
i

White Paper

A Tour Beyond BIOS Launching a

VMM in EFI Developer Kit II

Jiewen Yao

Intel Corporation

Vincent J. Zimmer

Intel Corporation

September 2015

 ii

Executive Summary

In the current UEFI PI infrastructure, execution on a bare metal machine exposes the rich

set of hardware resources, including the memory management unit (MMU) and

protection hardware. One set of hardware controls on Intel ® Architecture includes the

Virtualization Extensions. As noted in the work on the STM, there needs to be a host

virtualization agent to activate the peer monitor. One example of this is the Firmware

Resource Monitor (FRM), which is a simple virtualization agent built using EDK II

technology and launched from a UEFI PI environment. This paper will provide more

background and details on the construction of the FRM.

Prerequisite
This paper assumes that audience has EDKII/UEFI firmware development experience

[UEFI][UEFI PI Specification] and virtualization knowledge [IA32 Manual]. He or she

should be familiar with the UEFI/PI firmware infrastructure (e.g., PEI/DXE) and know

the IA32 SMM driver flow. [UEFI Book]

 iii

Table of Contents

Overview ... 4

Introduction to VMM .. 4

Introduction to EDKII ... 4

VMM type in firmware .. 5

Type 2 VMM ... 5

Type 1 VMM ... 5

Type 0 VMM ... 6

Launch of the FRM ... 7

FRM ... 7

FRM loader ... 7

FRM - FRM loader interface ... 8

FRM initialization .. 9

FRM runtime .. 11

FRM VmExit entry point .. 11

FRM VmExit handler ... 11

FRM tear down ... 12

FRM as a monitor ... 14

Resource Protection .. 14

Resource Partitioning .. 15

Other Considerations .. 17

S3 support... 17

VT-d support ... 17

TXT support .. 18

STM support ... 18

Conclusion .. 19

Glossary .. 20

References .. 21

 4

Overview

Introduction to VMM

A Virtual Machine Monitor (VMM) acts as a host and has full control of the processor(s) and

other platform hardware. A VMM presents guest software with an abstraction of a virtual

processor and allows it to execute directly on a logical processor. A VMM is able to retain

selective control of processor resources, physical memory, interrupt management, and I/O. Each

virtual machine (VM) is a guest software environment that supports a stack consisting of

operating system (OS) and application software. [IA32 Manual]

Introduction to EDKII

EDKII is open source implementation of UEFI PI-based firmware which can boot multiple

UEFI-aware operating systems. The main responsibility of UEFI BIOS is to launch operating

system. Since UEFI provides a rich execution environment, it is also possible to launch a VMM

in UEFI BIOS. The early VMM launch capability may provide new usage, for example, initialize

SMI Transfer Monitor (STM), prepare resource isolation or resource partitioning for each guest.

In [STM2], we introduced a full open source test VMM – Firmware Resource Monitor (FRM) to

launch STM. In this paper, we will use FRM as example to demonstrate how to write VMM in

UEFI.

Summary
This section provided an overview of VMM and EDKII.

 5

VMM type in firmware

There are many papers that describe a VMM [VMM1][VMM2], also known as a Hypervisor.

There are 2 types of hypervisors:

 Type-1: native or bare-metal hypervisors

 Type-2: hosted hypervisors.

Type 2 VMM

A Type 2 VMM runs on host operating system and provides for a an entireenvironment

emulation to guest software. The host and guest systems do not have a common ISA.

Figure 1 EBC VMM

In UEFI, the EFI Byte Code (EBC) is an example of a type 2 VMM. See [UEFI] Chapter 21, EFI

Byte Code Virtual Machine. The EBC VMM runs inside UEFI environment, and EBC driver

runs as EBC VM. EBC VMM is standard UEFI driver, using X86 instruction set. EBC drivers

must be compiled by using the EBC compiler, and using the EBC ISA as defined in the UEFI

specification.

Other Type 2 VMM’s include KVM, wherein the whole OS like Linux hosts an alternate OS.

Type 1 VMM

A Type 1 VMM runs on the host machine directly in order to control the hardware, and virtual

machine instances fit on top. The VMM runs in the most highly privileged mode, while all the

guests run with lesser privileges. Both guests and the host use the same Instruction Set

Architecture (ISA) as the underlying hardware.

 6

Figure 2 FRM VMM

In UEFI, the FRM (@ <STM_SOURCE>\Test\FrmPkg) is an example of type 1 VMM. The

STM is an example of type 1 VMM for PI SMM. Both of them use X86 ISA.

Type 0 VMM

Today’s Type 1 hypervisors are typically integrated with a special-purpose host OS and

additional service applications. The Type Zero hypervisor is a new concept that is even smaller

than Type 1. Type Zero is a bare-metal architecture that removes the need for a supporting OS.

[VMM3]

If we adopt the above definition, the FRM can also be considered as a type 0 VMM because it is

a tiny VMM that only provides minimal functions, and it does not have an OS inside.

Summary

This section introduces the VMM classification in UEFI. In next chapters, we only focus on the

FRM – a type 1 VMM, or a type 0 VMM if we use the new definition.

 7

Launch of the FRM

FRM

FRM is a tiny bare-metal VMM launched in the UEFI environment. It exists until the OS boot

and shutdown. We used FRM to test the STM capability because the STM needs to be started or

shut down by a VMM.

The FRM is self-contained execution environment. The FRM should not use any UEFI services

because the UEFI services disappear in OS runtime environment.

The FRM source is located at @<STM_SOURCE>\Test\FrmPkg\Core. It uses the EDKII

library, and it is built in the EDKII build environment. The FRM does not use any UEFI services,

such as UEFI boot services, runtime services, or any UEFI protocol. If the FRM needs any

information, the FRM loader collects this infromation and passes it into the FRM entrypoint.

FRM loader

The FRM loader is a UEFI driver @<STM_SOURCE>\Test\FrmPkg\LoaderDriver. It finds the

FRM bin from flash, allocates reserved memory space, and finally calls the FRM entry point.

Figure 3 FRM and FRM loader

During BIOS build, both the FRM and FRM loader are included in the UEFI BIOS. During boot,

the FRM loader is loaded by the PI DXE core into UEFI Boot services memory, and the FRM

loader executes in VMX Non-Root mode. Then the FRM is loaded by the FRM loader into

reserved memory, and the FRM executes in VMX root mode.

Figure 4 shows final memory location of FRM and FRM loader. The GREEN box is memory

used by the hypervisor. The RED box is memory used by the normal OS, driver, or application.

 8

Figure 4 System memory layout

FRM - FRM loader interface

The FRM_COMMUNICATION_DATA

(@<STM_SOURCE>\Test\FrmPkg\Include\FrmCommon.h) is the interface between the FRM

and the FRM loader.

 HighMemoryBase/HighMemorySize: FRM need to know which BIOS reserved region
can be used as FRM Heap. NOTE: the FRM Stack is also allocated inside of FRM heap.

 LowMemoryBase/LowMemorySize: the FRM needs to know which <1M region can be

used to wake up Application Processors (Aps). After APs are waken up, the APs will be

in high memory, and low memory is never used any more.

 ImageBase/ImageSize: the FRM needs to know the FRM image location because the
FRM needs protect itself via Extended Page Tables (EPT).

 AcpiRsdp: The FRM loader needs to find the ACPI table from a UEFI configuration
table and pass the ACPI table address into the FRM because FRM does not know where

ACPI table is located.

 SmMonitorServiceProtocol: The FRM locates the SmMonitorServiceProtocol for the
FRM because the FRM needs to consume these services to manage the STM, including

how to start the STM, stop the STM, and protect resources.

 9

 SmMonitorServiceImageBase/SmMonitorServiceImageSize: The FRM also needs to

know the SmMonitorService image location so that the FRM can protect such services

via EPT. These services will be called by the FRM at runtime.

FRM initialization

The entry point of FRM is at _ModuleEntryPoint()

(@<STM_SOURCE>\Test\FrmPkg\Core\Init\FrmInit.c) The initialization code is

@<STM_SOURCE>\Test\FrmPkg\Core\Init directory.

In the entry point, the FRM will perform the following items step-by-step:

1) InitHeap() – This function sets up the FRM heap.

2) InitBasicContext() – This function collects general information – the CPU number from

ACPI MADT table; the PCI Express memory information from ACPI MCFG table; ACPI

Timer, ACPI Reset Port, and ACPI Power Management Control information from ACPI

FADT table. It also records current information, such as CR0, CR3, CR4, GDT, IDT.

3) InitHostContext() – This function calls InitHostContextCommon() and

InitHostContextPerCpu() for the Boot Strap Processor (BSP). Then it wakes up the APs

and waits for the Aps to finish.

a. InitHostContextCommon() – This function creates host page tables, host GDT,

host IDT, and initializes the VmExit handlers. It also creates the host stack and

allocates a VMCS for each CPU.

b. InitHostContextPerCpu() – This function writes CR3, CR0, CR4 and executes

VMXON on the current CPU.

4) InitGuestContext() – This function calls InitGuestContextCommon() and

InitGuestContextPerCpu() for the BSP.

a. InitGuestContextCommon() – This function prepares the guest VMCS context,

MsrBitmap, EPT page table, IoBitmap, VMX timer. Then it creates a temporary

guest stack and allocates a VMCS for each guest CPU.

b. InitGuestContextPerCpu() – This function loads the guest VMCS and sets up the

VMCS host field, guest field, and control field.

5) LaunchGuest() – This function is the last step. It calls LaunchGuestAp() and

LaunchGuestBsp().

a. LaunchGuestAp() – The BSP just sets up a flag to tell all the APs to launch. Once

this flag is set, ApWakeupC() continues running. ApWakeupC() calls

InitGuestContextPerCpu() for the AP to set up the guest context, and then it

launches control into the GuestApEntrypoint().

b. LaunchGuestBsp() – The BSP sets up a jump buffer jump point and launches

control into GuestEntrypoint(). Then GuestEntrypoint() will long jump back into

the original LaunchGuestBsp() function and return to original function from the
stack.

 10

Figure 5 shows the final memory layout of FRM.

Figure 5 FRM memory layout

Summary
This section introduces the FRM memory layout and how to initialize the FRM.

 11

FRM runtime

The FRM runtime code is @<STM_SOURCE>\Test\FrmPkg\Core\Runtime directory.

The FRM tries to eliminate unnecessary VmExits, although the IA32 SDM defines some

mandatory VmExit events.

FRM VmExit entry point

The host entry point of FRM is HostEntrypoint()

(@<STM_SOURCE>\Test\FrmPkg\Core\Runtime\x64\VmExit.asm), which is the first

instruction executed when a VmExit event happens. It saves the register context and jumps to the

FrmHandler() (@<STM_SOURCE>\Test\FrmPkg\Core\Runtime\FrmHandler.c)

The FrmHandler() reads the VMCS_32_RO_EXIT_REASON_INDEX and dispatches control to

the VmExit handler (mFrmHandler) based upon the VmExit reason. Then it calls VmResume in

order to pass control back into the VM.

FRM VmExit handler

Each VmExit handler is registered in InitFrmHandler(), which is called by

InitHostContextCommon(). Here we only introduce some important handlers:

 VmExitReasonCrAccess: This handler is intended to handle CR register access. The
FRM assumes a CPU has UnrestrictedGuest feature, so that real mode guest execution is

supported. The FRM passes through most CR access. For IA32 PAE mode guest, the

FRM needs to run a special function Ia32PAESync() to sync

VMCS_64_GUEST_PDPTEx_INDEX.

 VmExitReasonEptViolation/VmExitReasonEptMisConfiguration: These 2 handlers
are for EPT. The FRM can configure EPT page table in EptInit() to prevent guest

accessing FRM memory. If the EPT page table itself is wrong, EptMisConfiguration

VmExit will be triggered. This should not happen, so FRM just DeadLoop()s for this

case. If the guest violates the EPT rule, EptViolation VmExit will be triggered. This

might happen because the FRM cannot predict guest OS behavior. In this case the FRM

moves the RIP forward to skip the instruction.

 VmExitReasonIoInstruction: This handler is for IO access. The FRM allocates the IO

bitmap and registers an ACPI PM Control port handler and an ACPI reset port access

handler so that the FRM knows when the OS wants to shut down or reset the system, and

it prepares the FRM tear down before that.

 VmExitReasonCpuid: This handler is for the CPUID instruction. CPUID is a mandatory
VmExit handler. The FRM passes through the instruction.

 VmExitReasonRdmsr/VmExitReasonWrmsr: These 2 handlers are for MSR access.
The FRM may need to observe OS behavior on how to change system state by MSRs and

change the VMCS area correspondingly. Examples of these MSR’s include

IA32_EFER_MSR, IA32_SYSENTER_CS_MSR, IA32_SYSENTER_ESP_MSR,

IA32_SYSENTER_EIP_MSR, IA32_FS_BASE_MSR, and IA32_GS_BASE_MSR.

 12

 VmExitReasonInit/VmExitReasonSipi: These 2 handlers are for AP wakeup. Once the
FRM host receives an Init VmExit, the FRM puts the guest into wait for SIPI guest active

state. When the FRM host receives a Sipi VmExit, the FRM initializes the AP state

defined according to the IA32 SDM in SetVmcsGuestApWakeupField(),

@<STM_SOURCE>\Test\FrmPkg\Core\Runtime\ApHandler.c.

 VmExitReasonInvd/VmExitReasonWbinvd: These 2 handlers are for cache

management. The FRM passes through these instructions.

 VmExitReasonVmxPreEmptionTimerExpired: This handler is for the VMX pre-
emptive timer. The FRM uses the VMX timer for AP sync up on shutdown. We will

discuss this capability in more detail in the next section.

 VmExitReasonExternalInterrupt/VmExitReasonInterruptWindow: These 2 handlers
are for interrupts. The FRM passes through all guest interrupts. As such, these handlers

should not be invoked.

 VmExitReasonVmCall: This handler is for VMCALL support. The current FRM does
not support any VMCALL, but developers can add such support in VmcallHandler(),

@<STM_SOURCE>\Test\FrmPkg\Core\Runtime\VmcallHandler.c.

Figure 6 FRM runtime handler

FRM tear down

The FRM registers ACPI PM Control port and ACPI reset port IO access handlers so that the

FRM knows when the OS wants to shut down or reset the system, and prepares FRM tear down

before that. Once one CPU receives such an access request in IoResetHandler()

 13

(@<STM_SOURCE>\Test\FrmPkg\Core\Runtime\IoResetHandler.c) or IoAcpiHandler()

(@<STM_SOURCE>\Test\FrmPkg\Core\Runtime\IoAcpiHandler.c), it calls FrmTeardownBsp()

(@<STM_SOURCE>\Test\FrmPkg\Core\Runtime\FrmTeardown.c).

FrmTeardownBsp() sets up a global flag (mReadyForTeardown) and VMXOFF for this CPU. In

the VMX timer handler, VmxTimerHandler() calls FrmTeardownAp() to check if there is a tear

down request (mReadyForTeardown). If there is a pending tear down request,

FrmTeardownAp() issues VMXOFF for this CPU and sets the finished flag

(mTeardownFinished). Only after FrmTeardownBsp() receives mTeardownFinished from all

CPUs, the FRM will forward the IO request to actual hardware to perform the shut down or reset

system action.

Figure 7 FRM tear down

Summary
This section introduces the FRM runtime flow and how to tear down the FRM.

 14

FRM as a monitor

The main purpose of the FRM is to demonstrate how to launch the SMI Transfer Monitor (STM)

by having the FRM act as a tiny VMM. The FRM can also provide some additional features on

resource protection or resource isolation.

Resource Protection

The FRM can be used to protect system resources including but not limit to physical memory,

memory mapped IO (MMIO), IO, PCI configuration space, CPU Machine Specific Register

(MSR).

 Memory protection (physical memory, or MMIO) can be done via EPT. If a guest
accesses a protected memory resource, an EptViolation VmExit will be triggered.

 IO protection can be done via the IoBitmap. If a guest accesses a protected IO resource,

an Io VmExit will be triggered.

 PCI configuration space protection can be done by IO protection (0xCF8/0xCFC IO port
access), and memory protection (PCI express MMIO access). If a guest accesses a

protected PCI resource, an EptViolation VmExit or an Io VmExit will be trigged.

 MSR protection can be done via the MsrBitmap. If a guest accesses a protected MSR, a
ReadMsr VmExit or a WriteMsr VmExit will be triggered.

 15

Figure 8 FRM as Monitor

In order to support audit and error analysis, the FRM can also record the violation in the event

log area.

Please refer to [STM] to learn more about how the event log is supported.

Resource Partitioning

Besides resource protection, the FRM can also support resource partitioning.

Take the figure below as example. Therein you see 2 guests existing on a system. Each guest

may own different resources. The FRM may construct different guest contexts for each guest and

assign CPU resources, interrupt resources, and PCI device resources to each guest based on the

need.

Figure 9 Resource Partitioning

The configuration information can be stored as file on UEFI file system or as standard UEFI

variable. During boot, the FRM can read the configuration and assign resources to a different

guest.

 16

Summary
This section introduces the FRM as a monitor and typical usages thereof.

 17

Other Considerations

S3 support

During normal S3 suspend, the OS writes a waking vector in the ACPI FACS table, and then the

OS writes S3 to the PM Control IO port. During a normal S3 resume, the BIOS performs

minimal silicon configuration restoration, and then jumps to the OS waking vector in the FACS.

If the FRM exists, the FRM records the OS waking vector and replaces it with the FRM waking

vector in the S3 suspend path. During an S3 resume, the BIOS jumps to the FRM waking vector.

Then the FRM can do initialization for S3. After this, the FRM can jump to the OS waking

vector to continue the S3 resume.

Figure 10 S3 Consideration

VT-d support

The open source FRM does not support VT-d yet. However, VT-d must be enabled if the FRM is

used for resource protection because FRM must resist DMA attack. [VTd] provides detailed

 18

information on VT-d hardware/software design. [VT-d in UEFI] provides a sample on how to

setup VT-d in a UEFI BIOS.

TXT support

The open source FRM does not support TXT. TXT is designed to support a dynamic root of

trust. If we trust BIOS, which is the static root of trust, the TXT is not needed. [MLE] provides

detailed information on TXT hardware/software design.

STM support

The FRM is designed to support the STM. It is a test VMM for the STM. Please refer to [STM]

for more details on how to launch the STM.

Summary
This section introduces other parts of the FRM.

 19

Conclusion

FRM is test VMM for STM. The FRM can be one implementation of a tiny VMM. It can be

launched in UEFI environment.

 20

Glossary

DEP – Data Execution Protection.

EBC – EFI Byte Code. See [UEFI Specification].

EPT – Extended Page Table. See [IA32 SDM]

IPL – Initial program loader.

MSEG – Monitor Segment. A special SMRAM for STM.

MLE – Measured Launched Environment

NX – No Execution. See DEP.

PI – Platform Initialization. Volume 1-5 of the UEFI PI specifications.

SMI – System Management Interrupt. The interrupt to trigger processor into SMM mode.

SMM – System Management Mode. x86 CPU operational mode that is isolated from and transparent

to the operating system runtime.

SMRAM – System Management RAM. The memory reserved for SMM mode.

SMRR – System Management Range Register.

STM – SMI Transfer Monitor.

TXT – Intel Trusted Execution Environment

UEFI – Unified Extensible Firmware Interface. Firmware interface between the platform and

the operating system.

XD – Execution Disable. See DEP.

VMCS – Virtual Machine Control Structure. See [IA32 SDM]

VT – Virtualization Technology. See [IA32 SDM]

WP – Write Protection.

 21

References

[ACPI] Advanced Configuration and Power Interface, vesion 6.0, www.uefi.org

[APEI] Sakthikumar, Zimmer, “A Tour Beyond BIOS Implementing the ACPI Platform Error

Interface with the Unified Extensible Firmware Interface,” January 2013,

https://firmware.intel.com/sites/default/files/resources/A_Tour_beyond_BIOS_Implementing_A

PEI_with_UEFI_White_Paper.pdf

[EDK2] UEFI Developer Kit www.tianocore.org

[EDKII specification] A set of specification describe EDKII DEC/INF/DSC/FDF file format, as

well as EDKII BUILD. http://tianocore.sourceforge.net/wiki/EDK_II_Specifications

[EMBED] Sun, Jones, Reinauer, Zimmer, “Embedded Firmware Solutions: Development Best

Practices for the Internet of Things,” Apress, January 2015, ISBN 978-1-4842-0071-1

[IA32 Manual] Intel® 64 and IA-32 Architectures Software Developer Manuals

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-

manuals.html

[IA VMM] John Scott Robin & Cynthia E. Irvine , “Analysis of the Intel Pentium's Ability to

Support a Secure Virtual Machine Monitor”, 2000,

http://www.usenix.org/events/sec2000/full_papers/robin/robin.pdf

[MEMORY] Yao, Zimmer, Fleming, “A Tour Beyond BIOS Memory Practices in UEFI”, June

2015

https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Memory_Practic

es_with_UEFI.pdf

[MLE] Intel® Trusted Execution Technology (Intel® TXT) Software Development Guide -

Measured Launched Environment Developer’s Guide

http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-

development-guide.pdf

[MONITOR] Anderson, “Computer Security Technology Planning Study,” ESD-TR-73-51, US

Air Force Electronic Systems Division, 1973 http://csrc.nist.gov/publications/history/ande72.pdf

[SMM01] Oleksandr Bazhaniuk, et al, “A New Class of Vulnerabilities in SMI Handlers”, 2015,

https://cansecwest.com/slides/2015/A%20New%20Class%20of%20Vulnin%20SMI%20-%20An

drew%20Furtak.pdf

[SMM02] Rafal Wojtczuk, et al, “Attacks on UEFI Security”, 2015,

https://bromiumlabs.files.wordpress.com/2015/01/attacksonuefi_slides.pdf

https://firmware.intel.com/sites/default/files/resources/A_Tour_beyond_BIOS_Implementing_APEI_with_UEFI_White_Paper.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_beyond_BIOS_Implementing_APEI_with_UEFI_White_Paper.pdf
http://www.tianocore.org/
http://tianocore.sourceforge.net/wiki/EDK_II_Specifications
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.usenix.org/events/sec2000/full_papers/robin/robin.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Memory_Practices_with_UEFI.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Memory_Practices_with_UEFI.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://csrc.nist.gov/publications/history/ande72.pdf
https://cansecwest.com/slides/2015/A%20New%20Class%20of%20Vulnin%20SMI%20-%20Andrew%20Furtak.pdf
https://cansecwest.com/slides/2015/A%20New%20Class%20of%20Vulnin%20SMI%20-%20Andrew%20Furtak.pdf
https://bromiumlabs.files.wordpress.com/2015/01/attacksonuefi_slides.pdf

 22

[SMM03] Corey Kallenberg, et al, “How many million BIOSes world you like to infect?”, 2015,

http://legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf

[SMM04] Loïc Duflot, et al, “System Management Mode Design and Security Issues”, 2010,

http://www.ssi.gouv.fr/uploads/IMG/pdf/IT_Defense_2010_final.pdf

[SMM05] Rafal Wojtczuk, et al, “Attacking Intel BIOS”, 2009,

http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf

[SMM06] “ASUS Eee PC and other series: BIOS SMM Privilege Escalation Vulnerabilities”,

2009, http://www.securityfocus.com/archive/1/505590

[SMM07] Dick Wilkins, “UEFI Firmware –Securing SMM”, 2015,
http://www.uefi.org/sites/default/files/resources/UEFI_Plugfest_May_2015%20Firmware%20-%

20Securing%20SMM.pdf

[SMM08] Rafal Wojtczuk, et al, “Attacking Intel® Trusted Execution Technology”, 2009,

http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-%20paper.pdf

[SMM09] Jiewen Yao, Zimmer Vincent,

“A_Tour_Beyond_BIOS_Launching_Standalone_SMM_Drivers_in_PEI_using_the_EFI_Devel

oper_Kit_II”, 2015,

http://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Creating_the_Inte

l_Firmware_Support_Package_Version_1_1_with_the_EFI_Developer_Kit_II.pdf

[SMM10] Jiewen Yao, Zimmer Vincent,

“A_Tour_Beyond_BIOS_Supporting_SMM_Resource_Monitor_using_the_EFI_Developer_Kit

_II”, 2015,

https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Supporting_SM

M_Resource_Monitor_using_the_EFI_Developer_Kit_II.pdf

[SMM11] Steve Weis, “Protecting Data In Use From Firmware And Physical Attacks”, 2014,

https://www.blackhat.com/docs/us-14/materials/us-14-Weis-Protecting-Data-In-Use-From-

Firmware-And-Physical-Attacks.pdf

[STM] STM User Guide - https://firmware.intel.com/content/smi-transfer-monitor-stm

[STM2] Jiewen Yao, Zimmer Vincent,

“A_Tour_Beyond_BIOS_Launching_STM_to_Monitor_SMM_in_EFI_Developer_Kit_II”,

2015, https://firmware.intel.com/content/smi-transfer-monitor-stm

[TrustedPlatform] David Grawrock, “Dynamics of a Trusted Platform: A Building Block

Approach”, 2009, http://www.amazon.com/Dynamics-Trusted-Platform-Building-

Approach/dp/1934053171

[UEFI] Unified Extensible Firmware Interface (UEFI) Specification, Version 2.5

http://legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf
http://www.ssi.gouv.fr/uploads/IMG/pdf/IT_Defense_2010_final.pdf
http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf
http://www.securityfocus.com/archive/1/505590
http://www.uefi.org/sites/default/files/resources/UEFI_Plugfest_May_2015%20Firmware%20-%20Securing%20SMM.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Plugfest_May_2015%20Firmware%20-%20Securing%20SMM.pdf
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-%20paper.pdf
http://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Creating_the_Intel_Firmware_Support_Package_Version_1_1_with_the_EFI_Developer_Kit_II.pdf
http://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Creating_the_Intel_Firmware_Support_Package_Version_1_1_with_the_EFI_Developer_Kit_II.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Supporting_SMM_Resource_Monitor_using_the_EFI_Developer_Kit_II.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Supporting_SMM_Resource_Monitor_using_the_EFI_Developer_Kit_II.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Weis-Protecting-Data-In-Use-From-Firmware-And-Physical-Attacks.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Weis-Protecting-Data-In-Use-From-Firmware-And-Physical-Attacks.pdf
https://firmware.intel.com/content/smi-transfer-monitor-stm
https://firmware.intel.com/content/smi-transfer-monitor-stm
http://www.amazon.com/Dynamics-Trusted-Platform-Building-Approach/dp/1934053171
http://www.amazon.com/Dynamics-Trusted-Platform-Building-Approach/dp/1934053171

 23

www.uefi.org

[UEFI Book] Zimmer, et al, “Beyond BIOS: Developing with the Unified Extensible Firmware

Interface,” 2nd edition, Intel Press, January 2011

[UEFI Overview] Zimmer, Rothman, Hale, “UEFI: From Reset Vector to Operating System,”

Chapter 3 of Hardware-Dependent Software, Springer, February 2009

[UEFI PI Specification] UEFI Platform Initialization (PI) Specifications, volumes 1-5, Version

1.4 www.uefi.org

[VMM1] Gerald J. Popek andRobert P. Goldberg, “Formal Requirements for Virtualizable

Third Generation Architectures”, Communications of the ACM, 1974

[VMM2] J. E. Smith and Ravi Nair, “Virtual Machines: Architectures, Implementations and

Applications” Morgan Kaufmann Publishers, 2004

[VMM3] Will Keegan, “The Rise of the Type Zero Hypervisor”. Embedded Innovator. 2014

[VT-d] Intel Virtualization Technology for Directed I/O specification, Rev 2.3
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/vt-directed-io-spec.html

[VT-d in UEFI] Jiewen Yao, Vincent Zimmer, “A Tour beyond BIOS Using Intel VT-d for

DMA Protection in UEFI BIOS”

https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Using_Intel_VT-

d_for_DMA_Protection.pdf

http://www.uefi.org/
http://www.uefi.org/
https://en.wikipedia.org/wiki/Gerald_J._Popek
https://en.wikipedia.org/wiki/Robert_P._Goldberg
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/vt-directed-io-spec.html
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Using_Intel_VT-d_for_DMA_Protection.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Using_Intel_VT-d_for_DMA_Protection.pdf

 24

Authors

Jiewen Yao (jiewen.yao@intel.com) is an EDKII BIOS architect, EDKII TPM2

module maintainer, ACPI/S3 module maintainer, and FSP package owner with

Software and Services Group (SSG) at Intel Corporation. Jiewen is a BIOS
security researcher, co-invented a VMM in BIOS in patent US007827371 using

PI DXE infrastructure.

Vincent J. Zimmer (vincent.zimmer@intel.com) is a Senior Principal

Engineer with the Software and Services Group (SSG) at Intel Corporation.
Vincent chairs the UEFI Security and Networking Subteams in the UEFI

Forum.

mailto:jiewen.yao@intel.com
mailto:vincent.zimmer@intel.com

 25

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE

ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including

liability for infringement of any proprietary rights, relating to use of information in this specification.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted

herein.

Intel, the Intel logo, Intel. leap ahead. and Intel. Leap ahead. logo, and other Intel product name are

trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and

other countries.

*Other names and brands may be claimed as the property of others.

Copyright 2015 by Intel Corporation. All rights reserved

