must	 contain	 handles	 of	 specific	 resources	 when	 we	 want	 to	 update	
VK_DESCRIPTOR_TYPE_SAMPLER,	 VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,	
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,	 VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,	 or	
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT	descriptors.	

• pBufferInfo	–	Pointer	to	an	array	with	at	least	descriptorCount	elements	of	type	VkDescriptorBufferInfo.	Each	
such	 element	 must	 contain	 handles	 of	 specific	 resources	 when	 we	 want	 to	 update	
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,	 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,	
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,	 or	
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC	descriptors.	

• pTexelBufferView	–	Array	with	at	 least	descriptorCount	VkBufferView	handles.	This	array	 is	used	when	we	
want	 to	 update	 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,	 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,	
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,	 or	
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC	descriptors.	

Depending	on	the	type	of	descriptor	we	want	to	update,	we	need	to	prepare	a	variable	(or	an	array	of	variables)	of	
type	 VkDescriptorImageInfo,	 VkDescriptorBufferInfo,	 or	 VkBufferView.	 Here,	 we	 want	 to	 update	 a	 combined	 image	
sampler	descriptor,	so	we	need	to	prepare	a	variable	of	type	VkDescriptorImageInfo.	It	contains	the	following	members:	

• sampler	–	Handle	of	a	sampler	object.	
• imageView	–	Handle	of	an	image	view.	
• imageLayout	 –	Here	we	provide	 a	 layout	 that	 the	 image	will	 have	when	 the	descriptor	 is	 accessed	 inside	

shaders.	

In	this	structure	we	provide	parameters	of	specific	resources;	we	point	to	created	and	valid	resources	that	we	want	
to	use	inside	shaders.	Members	of	this	structure	are	initialized	based	on	the	descriptor	type.	For	example,	if	we	update	a	
sampler,	we	need	to	provide	only	the	handle	of	a	sampler.	If	we	want	to	update	a	sampled	image,	we	need	to	provide	an	
image	view’s	handle	and	an	 image’s	 layout.	But	 image	won’t	be	transitioned	to	this	 layout	automatically	(as	 in	render	



passes).	We	need	to	perform	the	transition	to	this	layout	ourselves,	explicitly	through	pipeline	barriers	or,	in	case	of	input	
attachments,	through	render	passes.	What’s	more,	we	need	to	provide	a	layout	that	corresponds	to	a	given	usage.	

In	 our	 example	we	want	 to	 use	 a	 texture.	We	 can	 do	 this	 either	 by	 using	 separate	 sampler	 and	 sampled	 image	
descriptors	or	by	using	a	combined	image	sampler	descriptor	(as	in	typical	OpenGL	applications).	The	latter	approach	can	
be	more	optimal	(some	hardware	platforms	may	sample	data	from	combined	image	samplers	faster	than	from	separate	
samplers	and	sampled	images),	and	we	present	that	approach	here.	When	we	want	to	update	a	combined	image	sampler,	
we	need	to	provide	all	three	members	of	the	VkDescriptorImageInfo	structure:	

VkDescriptorImageInfo image_info = { 
  Vulkan.Image.Sampler,                       // VkSampler                      

sampler 
  Vulkan.Image.View,                          // VkImageView                    

imageView 
  VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL    // VkImageLayout                  

imageLayout 
}; 
 
VkWriteDescriptorSet descriptor_writes = { 
  VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,     // VkStructureType                sType 
  nullptr,                                    // const void                    *pNext 
  Vulkan.DescriptorSet.Handle,                // VkDescriptorSet                

dstSet 
  0,                                          // uint32_t                       

dstBinding 
  0,                                          // uint32_t                       

dstArrayElement 
  1,                                          // uint32_t                       

descriptorCount 
  VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,  // VkDescriptorType               

descriptorType 
  &image_info,                                // const VkDescriptorImageInfo   

*pImageInfo 
  nullptr,                                    // const VkDescriptorBufferInfo  

*pBufferInfo 
  nullptr                                     // const VkBufferView            

*pTexelBufferView 
}; 
 
vkUpdateDescriptorSets( GetDevice(), 1, &descriptor_writes, 0, nullptr ); 

17. Tutorial06.cpp,	function	UpdateDescriptorSet()	
	

A	pointer	to	a	variable	of	type	VkDescriptorImageInfo	is	then	provided	in	a	variable	of	type	VkWriteDescriptorSet.	As	
we	 update	 only	 one	 descriptor,	 we	 need	 only	 one	 instance	 of	 both	 structures.	 But	 of	 course	 we	 can	 update	 more	
descriptors	 at	 a	 time,	 in	 which	 case	 we	 need	 to	 prepare	 more	 variables,	 which	 are	 then	 provided	 to	 the	
vkUpdateDescriptorSets()	function.	

Creating	a	Pipeline	Layout	
We	are	not	yet	done.	When	we	want	to	use	descriptors,	allocating	and	updating	descriptor	sets	is	not	the	only	job	we	

need	to	perform.	We	have	prepared	specific	resources	that	are	almost	ready	to	be	used	inside	shaders,	but	descriptor	sets	
are	used	to	store	handles	of	specific	resources.	These	handles	are	provided	during	command	buffer	recording.	We	need	
to	prepare	information	for	the	other	side	of	the	barricade:	the	driver	also	needs	to	know	what	types	of	resources	the	given	
pipeline	needs	access	to.	This	information	is	crucial	when	we	create	a	pipeline	as	it	may	impact	its	internal	structure	or	
maybe	even	a	shader	compilation.	And	this	information	is	provided	in	a	so-called	pipeline	layout.	

The	pipeline	layout	stores	information	about	resource	types	that	the	given	pipeline	has	access	to.	These	resources	
involve	descriptors	and	push	constant	ranges.	For	now	we	can	skip	push	constants	and	focus	only	on	descriptors.	



To	create	a	pipeline	layout	and	prepare	information	about	the	types	of	resources	accessed	by	the	pipeline,	we	need	
to	 provide	 an	 array	 of	 descriptor	 set	 layouts.	 This	 is	 done	 through	 the	 following	 members	 of	 a	 variable	 of	 type	
VkPipelineLayoutCreateInfo:	

• sType	–	Type	of	the	structure.	A	VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO	value	should	be	used	
in	this	case.	

• pNext	–	Pointer	reserved	for	extensions.	
• flags	–	This	parameter	is	reserved	for	future	use.	
• setLayoutCount	–	Number	of	elements	in	the	pSetLayouts	member	and	number	of	separate	descriptor	sets	

that	can	be	used	with	this	pipeline.	
• pSetLayouts	–	Array	with	descriptor	set	layouts.	
• pushConstantRangeCount	–	Number	of	separate	push	constant	ranges.	
• pPushConstantRanges	–	Array	with	elements	describing	push	constant	ranges.	

And	 this	 is	 when	 descriptor	 set	 layouts	 are	 used	 again.	 The	 single	 descriptor	 set	 layout	 defines	 resource	 types	
contained	within	a	single	descriptor	set.	And	an	array	of	these	layouts	defines	resource	types	that	the	given	pipeline	needs	
access	to.	

To	create	a	pipeline	layout	we	just	call	the	vkCreatePipelineLayout()	function.	We	did	this	in	Introduction	to	Vulkan	
Part	3:	First	Triangle.	But	there	we	created	an	empty	 layout	(with	no	push	constants	and	with	no	access	to	descriptor	
resources).	Here,	we	create	a	more	typical	pipeline	layout.	

VkPipelineLayoutCreateInfo layout_create_info = { 
  VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,  // VkStructureType                

sType 
  nullptr,                                        // const void                    

*pNext 
  0,                                              // VkPipelineLayoutCreateFlags    

flags 
  1,                                              // uint32_t                       

setLayoutCount 
  &Vulkan.DescriptorSet.Layout,                   // const VkDescriptorSetLayout   

*pSetLayouts 
  0,                                              // uint32_t                       

pushConstantRangeCount 
  nullptr                                         // const VkPushConstantRange     

*pPushConstantRanges 
}; 
 
if( vkCreatePipelineLayout( GetDevice(), &layout_create_info, nullptr, 

&Vulkan.PipelineLayout ) != VK_SUCCESS ) { 
  std::cout << "Could not create pipeline layout!" << std::endl; 
  return false; 
} 
return true; 

18. Tutorial06.cpp,	function	CreatePipelineLayout()	
	

Such	layout	is	then	provided	during	pipeline	creation.	We	also	need	to	use	this	layout	when	we	bind	descriptor	sets	
during	command	buffer	recording.	So	we	need	to	store	the	pipeline	layout	handle.	

Binding	Descriptor	Sets	
One	 last	 thing	 is	 to	bind	descriptor	 sets	 to	 the	command	buffer	during	 recording.	We	can	have	multiple	different	

descriptor	 sets	 or	multiple,	 similar	 descriptor	 sets	 (with	 the	 same	 layouts),	 but	 they	may	 contain	 different	 resource	
handles.	Which	of	these	descriptors	are	used	during	rendering	is	defined	during	command	buffer	recording.	Before	we	



can	draw	anything,	we	need	to	set	up	a	valid	state	(according	to	the	drawing	parameters).	For	each	command	buffer	we	
record	we	need	to	do	it	from	scratch.	

Drawing	operations	 requires	us	 to	use	 render	passes	 and	pipelines.	 If	 a	 pipeline	uses	descriptor	 resources	 (when	
shaders	access	images	or	buffers),	we	need	to	bind	descriptor	sets	by	calling	the	vkCmdBindDescriptorSets()	function.	For	
this	function	we	must	provide	a	handle	of	the	pipeline	layout	and	an	array	of	descriptor	set	handles.	We	bind	descriptor	
sets	to	specific	indices.	The	given	index	we	bind	a	descriptor	set	to	must	correspond	to	its	layout	provided	at	the	same	
index	during	pipeline	creation.	

vkCmdBeginRenderPass( command_buffer, &render_pass_begin_info, 
VK_SUBPASS_CONTENTS_INLINE ); 

 
vkCmdBindPipeline( command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, 

Vulkan.GraphicsPipeline ); 
 
// ... 
 
vkCmdBindDescriptorSets( command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, 

Vulkan.PipelineLayout, 0, 1, &Vulkan.DescriptorSet.Handle, 0, nullptr ); 
 
vkCmdDraw( command_buffer, 4, 1, 0, 0 ); 
 
vkCmdEndRenderPass( command_buffer ); 

19. Tutorial06.cpp,	function	PrepareFrame()	

	

Accessing	Descriptors	in	Shaders	
One	more	thing.	We	need	to	write	proper	shaders.	In	this	example,	we	access	a	texture	inside	a	fragment	shader	only,	

so	only	the	fragment	shader	will	be	presented.	

From	the	beginning	of	 this	 tutorial	we	have	been	referring	 to	descriptor	sets,	bindings	within	descriptor	sets,	and	
about	binding	descriptor	sets	themselves.	At	the	same	time,	we	may	have	multiple	descriptor	sets	bound	to	a	command	
buffer.	Each	descriptor	set	may	contain	multiple	resources.	This	data	conforms	to	a	specific	address	that	we	use	inside	
shaders.	This	address	is	defined	through	a	layout()	specifier	like	this:	

layout(set=S, binding=B) uniform <variable type> <variable name> 

Set	defines	an	 index	that	the	given	descriptor	set	was	bound	to	through	the	vkCmdBindDescriptorSets()	 function.	
Binding	specifies	the	index	of	a	resource	within	the	provided	set	and	corresponds	to	the	binding	defined	during	descriptor	
set	layout	creation.	In	our	case,	we	have	only	one	descriptor	set	provided	at	index	zero,	with	only	one	combined	image	
sampler	 at	 binding	 zero.	 Combined	 image	 samplers	 are	 accessed	 inside	 shaders	 through	 sampler1D,	 sampler2D,	 or	
sampler	3D	variables.	So	our	fragment	shader’s	source	code	looks	like	this:	

#version 450 
 
layout(set=0, binding=0) uniform sampler2D u_Texture; 
 
layout(location = 0) in vec2 v_Texcoord; 
 
layout(location = 0) out vec4 o_Color; 
 
void main() { 
  o_Color = texture( u_Texture, v_Texcoord ); 
} 

20. shader.frag,	-	
	



Tutorial06	Execution	
We	can	see	below	how	the	final	image	generated	by	the	sample	program	should	look:	

	

We	render	a	quad	that	has	a	texture	applied	to	its	surface.	The	quad	should	adjust	its	size	(and	aspect)	to	match	the	
window’s	size	and	shape	(if	we	stretch	the	window,	the	quad	and	the	image	will	be	stretched	too).	

Cleaning	Up	
Before	we	can	end	our	application,	we	should	perform	a	cleanup.	

// ... 
 
if( Vulkan.GraphicsPipeline != VK_NULL_HANDLE ) { 
  vkDestroyPipeline( GetDevice(), Vulkan.GraphicsPipeline, nullptr ); 
  Vulkan.GraphicsPipeline = VK_NULL_HANDLE; 
} 
 
if( Vulkan.PipelineLayout != VK_NULL_HANDLE ) { 
  vkDestroyPipelineLayout( GetDevice(), Vulkan.PipelineLayout, nullptr ); 
  Vulkan.PipelineLayout = VK_NULL_HANDLE; 
} 
 
// ... 
 
if( Vulkan.DescriptorSet.Pool != VK_NULL_HANDLE ) { 
  vkDestroyDescriptorPool( GetDevice(), Vulkan.DescriptorSet.Pool, nullptr ); 
  Vulkan.DescriptorSet.Pool = VK_NULL_HANDLE; 
} 
 
if( Vulkan.DescriptorSet.Layout != VK_NULL_HANDLE ) { 
  vkDestroyDescriptorSetLayout( GetDevice(), Vulkan.DescriptorSet.Layout, nullptr ); 
  Vulkan.DescriptorSet.Layout = VK_NULL_HANDLE; 
} 
 
if( Vulkan.Image.Sampler != VK_NULL_HANDLE ) { 
  vkDestroySampler( GetDevice(), Vulkan.Image.Sampler, nullptr ); 
  Vulkan.Image.Sampler = VK_NULL_HANDLE; 
} 
 



if( Vulkan.Image.View != VK_NULL_HANDLE ) { 
  vkDestroyImageView( GetDevice(), Vulkan.Image.View, nullptr ); 
  Vulkan.Image.View = VK_NULL_HANDLE; 
} 
 
if( Vulkan.Image.Handle != VK_NULL_HANDLE ) { 
  vkDestroyImage( GetDevice(), Vulkan.Image.Handle, nullptr ); 
  Vulkan.Image.Handle = VK_NULL_HANDLE; 
} 
 
if( Vulkan.Image.Memory != VK_NULL_HANDLE ) { 
  vkFreeMemory( GetDevice(), Vulkan.Image.Memory, nullptr ); 
  Vulkan.Image.Memory = VK_NULL_HANDLE; 
} 

21. Tutorial06.cpp,	function	destructor	
	

We	destroy	both	pipeline	and	its	layout	by	calling	the	vkDestroyPipeline()	and	vkDestroyPipelineLayout()	functions.	
Next,	we	destroy	the	descriptor	pool	with	the	vkDestroyDescriptorPool()	function	and	the	descriptor	set	layout	with	the	
vkDestroyDescriptorSetLayout()	function.	We	of	course	destroy	other	resources,	but	we	already	know	how	to	do	this.	
You	may	notice	that	we	don’t	free	a	descriptor	set.	We	can	free	each	descriptor	set	separately	if	a	proper	flag	was	provided	
during	descriptor	pool	creation.	But	we	don’t	have	to—when	we	destroy	a	descriptor	pool	all	sets	allocated	from	this	pool	
are	also	freed.	

Conclusion	
This	part	of	the	tutorial	presented	a	way	to	use	textures	(combined	image	samplers,	in	fact)	inside	shaders.	To	do	this	

we	created	an	image	and	allocated	and	bound	a	memory	to	it.	We	also	created	an	image	view.	Next,	we	copied	data	from	
a	staging	buffer	to	the	image	to	initialize	its	contents.	We	also	created	a	sampler	object	that	defined	a	way	in	which	image	
data	was	read	inside	shaders.	

Next,	we	prepared	a	descriptor	set.	First,	we	created	a	descriptor	set	layout.	After	that,	a	descriptor	pool	was	created	
from	which	a	single	descriptor	set	was	allocated.	We	updated	this	set	with	the	sampler	and	the	image	view	handles.	

The	descriptor	set	layout	was	also	used	to	define	resources	to	which	our	graphics	pipeline	had	access.	This	was	done	
during	pipeline	layout	creation.	This	layout	was	then	used	when	we	bound	the	descriptor	sets	to	a	command	buffer.	

We	also	learned	how	to	prepare	a	shader	code	that	accessed	the	combined	image	sampler	to	read	its	data	(to	sample	
it	as	a	texture).	It	was	done	inside	a	fragment	shader	that	was	used	during	rendering	of	our	simple	geometry.	This	way	we	
applied	a	texture	to	the	surface	of	this	geometry.	

In	the	next	tutorial	we	will	see	how	we	can	use	uniform	buffers	inside	shaders.	
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