Creating a System With Qsys

2013.11.4

QI151020 B< Subscribe (] Send Feedback

Qsys is a system integration tool included as part of the Quartus” II software. Qsys captures system-level
hardware designs at a high level of abstraction and automates the task of defining and integrating customized
HDL components. These components include IP cores, verification IP, and other design modules. Qsys
facilitates design reuse by packaging and integrating your custom components with Altera” and third-party
IP components. Qsys automatically creates interconnect logic from the high-level connectivity you specify,
thereby eliminating the error-prone and time-consuming task of writing HDL to specify system-level
connections.

Qsys is more powerful if you design your custom components using standard interfaces. By using standard
interfaces, your components inter-operate with the components in the Qsys Library. In addition, you can
take advantage of bus functional models (BFMs), monitors, and other verification IP to verify your design.

Qsys supports Avalon®, AMBA" AXI3 (version 1.0), AMBA AXI4 (version 2.0), and AMBA APB 3
(version 1.0) interface specifications. Qsys does not support AXI4-Lite.

Qsys provides the following advantages when designing a system:

o Automates the process of customizing and integrating components

« Supports up to 64-bit addressing

+ Supports modular system design

+ Supports visualization of systems

« Supports optimization of interconnect and pipelining within the system
« Fully integrated with the Quartus II software

Related Information

o Avalon Interface Specifications
o AMBA Protocol Specifications
o Creating Qsys Components

e Qsys Interconnect

Component Interface Support

Components can have any number of interfaces in any combination. Each interface represents a set of signals
that you can connect within a Qsys system, or export outside of a Qsys system.

©2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words

and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other

words and logos identified as trademarks or service marks are the property of their respective holders as described at ISO
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with 900?:2008
Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes Registered
no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly

agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.
AIEIE%A
®

101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QII51020
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QII51020%202013.11.4)%20Creating%20a%20System%20With%20Qsys&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

1151020
6-2 Understanding the Qsys Design Flow 2?)13_11,4

Qsys components can include the following types of interfaces:

o Memory-Mapped—Implements a partial crossbar interconnect structure (Avalon-MM, AXI, and APB)
that provides concurrent paths between master and slaves. Interconnect consists of synchronous logic
and routing resources inside the FPGA, and implementation is based on a network-on-chip architecture.

+ Streaming—Connects Avalon Streaming (Avalon-ST) sources and sinks that stream unidirectional data,
as well as high-bandwidth, low-latency components. Streaming creates datapaths for unidirectional traffic,
including multichannel streams, packets, and DSP data. The Avalon-ST interconnect is flexible and can
implement on-chip interfaces for industry standard telecommunications and data communications cores,
such as Ethernet, Interlaken, and video. You can define bus widths, packets, and error conditions.

 Interrupts—Connects interrupt senders and the interrupt receivers of the component that serves them.
Qsys supports individual, single-bit interrupt requests (IRQs). In the event that multiple senders assert
their IRQs simultaneously, the receiver logic (typically under software control) determines which IRQ
has highest priority, then responds appropriately.

o Clocks—Connects clock output interfaces with clock input interfaces. Clock outputs can fan-out without
the use of a bridge. A bridge is required only when a clock from an external (exported) source connects
internally to more than one source.

+ Resets—Connects reset sources with reset input interfaces. If your system requires a particular positive-
edge or negative-edge synchronized reset, Qsys inserts a reset controller to create the appropriate reset
signal. If you design a system with multiple reset inputs, the reset controller ORs all reset inputs and
generates a single reset output.

+ Conduits—Connects point-to-point conduit interfaces, or represent signals that are exported from the
Qsys system. Qsys uses conduits for component I/O signals that are not part of any supported standard
interface. You can connect two conduits directly within a Qsys system as a point-to-point connection,
or conduit interfaces can be exported and brought to the top-level of the system as top-level system I/O.
You can use conduits to connect to external devices, for example external DDR SDRAM memory, and
to FPGA logic defined outside of the Qsys system.

Understanding the Qsys Design Flow

Figure 6-1 illustrates a Qsys design flow in which you create a custom IP component and package your
custom HDL as a component using the Component Editor or manually creating a _hw_tcl file. In this
bottom-up design flow, you simulate your custom IP before integrating it with other components as a Qsys
system and complete Quartus II project.

Altera Corporation Creating a System With Qsys

(] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
3013.11.4 Creating a Qsys System 6-3

Figure 6-1: Qsys Design Flow

Create Component
Using Component Editor, or

@ by Manually Creating the
_hw.tcl File

A4

Simulation at Unit-Level,
Possibly Using BFMs

V@

Simulation Give
Expected Results?

Yes

Debug Design

Complete System, Add and
@ Connect All IP Components,
P Define Memory Map If

Needed
® Generate Qsys Yes Constrain, Compile
System in Quartus Il Generating .sof
® v
Z | Perform System-Level @‘ Download .sof to PCB
= Simulation " with Altera FPGA

Simulation Give
Expected Results?

HW Testing Give
Expected Results?

Qsys System Complete

@ @ Modify Design or

Debug Design Constraints

In an alternative design flow, you can begin by designing the Qsys system, and then define and instantiate
custom Qsys components, clarifying system requirements earlier in the design process.

Related Information

Creating Qsys Components

Creating a Qsys System

You can create a Qsys system in the Quartus II software by selecting Qsys System File in the New dialog

box, or clicking Tools > Qsys. To open a previously created Qsys design, click Open on the File menu in
the Quartus II software window, or the Qsys window.

Creating a System With Qsys Altera Corporation

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_components.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-4 Adding and Connecting System Contents 2%13_11.4
Related Information

Creating Qsys Components

Component Interface Tcl Reference

Adding and Connecting System Contents

The System Contents tab displays the components that you add to your system, and allows you to connect
the interfaces of the modules.

Adding Components

To add a component to your system, select the component in the Library, and then click Add.

When you select a component type and click Add, the new instance is added to your system, and a parameter
editor opens that allows you to customize the new instance. The new instance appears in the System Contents
tab, as well as the Hierarchy tab

You can type some or all of the component’s name in the Library search box to help locate a particular
component type. For example, you can type menor y to locate memory-mapped components, or axi to
locate AXI interconnect components.

Connecting Components
When you add connections to a Qsys system, you can connect the interfaces of the modules in the System
Contents tab. The individual signals in each interface are connected by the Qsys interconnect when the
HDL for the system generates. You connect interfaces of compatible types and opposite directions. For
example, you can connect a memory-mapped master interface to a slave interface, and an interrupt sender
interface to an interrupt receiver interface.

Possible connections between interfaces in the system show as gray lines and open circles. When you make
a connection, Qsys draws the connection line in black, and fills the connection circle. To make a connection,
click the open circle at the intersection of the two interface names. Clicking a filled-in circle removes the
connection.

When you are done adding connections in your system, you can deselect Allow Connection Editing in the
right-click menu, which puts the Connections column into read-only mode and hides the possible
connections. Figure 6-2 illustrates the Connections column.

Altera Corporation Creating a System With Qsys

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_components.pdf
http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020
2013.11.4

Filtering Components 6-5
Figure 6-2: Connections Column in the Systems Contents Tab
Lo system Conterts 82 Adddress Map 2| Project Settings £ ==
-1F‘: _.LEEE Cannections Mame Diescription Export Clack Baze End
(,C vl B clk_0 Clock Source
e o= clk_in Clock Input clk exported
|EZ| =s clk_in_reset Reset Input reset
— —_—— clk Clock Qutput clk_o
——— clk_reset Feset Output
¥l B demo_axi_memory |Demo A Slave Memory
= * Fam A Slawe [clk] Ox0000_0000 |0x0000_0TTT
— clk Clock Input dk_0
= Iram_master.master [elk]
[Connection from ram_master. master 1o demo_axi_memory, RAM streaming_port [elk]
= streaming_csr Awalon Memory Mapped Slave [clk] Ox0000_0000 [0x0000_0007
[v] B ram_master |TAC 1o &valon Master Bridge
clk Clock Input clk_0
clik_reset Eeset Input
master Awalon Memory Mapped Master [clk]
= e T master_reset FEeset Output
¥l B st_control_master ||TAGC to &valon Master Bridge
clk Clock Input dk_0
clk_reset Feset Input
— master Awalon Memory Mapped Master [clk]
master_reset Feset Output

Related Information

Connecting Components

Filtering Components

You can use the Filters dialog box to filter the display of your system in the System Contents tab. You can
filter the display of your system by interface type, instance name, or by using custom tags. For example, you
can view only instances that include memory-mapped interfaces, instances that are connected to a particular
Nios II processor, or temporarily hide clock and reset interfaces to simplify the display.

Related Information

Filters Dialog Box

Managing Views

Creating a System With Qsys

The View menu allows you to select and open any view (tab). Qsys views allow you to review your design
from different perspectives. Some views allow you to focus on a particular part of the system, while other
views show the same data in another way. Making selections in the system-level views updates other views,
and shows the other views in the context of the system-level selection.

For example, selecting cpu_0 in the Hierarchy tab updates the Parameters tab to show the parameters for
cpu_O.

Note: When you double-click a message in the Messages tab, Qsys selects the associated element in the
relevant view to facilitate debugging.

When you create a new Qsys system, the Library, Hierarchy, and System Contents tabs appear by default.
You can arrange your system workspace by dragging and dropping, and then grouping tabs in an order
appropriate to your design process. All tabs are dockable and you can close, hide, or minimize tabs that you
are not using. Minimized tabs appear minimized in the docking area below the menu bar. Tool tips on tab
corners display possible workspace arrangements, for example, disconnecting or restoring a tab to the Qsys
workspace.

Altera Corporation

() send Feedback

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_pro_connect_comps.htm
http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_db_filter.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6-6

Using the Hierarchy Tab

QI151020
2013.11.4

When you save the Qsys system, the current view arrangement is saved, and when you open the Qsys system,
the last saved view arrangement is restored. You can use the Reset View Layout command on the View
menu to restore the Qsys workspace to its default configuration.

Note: Qsys contains some views which are not documented and appear on the View menu as "Beta". The
purpose in presenting these views is to allow designers to explore their usefulness in Qsys system

development.

Using the Hierarchy Tab
The Hierarchy tab is a full system hierarchical navigator, which expands the system contents to show modules,
interfaces, signals, contents of subsystems, and connections.

The graphical interface of the Hierarchy tab displays a unique icon for each element represented in the

system, including interfaces, directional pins, IP blocks, and system icons that show exported interfaces and
the instances of components that make up a system, as shown in Figure 6-3. In this figure, context sensitivity
between the views is also shown with the r am_nmast er selection highlighted in both the System Contents

and Hierarchy tabs.

Figure 6-3: Hierarchy Tab Expanding Elements in the System Contents Tab

l
£
ke

- =

Use ame

B clk_o

clk_in
clk_in_reset
clk
clk_reset

RAaM

clk

reset
streaming
skreaming_cse
= ram_master
clk.
clk_reset
masker
masker_reset
B st_control_master
clk
clk_reset
master
master_reset

4 K 4Pr M flXE

4 L

B demo_axi_memory

Export

clk
reset

streaming_port

Altera Corporation

IQ test
[k
- reset

- reset_reset_n[1]
streaming_pork

=] skreaming_pork_data [3]
‘=~ streaming_port_ready [1]
=] streaming_pork_valid [1]

Ak clk_0
-k demo_axi_memary

ram_masker
[i clk

[me clk_reset

[+ =@ master
(= masker_reset
) masker_reset_reset [1]
t-dk b2p
+--dF b2p_adapter
k-2 clk_rst
o2k clhk_src
ik fifo
ik jtag_phy_embedded_in_jtag_master
t-dk p2h
+- 4 p2b_adapter
k-8R birning _adt
t--2F transacto
[Connections

[
[
[
[
[
[
[
[
[
[

-0 st_control_master

Connections
- clk_0.clkfdemo_axi_mermoty, clk
~—a- clk_0.clkfram_master.clk
- clk_0.clkfst_control_master.clk
~—a clk_0.clk_reset/demo_axi_memory.reset
- clk_0.clk_resetfram_master,clk_reset
~—a clk_0.clk_reset/st_control_master.clk_reset
-—@ ram_rmaster.master/demo_axi_mermory, RAM

-—@- ram_master.master_reset/demo_axi_memory, reset
-—g st_conkral_master. masteridemo_axi_memory , skreaming_cst

Creating a System With Qsys

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020
2013.11.4

Using the Parameters Tab 6-7

You can use the Hierarchy tab to browse, connect, and parameterize IP in your system. The Hierarchy tab
allows you to drive changes in other views and interact with your system in more detail. As shown in Figure
6-3, the Hierarchy tab expands each interface that appears on the System Contents tab and allows you to
view the subcomponents, associated elements, and signals for each interface. Use the Hierarchy tab to focus
on a particular area of your system; coordinating selections in the Hierarchy tab with open views in your
workspace. Reviewing your system using the Hierarchy tab in conjunction with relevant views is also useful
during the debugging phase because you can contain and focus your debugging efforts to a single element
in your system.

The Hierarchy tab provides the following information and functionality:

o The connections between signals.
« The names of signals included in exported interfaces.
+ Right-click menu to connect, edit, add, remove, or duplicate elements in the hierarchy.

o The internal connections of Qsys subsystems that are included as components. In contrast, the System
Contents tab displays only the exported interfaces of Qsys subsystems included as components.

Using the Parameters Tab

The Parameters tab allows you to review and change component parameters.

In the Parameters tab, Qsys displays the parameter editor for the current selection in the Hierarchy tab.
When you double-click a component in the System Contents tab, Qsys opens a new window and displays
the Parameters, Block Symbol, and Presets tabs together in a single window.

With the Parameters tab open, when you click an element in the Hierarchy tab, Qsys displays the parameter
editor for the selected element.

In the parameter editor, you can change the name as it appears on the System Contents tab for top-level
instances. Changes you make on the Parameters tab are immediately reflected on open views in your
workspace.

If the current selection is for an interface in the system, the Parameters tab also allows you to review interface
timing. Figure 6-4 shows the timing for the Avalon-MM DMA write master for the PCI Express Subsystem
Example. Qsys display the the read and write waveforms at the bottom of the Parameters tab.

Creating a System With Qsys Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-8 Using the Presets Tab 2?)13.1 1.4

Figure 6-4: Avalon-MM Write Master Timing Waveforms Available on the Parameters Tab

[~ write Waveform |
S 0 O B e M g O
write_n - [[
chipselect [\ i o
waitrequest | / i \ [
address | Jan Jal \
burstcount ___J1 I E \
byteenable :XBED Neer) N ee2)
writedata | oo Jo1 | \o2 ¥

|' Read Waveform
R B B B g
write_n
chipselect [|
waitrequest |
address :Z-Z AD A
byteenable | |ee0 |
readcata j00 j 01 A 502)

Related Information

« PCI Express Subsystem Example on page 6-32

Using the Presets Tab

In this view, Qsys displays the presets for the currently selected component.

The Presets tab allows you to create, modify, and save custom component or IP core parameter values as a
preset file. You can then apply the parameter values in the preset file to the current component that you are
parameterizing.

Related Information

o Presets Editor (Qsys)

Working With Presets for Supported IP Components
Some components provide preset configurations. If the component you are adding has presets available,
then the Presets Editor appears in the editor window and lists presets that you can apply to your component,
depending on the design protocol. When you apply a preset to a component, the parameters with specific
required values for the protocol are automatically set for you.

Note: You can also access the Presets Editor by clicking View > Presets.

You can search for text to filter the Presets list. For example, if you select the DDR3 SDRAM Controller
with UniPHY component, and then type 1g mi cron 256, the Presets list shows only those presets that
apply to the 1g micron 256filter request. Presets whose parameter values match the current parameter settings
are shown in bold.

Altera Corporation Creating a System With Qsys

() send Feedback

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_db_presets.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020
2013.11.4

Using the Block Symbol Tab 6-9

Selecting a preset does not prevent you from changing any parameter to meet the requirements of your
design. Clicking Update allows you to update parameter values for a custom preset. The Update Preset
dialog box displays the default value, which you can edit, and the current value, which is static.

You can also create your own preset by clicking New. When you create a preset, you specify a name,
description and the list of parameters whose values are set by the preset. You can remove a preset from the
Quartus II project directory by clicking Delete.

Related Information
Presets Editor

Using the Block Symbol Tab

In this view, Qsys displays the block symbol for the currently selected element.

When the Block Symbol view is open, Qsys displays a graphical representation of the element selected in
the Hierarchy or System Contents tabs. In the Block Symbol tab, the Show signals options allows you to
turn on of off signal graphics, if applicable.

The Block Symbol tab reflects changes made in other views.

Using the Address Map Tab

The Address Map tab provides a table including the memory-mapped slaves in your design and the address
range that each connected memory-mapped master uses to address each slave.

The table shows the slaves on the left and masters across the top, with the address span of the connection
shown in each cell. If there is no connection between a master and a slave, the table cell is empty.

You can design a system where two masters access a slave at different addresses. If you use this feature, the
Base and End address columns of the System Contents tab are labeled "mixed" rather than providing the
address range.

Follow these steps to change or create a connection between master and slave components:

1. In Qsys, click the Address Map tab.

2. Locate the table cell that represents the connection between the master and slave component pair.

3. Either type in a base address, or update the current base address in the cell.

Note: The base address of a slave component must be a multiple of the address span of the component.

This restriction is part of the Qsys interconnect to allow the address decoding logic to be efficient,
and to achieve the best possible fy5x.

Using the Clock Tab

The Clocks tab defines the Name, Source, and frequency (MHz) of each clock in your system.
Click Add to add a new clock to the system.

Using the Project Settings Tab

The Project Settings tab allows you to view and change the properties of your Qsys system.

Table 6-1: System-Level Parameters Available on the Project Settings Tab

Device Family ‘ Specifies the Altera device family.

Creating a System With Qsys Altera Corporation

() send Feedback

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_db_presets.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020

6-10 Using the Project Settings Tab 2013.11.4

Device Specifies the target device for the selected device family.
Clock crossing adapter | Specifies the default implementation for automatically inserted clock crossing
type adapters. The following choices are available:

« Handshake-This adapter uses a simple hand-shaking protocol to propagate
transfer control signals and responses across the clock boundary. This
methodology uses fewer hardware resources than the FIFO type because each
transfer is safely propagated to the target domain before the next transfer can
begin. The Handshake adapter is appropriate for systems with low throughput
requirements.

o FIFO-This adapter uses dual-clock FIFOs for synchronization. The latency of
the FIFO-based adapter is a couple of clock cycles more than the handshaking
clock crossing component. However, the FIFO-based adapter can sustain higher
throughput because it supports multiple transactions at any given time. The
FIFO-based clock crossers require more resources. The FIFO adapter is
appropriate for memory-mapped transfers requiring high throughput across
clock domains.

o Auto-If you select Auto, Qsys specifies the FIFO adapter for bursting links,
and the Handshake adapter for all other links.

Limit interconnect
pipeline stages to

Specifies the maximum number of pipeline stages that Qsys may insert in each
command and response path to increase the fy;,x at the expense of additional
latency. You can specify between 0-4 pipeline stages, where 0 means that the
interconnect has a combinational data path. Choosing 3 or 4 pipeline stages may
significantly increase the logic utilization of the system. This setting is specific for
each Qsys system or subsystem, meaning that each subsystem can have a different
setting. Note that the additional latency is for both the command and response
directions.

Note: You can manually adjust this setting in the Memory-Mapped
Interconnect tab accessed by clicking Show System With Qsys
Interconnect command on the System menu.

Generation Id

A unique integer value that is set to a timestamp just before Qsys system generation
that Qsys uses to check for software compatibility.

Note: Qsys generates a warning message if the selected device family and target device do not match the
Quartus II software project settings. Also, when you open Qsys from within the Quartus II software,
the device type in your Qsys project is replaced with the selected device in your open Quartus II
software project.

Related Information

Manually Controlling Pipelining in the Qsys Interconnect on page 6-20

Altera Corporation

Creating a System With Qsys

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
3013.11.4 Using the Instance Parameters Tab 6-11

Using the Instance Parameters Tab
The Instance Parameters tab allows you to define parameters for a Qsys system. You can use instance
parameters to modify a Qsys system when you use the system as a subcomponent in another Qsys system.
The higher-level Qsys system can assign values to these instance parameters.

The Instance Script on the Instance Parameters tab defines how the specified values for the instance
parameters should affect your Qsys design subcomponents. The instance script allows you to make queries
about the instance parameters you define and set the values of the parameters for the subcomponents in
your design.

When you click Preview Instance, Qsys creates a preview of the current Qsys system with the specified
parameters and instance script, and shows the parameter editor for the instance. This command allows you
to see how an instance of this system appears when you use it in another system. The preview instance does
not affect your saved system.

To use instance parameters, the components or subsystems in your Qsys system must have parameters that
can be set when they are instantiated in a higher-level system. Many components in the Library have
parameters that you can set when adding the component to your system. If you create your own IP
components, you use the _hw.tcl file to specify which parameters can be set when the component is added
to a system. If you create hierarchical Qsys systems, each Qsys system in the hierarchy can include instance
parameters to pass parameter values through multiple levels of hierarchy.

Related Information

Working with Instance Parameters in Qsys

Creating an Instance Script
The first command in an instance script must specify the Tcl command version for the script. This command
ensures the Tcl commands behave identically in future versions of the tool. Use the following Tcl command
to specify the version of the Tcl commands, where <version> is the Quartus II software version number,
such as 13.1:

package require -exact gsys <version>

To use Tcl commands that work with instance parameters in the instance script, you must specify the
commands within a Tl procedure called a composition callback. In the instance script, you specify the name
for the composition callback with the following command:

set _nodul e_property COVPCSI TI ON_CALLBACK <nane of call back procedure>

Specify the appropriate Tcl commands inside the Tcl procedure with the following syntax:

proc <nane of procedure defined in previous command> {}
{#Tcl commands to query and set paraneters go here}

Use Tcl commands in the procedure to query the parameters of a Qsys system, or to set the values of the
parameters of the subcomponents instantiated in the system.

Creating a System With Qsys Altera Corporation

() send Feedback

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_pro_working_user_parameters.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-12 Creating an Instance Script 2(())13.1 1.4

Table 6-2: Supported Tcl Commands Used in Instance Scripts

get _paraneters None Get the names of all defined
parameters (as a space-separated
list).

get par anet er _val ue <parameter name > Get the value of a parameter.

get _i nst ance_par anet er s | <instance name> Get the names of parameters on a

child instance that can be
manipulated by the parent (as a
space-separated list).

get _i nst ance_par anet er _ | <instance name> Get the value of a parameter for a
val ue child instance.
send_nessage <message level> <message text> Send a message to the user of the

component, using one of the
message levels Error, Warning,
Info, or Debug. Enclose text with
multiple words in quotation
marks.

set _i nst ance_par anet er _ | <instance name> <parameter name> | Set a parameter value for a child
val ue <parameter value> instance.

You can use standard Tcl commands to manipulate parameters in the script, such as the set command to
create variables, or the expr command for mathematical manipulation of the parameter values.

Example 6-1 shows an instance script of a system that uses a parameter called pi 0_w dt h to setthewi dt h
parameter of a parallel I/O (PIO) component. Note that the script combines the get _par anet er _val ue
and set _i nst ance_par anet er _val ue commands using brackets.

Example 6-1: Instance Script Example

Request a specific version of the scripting API
package require -exact gsys 13.1

Set the nanme of the procedure to mani pul ate paraneters:
set _nodul e_property COVPCSI TI ON_CALLBACK conpose

proc conpose {} {

Get the pio_width paranmeter value fromthis ys system and
pass the value to the width paraneter of the pio_0 instance

set _instance_paraneter_value pio_0 width \

Altera Corporation Creating a System With Qsys

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
3013.11.4 Using the Interconnect Requirements Tab 6-13

[get _paramet er _val ue pi o_wi dt h]

Related Information

Component Interface Tcl Reference

Using the Interconnect Requirements Tab
The Interconnect Requirements tab allows you to assign interconnect requirements for the system or an
interface. The Interconnect Requirements assignments influence Qsys interconnect generation.

Interconnect Requirements settings also appear in other tabs. For instance, the Limit interconnect pipeline
stages option appears on the Project Settings tab.

Selections in the Setting and Value lists vary depending on your selection in the Identifier column.

Configuring Interconnect Requirements for the System
Selecting $syst emin the Identifier list on the Interconnect Requirements tab allows you to apply
system-wide interconnect assignments.

Table 6-3: Settings and Values for the $system Identifier

Limit interconnect pipeline stages to—Specifies the | You can specify between 0-4 pipeline stages, where 0
maximum number of pipeline stages that Qsys may |means that the interconnect has a combinational data
insert in each command and response path to increase | path. Choosing 3 or 4 pipeline stages may significantly
the fyax at the expense of additional latency. increase the logic utilization of the system. This setting
is specific for each Qsys system or subsystem, meaning
that each subsystem can have a different setting. Note
that the additional latency is added once on the

command path, and once on the response path.

Creating a System With Qsys Altera Corporation

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

S - 1151020
6-14 Configuring Interconnect Requirements for an Interface 2%13_1 1.4

Clock crossing adapter type—Specifies the default |« Handshake-This adapter uses a simple hand-

implementation for automatically inserted clock shaking protocol to propagate transfer control

crossing adapters. signals and responses across the clock boundary.
This methodology uses fewer hardware resources
because each transfer is safely propagated to the
target domain before the next transfer can begin.
The Handshake adapter is appropriate for systems
with low throughput requirements.

o FIFO-This adapter uses dual-clock FIFOs for
synchronization. The latency of the FIFO-based
adapter is a couple of clock cycles more than the
handshaking clock crossing component. However,
the FIFO-based adapter can sustain higher
throughput because it supports multiple transac-
tions at any given time. The FIFO-based clock
crossers require more resources. The FIFO adapter
is appropriate for memory-mapped transfers
requiring high throughput across clock domains.

« Auto-If you select Auto, Qsys specifies the FIFO
adapter for bursting links, and the Handshake
adapter for all other links.

Automate default slave insertion—Specifies whether | True or False
you want Qsys to automatically insert a default slave
for undefined memory region accesses during system
generation.

Configuring Interconnect Requirements for an Interface
Selecting an interface in the Identifier list on the Interconnect Requirements tab allows you to apply
interface interconnect assignments.

Security » Non-secure

« Secure

» Secure ranges

o TrustZone-aware

Note: You can also set these valuess in the Security
column in the System Contents tab.

Secure address ranges Allows you to type in an address valid range.

Add performance monitor True or False

Creating Hierarchical Systems

Qsys supports team-based and hierarchical system design.

Altera Corporation Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020
2013.11.4

Adding Systems to the Library 6-15

You can include any Qsys system as a component in another Qsys system. In a team-based design flow, you
can have one or more systems in your design developed simultaneously by other team members, decreasing
time-to-market for the complete design.

Figure 6-5 shows the top-level of a Qsys hierarchical design that implements a PCI Express'" to Ethernet
bridge. This example combines separate PCI Express and Ethernet subsystems with Altera’s DDR3 SDRAM
Controller with UniPHY IP core.

Figure 6-5: Top-Level for a PCl Express to Ethernet Bridge

DDR3

SDRAM PCI Express

Subsystem

DDR3
SDRAM
Controller

CSR

PHY
Cntl

Mem Embedded Cntl
Slave

Ethernet Ethernet
Subsystem

Hierarchical system design in Qsys offers the following advantages:

 Enables team-based, modular design by dividing large designs into subsystems.
+ Enables design reuse by allowing you to use any Qsys system as a component.

« Enables scalability by allowing you to instantiate multiple instances of a Qsys system.

Adding Systems to the Library

Any Qsys system is available for use as a component in other Qsys systems.

Figure 6-6 shows the library, including the pci €_subsyst emasacomponent in the library for the Figure
6-10 example system. To include systems as components in other designs, you can add the system to the
library, or include the directory for the system in the IP search path for Qsys.

Creating a System With Qsys

CJ Send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6-16 Creating a Component Based on a System

Figure 6-6: Qsys Library

QI151020
2013.11.4

A library 2 |
b b4
_Prujecl

3 New Comporent. ..
2 pthernet_dma_subsystem
@ prie_subsystem
= Suetarm
Library
o= Bridges
o= Bridges and Adapters
o= Clock and Reset
o= _onfiguration & Programming
o Q5P
o= Embedded Processars
o= |nterface Protocols
o= Memaories and Memoary Contraollers
o= Memory Test Microcores
o= Merlin Components
o Micracantroller Peripherals
o Peripherals
o= PLL
o= Osyws Interconnect
o= System
o= Yerification
o= Window Bridge

Creating a Component Based on a System

The Export System as hw.tcl Component command on the File menu allows you to save the system currently
openin Qsys as an _hw.tcl file in the current working directory. The saved system appears as a new component
in the System category under Project in the Qsys Library.

Qsys 64-Bit Addressing Support

Altera Corporation

Qsys interconnect supports up to 64-bit addressing for all Qsys interfaces and components, with a range of:
0x0000 0000 0000 0000 to OXFFFF FFFF FFFF FFFF, inclusive.

In Qsys, address parameters appear in the Base and End columns on the System Contents tab, on the
Address Map tab, in the parameter editor, and in validation messages. The Qsys GUI displays as many digits
as needed in order to display the top-most set bit, for example, 12 hex digits for a 48-bit address.

A Qsys system can have multiple 64-bit masters, with every master having its own address space. You can
share slaves among masters and masters can map slaves in different ways; for example, one master can
interact with slave O at base address 0000_0000_0000, and another master can see the same slave at base
address c000_000_000.

Qsys supports 64-bit addresses for narrow-to-wide and wide-to-narrow transactions across Avalon-MM
and AXI interfaces.

Quartus II debug tools that provide access to the state of an addressable system via the Avalon-MM
interconnect are also 64-bit compatible and process within a 64-bit address space, including a JTAG to
Avalon master bridge.

For more information about 64-bit support, refer to Address Span Extender in Creating a System with Qsys.

Creating a System With Qsys

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
2013.11.4 Creating Secure Systems (TrustZones) 6-17

Related Information

+ Creating a System with Qsys

Creating Secure Systems (TrustZones)

TrustZone is the security extension of the ARM architecture. It includes the concept of secure and non-secure
transactions, and a protocol for processing between the designations. TrustZone security support is a part
of the Qsys interconnect.

In Qsys, you can set memory-mapped interfaces to secure, non-secure, or TrustZone-aware. AXI masters
are always treated as TrustZone-aware. Unless specified, all other master and slave interfaces (such as Avalon-
MM) are treated as non-secure, by default.

Qsys provides compilation-time TrustZone support for non-TrustZone-aware components, for example,
when an Avalon master needs to communicate with a secure AXI slave. For example, the designer can specify
whether the connection point is secure or non-secure at compilation time. You can specify secure address
ranges on memory slaves, if a per-interface security setting is not sufficient.

For TrustZone-aware masters, the interconnect uses the master's AXPROT signal to determine the security
status of each transaction.

Table 6-4 summarizes secure and non-secure access between master, slave, and memory components in
Qsys. Per-access refers to allowing a TrustZone-aware master to allow or disallow a particular access (or
transactions).

Table 6-4: Secure and Non-Secure Access Between Master, Slave, and Memory Components

Transaction Type TrustZone-aware Master | Non-TrustZone-aware Master | Non-TrustZone-aware Master
Secure Non-Secure
TrustZone-aware slave/ | OK OK OK
memory
Non-TrustZone-aware | Per-access OK Not allowed

slave (secure)

Non-TrustZone-aware | OK OK OK
slave (non-secure)

Non-TrustZone-aware |Per-access OK Not allowed
memory (secure region)

Non-TrustZone-aware |OK OK OK
memory (non-secure
region)

If a master issues transactions that fall into the per-access or not allowed cells, as described in the table above,
your design must contain a default slave. A transaction that violates security is rerouted to the default slave
and subsequently terminated with an error. You can connect any slave as the default slave, which allows it
to respond to the master with errors. You can share the default slave between multiple masters. You have
one default slave for each interconnect domain, which is a group of connected memory-mapped masters

Creating a System With Qsys Altera Corporation

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QlI51020

6-18 Managing Secure Settings in Qsys 2013.11.4

and slaves that share the same interconnect. Use the al t er a_axi _def aul t _s| ave component as the
default slave because this component has the required TrustZone features.

Note: For more information about interconnect domains, refer to Qsys Interconnect.

In Qsys, you can achieve an optimized secure system by partitioning your design. For example, for masters
and slaves under the same hierarchy, it is possible for a non-secure master to initiate continuous transactions
resulting in unsuccessful transfer to a secure slave. In the case of memory aliasing, you must carefully designate
secure or non-secure address maps to maintain reliable data.

Related Information

¢ Qsys Interconnect

Managing Secure Settings in Qsys
To create a secure design, you must first add masters and slaves and the connections between them. After
you establish connections between the masters and slaves, you can then set the security options, as required,
with options in the Security column.

On the System Contents tab, in the Security column, the following selections are available for master, slave,
and memory components:

» Non-secure—Master issues only non-secure transactions. There is no security available for the slave.

» Secure—Master issues only secure transactions. For the slave, Qsys prevents non-secure transactions
from reaching the slave, and routes them to the default slave for the master that issued the transaction.

« Secure Ranges—Slave only, the specified address ranges within the slave's address span are secure; all
others are not. The format is a comma-separated list of inclusiveLow:inclusiveHigh addresses, for example,
Ox0: Oxfff, Ox2000: Ox20f f.

o TrustZone-aware—Master issues either secure or non-secure transactions at run-time. The slave accepts
either secure or non-secure transactions at run-time.

After setting security options for the masters and slaves, you must identify those masters that require a
default slave before generation. To designate a slave as the default slave, turn on Default Slave in the Systems
Contents tab. A master can have only one default slave.

Note: The Security and Default Slave columns in the System Contents tab are hidden by default. You can
turn them on with the right-click menu in the System Contents header.

Understanding Compilation-Time Security Configuration Options
The following compile-time configurations are available when creating secure designs that have mixed secure
and non-secure components:

« Masters that support TrustZone and are connected to slaves that are compile-time secure. This configu-
ration requires a default slave.

o Slaves that support TrustZone and are connected to masters that have compile-time secure settings. This
configuration does not require a default slave.

o Master connected to slaves with secure address ranges. This configuration requires a default slave.

Accessing Undefined Memory Regions
When a transaction from a master targets a memory region that is not specified in the slave memory map,
it is known as an "access to an undefined memory region." To ensure predictable response behavior when

Altera Corporation Creating a System With Qsys

(] Send Feedback

http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QlI51020
2013.11.4

Viewing the Qsys Interconnect 6-19

this occurs, you can add a default slave to the design. All undefined memory region accesses are then routed
to the default slave, which then terminates the transaction with an error response.

You can connect any memory-mapped slave as a default slave. Altera recommends that you have only one
default slave for each domain in your design. Accessing undefined memory regions can occur in the following
cases:

o When there are gaps within the accessible memory map region that are within the addressable range of
slaves, but are not mapped.

o Accesses by a master to a region that does not belong to any slaves that is mapped to the master.

« When a non-secured transaction is accessing a secured slave. This applies to only slaves that are secured
at compilation time.

o When a read-only slave is accessed with a write command, or a write-only slave is accessed with a read
command.

To designate a slave as the default slave, for the selected component, turn on Default Slave on the Systems
Content tab.

Note: If you do not specify the default slave, Qsys automatically assigns the slave at the lowest address
within the memory map for the master that issues the request as the default slave.

Viewing the Qsys Interconnect

The System with Qsys Interconnect window allows you to see the contents of the Qsys interconnect before
you generate your system. In this view of your system, you can view a graphical representation of the generated
interconnect. Qsys converts connections between interfaces to interconnect logic during system generation.

You access the System with Qsys Interconnect window by clicking Show System With Qsys Interconnect
command on the System menu.

The system with Qsys Interconnect window consists of the following tabs:

+ System Contents—Displays the original instances in your system, as well as the inserted interconnect
instances. Connections between interfaces are replaced by connections to interconnect where applicable.

« System Inspector—Displays a system hierarchical navigator, expanding the system contents to show
modules, interfaces, signals, contents of subsystems, and connections.

« Memory-Mapped Interconnect—allows you to select a memory-mapped interconnect module and view
its internal command and response networks. You can also insert pipeline stages to achieve timing closure.

The System Contents and System Inspector tabs are read-only. Edits that you apply on the Memory-Mapped
Interconnect tab are automatically updated on the Interconnect Requirements tab.

Using the Memory-Mapped Interconnect Tab

The Memory-Mapped Interconnect tab in the System with Qsys Interconnect window is a graphical
representation of command and response datapaths in your system. These datapaths allow you finer control
over pipelining in the interconnect. Qsys displays separate graphs for the command and response datapaths.
You can access the datapaths by clicking their respective tabs in the Memory-Mapped Interconnect tab.

Each node element in a graph can represent either a master or slave that communicates over the interconnect,
or an interconnect sub-module. Each edge in a graph is an abstraction of connectivity between elements,
and its direction represents the flow of the commands or responses.

Creating a System With Qsys Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-20 Manually Controlling Pipelining in the Qsys Interconnect 2%13_11.4
Click Highlight Path to better identify edges and paths between modules. Turn on Show Pipeline Locations
to add greyed-out registers on edges where pipelining is allowed in the interconnect.

Note: You must have more than one module selected in order to highlight a path.

Manually Controlling Pipelining in the Qsys Interconnect
The Memory-Mapped Interconnect tab allows you to manipulate pipleline connections in the Qsys
interconnect. You access the Memory-Mapped Interconnect tab by clicking Show System With Qsys
Interconnect command on the System menu.

Note: To increase interconnect frequency, you should first try increasing the value of the Limit interconnect
pipeline stages to option on the Project Settings tab. You should only consider manually pipelining
the interconnect if changes to this option do not improve frequency, and you have tried all other
options to achieve timing closure, including the use of a bridge. Manually pipelining the interconnect
should only be applied to complete systems.

1. In the Project Settings tab, first try increasing the value of the Limit interconnect pipeline stages to
option until it no longer gives significant improvements in frequency, or until it causes unacceptable
effects on other parts of the system.

2. In the Quartus II software, compile your design and run timing analysis.

3. Identify the critical path through the interconnect and determine the approximate mid-point. The
following is an example of a timing report where the critical path is located in the interconnect.

2.800 0.000 cpu_instruction_master|out_shifter[63]]|q

3.004 0.204 nm domei n_0O| addr _rout er _001| Equal 5~0| dat ac

3.246 0.242 nmm donai n_0| addr _r out er _001| Equal 5~0| conbout

3.346 0.100 nm domai n_0O| addr _rout er _001| Equal 5~1| dat aa

3.685 0.339 nm domai n_0| addr _r out er _001| Equal 5~1| conbout

4.153 0. 468 mm domai n_0| addr _router _001| src_channel [5] ~0| dat ad
4.373 0.220 mm domai n_0| addr _r out er _001| src_channel [5] ~0|] conbout

4. System > Show System With Qsys Interconnect.

5. Inthe Memory-Mapped Interconnect tab, select the interconnect module that has the critical path. You
can determine the name of the interconnect module from the hierarchical node names in the timing
report.

6. Click Show Pipelinable Locations. Qsys display all pipelinable locations in the interconnect. You can
right-click a pipelinable location to open a menu that allows you to insert or remove a pipeline stage.

7. Find the pipelinable location that is closest to the mid-point of the critical path. The names of blocks in
the memory-mapped interconnect view correspond to the module instance names in the timing report.

8. Right-click the location where you want to insert a pipeline stage, and then click Insert Pipeline.

9. Regenerate the Qsys system, recompile the design, and then rerun timing analysis. If necessary, repeat
the manual pipelining process again until timing requirements are met.

Altera Corporation Creating a System With Qsys

(] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020
2013.11.4

Integrating Your Qsys Design with the Quartus Il Software 6-21

Manual pipelining has the following limitations:

« If you make changes to your original system's connectivity after manually pipelining an interconnect,
your inserted pipelines may become invalid. Warning messages are displayed at generation time if invalid
pipeline stages are detected. You can remove invalid pipeline stages with the Remove Stale Pipelines
option button in the Memory-Mapped Interconnect tab. Altera recommends not making changes to
the system's connectivity after manual pipeline insertion.

« Review manually-inserted pipelines when upgrading to newer versions of Qsys. Manually-inserted
pipelines in one version of Qsys might not be valid in a future version.

Related Information

Qsys System Design Components

Configuring Interconnect Requirements for the System on page 6-13

Integrating Your Qsys Design with the Quartus Il Software

To integrate a Qsys system into a Quartus II project, you must add one of the following files to your Quartus
IT project (but not both) on the Files tab in the Settings dialog box.

o Quartus II IP File (.qip)—Qsys generates a .qip file when you generate your Qsys design. Integrating
your Qsys design with your Quartus II project using the .qip file is preferable when you want full control
over generated files and Quartus II compilation phases. If you want to manage the HDL generation for
your Qsys system, you generate your Qsys system first, then add the .qip file to your Quartus II project.

o Qsys System File (.qsys)—Integrating your Qsys design with your Quartus II project by adding the .qsys
design file to your Quartus II project is more convenient for cases when there is no customization or
scripts in the design flow. If you do not want to generate your Qsys system manually, add the .qsys file
to your Quartus II project. You can add one or more top-level .qsys files to your Quartus II project.

Note: When integrating your Qsys designs with your Quartus II software project, you should decide on
which integration flow you want to use (either adding the .qsys file, or the .qip file to your Quartus
II project, but not both), and then maintain a consistent integration flow throughout development.
Mixing integration flows might result in two sets of generated output files, at which point you would
then have to keep track of which one is currently in use. The Quartus II software generates an error
message during compilation if you add both the .qip and .qsys files to your Quartus II project.

Related Information

« Managing Files in a Project

+ Searching for Component Files to Add to the Library on page 6-39
o Generating a Qsys System on page 6-23

Integrating with the .gsys File

To integrate your Qsys designs with the Quartus II software using the .qsys files, you create your designs in
Qsys, save the design files as <gsys design name>.qsys, and then add the .qsys file(s) to your Quartus II
project. When the Quartus II software starts the Analysis & Synthesis phase, it processes the .qsys files and
generates the necessary HDL and system description files needed to compile your design.

You can add multiple .qsys files to a Quartus II project. Qsys stores the files generated from each .qsys file
in the /db/<gsys file name> directory under the Quartus II project directory.

Creating a System With Qsys Altera Corporation

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_system_components.pdf
http://quartushelp.altera.com/current/mergedProjects/global/pjn/pjn_pro_add_delete_files.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020

6-22 Integrating with the .qip File 2013.11.4

When a Qsys design file includes an IP component which is outside of the project directory, the directory
of the .qsys file, or the /ip subdirectoy, you must add these dependency paths to the Qsys IP Search Path
before compilation.

Note: The following are design guidelines and warnings when integrating your Qsys designs with the
Quartus II software:

« When you integrate your Qsys designs with the Quartus II software using the .qsys file, you must manually
run any IP customization scripts at the appropriate stages of the Quartus II compilation process. There
is no automation support for running scripts between the Quartus II software compilation stages. The
Implementing and Parameterizing Memory IP reference describes running placement scripts for embedded
memory IP interfaces.

« Do not edit the files generated under the /ip/<gsys file name> directory, as they are overwritten during
subsequent runs of Analysis & Synthesis.

Related Information

o Implementing and Parameterizing Memory IP

Integrating with the .qip File
Qsys generates the Quartus II IP File (.qip) during system generation. If you choose to integrate your Qsys

design with your Quartus II project using the .qip file, after you generate your Qsys design, you must add
the .qip file to your Quartus II project.

The .qip file lists the files necessary for compilation and provides the Quartus II software with the required
information about your Qsys system. The .qip file is saved in the <gsys file name>/synthesis directory, and
includes references to the following information:

« HDL files in the Qsys system

« TimeQuest Timing Analyzer Synopsys Design Constraint Files (.sdc)
« Component definition files for archiving purposes

Setting Clock Constraints

Many IP cores include Synopsys Design Constraint (.sdc) files that provide timing constraints for the logic
in the IP design. Generated .sdc files are included in your Quartus II project with the .qip file. For your
top-level clocks and PLLs, you must provide clock and timing constraints in SDC format to direct synthesis
and fitting to optimize the design appropriately, and to evaluate performance against timing constraints.

You can specify a base clock assignment for each clock input in the TimeQuest GUI or with the
creat e_cl ock command, and then you can use the deri ve_pl | _cl ocks command to define the
PLL clock output frequencies and phase shifts for all PLLs in the Quartus II project.

Figure 6-7 illustrates the .sdc commands required for the case of a single clock input signal called cl k, and
one PLL with a single output.

Altera Corporation Creating a System With Qsys

() send Feedback

http://www.altera.com/literature/hb/external-memory/emi_parameters.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020

2013.11.4 Generating a Qsys System 6-23
Figure 6-7: Single Clock Input Signal
1o systern Conterts 32 —=E
[LF‘ Use Cannections Mame Description Export Clack Base |
[¥] B ck_0 Clock Source
o= cll=_in Clack Input clk expoHed
e cll_in_resat Feset Input reset
e clls Clack Output clk_0
. cll_reset Feset Qutput
[¥] E master_D JTAG to Avalon Master Bridge
= clk Clock Input clk_0
cll_reset Feset Input
—Z — master Awalon Memory Mapped Master [clk]
? — master_raset Feset Qutput
LU] Bl my_pll Aovalon ALTPLL
inclk_interface Clock Input clk_0
inclk_interface_reset|Reseat Input [inclk_interfa. ..
pll _slawve Awvalon Memory Mapped Slave [inclk_interfa... Ox0000_0000
co Clack Output my_pll_co
areset_conduit Conduit
locked_conduit Conduit
phasedone_conduit |Conduit
[¥] E pio_0 FIC (Parallel 1f0)
clk Clock Input my_pll_c0
reset Feset Input [clk]
sl Avalon Memory Mapped Slawe [clk] Ox0000_0020
external_connection |[Conduit
<] i D

For this system, use the following commands in your .sdc file for the TimeQuest Timing Analyzer:

create_clock -nane naster_clk -period 20 [get _ports {cl k}]

derive_pll _cl ocks

Related Information

o The Quartus II TimeQuest Timing Analyzer

Generating a Qsys System

The Generation dialog box allows you to choose options for generation of synthesis and simulation files.

Generating Output Files
Qsys system generation creates the interconnect between components and generates synthesis and simulation
files. You specify the files that you want to generate in the Generation dialog box. You can generate simulation
models, simulation testbench files, as well as HDL files for Quartus II synthesis, or a Block Symbol File (.bsf)
for schematic design.

For your simulation model and testbench system, you can select Verilog HDL or VHDL for the top-level
module language, which applies to the system's top-level definition and child instances that support generation
for the selected target language.

Creating a System With Qsys Altera Corporation

() send Feedback

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-24 Generating Output Files 2(())13.1 1.4

For synthesis, you can select the top-level module language as Verilog HDL or VHDL, which applies to the
system’s top-level definition.

Qsys places the generated output files in a subdirectory of your project directory, along with an HTML report
file. To change the default behavior, on the Generation tab, specify a new directory under Output Directory.

Figure 6-8: Qsys Generated Files Directory Structure

<gsys_design>
synthesis
—{] submodules

(] simulation
—] submodules

(] testbench

simulation

submodules

Each time you generate your system, Qsys overwrites these files, therefore, you should not edit Qsys-generated
output files. If you have constraints, such as board-level timing constraints, Altera recommends that you
create a separate Synopsys Design Constraints File (.sdc) and include that file in your Quartus II project. If
you need to change top-level I/O pin names or instance name, Altera recommends you create a top-level
HDL file that instantiates the Qsys system, so that the Qsys-generated output is instantiated in your design
without any changes to the Qsys output files.

Note: Qsys generates the files in listed in Table 6-5 to the <gsys design>/simulation folder.

Table 6-5: Qsys Generated Files

<Qsys system> The top-level Qsys system directory, in the Quartus II project
directory
<Qsys system>.bst A Block Symbol File (.bsf) representation of the top-level Qsys

system for use in Quartus II Block Diagram Files (.bdf).

<Qsys system>.html A report for the system, which provides a system overview
including the following information:

 External connections for the system

o A memory map showing the address of each slave with respect
to each master to which it is connected

o Parameter assignments for each component

Altera Corporation Creating a System With Qsys

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020
2013.11.4

Generating Output Files

<Qsys system>.sopcinfo

Describes the components and connections in your system. This
file is a complete system description and is used by downstream
tools such as the Nios II tool chain. It also describes the
parameterization of each component in the system; consequently,
you can parse its contents to get requirements when developing
software drivers for Qsys components.

This file and the system.h file generated for the Nios II tool chain
include address map information for each slave relative to each
master that accesses the slave. Different masters may have a
different address map to access a particular slave component.

<Qsys system>.spd

Required input file for i p- make- si nscri pt to generate
simulation script for supported simulators. The .spd file contains
a list of files generated for simulation, along with information
about initializable memories.

<Qsys system>/synthesis

This directory includes the Qsys-generated output files that the
Quartus II software uses to synthesize your design.

<Qsys system>/synthesis/
<Qsys system>.v

or

<Qsys system>/synthesis

<Qsys system>.vhd

An HDL file for the top-level Qsys system that instantiates each
submodule in the system for synthesis.

<Qsys_system>/synthesis/

<Qsys system>.regmap

If IP in the system contains register information, Qsys generates
a .regmap file. The .regmap file describes the register map
information on master and slave interfaces. This file complements
the .sopcinfo file by providing more detailed register information
about the system. This enables register display views and user
customizable statistics providers in the SystemConsole.

<Qsys system>/synthesis/
<Qsys system>.qip

This file this file includes all the info you need to synthesize the
IP components in your system.

<Qsys system>/synthesis/submodules

Contains Verilog HDL or VHDL submodule files for synthesis.

<Qsys system>/simulation

This directory includes the Qsys-generated output files to simulate
your Qsys design or testbench system.

<Qsys system>/simulation/

<Qsys system>.sip

This file contains information reqiured for NativeLink simulation
of IP components in your system. You must add the .sip file to
your Quartus II project.

Creating a System With Qsys

() send Feedback

Altera Corporation

6-25

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020

6-26 Generating Output Files 2013.11.4
<Qsys system>/simulation/ An HDL file for the top-level Qsys system that instantiates each

submodule in the system for simulation.
<Qsys system>.v

or
<Qsys system>/simulation/

<Qsys system>.vhd

<Qsys system>/simulation/submodules | Contains Verilog HDL or VHDL submodule files for simulation.

<Qsys system>/simulation/mentor Contains a ModelSim® script msim_setup.tcl to set up and run
a simulation.

<Qsys system>/simulation/aldec Contains Riviera-PRO script rivierapro_setup.tcl to setup and
run a simulation.

<Qsys system>/simulation/synopsys/vcs | Contains a shell script ves_setup.sh to set up and run a VCS®

simulation.

<Qsys system>/simulation Contains a shell script vesmx_setup.sh and synopsys_sim.setup
to set up and run a VCS MX simulation.

/synopsys/vcsmx

<Qsys system>/simulation/cadence Contains a shell script ncsim_setup.sh and other setup files to
set up and run an NCSIM simulation.

<Qsys system>/testbench Contains a Qsys testbench system.

<Qsys system> [testbench/ A Qsys testbench system.

<Qsys system>_tb.qsys

<Qsys system>/testbench/ The top-level testbench file, which connects BFMs to the top-level
<Qsys sysyem>_tb.v interfaces of <gsys_design> .qsys.

or

<Qsys system>/testbench/

<Qsys sysyem>_tb.vhd

<Qsys system>/testbench/<module name> | Allows HPS System Debug tools to view the register maps of
_<master interface name>.svd peripherals connected to the HPS within a Qsys design.

Similarly, during synthesis the .svd files for slave interfaces visible
to System Console masters are stored in the .sof file in the debug
section. System Console reads this section, which Qsys can query
for register map information. When a slave is open, Qsys can
access the registers by name.

Altera Corporation Creating a System With Qsys

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
3013_11_4 CMSIS Support for Qsys Systems With An HPS Component 6-27

CMSIS Support for Qsys Systems With An HPS Component
Qsys systems that contain a Hard Processor System (HPS) component generate a System View Description
(.svd) file that lists peripherals connected to the ARM processor.

The System View Description File (.svd) (or CMSIS-SVD) file format is an XML schema specified as part
of the Cortex Microcontroller Software Interface Standard (CMSIS) provided by ARM. The CMSIS-SVD
file allows HPS System Debug tools (such as the DS-5 Debugger) to gain visibility into the register maps of
peripherals connected to the HPS within a Qsys system.

Related Information
o Component Interface Tcl Reference

e« CMSIS - Cortex Microcontroller Software

Viewing the HDL Example

The HDL Example dialog box, accessed from the Generate menu, provides the top-level HDL definition of
your system in either Verilog HDL or VHDL, and also displays VHDL component declarations.

You can copy and paste the example into a top-level HDL file that instantiates the Qsys system, if the system
is not the top-level module in your Quartus II project.

Simulating a Qsys System
The Qsys Generation dialog box provides options for generating Qsys simulation.
The following options are available in the Generate dialog box.

o Generate the Verilog HDL, VHDL, or mixed-language simulation model for your system to use in your
own simulation environment.

» Generate a standard or simple testbench system with BFM or Mentor Verification IP (for AXI3/AXI4)
components that drive the external interfaces of your system, and generate a Verilog HDL or VHDL
simulation model for the testbench system to use in your simulation tool.

o First generate a testbench system, and then modify the testbench system in Qsys before generating its
simulation model.

In most cases, you should select only one of the simulation model options, that is generate a simulation
model for the original system, or for the testbench system. Table 6-6 summarizes the options in the Generate
dialog box that correspond to the simulation files described above.

Creating a System With Qsys Altera Corporation

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_tcl.pdf
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6-28 Simulating a Qsys System

QI151020
2013.11.4

Table 6-6: Summary of Settings Simulation and Synthesis in the Generate Dialog Box

Create simulation model None Generates simulation model files
. and simulation scripts. Use this
Verilog
option to include the simulation
VHDL model in your own custom
testbench or simulation environ-
ment. You can also use this option
to generate models for a testbench
system that you have modified.
Allow mixed-language On Generates a mixed language
simulation Off simulation model generation. If

you have a mixed-language
simulator license, generating for
mixed-language simulation can
shorten the generation time, and
produce files that may simulate
faster. When turned off, all
simulation files are generated in
the selected simulation model
language.

Create testbench Qsys system

Standard, BFMs for standard Qsys
Interconnect

Creates a testbench Qsys system
with BEM components attached
to exported Avalon and AXI3
interfaces. Includes any simulation
partner modules specified by IP
cores in the system.

The testbench generator supports
AXT interfaces and can connect
AXI3/AXI4 interfaces to Mentor
Graphics AXI3/AXI4 master/slave
BFM. However, BFMs support
address widths only up to 32-bits.

Simple, BFMs for clocks and resets

Creates a testbench Qsys system
with BFM components driving
only clock and reset interfaces.
Includes any simulation partner
modules specified by IP cores in
the system.

Altera Corporation

Creating a System With Qsys

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020

2013.11.4 Generate and Modify the Testbench System 6-29
Create testbench simulation None Creates simulation model files and
model . simulation scripts for the

Verilog .
testbench Qsys system specified
VHDL in the setting above. Use this
option if you do not need to
modify the Qsys-generated
testbench before running the
simulation.
Create HDL design files for On Creates Verilog HDL or VHDL
synthesis Off design files.
Top-level module language for | Verilog Creates the top-level module in
synthesis VHDL the system in the selected
language.
Create block symbol files (.bsf) | On You can optionally create a (.bsf)
Off file to use in schematic Block
Diagram File (.bdf) designs.
Output Directory < directory name > Allows you to browse and locate
an alternate directory than the
project directory for each
generation target.
Related Information

o Avalon Verification IP Suite User Guide
o Mentor Verification IP (VIP) Altera Edition (AE)
« Generating a System for Synthesis or Simulation

+ Generation Dialog Box (Qsys)

Generate and Modify the Testbench System

You can use the following steps to create a testbench system of your design.

1. Create a Qsys system.
2. Generate a testbench system in the Qsys Generate dialog box.

3. Open the testbench system in Qsys. Make changes, as needed, to the BFMs, such as changing the BFM
instance names and BFM VHDL ID value. You can modify the VHDL ID value in the Altera Avalon
Interrupt Source component.

4. If you modified a BFM, generate the simulation model for the testbench system on the Qsys Generation
tab. You can generate your simulation model in either Verilog HDL or VHDL.

5. Create a custom test program for the BFMs.
6. Compile and load the Qsys design and testbench in your simulator, and then run the simulation.

Creating a System With Qsys Altera Corporation

() send Feedback

http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf
http://www.altera.com/literature/ug/mentor_vip_ae_usr.pdf
http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_pro_generate_system.htm
http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_tab_gen.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020

6-30 Generate the Testbench System and a Simulation model at the Same Time (Verilog HDL only) 2013.11.4

Generate the Testbench System and a Simulation model at the Same Time (Verilog HDL
only)

You can use the following design flow to create a testbench system and a simulation model of your Verilog
HDL design.

1. Create a Qsys system.

2. Generate a testbench system and the simulation model for the testbench system in the Qsys Generate
dialog box.

3. Create a custom test program for the BFMs.

4. Compile and load the Qsys design and testbench in your simulator, and then run the simulation.

Adding Assertion Monitors

You can add monitors to Avalon-MM, AXI, and Avalon-ST interfaces in your system to verify protocol
correctness and test coverage with a simulator that supports SystemVerilog assertions.

Note: Modelsim Altera Edition does not support SystemVerilog assertions. If you want to use assertion
monitors, you will need to use an advanced simulator such as Mentor Questasim, Synopsys VCS, or
Cadence Incisive.

Figure 6-9 demonstrates the use of monitors with an Avalon-MM monitor between the previously connected
pci e_conpil er barl 0 Prefetchabl e Avalon-MM master interface and the
dma_0 control _port_sl ave Avalon-MM slave interface.

Figure 6-9: Inserting an Avalon-MM Monitor between Avalon-MM Master and Slave Interfaces

B pcie_compiler_0 PCl Express Compiler

Control_Register_A...

avalon_clk Clock Input
—> cal_blk_clk Clock Input
— barl_0_Prefetchable |Avalon Memory Mapped Master

Avalon Memory Mapped Slave

7 Tx_Interface Avalon Memory Mapped Slave
exported_connection |Conduit Endpoint
E mm_monitor_0 Altera Avalon MM Monitor
~ . clk Clock Input
s0 Avalon Memory Mapped Slave
mo Avalon Memory Mapped Master
B dma_0 DMA Controller
= clk Clock Input
7 control_port_slave Avalon Memory Mapped Slave
> read_master Avalon Memory Mapped Master
[be write_master k |Avalon Memory Mapped Master

Similarly, you can insert an Avalon-ST monitor between Avalon-ST source and sink interfaces.

Simulation Scripts

Qsys generates simulation scripts to script the simulation environment set up for Mentor Graphics Modelsim®
and Questasim®, Synopsys VCS® and VCS MX®, Cadence Incisive Enterprise Simulator® (NCSIM), and
the Aldec Riviera-PRO® Simulator.

You can use the scripts to compile the required device libraries and system design files in the correct order
and elaborate or load the top-level design for simulation.

Altera Corporation Creating a System With Qsys

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020
2013.11.4

Simulating Software Running on a Nios Il Processor 6-31

The simulation scripts provide the following variables that allow flexibility in your simulation environment:

TOP_LEVEL_NAME—If the Qsys testbench system is not the top-level instance in your simulation
environment because you instantiate the Qsys testbench within your own top-level simulation file, set
the TOP_LEVEL_ NAME variable to the top-level hierarchy name.

QSYS_SI MDI R—If the simulation files generated by Qsys are not in the simulation working directory,
use the QSYS_SI MDI Rvariable to specify the directory location of the Qsys simulation files.
QUARTUS_I NSTALL_DI R—Points to the device family library.

Example 6-2 shows a simple top-level simulation HDL file for a testbench system

pat t er n_gener at or _t b, which was generated for a Qsys system called pat t er n_gener at or . The
top.sv file defines the top-level module that instantiates the pat t er n_gener at or _t b simulation model
as well as a custom SystemVerilog test program with BFM transactions, called t est _pr ogr am

Example 6-2: Top-Level Simulation HDL File Example

nmodul e top();

pattern_generator tbh tb();
test _program pgm();

endnodul e

Note: The VHDL version of the Altera Tristate Conduit BFM is not supported in Synopsys VCS, NCSim,

and Riviera-PRO in the Quartus II software version 13.1. These simulators do not support the VHDL
protected type, which is used to implement the BEM. For a workaround, use a simulator that supports
the VHDL protected type.

Related Information

ModelSim-Altera software, Mentor Graphics ModelSim support
Synopsys VCS and VCS MX support
Cadence Incisive Enterprise Simulator (IES) support

Aldec Active-HDL and Rivera-PRO support

Simulating Software Running on a Nios Il Processor

To simulate the software in a system driven by a Nios II embedded processor, generate the simulation model
for a simple Qsys testbench system by completing the following steps:

NNk wbdb =

On the Generation tab, set Create testbench Qsys system to Simple, BFMs for clocks and resets.
Set Create testbench simulation model to Verilog or VHDL.

Click Generate.

Open the Nios II Software Build Tools for Eclipse.

Set up an application project and board support package (BSP) for the <gsys_system> .sopcinfo file.
Set up an application project and board support package (BSP) for the <gsys_system> .sopcinfo file.

To simulate, right-click the application project in Eclipse, point to Run as,and then click 4 Nios IT
ModelSim. The Run As Nios IT ModelSim command sets up the ModelSim simulation environment,
compiles and loads the Nios II software simulation.

Creating a System With Qsys Altera Corporation

() send Feedback

http://www.altera.com/literature/hb/qts/qts_qii53001.pdf
http://www.altera.com/literature/hb/qts/qts_qii53002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53003.pdf
http://www.altera.com/literature/hb/qts/qts_qii53023.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-32 System Examples 2?)13.11.4

8. To run the simulation in ModelSim, typer un -al | in the ModelSim transcript window.

9. If prompted, set ModelSim configuration settings and select the correct Qsys Testbench Simulation
Package Descriptor (.spd) file, < gsys_system > _tb.spd. The .spd file is generated with the testbench
simulation model for Nios II designs and specifies all the files required for the Nios II software simulation.

Related Information
o Getting Started with the Graphical User Interface (Nios II)

+ Getting Started from the Command-Line (Nios II)

System Examples

The following system examples demonstrate various design features and flows that you can replicate in your
design.

PCI Express Subsystem Example on page 6-32
Ethernet Subsystem Example on page 6-34
PCI Express to Ethernet Bridge Example on page 6-36

Hierarchical System Using Instance Parameters Example on page 6-38

PCI Express Subsystem Example

Figure 6-10 and Figure 6-11 show an example PCI Express subsystem. The application running on the root
complex processor programs the DMA controller. The DMA controller’s Avalon-MM read and write master
interfaces initiate transfers to and from the DDR3 memory and to the PCI Express Avalon-MM TX data
port. The system exports the DMA master interfaces through an Avalon-MM pipeline bridge. In the figure
below, all three masters connect to a single slave interface. During system generation, Qsys automatically
inserts arbitration logic to control access to this slave interface.

By default, the arbiter provides equal access to all requesting masters; however, you can weight the arbitration
by changing the number of arbitration shares for the requesting masters. The second pipeline bridge allows
an external master, such as a host processor, to also issue transactions to the CSR interfaces.

Altera Corporation Creating a System With Qsys

() send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020
2013.11.4

Figure 6-10: PCl Express Subsystem

Creating a System With Qsys

() send Feedback

PCI Express Subsystem Example 6-33

PCI Express Subsystem

DMA
Controller

CSR

PCI Express
IP Core
CSR
CSR PCle Link
(exported
Tx Data to PCle root port)

Avalon-MM Plpeline
Bridge (Qsys)

o
Avalon-MM Plpeline
Bridge (Qsys)

T

Cntl and Status Avalon-MM Slave

(exported to Embedded Controller)

DMA Avalon-MM Master

(exported to DDR3 Controller)

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-34 Ethernet Subsystem Example 2?)13.1 1.4

Figure 6-11: Qsys Representation of the PCl Express Subsystem

t: System Contents &2 Address Map ¥ | Project Settings 3 M
|| Use Connections Marme Description
B pcie_hard_ip_0 IP_Caorpiler for PCI Express
——— prie_core_clk Clock Qutput
— prie_core_reset Reset Output
A cal_blk_clk Clock Input
135 Avalon Mermory Mapped slave
< refrlk Conduit
< test_in Conduit
< prie_rstn Conduit
< clocks_sim Conduit
7 < reconfig_busy Conduit
< pipe_ext Conduit
< powerdouen Conduit
< Test_out Conduit
< msi_interface Conduit
harl_0 Avalon Mermory Mapped Master
cra Avalon Mermory Mapped slave
< ri_in Conduit
< 13 _out Conduit
< reconfig_togxh Conduit
[my reconfig_gxbclk Clock Input
< reconfig_fromgsxb_0 Conduit
A fixedcllk Clock Input
B dma_0 DA Controller
Clk Clock Input
reset Reset Input
control_port_slave Awalon Merory Mapped Slave
read_rnaster Avalon Mernory Mapped Master
— write_rnaster Awalon Mernory Mapped Master
B mm_bridge_0 Avalon-MM Pipeline Bridge
clk Clock Input
reset Reset [nput
50 Avalon Mermory Mapped slave
H mao Avalon Mermory Mapped Master
B mm_bridge_1 Analon-MM Pipeline Bridge
Clk Clock Input
reset Reset Input
[50 Awalon Merory Mapped Slave
— mao Awalon Mernory Mapped Master
Related Information

Qsys Interconnect

Ethernet Subsystem Example

In this example subsystem, the transmit (TX) DMA receives data from the DDR3 memory and writes it to
the Altera Triple-Speed Ethernet IP core using an Avalon-ST source interface. The receive (RX) DMA accepts
data from the Triple-Speed Ethernet IP core on its Avalon-ST sink interface and writes it to DDR3 memory.

The read and write masters of both Scatter-Gather DMA controllers and the Triple-Speed Ethernet IP core
connect to the DDR3 memory through an Avalon-MM pipeline bridge. This Ethernet example subsystem
exports all three control and status interfaces through an Avalon-MM pipeline bridge, which connects to a
controller outside of the Qsys system, as shown in Figure 6-12 and Figure 6-13.

Altera Corporation Creating a System With Qsys

() send Feedback

http://www.altera.com/literature/hb/qts/qsys_interconnect.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020
2013.11.4

Figure 6-12: Scatter-Gather DMA-to-Ethernet Subsystem

Creating a System With Qsys

() send Feedback

Ethernet Subsystem Example

Ethernet Subsystem

Qsys inserts
arbitration
logic

Avalon-MM
Pipeline

Scatter Gather
DMA

CSR

DDR3 Bridge peul g
<+ B«
(Qsys)

Scatter Gather
DMA

TX Avalon-ST

RX Avalon-ST

m Ethernet

Triple Speed
Ethernet

Calibration

f

Avalon-MM Pipeline
Bridge (Qsys)

CSR

Altera Corporation

6-35

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6-36 PCl Express to Ethernet Bridge Example

Figure 6-13: Qsys Representation of the Ethernet Subsystem

tf System Cantents &3 Address Map ¥ | Project Settings
[qm![Use Connections Marne Description
o M B clk_0 Clack Source
3"‘ O clk_in Clock [nput
|G| s clk_in_reset Feset Input
- = clk Clock Qutput
i Clk_reset Reset Qutput
lall ¥ Bl sgdma_D Scatter-Gather DMA Cantroller
& clk Clack Input
resat Feset Input
—; = csr Awalon Memory Mapped Slawve
‘f descriptor_read Avalon Memory Mapped Master
- descriptor_write Awalon Memory Mapped Master
m_read Awalon Memory Mapped Master
out Awalon Streaming Source
[v] Bl triple_speed_ethernet_0 Triple-Speed Ethernet
contral_port _clock_connection Clock: Input
reset_connection Eeset Input
y— contral_port Awalon Memory Mapped Slave
O receive_clock_connection Clock: Input
O transmit_clock_connection Clock: Input
receive Awalon Streaming Source
Transmit Awalon Streaming Sink
< mac_misc_connection Conduit
O pos_ref_clk_clock_connection Clock: Input
O cal_hilk_clk Clock: Input
< status_led_connection Conduit
< serdes_control_connection Conduit
< serial_connection Conduit
[¥] Bl sgdma_1 Scatter-Gather DMA Cantroller
clk Clock: Input
reset FEeset Input
csr Awalon Memory Mapped Slawve
descriptor_read Awalon Memory Mapped Master
descriptor_write Awalon Memory Mapped Master
in Awalon Streaming Sink
m_write Awalon Memory Mapped Master
[w] El avmm_bridge_0 Awalon-MM Bridge
clk Clock: Input
reset Eeset Input
awvalon_master(Awalon Memory Mapped Master
N awvalon_masterl Awalon Memory Mapped Master
— awvalon_master2 Awalon Memory Mapped Master
O awvalon_slawve Awalon Memory Mapped Slawve
[¥] El mm_bridge_0 Awalon-MM Pipeline Bridge
clk Clock: Input
reset FEeset Input
=0 Awalon Memory Mapped Slawve
H mo Awalon Memory Mapped Master

PCl Express to Ethernet Bridge Example

QI151020
2013.11.4

The PCI Express and Ethernet example subsystems run at 125 MHz and includes two clock domains and
an ethernet subsystem. The DDR3 SDRAM controller runs at 200 MHz. Qsys automatically inserts clock
crossing logic to synchronize the DDR3 SDRAM Controller with the PCI Express and Ethernet subsystems,

as shown in Figure 6-14 and Figure 6-15.

Altera Corporation

Creating a System With Qsys

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020

2013.11.4 PCl Express to Ethernet Bridge Example 6-37
Figure 6-14: PCl Express-to-Ethernet Bridge Example System
Qsys System
Qsys inserts PCI Express
arbitration and Subsystem
DDR3 Clock crossing 125 MHz
SDRAM logic pclelink [l >
400 MHz (125 MHz-200MHz)
DDR3 \ CSR Avalon-MM
SDRAM Plpeline
Controller Bridge (Qsys)
to CPU
200 MHz DDR3 CSR 125 MHz
Calibration ¢ |
Ethernet
Subsystem
Ethernet ¢ >
125 MHz
Figure 6-15: Qsys Representation of the Complete PCl Express to Ethernet Bridge
I: System Contents 52 Address Map 22 | Froject Settings &L |
[oul| Use | Connections rame Description
[1] Bl uniphy_ddr3_0 uniphy_ddr3
avalon_slawe Awalon Memory Mapped Slave
= memory_phy Cancuit
| Other Conduit
FLL_Sharing Zancuit
[] El ethernet_dma_suhsystem_0 ethermet_dma_subsystiem
ko cal_blk_if Conduit
e drma_if Ayalon Memory Mapped Master
Car_if Ayalon Memory Mapped Slave
e ethernet_if Conduit
1] El pcie_subsystem_0 prie_subsysiem
= pcie_link Cancuit
—_ ddrz _sdram_master Ayalon Memory Mapped Master
L dma_control_slawe Ayalon Memory Mapped Slawve
[] El mm_bridge_0 Ayalon-m bl Fipeline Bridge
A Clk Clock Ingut
A reset Feset Input
A 18] Ayalon Memory Mapped Slave
mo Ayalon Memory Mapped Master

Creating a System With Qsys

() send Feedback

Altera Corporation

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020

6-38 Pipeline Bridges 2013.11.4

Pipeline Bridges
The PCI Express to Ethernet bridge example system uses several pipeline bridges. You must configure bridges
to accommodate the address range of all of connected components, including the components in the
originating subsystem and the components in the next higher level of the system hierarchy.

The pipeline bridge inserts a pipeline stage between the connected components. You should register signals
at the subsystem interface level for the following reasons:

 Registering interface signals decreases the amount of combinational logic that must be completed in one
cycle, making it easier to meet timing constraints.

+ Registering interface signals raises the potential frequency, or fy(5x, of your design at the expense of an
additional cycle of latency, which might adversely affect system throughput.

o The Quartus IT incremental compilation feature can achieve better fy;5x results if the subsystem boundary
is registered.

Note: Connections between AXI and Avalon interfaces are made without requiring the use of explicitly
instantiated bridges; the interconnect provides the necessary bridging logic.

Related Information
« Optimizing System Performance for Qsys

e Qsys System Design Components

Hierarchical System Using Instance Parameters Example

You can use an instance parameter to control the implementation of system components from a higher-level
Qsys system. You define instance parameters on the Instance Parameters tab in Qsys.

In Example 6-3, the my_system.qsys system has two instances of the same IP component, My_| P.My_I| P
is a Qsyscomponent with a system identification parameter called MY_SYSTEM | D. When my_system.qsys
is instantiated within another higher-level Qsys system, the two My_| P subcomponents require different
values for their MY_SYSTEM | D parameters based on a value determined by the higher-level system. In
this example, the value specified by the top-level system is designated t op_i d and in my_system.qsys, the
component instance CONMPO requires MY_SYSTEM | Dsettot op_i d + 1,andinstance conpl requires
MY_SYSTEM | Dsettot op_i d + 2. Example 6-3 defines the MY_SYSTEM | D system ID parameter
in the IP component My _| P:

Example 6-3: System ID Parameter Example

add_paraneter MY_SYSTEMID int 8

set _parameter_property MY SYSTEM | D DI SPLAY_NAME \
MY_SYSTEM | D_PARAM

set _parameter_property MY_SYSTEM ID UNI TS None
To satisfy the design requirements for this example, you define an instance parameter in my_system.qsys
that is set by the higher-level system, and then define an instance script to specify how the values of the
parameters of the My_| P components instantiated in my_system.qsys are affected by the value set on the
instance parameter.

Altera Corporation Creating a System With Qsys

() send Feedback

http://www.altera.com/literature/hb/qts/qts_optimize.pdf
http://www.altera.com/literature/hb/qts/qsys_system_components.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QlI51020
2013.11.4

Searching for Component Files to Add to the Library 6-39

To do this, in Qsys, open the my_system.qsys Qsys system that instantiates the two instances of the My_| P
components. On the Instance Parameters tab, create a parameter called Syst em i d. For this example,
you can set this parameter to be of type Integer and choose 0 as the default value.

Next, you provide a Tcl Instance Script that defines how the value of the Syst em i d parameter should
affect the parameters of conp0O and conpl subcomponents in my_system.qsys.

In Example 6-4 Qsys gets the value of the parameter Syst em i d from the top-level system and saves it as
t op_i d, and then increments the value by 1 and 2. The script then uses the new calculated values to set the
MY_SYSTEM | Dparameter in the My_| P component for the instances conpO and conpl. The script
uses informational messages to print the status of the parameter settings when the my_system.qsys system
is added to the higher-level system.

Example 6-4: Tcl Instance Script Example

package require qsys 13.1
set _nodul e_property Conposition_call back My_cal |l back
proc My_call back { } {

Get The Value OF system.id paranmeter fromthe

hi gher-1level system

set top_id [get paranmeter_val ue system. d]

Print Info Message
send_nessage Info "system.id Value Specified: $top_ id"

Use Above Value To Set Paraneter Values For The Subconponents

set child_id_O [expr {$top_id + 1}]
set child_id_ 1 [expr {$top_id + 2}]

Set The Paraneter Val ues On The Subconponent | nstances
set i nstance_paraneter_val ue conp0O My_system.id $child_id O
set _instance_paraneter_value conpl My_systemid $child id 1

Print Info Messages
send _nessage Info "systemid Value Used In conpO: $child id 0"
send_nessage Info "system.id Value Used In conpl: $child_ id_ 1"

You can click Preview Instance to modify the parameter value interactively and see the effect of the scripts
in the message panel which can be useful for debugging the script. In this example, if you change the parameter
value in the Preview screen, the component generates messages to report the top-level | D parameter value
and the parameter values used for the two instances of the component.

Related Information

Working with Instance Parameters in Qsys

Searching for Component Files to Add to the Library

The Qsys Library lists design components available for use in Qsys systems. Components can include
Altera-provided IP cores, third-party IP cores, and custom IP cores that you provide. Previously created

Creating a System With Qsys Altera Corporation

() send Feedback

http://quartushelp.altera.com/current/master.htm#mergedProjects/system/qsys/qsys_pro_working_user_parameters.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-40 Adding Components to the Library 2?)13.1 1.4

Qsys systems can also appear in the library, and you can use these systems in other designs if they have
exported interfaces.

Altera and third-party developers provide ready-to-use components, which are installed automatically with
the Quartus II software and are available in the Qsys Library. The Qsys Library includes the following
components:

o Microprocessors, such as the Nios" II processor

o DSP IP cores, such as the Reed Solomon II core

 Interface protocols, such as the IP Compiler for PCI Express

o Memory controllers, such as the RLDRAM II Controller with UniPHY

+ Avalon® Streaming (Avalon-ST) components, such as the Avalon-ST Multiplexer IP core
o Qsys Interconnect components

o Verification IP (VIP) Bus Functional Models (BFMs)

You can set the IP Search Path option to specify the installed locations for custom and third-party components
that you want to appear in the component library. Qsys searches for component files each time you open
the tool, and locates and displays the list of available components in the component library.

Qsys searches the directories listed in the IP Search Path for the following component file types:

» Hardware Component Description File (_hw.tcl)—Each _hw.tcl file defines a single component.

o [P Index File (.ipx)—Each .ipx file indexes a collection of available components, or a reference to other
directories to search. In general, .ipx files facilitate faster startup for Qsys and other tools because fewer
directories are searched and analyzed.

Qsys searches some directories recursively and other directories only to a specific depth. When a directory
is recursively searched, the search stops at any directory containing an _hw.tcl or .ipx file; subdirectories
are not searched. In the following list of search locations, a recursive descent is annotated by **. A single *
signifies any file.

Note: If youadd a component to you search path, you must refresh your system by clicking File > Refresh
to update the Qsys library.

« PRQJIECT_DI R/ * —Finds components and index files in the Quartus II project directory.

« PRQIECT_D R/i p/ **/ * —Finds components and index files in any subdirectory of the /ip subdirectory
of the Quartus project directory.

o QUARTUS_I NSTALLDI R/ . . /i p/ **/ * —In this IP directory, you can create your own subdirectories
that are available for any project using this Quartus II installation directory.

Adding Components to the Library

You can use one of the following methods to add components to the library.

« Save components in your project directory.

« Save components in the /ip subdirectory of your project directory.
« Copy components to the install directory.

o Reference components in an IP Index File (.ipx).

« Integrate third-party components.

Copy Components to a Directory Searched by Default on page 6-41

Reference Components in an IP Index File (.ipx) on page 6-42

Altera Corporation Creating a System With Qsys

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
3013_11_4 Copy Components to a Directory Searched by Default 6-41

Extending the Default Search Path on page 6-44

Copy Components to a Directory Searched by Default

The simplest method to add a new component to the Qsys Library is to copy your components into one of
the directories Qsys searches by default. You can save component files in your project directory, or in the
/ip subdirectory of your project directory. These approaches are useful if you want to associate your
components with a specific Quartus II project.

If you save the component in the project directory, the component appears in the Library in the group you
specified under Project. Alternatively, if you save the component in the Quartus II installation directory,
the component appears in the specified group under Library.

You can also save the component files into the default Quartus II <install_dir> /ip/ directory. This approach
is useful in the following situations and is shown in Figure 6-16.

» You want to associate your components with a specific release of the Quartus II software.
« You want to have the same components available across multiple projects.

Figure 6-16: User Library Included In Subdirectory <install_dir>/ip/

<install_dir>

quartus

ip

altera
altera_components.ipx

@ <components>

[:I user_components

@ " component1

componentl_hw.tcl
componentl.v

@ —CI component2

component2_hw.tcl
component2.v

In Figure 6-16, the circled numbers identify a typical directory structure for the Quartus II software. For
the directory structure above, Qsys performs the component discovery algorithm described below to locate
.ipx and_hw.tcl files.

1. Qsys recursively searches the <install_dir> /ip/ directory by default. The recursive search stops when
Qsys finds an .ipx file.

2. As part of the recursive search, Qsys also looks in the user_components directory. Qsys finds the
componentl directory, which contains componentl_hw.tcl. When Qsys finds the component1_hw.tcl
component, the recursive search ends, and no components in subdirectories of component] are found.

3. Qsys then searches the component2 directory, because this directory path also appears as an IP Search
Path, and discovers component2_hw.tcl. When Qsys finds component2_hw.tcl, the recursive search
ends.

Creating a System With Qsys Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-42 Reference Components in an IP Index File (.ipx) 2%13_11.4
Note: Ifyousave your _hw.tclfile in the <install_dir> /ip/ directory, Qsys finds your _hw.tcl file and does
not search subdirectories adjacent to the _hw.tcl file.

Reference Components in an IP Index File (.ipx)

You can specify the search path in a user_components.ipx file under the <install_dir> /ip directory. This
method allows you to add a location that is independent of the default search path. You can also save the
.ipx file in any of the default search locations, for example, the Quartus II project directory, or the /ip directory
in the project directory. The user_components.ipx file includes a single line of code redirecting Qsys to the
location of each user library. The path below shows a redirection example:

<library> <path path="<user_lib_dir>/user_ip/**/*"/> </library>
You can verify that components are available with the i p- cat al 0g command. You can use thei p- make-

i px command to create an .ipx file for a directory tree, which can reduce the startup time for Qsys.

Understanding the IP Index File (.ipx) Syntax
An IP Index File (.ipx) is an XML file that describes the search path used to discover components that are
available for a Qsys system. A <path> entry specifies a directory in which components may be found. A
<component> entry specifies the path to a single component.

Example 6-5: .ipx File Structure

<library>
<pat h pat h="..<user directory>" />
<pat h pat h=".<user directory>" />

<component ...file=".<user directory>" />

</1ibr ary>

A <path> element contains a path attribute, which specifies the path to a directory, or the path to another
.ipx file, and can use wildcards in its definition. An asterisk matches any file name. If you use an asterisk as
a directory name, it matches any number of subdirectories.

When searching the specified path, the following three types of files are identified:

« .ipx—Additional index files.
o _hw.tcd—Qsys component definitions.
o _sw.tcl—Nios II board support package (BSP) software component definitions.

A <component> element contains several attributes to define a component. If you provide the required
details for each component in an .ipx file, the startup time for Qsys is less than if Qsys must discover the
files in a directory. Example 6-6 shows two <component> elements. Note that the paths for file names are
specified relative to the .ipx file.

Example 6-6: Component Element in an .ipx File

<library>
<conponent

Altera Corporation Creating a System With Qsys

(] Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QlI51020
2013.11.4

ip-catalog 6-43

name="A ys Conponent"
di spl ayName="Qsys FIR Filter Conponent"
version="2. 1"
file="./conponents/qgsys filters/fir_hwtcl"
/>
<conponent
nane="r gb2cnmyk_conponent "
di spl ayNanme="RGB2CMYK Converter (Col or Conversion Category!)"

versi on="0. 9"
file="./components/gsys_converters/color/rgb2cmyk_hw tcl"
/>
</library>

ip-catalog

The i p- cat al 0g command displays the catalog of available components relative to the current project
directory in either plain text or XML format.

Usage

i p-catal og [--project-dir=<directory>][--nanme=<val ue>][--verhose]
[--xm][--hel p]

Options

e --project-dir=<directory>—Optional. Components are found in locations relative to the
project, if any. By default, the current directory, *." is used. To exclude a project directory, leave the value
empty.

« --nanme=<val ue>—Optional. This argument provides a pattern to filter the names of the components
found. To show all components, use a * or “ . By default, all components are shown. The argument is not
case sensitive.

« --ver bose—Optional. If set, reports the progress of the command.

o --xm —Optional. If set, generates the output in XML format, instead of a line and colon-delimited
format.

o --hel p—Shows help for the i p- cat al 0g command.

ip-make-ipx

The i p- make- i px command creates an .ipx file and is a convenient way to include a collection of
components from an arbitrary directory in the Qsys search path. You can also edit the .ipx file to disable
visibility of one or more components in the Qsys Library.

Usage

i p-make-i px [--source-directory=<directory>] [--output=<file>]
[--relative-vars=<val ue>] [--thorough-descent] [--nessage-before=<val ue>]
[--nmessage- aft er=<val ue>] [--hel p]

Options

Creating a System With Qsys Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-44 Extending the Default Search Path 2?)13_1 1.4

e --source-directory=<directory>—Optional. Specifies the root director(ies) that Qsys uses
to find the component files. The default directory is “.”. You can also provide a comma-separated list of

directories.

o --output=<fil e>—Optional. Specifies the name of the file to generate. The default name is
/components.ipx.

o --relative-vars=<val ue>—Optional. Causes the output file to include references relative to

the specified variable(s) where possible. You can specify multiple variables as a comma-separated list.

« --thorough-descent —Optional. If set, a component or .ipx file in a directory does not prevent
subdirectories from being searched.

+ --message- bef or e= <val ue>—Optional. A message to print to St dout when indexing begins.
« --nessage- af t er =<val ue>—Optional. A message to send to St dout when indexing completes.
o --hel p—Shows help for this command.

Extending the Default Search Path
he following steps allow you to extend the default search path by specifying additional directories.

1. In Qsys, in the Tools menu, click Options.
2. In the Category list, click IP Search Path.
3. Click Add.

4. Browse to locate additional directories and click Open to add them to your search path.

You do not need to include the components specified in the IP Search Path as part of your Quartus II project.

Integrating Third-Party Components

You can use Qsys components created by third-party IP developers. Altera awards the Qsys Compliant label
to IP cores that are fully supported in Qsys. These cores have interfaces that are supported by Qsys, such as
Avalon-MM or AXI, and may include timing and placement constraints, software drivers, simulation models,
and reference designs.

To find supported third-party Qsys components on Altera's web page, navigate to the Intellectual Property
& Reference Designs page, and then type @sys Certi f i ed inthe Search box, select IP Core & Reference
Designs, and then press Enter.

Refer to Altera's Intellectual Property & Reference Designs page for more information.

Related Information

Intellectual Property & Reference Designs

Using Qsys Command-Line with Utilities and Scripts

You can perform many of the functions available in the Qsys GUI from the command-line with the
gsys- gener at e and qsys- scri pt utilities.

You run these command-line executables from the following Quartus II installation directory:
<Quartus II installation directory>\quartus\sopc_builder\bin

You can use SYS- gener at e to generate Qsys output files outside of the Qsys GUIL You can use qSys-
SCri pt to create, manipulate or manage a Qsys system with command-line scripting.

Altera Corporation Creating a System With Qsys

(] Send Feedback

http://www.altera.com/products/ip/ipm-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
3013_11_4 Running the Qsys Editor from the Command-Line

For command-line help listing all options for these executables, type the following command:

<Quartus II installation directory>\quartus\sopc_builder\bin\<executable name> --help

Example 6-7: Qsys Command-Line Scripting Example

gsys-script --script=nmy_script.tcl \
--systemfil e=fancy. qsys my_script.tcl contains:
package require -exact gsys 13.1
get all instance nanes in the systemand print one by one
set instances [get_instances]
foreach instance $instances {
send_nessage I nfo "$instance"
}

6-45

Related Information

Working with Instance Parameters in Qsys

Altera Wiki Qsys Scripts

Running the Qsys Editor from the Command-Line
You can use the qsys- edi t utility to run the Qsys Editor from the command-line.

The following is a list of options that you can use with the qsys- edi t utility:

<1st arg fil e>—Optional. The name of the .qsys system or .qvar variation file to edit.

- - sear ch- pat h[=<val ue>] —Optional. If omitted, Qsys uses a standard default path. If provided,
Qsys searches a comma-separated list of paths. To include the standard path in your replacement, use
"$", for example: / extra/ dir. $.

--project-directory=<directory>—Optional. Allows you to find components in certain
locations relative to the project, if any. By default, the current directory is:' . ' . To exclude any project
directory, use " '

- - new conponent - t ype=<val ue>—Optional. Allows you to specify the kind of instance that is
parameterized in a variation.

- - debug—Optional. Enables debugging features and output.

- - host - cont r ol | er —Optional. Launches the application with an XML host controller interface
on standard input/output.

- - j vm max- heap- si ze=<val ue>—Optional. The maximum memory size Qsys uses for allocations
when running qsys- edi t . You specify this value as <Si ze><uni t >, where unit is m(or M for
multiples of megabytes, or g (or G) for multiples of gigabytes. The default value is 512m

- - hel p—Optional. Display help for qsys-edi t.

Launching Qsys with Additional Computer Memory
If the Qsys sytem you are creating requires more than the 512 megabytes of default memory, you may need
to launch the Qsys GUI from the command-line with additional memory. For example, the following
gsys- edi t command allows you to launch Qsys from the command-line with 2 gigabytes of memory.

gsys-edit --jvm nax-heap-si ze=2g

Creating a System With Qsys Altera Corporation

() send Feedback

http://quartushelp.altera.com/current/mergedProjects/system/qsys/qsys_pro_working_user_parameters.htm
http://www.alterawiki.com/wiki/Qsys_Scripts
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6-46

Generating Qsys Systems with the gsys-generate Utility

Generating Qsys Systems with the gsys-generate Utility

You can use the qSys- gener at e utility to generate RTL for your Qsys system, simulation models and
scripts, and to create testbench systems for testing your Qsys system in a simulator using BEMs. Output
from the gsys-generate command is the same as when generating using the Qsys GUI.

The following is a list of options that you can use with the qsys- gener at e utility:

<1st arg fil e>—Required. The name of the .qsys system file to generate.

- - synt hesi s=<VERI LOF VHDL>—Optional. Creates synthesis HDL files that Qsys uses to compile
the system in a Quartus II project. You must specify the preferred generation language for the top-level
RTL file for the generated Qsys system.

- - bl ock-synbol - fi | e—Optional. Creates a block symbol file (.bsf) for the system.

- -si mul at i on=<VERI LOF VHDL>—Optional. Creates a simulation model for the system. The
simulation model contains generated HDL files for the simulator, and may include simulation-only
features. You must specify the preferred simulation language.

- - t est bench=<SI MPLE| STANDARD>—Optional. Creates a testbench system. The testbench system
instantiates the original system, adding bus functional models to drive the top-level interfaces. Once
generated, the bus functional models interact with the system in the simulator.

--test bench-si mul at i on=<VERI LOG VHDL>—Optional. After creating the testbench system,
also create a simulation model for the testbench system.

- - out put - di r ect or y=<val ue>—Optional. Sets the output directory. Each generation target is
created in a subdirectory of the output directory. If you do not specify the output directory, a subdirectory
of the current working directory matching the name of the system is used.

- - sear ch- pat h=<val ue>—Optional. If omitted, a standard default path is used. If provided, a
comma-separated list of paths is searched. To include the standard path in your replacement, use "$",
for example, "/ extra/ dir, $".

- -j vm max- heap- si ze=<val ue>—Optional. The maximum memory size that Qsys uses for
allocations when running this tool. The value is specified as <size><uni t > where unit can be m (or M)
for multiples of megabytes or g (or G) for multiples of gigabytes. The default value is 512m.

--fam | y=<val ue>—Optional. Sets the device family.

- - par t =<val ue>—Optional. Sets the device part number. If set, this option overrides the - - f ami | y
option.

--al | ow- m xed- | anguage- si mul at i on—Optional. Enables a mixed language simulation model
generation. If true, if a preferred simulation language is set, Qsys uses a fileset of the component for the
simulation model generation. When false, which is the default, Qsys uses the language specified with
--fil e-set =<val ue> for all components for simulation model generation.

--fil e-set =<val ue>—Optional. Allows you to choose the type output to generate, for example,
QUARTUS_SYNTH, SI M_VERLOG or VHDL.

Creating and Managing a System with qsys-script

You can use the qSys- Scri pt tool to create and manipulate a Qsys system with Tcl scripting commands.

Note: You must provide a package version for the gsys-script. If you do not specify the - - package-

ver si on=<val ue> gsys-script command, you must then provide a Tcl script and request the
system scripting API directly with the package require -exact gsys<version>
command.

Altera Corporation Creating a System With Qsys

(] Send Feedback

QlI51020
2013.11.4

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020
2013.11.4

Qsys Scripting Command Reference 6-47

The following is a list of options that you can use with the qsys- scri pt utility:

o --systemfil e=<fil e>—Optional. Specifies the path to a .qsys system file. This system is loaded
before running scripting commands.

« --script=<fil e>—Optional. A file containing Tcl scripting commands for creating or manipulating
Qsys systems. If you specify both - - cnd and - - scri pt, the - - cnmd commands are run before the
script specified by - - scri pt.

o --cnd=<val ue>—Optional. A string that contains Tcl scripting commands to create or manipulate
a Qsys system. If you specify both - - cnd and - - scri pt, the - - cnd commands are run before the
script specified by - - scri pt.

« --package-ver si on=<val ue>—Optional. Specifies which system scripting Tcl API version to
use and determines the functionality and behavior of the Tcl commands. The Quartus II software supports
the Tcl API scripting commands. If you do not specify the version on the command-line, your Tcl script
must request the system scripting API directly with the package require -exact gsys <
ver si on > command.

o --hel p—Optional. Displays help for the qsys- scri pt tool.

« --search- pat h=<val ue>—Optional. If omitted, a standard default path is used. If provided, a
comma-separated list of paths is searched. To include the standard path in your replacement, use " $",
for example,/ < di rectory pat h>/dir, $. Multiple directory references are separated with a
comma.

e --jvm max- heap- si ze=<val ue>—Optional. The maximum memory size that is used by the
gsys-scri pt tool. You specify this value as <si ze><uni t > where unit can be mor Mfor multiples
of megabytes or g or Gfor multiples of gigabytes.

Qsys Scripting Command Reference

Interface properties work differently for gsys scripting than with _hw.tcl scripting. In _hw.tcl, interfaces do
not distinguish between properties and parameters; in gsys scripting, properties and parameters are unique.

add_connection <start> [<end>] on page 6-52

This command connects interfaces using an appropriate connection type. Interface names consist of a child
instance name, followed by the name of an interface provided by that module, for example, Mux0. out is
the interface out on the instance named nuxo0.

add_instance <name> <type> [<version>] on page 6-52
This command adds an instance of a component, referred to as a child or child instance, to the system.

add_interface <name> <type> <direction> on page 6-53

This command adds an interface to your system, which you can use to export an interface from within the
system. You specify the exported interface with the commandset _i nt er f ace_property EXPORT_CF
<instance.interface>.

auto_assign_base_addresses <instance> on page 6-53

This command assigns base addresses to memory-mapped interfaces on an instance in the system. Instance
interfaces that are locked with lock_avalon_base_address command keep their addresses during address
auto-assignment.

auto_assign_irqs <instance> on page 6-53
This command assigns interrupt numbers to all connected interrupt senders on an instance in the system.

Creating a System With Qsys Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-48 Qsys Scripting Command Reference 2%13_1 1.4
auto_connect <element> on page 6-54
This command creates connections from an instance or instance interface to matching interfaces in other
instances in the system. For example, Avalon-MM slaves are connected to Avalon-MM masters.

create_system [<name>] on page 6-54
This command replaces the current system in the system script with a new system with the specified name.

get_instance_interface_parameter_value <instance> <interface> <parameter> on page 6-54
This command returns the value of a parameter of an interface in a child instance.

get_composed_connection_parameters <instance> <childConnection> on page 6-55
This command returns a list of parameters on a connection in the subsystem, for an instance that contains
a subsystem.

get_composed_connections <instance> on page 6-55
This command returns a list of all connections in a subsystem, for an instance that contains a subsystem.

get_composed_instance_assignment <instance> <childInstance> <key> on page 6-55
This command returns the value of an assignment on an instance of a subsystem, for an instance that models
a subsystem.

get_composed_instance_assignments <instance> <childInstance> on page 6-56
This command returns a list of assignments on an instance of a subsystem, for an instance that contains a
subsystem.

get_composed_instance_parameter_value <instance> <childInstance> <parameter> on page 6-56
This command returns the value of a parameters on an instance in a subsystem, for an instance that contains
a subsystem.

get_composed_instance_parameters <instance> <childInstance> on page 6-57
This command returns a list of parameters on an instance of a subsystem, for an instance that contains a
subsystem.

get_composed_instances <instance> on page 6-57
This command returns a list of child instances in the subsystem, for an instance that contains a subsystem.

get_connection_parameter_property <connection> <parameter> <property> on page 6-57
This command returns the value of a parameter property in a connection.

get_connection_parameter_value <connection> <parameter> on page 6-58
This command gets the value of a parameter on the connection. Parameters represent aspects of the connection
that can be modified once the connection is created, such as the base address for an Avalon-MM connection.

get_connection_parameters <connection> on page 6-58
This command returns a list of parameters found on a connection. The list of connection parameters is the
same for all connections of the same type.

get_connection_properties on page 6-58
This command returns a list of properties found on a connection. The list of connection properties is the
same for all connections, regardless of type.

get_connection_property <connection> <property> on page 6-59
This command returns the value of a connection property.

Altera Corporation Creating a System With Qsys

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020
2013.11.4

Qsys Scripting Command Reference 6-49

get_connections [<element>] on page 6-59

This command returns a list of connections in the system if no element is specified. If a child instance is
specified, for example Cpu, all connections to any interface on the instance are returned. If an interface on
a child instance is specified, for examplecpu. i nst r uct i on_mast er, only connections to that interface
are returned.

get_instance_assignment <instance> <key> on page 6-59
This command returns the value of an assignment on a child instance.

get_instance_assignments <instance> on page 6-60
This command returns a list of assignment keys for any assignments defined for the instance.

get_instance_interface_assignment <instance> <interface> <key> on page 6-60
This command returns the value of an assignment on an interface of a child instance.

get_instance_interface_assignments <instance> <interface> on page 6-60
This command returns the value of an assignment on an interface of a child instance.

get_instance_interface_parameter_property <instance> <interface> <parameter> <property> on page
6-61
This command returns the property value on a parameter in an interface of a child instance.

get_instance_interface_parameter_value <instance> <interface> <parameter> on page 6-61
This command returns the value of a parameter of an interface in a child instance.

get_instance_interface_parameters <instance> <interface> on page 6-62
This command returns a list of parameters for an interface in a child instance.

get_instance_interface_port_property <instance> <interface> <port> <property> on page 6-62
This command returns the property value of a port in the interface of a child instance.

get_instance_interface_ports <instance> <interface> on page 6-62
This command returns a list of ports in an interface of a child instance.

get_instance_interface_properties on page 6-63
This command returns a list of properties that you can be query for an interface in a child instance.

get_instance_interface_property <instance> <interface> <property> on page 6-63
This command returns the property value for an interface in a child instance.

get_instance_interfaces <instance> on page 6-63
This command returns a list of interfaces in a child instance.

get_instance_parameter_property <instance> <parameter> <property> on page 6-64
This command returns the value of a parameter in a connection in the subsystem, for an instance that
contains a subsystem.

get_instance_parameter_value <instance> <parameter> on page 6-64
This command returns the value of a property in a child instance.

get_instance_parameters <instance> on page 6-64
This command returns a list of parameters in a child instance.

get_instance_port_property <instance> <port> <property> on page 6-65
This command returns the value of a property of a port contained by an interface in a child instance.

get_instance_properties on page 6-65
This command returns a list of properties for a child instance.

Creating a System With Qsys Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-50 Qsys Scripting Command Reference 2%13_1 1.4
get_instance_property <instance> <property> on page 6-65
This command returns the value of a property for a child instance.

get_instances on page 6-66
This command returns a list of the instance names for all child instances in the system.

get_interface_port_property <interface ><port ><property> on page 6-66
This command returns the value of a property of a port contained by an interface in a child instance.

get_interface_ports <inferface> on page 6-66
This command returns the names of all of the ports that have been added to an interface.

get_interface_properties on page 6-67
This command returns the names of all the available interface properties. The list of interface properties is
the same for all interface types.

get_interface_property <interface> <property> on page 6-67
This command returns the value of a property from the specified interface.

get_interfaces on page 6-67
This command returns a list of top-level interfaces in the system.

get_module_properties on page 6-68
This command returns the properties that you can manage for the top-level module.

get_module_property <property> on page 6-68
This command returns the value of a top-level system property.

get_parameter_properties on page 6-68
This command returns a list of properties that you can query on parameters. These properties can be queried
on any parameter, such as parameters on instances, interfaces, instance interfaces, and connections.

get_port_properties on page 6-68
This command returns a list of properties that you can query on ports.

get_project_properties on page 6-69
This command returns a list of properties that you can query for the Quartus II project.

get_project_property <property> on page 6-69
This command returns the value of a Quartus II project property.

load_system <file> on page 6-69
This command loads a Qsys system from a file, and uses the system as the current system for scripting
commands.

lock_avalon_base_address <instance.interface> on page 6-69

This command prevents the memory-mapped base address from being changed for connections to an
interface on an instance when the aut 0_assi gn_base_addr esses or

aut o_assi gn_system base_addr esses commands are run.

preview_insert_avalon_streaming adapters on page 6-70
This command runs the adapter insertion for Avalon-ST connections, which adapt connections with
mismatched configuration, such as mismatched data widths.

remove_connection <connection> on page 6-70
This command removes a connection from the system.

Altera Corporation Creating a System With Qsys

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020

2013.11.4 Qsys Scripting Command Reference 6-51

remove_instance <instance> on page 6-70
This command removes a child instance from the system.
remove_interface <interface> on page 6-70
This command removes an exported top-level interface from the system.
save_system [<file>] on page 6-71
This command saves the current in-memory system to the named file. If the file is not specified, the system
saves to the same file that was opened with the | oad_syst em command.
send_message <level> <message> on page 6-71
This command sends a message to the user of the script. The message text is normally interpreted as HTML.
You can use the element to provide emphasis.
set_connection_parameter_value <connection> <parameter> <value> on page 6-72
This command sets the parameter value for a connection.
set_instance_parameter_value <instance> <parameter> <value> on page 6-72
This command set the parameter value for a child instance. Derived parameters and SYSTEM | NFO
parameters for the child instance can not be set with this command.
set_instance_property <instance> <property> <value> on page 6-73
This command sets the property value of a child instance. Most instance properties are read-only and can
only be set by the instance itself. The primary use for this command is to update the ENABLED parameter,
which includes or excludes a child instance when generating the system.
set_interface_property <interface> <property> <value> on page 6-73
This command sets the property value on an exported top-level interface. This command is used to set the
EXPORT_OF property to specify which interface of a child instance is exported by the top-level interface.
set_module_property <property> <value> on page 6-73
This command sets the system property value, such as the name of the system using the NAME property.
set_project_property <property> <value> on page 6-74
This command sets the project property value, such as the device family.
set_validation_property <property> <value> on page 6-74
This command sets a property that affects how and when validation is run during system scripting. To disable
system validation after each scripting command, set AUTOVATI C_VALI DATI ONto false.
unlock_avalon_base_address <instance.interface> on page 6-74
This command allows the memory-mapped base address to be changed for connections to an interface on
an instance when the aut 0_assi gn_base_addr esses or
aut o_assi gn_system base_addr esses commands are run.
upgrade_sopc_system <filename> on page 6-75
This command loads the specified .sopc file, which then upgrades the file as a Qsys-compatible system. Some
child instances and interconnect are replaced so that the system functions in Qsys. You must save the new
Qsys-compatible system with the save_syst emcommand.
validate_connection <connection> on page 6-75
This command validates the specified connection, and returns the during validation messages.
validate_instance <instance> on page 6-75
This command validates the specified child instance, and returns the validation messages.

Creating a System With Qsys Altera Corporation

() send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-52 add_connection <start> [<end>] 2%13_1 1.4
validate_instance_interface <instance> <interface> on page 6-76
This command validates an interface on a child instance, and returns the validation messages.

validate_system on page 6-76
This command validates the system, and returns the validation messages.

add_connection <start> [<end>]
This command connects interfaces using an appropriate connection type. Interface names consist of a child
instance name, followed by the name of an interface provided by that module, for example, mux0. out is
the interface out on the instance named nmux0.

add_connection

Usage add_connection <start> [<end>]
Returns None
start The start interface to be
connected, in <i nst ance_
name>. <i nt erface_nane>
Arguments format.
end The end interface to be connected
<i nst ance_nane>
. <i nterface_nane>. format.
Example add_connection dna.read_naster sdram sl

add_instance <name> <type> [<version>]
This command adds an instance of a component, referred to as a child or child instance, to the system.

Usage add_i nst ance<nane> <type> [<versi on>]

Returns None

name Specifies a unique local name that
you can use to manipulate the
instance. This name is used in the
generated HDL to identify the
instance.

type The type refers to a kind of
instance available in a library, for
example altera_avalon_uart.

Arguments

ver si on (optional) The required version of the
specified instance type. If no
version is specified, the latest
version is used.

Example add_i nstance uart_0O altera_aval on_uart

Altera Corporation Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020 . . .
3013_11_4 add_interface <name> <type> <direction> 6-53

add_interface <name> <type> <direction>
This command adds an interface to your system, which you can use to export an interface from within the

system. You specify the exported interface with the commandset _i nt er f ace_pr operty EXPORT_CF
<instance.interface>.

Usage add_i nterface <name> <type> <direction>
Returns None
name The name of the interface that will
be exported from the system.
Arguments type The type of interface.
direction The interface direction.
Example add_interface ny_export conduit end

add_interface ny_export conduit end

set _interface_property ny_export EXPORT_OF uart _
0. external _connection

auto_assign_base_addresses <instance>
This command assigns base addresses to memory-mapped interfaces on an instance in the system. Instance
interfaces that are locked with lock_avalon_base_address command keep their addresses during address
auto-assignment.

auto_assign_base_addresses

Usage aut o_assi gn_base_addresses <i nstance>
Returns None
Arguments i nstance The name of the instance with

memory mapped interfaces.

Example aut o_assi gn_base_addresses sdram

auto_assign_irqs <instance>
This command assigns interrupt numbers to all connected interrupt senders on an instance in the system.

auto_assign_irgs

Usage auto_assign_irgs <instance>
Returns None
Arguments i nstance The name of the instance with an

interrupt sender.

Example aut o_assign_irgs sdram

Creating a System With Qsys Altera Corporation

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6

54 auto_connect <element>

auto_connect <element>

Q151020
2013.11.4

This command creates connections from an instance or instance interface to matching interfaces in other
instances in the system. For example, Avalon-MM slaves are connected to Avalon-MM masters.

auto_connect

Usage aut o_connect <el ement >

Returns None

Arguments el enent The name of the instance
interface, or the name of an
instance.

Example aut o_connect sdram

aut o_connect uart_0.sl

create_system [<name>]

This command replaces the current system in the system script with a new system with the specified name.

create_system

Usage create_system [<nane>]

Returns None

Arguments name (optional) The name of the new system.
Example create_system ny_new system nane

get_instance_interface_parameter_value <instance> <interface> <parameter>
This command returns the value of a parameter of an interface in a child instance.

get_composed_connection_parameter_value

Usage get _i nstance_i nterface_paranet er_val ue <i nstance>
<i nterface> <paraneter>
Return various The value of the parameter.
i nstance The name of the child instance.
i nterface The name of an interface on the
Arguments child instance.
par anmet er The name of the parameter on the
interface.
Example get _instance_interface_parameter_value uart_0 sO

set upTi nme

Altera Corporation

Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
(2)013_1 14 get_composed_connection_parameters <instance> <childConnection> 6-55

get_composed_connection_parameters <instance> <childConnection>
This command returns a list of parameters on a connection in the subsystem, for an instance that contains
a subsystem.

get_composed_connection_parameters

Usage get _conposed_connecti on_paraneters <i nstance>
<chi | dConnecti on>
Returns string[] A list of parameter names.
i nstance The child instance containing a
subsystem.
Arguments
chi | dConnecti on The name of the connection in the
subsystem.
Example get _conposed_connecti on_paraneters subsystem O
cpu. dat a_mast er/ nenory. s0O

get_composed_connections <instance>
This command returns a list of all connections in a subsystem, for an instance that contains a subsystem.

get_composed_connections

Usage get _conposed_connecti ons <i nstance>

Returns string[] A list of connection names in the
subsystem. These connection
names are not qualified with the
instance name.

Arguments i nstance The child instance containing a
subsystem.
Example get _conposed_connecti ons subsystem O

get_composed_instance_assignment <instance> <childInstance> <key>
This command returns the value of an assignment on an instance of a subsystem, for an instance that models
a subsystem.

get_composed_instance_assignment

Usage get _conposed_i nst ance_assi gnment <i nst ance>
<chi I dl nst ance> <key>
Returns string[] The value of the assignment.
Creating a System With Qsys Altera Corporation

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . . . 1151020
6-56 get_composed_instance_assignments <instance> <childinstance> 2%1 3.11.4

get_composed_instance_assignment

i nstance The child instance containing a
subsystem.
Arguments chi I dl nstance The name of a child instance

found in the subsystem.

key The assignment key.

Example get _conposed_i nst ance_assi gnnent subsystem O
vi deo_0 "enbeddedsw. CVvacr o. col or Space"

get_composed_instance_assignments <instance> <childinstance>
This command returns a list of assignments on an instance of a subsystem, for an instance that contains a
subsystem.

get_composed_instance_assignments

Usage get _conposed_i nstance_assi gnnent s <i nstance>
<chi I dl nst ance>
Returns string[] A list of assignment names.
i nstance The child instance containing a
subsystem.
Arguments
chi | dl nst ance The name of a child instance
found in the subsystem.

Example get _conposed_i nstance_assi gnnents subsystem 0 cpu

get_composed_instance_parameter_value <instance> <childInstance> <parameter>
This command returns the value of a parameters on an instance in a subsystem, for an instance that contains
a subsystem.

get_composed_instance_parameter_value

Usage get _conposed_i nst ance_par anet er _val ue <i nstance>
<chi | dl nst ance> <par anet er >
Returns string [] The value of a parameter on an
instance of a subsystem.
i nstance The child instance containing a
subsystem.
chi | dl nst ance The name of a child instance
Arguments found in the subsystem.
par anet er The name of the parameter to
query on an instance of a
subsystem.
Altera Corporation Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020 . . .
(2)013_1 14 get_composed_instance_parameters <instance> <childinstance> 6-57

get_composed_instance_parameter_value

Example get _conposed_i nstance_par anet er _val ue subsystem_
0 cpu DATA W DTH

get_composed_instance_parameters <instance> <childInstance>
This command returns a list of parameters on an instance of a subsystem, for an instance that contains a
subsystem.

get_composed_instance_parameters

Usage get _conposed_i nstance_paraneters <i nstance>
<chi I dl nst ance>
Returns string [] A list of parameter names.
i nstance The child instance containing a
subsystem.
Arguments
childl I nstance The name of a child instance
found in the subsystem.

Example get _conposed_i nst ance_paraneters subsystem 0 cpu

get_composed_instances <instance>
This command returns a list of child instances in the subsystem, for an instance that contains a subsystem.

get_composed_instances

Usage get _conposed_i nst ances <i nstance>

Returns string [] A list of instance names found in
the subsystem.

Arguments i nstance The child instance containing a
subsystem.
Example get _conposed_i nstances subsystem O

get_connection_parameter_property <connection> <parameter> <property>
This command returns the value of a parameter property in a connection.

get_connection_parameter_property

Usage get _connection_paraneter _property <connection>
<par anet er > <property>
Returns various The value of the parameter
property.
Creating a System With Qsys Altera Corporation

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . QlI51020
6-58 get_connection_parameter_value <connection> <parameter> 2013.11.4

get_connection_parameter_property

connection The connection to query.
Arguments par anet er The name of the parameter.
property The property of the connection.
Example get _connecti on_paraneter_property cpu. data_master/
dma0. csr baseAddress UNI TS

get_connection_parameter_value <connection> <parameter>
This command gets the value of a parameter on the connection. Parameters represent aspects of the connection
that can be modified once the connection is created, such as the base address for an Avalon-MM connection.

get_connection_parameter_value

Usage get _connection_paraneter_val ue <connecti on>
<par anet er >
Returns various The value of the parameter.
connection The connection to query.
Arguments
par amet er The name of the parameter.
Example get _connection_paraneter_val ue cpu. data_master/

dma0. csr baseAddr ess

get_connection_parameters <connection>
This command returns a list of parameters found on a connection. The list of connection parameters is the
same for all connections of the same type.

get_connection_parameters

Usage get _connection_paranmeters <connection>

Returns string [] A list of parameter names.
Arguments connection The connection to query.
Example get _connecti on_paraneters cpu. dat a_nast er/ dnma0. csr

get_connection_properties
This command returns a list of properties found on a connection. The list of connection properties is the
same for all connections, regardless of type.

get_connection_properties

Usage get _connection_properties
Returns string [] A list of connection properties.
Altera Corporation Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QlI51020 . .
2013.11.4 get_connection_property <connection> <property> 6-59

get_connection_properties

Arguments None ‘

Example get _connection_properties

get_connection_property <connection> <property>
This command returns the value of a connection property.

get_connection_property

Usage get _connection_property <connection> <property>
Returns string[] The value of a connection
property.
connection The connection to query.
Arguments property The name of the connection
property.
Example get _connection_property cpu. data_mast er/ dna0. csr
TYPE

get_connections [<element>]
This command returns a list of connections in the system if no element is specified. If a child instance is
specified, for example cpu, all connections to any interface on the instance are returned. If an interface on
achild instance is specified, for example cpu. i nst ruct i on_mast er, only connections to that interface
are returned.

get_connections

Usage get _connections [<el ement >]
Returns string[] A list of connections.
Arguments el ement (optional) The name of a child instance, or

the qualified name of an interface
on a child instance.

Example get _connecti ons
get _connections cpu

get _connections cpu.instruction_naster

get_instance_assignment <instance> <key>
This command returns the value of an assignment on a child instance.

get_instance_assignment

Usage ‘get _instance_assi gnment <i nstance> <key>

Creating a System With Qsys Altera Corporation

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . . QlI51020
6-60 get_instance_assignments <instance> 2013.11.4

get_instance_assignment

Returns string[] The value of the specified
assignment.
i nstance The name of the child instance.
Arguments
key The assignment key to query.
Example get _i nstance_assi gnnent vi deo_processor
enbeddedsw. CMacr 0. col or Space

get_instance_assignments <instance>
This command returns a list of assignment keys for any assignments defined for the instance.

get_instance_assignments

Usage get i nstance_assi gnnents <instance>

Returns string[] A list of assignment keys.
Arguments i nstance The name of the child instance.
Example get _i nstance_assi gnnents sdram

get_instance_interface_assignment <instance> <interface> <key>
This command returns the value of an assignment on an interface of a child instance.

get_instance_interface_assignment

Usage get _instance_interface_assi gnnent <instance>
<interface> <key>
Returns string [] The value of the specified
assignment.
i nstance The name of the child instance.
interface The name of an interface on the
Arguments 7
child instance.
key The assignment key to query.
Example get _instance_interface_assi gnnent sdram sl

enbeddedsw. configuration.isFl ash

get_instance_interface_assignments <instance> <interface>
This command returns the value of an assignment on an interface of a child instance.

get_instance_interface_assignments

get _instance_interface_assi gnnents <instance>
<interface>

Usage

Altera Corporation Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020

2013.11.4 get_instance_interface_parameter_property <instance> <interface> <parameter> <property> 6-61
Returns string[] A list of assignment keys.
i nstance The name of the child instance.
Arguments interface The name of an interface on the
child instance.

Example get _instance_interface_assi gnments sdram sl

get_instance_interface_parameter_property <instance> <interface> <parameter> <property>
This command returns the property value on a parameter in an interface of a child instance.

get_instance_interface_parameter_property

Usage get _instance_i nterface_paranet er_property
<i nstance> <i nterface> <paraneter> <property>

Returns various The value of the parameter
property.
i nstance The name of the child instance.
interface The name of an interface on the
child instance.
Arguments par anet er The name of the parameter on the
interface.
property The name of the property on the
parameter.
Example get _instance_interface_paranmeter_property uart_0O

sO setupTi me ENABLED

get_instance_interface_parameter_value <instance> <interface> <parameter>
This command returns the value of a parameter of an interface in a child instance.

get_composed_connection_parameter_value

Usage get _instance_i nterface_paranet er _val ue <i nstance>
<i nterface> <paraneter>
Return various The value of the parameter.
i nstance The name of the child instance.
interface The name of an interface on the
Arguments child instance.
par anet er The name of the parameter on the
instance.
Creating a System With Qsys Altera Corporation

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . . . QI151020
6-62 get_instance_interface_parameters <instance> <interface> 2013.11.4

get_composed_connection_parameter_value

Example get _instance_interface_parameter_value uart_0 sO
set upTi ne

get_instance_interface_parameters <instance> <interface>
This command returns a list of parameters for an interface in a child instance.

get_instance_interface_parameters

Usage get _instance_interface_paraneters <instance>
<interface>

Returns string[] A list of parameter names for
parameters in the interface.

i nst ance The name of the child instance.
Arguments interface The name of an interface on the
child instance.
Example get _instance_interface paraneters uart_0 sO

get_instance_interface_port_property <instance> <interface> <port> <property>
This command returns the property value of a port in the interface of a child instance.

get_instance_interface_port_property

Usage get _instance_interface_port_property <instance>
<interface> <port> <property>

Returns various The value of the port property.
i nstance The name of the child instance.
interface The name of an interface on the

child instance.

Arguments

port The name of the port in the
interface.
property The name of the property of the
port.
Example get _instance_interface_port_property uart_0O

exports tx WDTH

get_instance_interface_ports <instance> <interface>
This command returns a list of ports in an interface of a child instance.

Altera Corporation Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Q151020
2013.11.4

get_instance_interface_properties

get_instance_interface_ports

Usage get _instance_interface ports <instance>
<interface>
Returns string[] A list of port names found in the
interface.
i nstance The name of the child instance.
Arguments interface The name of an interface on the
child instance.
Example get _instance_interface_ports uart_0 sO

get_instance_interface_properties
This command returns a list of properties that you can be query for an interface in a child instance.

get_instance_interface_properties

Usage get __instance_interface_properties

Returns string[] A list of property names.
Arguments None

Example get _instance_interface_properties

get_instance_interface_property <instance> <interface> <property>
This command returns the property value for an interface in a child instance.

get_instance_interface_property

Usage get _instance_interface_property <instance>
<interface> <property>
Return string [] The value of the property.
i nstance The name of the child instance.
i nterface The name of an interface on the
Arguments child instance.
property he name of the property of the
interface.
Example get __instance_interface_property uart_0 sO

DESCRI PTI ON

get_instance_interfaces <instance>
This command returns a list of interfaces in a child instance.

Creating a System With Qsys

CJ Send Feedback

Altera Corporation

6-63

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

. . QlI51020
6-64 get_instance_parameter_property <instance> <parameter> <property> 2013.11.4

get_instance_interfaces

Usage get _instance_interfaces <instance>

Returns string[] A list of interface names.
Arguments i nstance The name of the child instance.
Example get _instance_interfaces uart_0O

get_instance_parameter_property <instance> <parameter> <property>
This command returns the value of a parameter in a connection in the subsystem, for an instance that
contains a subsystem.

get_instance_parameter_property

Usage get _instance_parameter_property <instance>
<par amet er > <property>
Return various The name of the child instance.
i nstance The child instance containing a
subsystem.
par anet er The name of the parameter in the
Arguments .
instance.
property The name of the property of the
parameter.
Example get _instance_paraneter_property uart_ 0O baudRate
ENABLED

get_instance_parameter_value <instance> <parameter>
This command returns the value of a property in a child instance.

get_instance_parameter_value

Usage get _i nstance_paranet er _val ue <i nstance>
<par anet er >
Returns various The value of the parameter.
i nstance The name of the child instance.
Arguments par anet er The name of the parameter in the
instance.
Example get _instance_paraneter_val ue uart_0 baudRate

get_instance_parameters <instance>
This command returns a list of parameters in a child instance.

Altera Corporation Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Q151020
2013.11.4

get_instance_port_property <instance> <port> <property>

get_instance_parameters

Usage get _instance_paraneters <instance>

Returns string[] A list of parameters in the
instance.

Arguments i nstance The name of the child instance.

Example get _i nstance_paraneters uart_0O

get_instance_port_property <instance> <port> <property>
This command returns the value of a property of a port contained by an interface in a child instance.

get_instance_port_property

Usage get _instance_port_property <instance> <port>
<property>
Return various The value of the property for the
port.
i nstance The name of the child instance.
port The name of a port in one of the
interfaces on the child instance.
Arguments
property The name of a property found on
the port; DI RECTI ON, RCLE,
W DTH.
Example get _instance_port_property uart_0 tx WDTH

get_instance_properties

This command returns a list of properties for a child instance.

get_instance_properties

Usage get _instance_properties

Returns string[] A list of property names for the
child instance.

Arguments None

Example get _i nstance_properties

get_instance_property <instance> <property>

6-65

This command returns the value of a property for a child instance.

get_instance_property

Usage ‘get _instance_property <instance> <property>

Creating a System With Qsys Altera Corporation

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6

66 get_instances

get_instance

Q151020
2013.11.4

Returns string[] The value of the property.
i nstance The name of the child instance.
Arguments property The name of a property found on
the instance.
Example get _instance_property cpu ENABLED

get_instances

This command returns a list of the instance names for all child instances in the system.

get_instances

Usage get _i nstances

Returns string[] A list of child instance names.
Arguments None

Example get i nstances

get_interface_port_property <interface ><port ><property>

This command returns the value of a property of a port contained by an interface in a child instance.

get_interface_port_property

Usage get _interface port_property <interface><port>
<property>
Return various The value of the property.
i nstance The name of a top-level interface
on the system.
Arguments port The name of a port found in the
interface.
property The name of a property found on
the port.
Example get _interface_port_property uart_exports tx

DI RECTI ON

get_interface_ports <interface>

This command returns the names of all of the ports that have been added to an interface.

get_interface_ports

Usage

‘get _interface_ports <interface>

Altera Corporation

Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
2001 3.11.4 get_interface_properties 6-67

get_interface_ports

Returns string[] A list of port names.

Arguments interface The name of a top-level interface
on the system.

Example get _interface ports export_cl k_out

get_interface_properties
This command returns the names of all the available interface properties. The list of interface properties is
the same for all interface types.

get_interface_properties

Usage get __interface_properties

Returns string[] A list of interface properties.
Arguments None

Example get _interface_properties

get_interface_property <interface> <property>
This command returns the value of a property from the specified interface.

get_interface_property

Usage get _interface property <interface> <property>
Return various The property value.
interface The name of a top-level interface
on the system.
Arguments
property The name of the property,
EXPORT_OF.
Example get _interface _property export_clk_out EXPORT_COF

get_interfaces
This command returns a list of top-level interfaces in the system.

get_interfaces

Usage get _interfaces
Returns string[| A list of the top-level interfaces
exported from the system.
Arguments None
Example get _interfaces
Creating a System With Qsys Altera Corporation

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
6-68 get_module_properties 2(())1 3.11.4

get_module_properties
This command returns the properties that you can manage for the top-level module.

get_module_properties

Usage get _nodul e_properties

Returns string[] A list of property names.
Arguments None

Example get _nodul e_properties

get_module_property <property>

This command returns the value of a top-level system property.

get_module_property

Usage get _nodul e_property <property>

Returns string[] The value of the property.

Arguments property The name of the property to
query; NAME.

Example get _nodul e_property NAVE

get_parameter_properties

This command returns a list of properties that you can query on parameters. These properties can be queried
on any parameter, such as parameters on instances, interfaces, instance interfaces, and connections.

get_parameter_properties

Usage get _paraneter_properties

Returns string[] A list of parameter properties.
Arguments None

Example get paraneter _properties

get_port_properties

This command returns a list of properties that you can query on ports.

get_port_properties

Usage get _port_properties

Returns string[] A list of port properties.
Arguments None

Example get _port _properties

Altera Corporation

Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
2001 3.11.4 get_project_properties 6-69

get_project_properties
This command returns a list of properties that you can query for the Quartus II project.

get_project_properties

Usage get _project_properties

Returns string[] A list of project properties.
Arguments None

Example get _proj ect_properties

get_project_property <property>
This command returns the value of a Quartus II project property.

get_project_property

Usage get _proj ect _property <property>

Returns string[] The value of the property.

Arguments property The name of the project property;
DEVI CE_FAM LY.

Example get _proj ect_property DEVICE_FAM LY

load_system <file>
This command loads a Qsys system from a file, and uses the system as the current system for scripting

commands.
Usage | oad_system <file>
Returns None
Arguments file The path to a .qsys file.
Example | oad_syst em exanpl e. qsys

lock_avalon_base_address <instance.interface>
This command prevents the memory-mapped base address from being changed for connections to an
interface on an instance when the aut 0_assi gn_base_addr esses or
aut o_assi gn_system base_addr esses commands are run.

lock_avalon_base_address

Usage | ock_aval on_base address <instance.interface>
Returns None
Creating a System With Qsys Altera Corporation

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Q151020

6-70 preview_insert_avalon_streaming_adapters 2013.11.4

lock_avalon_base address

Arguments i nstance.interface The qualified name of the
interface of an instance, in
<instance>.<interface> format.

Example | ock_aval on_base_address sdram sl

preview_insert_avalon_streaming_adapters
This command runs the adapter insertion for Avalon-ST connections, which adapt connections with
mismatched configuration, such as mismatched data widths.

preview_insert_avalon_streaming_adapters

Usage previ ew_ i nsert_aval on_stream ng_adapters
Returns None
Arguments None
Example previ ew_ i nsert _aval on_streani ng_adapters

remove_connection <connection>
This command removes a connection from the system.

remove_connection

Usage renove_connecti on <connection>

Returns None

Arguments connection The name of the connection to
remove.

Example renmove_connecti on cpu. data_naster/sdram sO

remove_instance <instance>
This command removes a child instance from the system.

remove_instance

Usage renove_i nstance <instance>

Returns None

Arguments i nstance The name of the child instance to
remove.

Example renove_i nstance cpu

remove_interface <interface>
This command removes an exported top-level interface from the system.

Altera Corporation Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
2001 3.11.4 save_system [<file>] 6-71

remove_interface

Usage renove_i nterface <interface>
Returns None
Arguments interface The name of the exported top-

level interface.

Example remove_interface cl k_out

save_system [<file>]
This command saves the current in-memory system to the named file. If the file is not specified, the system
saves to the same file that was opened with the | oad_syst em command.

save_system

Usage save_system [<fil e>]
Returns None
Arguments fil e optional If present, the path of the .qsys file
to save.
Example save_system
save_syst em exanpl e. gsys

send_message </evel> <message>
This command sends a message to the user of the script. The message text is normally interpreted as HTML.
You can use the element to provide emphasis.

send_message

Usage send_nessage <l evel > <nessage>
Return None
Creating a System With Qsys Altera Corporation

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

QI151020

6-72 set_connection_parameter_value <connection> <parameter> <value> 2013.11.4
| evel The following message levels are
supported:
o ERROR—Provides an error
message.

« WARNI NG—Provides a
warning message.

« | NFO—Provides an informa-
tional message.

« PROGRESS—Provides a
progress message.

« DEBUG—Provides a debug

message when debug mode is
enabled.

Arguments

nmessage The text of the message.

Example send_nessage ERROR "The systemis down!"

set_connection_parameter_value <connection> <parameter> <value>
This command sets the parameter value for a connection.

set_connection_parameter_value

Usage set _connection_paraneter_val ue <connecti on>
<par anet er > <val ue>

Return None
connection The connection.

Arguments par amet er The name of the parameter.
val ue The new parameter value.

Example set _connecti on_paranet er_val ue cpu. data_master/
dma0. csr baseAddress "0x000a0000"

set_instance_parameter_value <instance> <parameter> <value>
This command set the parameter value for a child instance. Derived parameters and SYSTEM | NFO
parameters for the child instance can not be set with this command.

set_instance_parameter_value

Usage set _i nstance_paranet er _val ue <i nstance>
<par anet er> <val ue>
Return None

Altera Corporation

Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Q151020 . :
2013.11.4 set_instance_property <instance> <property> <value> 6-73

set_instance_parameter_value

i nstance The name of the child instance.
Arguments par anet er The name of the parameter.

val ue The new parameter value.
Example set _i nstance_paranet er _val ue uart_0 baudRat e 9600

set_instance_property <instance> <property> <value>
This command sets the property value of a child instance. Most instance properties are read-only and can
only be set by the instance itself. The primary use for this command is to update the ENABLED parameter,
which includes or excludes a child instance when generating the system.

set_instance_property

Usage set _instance_property <instance> <property>
<val ue>
Return None
i nstance The name of the child instance.
Arguments property The name of the property.
val ue The new parameter value.
Example set _instance_property cpu ENABLED fal se

set_interface_property <interface> <property> <value>
This command sets the property value on an exported top-level interface. This command is used to set the
EXPORT_OF property to specify which interface of a child instance is exported by the top-level interface.

set_interface_property

Usage set _interface property <interface> <property>
<val ue>
Return None
interface The name of an exported top-level
interface.
Arguments property The name of the property.
val ue The new parameter value.
Example set _interface_property cl k_out EXPORT_OF cl k. cl k_
out

set_module_property <property> <value>
This command sets the system property value, such as the name of the system using the NAME property.

Creating a System With Qsys Altera Corporation

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Q151020

6-74 set_project_property <property> <value> 2013.11.4

set_module_property

Usage set _nodul e_property <property> <val ue>
Return None

property The name of the property.
Arguments

val ue The new property value.
Example set _nodul e_property NAME "new_system nane"

set_project_property <property> <value>
This command sets the project property value, such as the device family.

set_project_property

Usage set _project_property <property> <val ue>
Return None
property The name of the property.
Arguments
val ue The new property value.
Example set _project _property DEVICE FAMLY "Cyclone 1V
mll

set_validation_property <property> <value>
This command sets a property that affects how and when validation is run during system scripting. To disable
system validation after each scripting command, set AUTOVATI C_VALI DATI ONto false.

set_validation_property

Usage set _val i dati on_property <property> <val ue>
Return None

property The name of the property.
Arguments

val ue The new property value.
Example set _validati on_property AUTQVATI C_VALI DATI ON f al se

unlock_avalon_base_address <instance.interface>
This command allows the memory-mapped base address to be changed for connections to an interface on
an instance when the aut o_assi gn_base_addr esses or
aut o_assi gn_system base_addr esses commands are run.

unlock_avalon_base_address

Usage ‘unl ock_aval on_base_address <instance.interface>

Altera Corporation Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020
2001 3.11.4 upgrade_sopc_system <filename> 6-75

unlock_avalon_base_address

Return None

Arguments i nstance.interface The qualified name of the
interface of an instance, in
<instance>.<interface> format

Example unl ock_aval on_base_address sdram sl

upgrade_sopc_system <filename>
This command loads the specified .sopc file, which then upgrades the file as a Qsys-compatible system. Some
child instances and interconnect are replaced so that the system functions in Qsys. You must save the new
Qsys-compatible system with the save_syst emcommand.

upgrade_sopc_system

Usage upgr ade_sopc_system <fi | enane>
Return None
Arguments filenane The path to the .sopc file being

upgraded. The upgrade moves the
.sopc file and related generation
files to a backup directory.

Example upgr ade_sopc_system ol d_system sopc

validate_connection <connection>
This command validates the specified connection, and returns the during validation messages.

validate_connection

Usage val i dat e_connecti on <connecti on>

Return string [] A list of messages produced
validation.

Arguments connecti on The path to the .sopc file being

upgraded. The upgrade moves the
.sopc file and related generation
files to a backup directory.

Example val i dat e_connecti on cpu. data_master/sdram sl

validate_instance <instance>
This command validates the specified child instance, and returns the validation messages.

validate_instance

Usage ‘val i dat e_i nstance <i nstance>

Creating a System With Qsys Altera Corporation

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6-76 validate_instance_interface <instance> <interface>

validate_instance

2013.11.4

Return string [] A list of messages produced
validation.

Arguments i nstance The name of the child instance to
validate.

Example val i date_i nstance cpu

validate_instance_interface <instance> <interface>
This command validates an interface on a child instance, and returns the validation messages.

validate_instance_interface

Usage val i dat e_i nstance_i nterface <i nstance> <interface>
Return string [] A list of messages produced
validation.
i nstance The name of the child instance.
Arguments i nterface The name of the instance on the
child instance to validate.
Example val i date_i nstance_interface cpu data_naster

validate_system

This command validates the system, and returns the validation messages.

validate_system

Usage val i dat e_system

Return string [] A list of messages produced
validation.

Arguments None

Example val i dat e_system

Document Revision History

Table 6-7 indicates edits made to the Creating a System With Qsys content since its creation.

Altera Corporation

Creating a System With Qsys

CJ Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1151020 c
2013.11.4 Document Revision History 6-77

Table 6-7: Document Revision History

November 2013 | 13.1.0 o Added: Integrating with the .gqsys File.

o Added: Using the Hierarchy Tab.

o Added: Managing Interconnect Requirements.
o Added: Viewing Qsys Interconnect.

May 2013 13.0.0 o Added AMBA APB support.
o Added gsys-generate utility.
o Added VHDL BF

May 2013

M ID support.
o Added Creating Secure Systems (TrustZones) .

« Added CMSIS Support for Qsys Systems With An HPS
Component.

o Added VHDL language support options.

November 2012 |12.1.0 o Added AMBA AXI4 support.

June 2012 12.0.0 o Added AMBA AX3I support.
o Added Preset Editor updates.
o Added command-line utilities, and scripts.

November 2011 |11.1.0 » Added Synopsys VCS and VCS MX Simulation Shell Script.

o Added Cadence Incisive Enterprise (NCSIM) Simulation Shell
Script.

o Added Using Instance Parameters and Example Hierarchical
System Using Parameters.

May 2011 11.0.0 o Added simulation support in Verilog HDL and VHDL.
o Added testbench generation support.
» Updated simulation and file generation sections.

December 2010 | 10.1.0 Initial release.

Related Information
Quartus IT Handbook Archive

Creating a System With Qsys Altera Corporation

() send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QII51020%202013.11.4)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	6. Creating a System With Qsys
	Component Interface Support
	Understanding the Qsys Design Flow
	Creating a Qsys System
	Adding and Connecting System Contents
	Adding Components
	Connecting Components
	Filtering Components

	Managing Views
	Using the Hierarchy Tab
	Using the Parameters Tab
	Using the Presets Tab
	Working With Presets for Supported IP Components

	Using the Block Symbol Tab
	Using the Address Map Tab
	Using the Clock Tab
	Using the Project Settings Tab
	Using the Instance Parameters Tab
	Creating an Instance Script

	Using the Interconnect Requirements Tab
	Configuring Interconnect Requirements for the System
	Configuring Interconnect Requirements for an Interface

	Creating Hierarchical Systems
	Adding Systems to the Library
	Creating a Component Based on a System

	Qsys 64-Bit Addressing Support
	Creating Secure Systems (TrustZones)
	Managing Secure Settings in Qsys
	Understanding Compilation-Time Security Configuration Options
	Accessing Undefined Memory Regions

	Viewing the Qsys Interconnect
	Using the Memory-Mapped Interconnect Tab
	Manually Controlling Pipelining in the Qsys Interconnect

	Integrating Your Qsys Design with the Quartus II Software
	Integrating with the .qsys File
	Integrating with the .qip File
	Setting Clock Constraints

	Generating a Qsys System
	Generating Output Files
	CMSIS Support for Qsys Systems With An HPS Component

	Viewing the HDL Example

	Simulating a Qsys System
	Generate and Modify the Testbench System
	Generate the Testbench System and a Simulation model at the Same Time (Verilog HDL only)
	Adding Assertion Monitors
	Simulation Scripts
	Simulating Software Running on a Nios II Processor

	System Examples
	PCI Express Subsystem Example
	Ethernet Subsystem Example
	PCI Express to Ethernet Bridge Example
	Pipeline Bridges

	Hierarchical System Using Instance Parameters Example

	Searching for Component Files to Add to the Library
	Adding Components to the Library
	Copy Components to a Directory Searched by Default
	Reference Components in an IP Index File (.ipx)
	Understanding the IP Index File (.ipx) Syntax
	ip-catalog
	ip-make-ipx

	Extending the Default Search Path

	Integrating Third-Party Components

	Using Qsys Command-Line with Utilities and Scripts
	Running the Qsys Editor from the Command-Line
	Launching Qsys with Additional Computer Memory

	Generating Qsys Systems with the qsys-generate Utility
	Creating and Managing a System with qsys-script
	Qsys Scripting Command Reference
	add_connection <start> [<end>]
	add_instance <name> <type> [<version>]
	add_interface <name> <type> <direction>
	auto_assign_base_addresses <instance>
	auto_assign_irqs <instance>
	auto_connect <element>
	create_system [<name>]
	get_instance_interface_parameter_value <instance> <interface> <parameter>
	get_composed_connection_parameters <instance> <childConnection>
	get_composed_connections <instance>
	get_composed_instance_assignment <instance> <childInstance> <key>
	get_composed_instance_assignments <instance> <childInstance>
	get_composed_instance_parameter_value <instance> <childInstance> <parameter>
	get_composed_instance_parameters <instance> <childInstance>
	get_composed_instances <instance>
	get_connection_parameter_property <connection> <parameter> <property>
	get_connection_parameter_value <connection> <parameter>
	get_connection_parameters <connection>
	get_connection_properties
	get_connection_property <connection> <property>
	get_connections [<element>]
	get_instance_assignment <instance> <key>
	get_instance_assignments <instance>
	get_instance_interface_assignment <instance> <interface> <key>
	get_instance_interface_assignments <instance> <interface>
	get_instance_interface_parameter_property <instance> <interface> <parameter> <property>
	get_instance_interface_parameter_value <instance> <interface> <parameter>
	get_instance_interface_parameters <instance> <interface>
	get_instance_interface_port_property <instance> <interface> <port> <property>
	get_instance_interface_ports <instance> <interface>
	get_instance_interface_properties
	get_instance_interface_property <instance> <interface> <property>
	get_instance_interfaces <instance>
	get_instance_parameter_property <instance> <parameter> <property>
	get_instance_parameter_value <instance> <parameter>
	get_instance_parameters <instance>
	get_instance_port_property <instance> <port> <property>
	get_instance_properties
	get_instance_property <instance> <property>
	get_instances
	get_interface_port_property <interface ><port ><property>
	get_interface_ports <interface>
	get_interface_properties
	get_interface_property <interface> <property>
	get_interfaces
	get_module_properties
	get_module_property <property>
	get_parameter_properties
	get_port_properties
	get_project_properties
	get_project_property <property>
	load_system <file>
	lock_avalon_base_address <instance.interface>
	preview_insert_avalon_streaming_adapters
	remove_connection <connection>
	remove_instance <instance>
	remove_interface <interface>
	save_system [<file>]
	send_message <level> <message>
	set_connection_parameter_value <connection> <parameter> <value>
	set_instance_parameter_value <instance> <parameter> <value>
	set_instance_property <instance> <property> <value>
	set_interface_property <interface> <property> <value>
	set_module_property <property> <value>
	set_project_property <property> <value>
	set_validation_property <property> <value>
	unlock_avalon_base_address <instance.interface>
	upgrade_sopc_system <filename>
	validate_connection <connection>
	validate_instance <instance>
	validate_instance_interface <instance> <interface>
	validate_system

	Document Revision History

